1
|
Wang C, Wang YL, Xu QH. Integrating network pharmacology with molecular docking and dynamics to uncover therapeutic targets and signaling mechanisms of vitamin D3 in Parkinson's disease. Mol Divers 2025:10.1007/s11030-024-11090-6. [PMID: 39821175 DOI: 10.1007/s11030-024-11090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways. We identified 24 VD's anti-PD targets, with estrogen receptor 1, estrogen receptor 2 (ESR2), sodium-dependent norepinephrine transporter, and insulin-like growth factor 1 receptor emerging as hub targets. Gene enrichment analysis elucidated that VD's anti-PD mechanism is closely related to the estrogen signaling pathway. Additionally, two-sample Mendelian randomization suggested a positive causal relationship between 25-hydroxyvitamin D and estrogen levels in vivo. To verify the interaction between VD and the hub drug targets, we performed molecular docking and kinetic simulations, finding the strongest interaction between VD and ESR2. Further Mendelian randomization analysis of drug targets confirmed the significant effect of the ESR2 drug target on PD risk. Single-cell nuclear sequencing of dopaminergic neurons, coupled with GSEA analysis, indicated that ESR2 activation upregulates the neuroactive ligand-receptor interaction signaling pathway and downregulates the Parkinson's disease pathway, thereby exerting a neuroprotective effect. In summary, our findings suggest that VD supplementation can not only elevate estradiol levels in humans but also directly activate ESR2, thereby modulating the estrogen signaling pathway in PD patients and providing neuroprotection. These predictive biological targets offer promising avenues for future clinical applications in Parkinson's disease treatment.
Collapse
Affiliation(s)
- Cheng Wang
- School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Yi-Ling Wang
- School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Qiu-Han Xu
- School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
O'Connor EC, Kambara K, Bertrand D. Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery. Expert Opin Drug Discov 2024; 19:173-187. [PMID: 37850233 DOI: 10.1080/17460441.2023.2270902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Introduced about 50 years ago, the model of Xenopus oocytes for the expression of recombinant proteins has gained a broad spectrum of applications. The authors herein review the benefits brought from using this model system, with a focus on modeling neurological disease mechanisms and application to drug discovery. AREAS COVERED Using multiple examples spanning from ligand gated ion channels to transporters, this review presents, in the light of the latest publications, the benefits offered from using Xenopus oocytes. Studies range from the characterization of gene mutations to the discovery of novel treatments for disorders of the central nervous system (CNS). EXPERT OPINION Development of new drugs targeting CNS disorders has been marked by failures in the translation from preclinical to clinical studies. As progress in genetics and molecular biology highlights large functional differences arising from a single to a few amino acid exchanges, the need for drug screening and functional testing against human proteins is increasing. The use of Xenopus oocytes to enable precise modeling and characterization of clinically relevant genetic variants constitutes a powerful model system that can be used to inform various aspects of CNS drug discovery and development.
Collapse
Affiliation(s)
- Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience & Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | | | | |
Collapse
|
3
|
Schöttle D, Wiedemann K, Correll CU, Janetzky W, Friede M, Jahn H, Brieden A. Response prediction in treatment of patients with schizophrenia after switching from oral aripiprazole to aripiprazole once-monthly. Schizophr Res 2023; 260:183-190. [PMID: 37683508 DOI: 10.1016/j.schres.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/12/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Daniel Schöttle
- Klinik für Psychiatrie und Psychotherapie, Zentrum für Psychosoziale Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Klaus Wiedemann
- Klinik für Psychiatrie und Psychotherapie, Zentrum für Psychosoziale Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA; Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | - Holger Jahn
- AMEOS Kliniken Heiligenhafen, AMEOS Krankenhausgesellschaft Holstein mbH, Oldenburg i. H., Preetz, Kiel, Germany.
| | - Andreas Brieden
- Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany.
| |
Collapse
|
4
|
Radabaugh HL, Ferguson AR, Bramlett HM, Dietrich WD. Increasing Rigor of Preclinical Research to Maximize Opportunities for Translation. Neurotherapeutics 2023; 20:1433-1445. [PMID: 37525025 PMCID: PMC10684440 DOI: 10.1007/s13311-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
The use of animal models in pre-clinical research has significantly broadened our understanding of the pathologies that underlie traumatic brain injury (TBI)-induced damage and deficits. However, despite numerous pre-clinical studies reporting the identification of promising neurotherapeutics, translation of these therapies to clinical application has so far eluded the TBI research field. A concerted effort to address this lack of translatability is long overdue. Given the inherent heterogeneity of TBI and the replication crisis that continues to plague biomedical research, this is a complex task that will require a multifaceted approach centered around rigor and reproducibility. Here, we discuss the role of three primary focus areas for better aligning pre-clinical research with clinical TBI management. These focus areas are (1) reporting and standardization of protocols, (2) replication of prior knowledge including the confirmation of expected pharmacodynamics, and (3) the broad application of open science through inter-center collaboration and data sharing. We further discuss current efforts that are establishing the core framework needed for successfully addressing the translatability crisis of TBI.
Collapse
Affiliation(s)
- Hannah L Radabaugh
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Zarate CA. Key considerations for clinical trials in psychopharmacology. World Psychiatry 2023; 22:76-77. [PMID: 36640382 PMCID: PMC9840493 DOI: 10.1002/wps.21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/15/2023] Open
|
6
|
Jin B, Pang X, Zang Q, Ga M, Xu J, Luo Z, Zhang R, Shi J, He J, Abliz Z. Spatiotemporally resolved metabolomics and isotope tracing reveal CNS drug targets. Acta Pharm Sin B 2022; 13:1699-1710. [PMID: 37139420 PMCID: PMC10149982 DOI: 10.1016/j.apsb.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Deconvolution of potential drug targets of the central nervous system (CNS) is particularly challenging because of the complicated structure and function of the brain. Here, a spatiotemporally resolved metabolomics and isotope tracing strategy was proposed and demonstrated to be powerful for deconvoluting and localizing potential targets of CNS drugs by using ambient mass spectrometry imaging. This strategy can map various substances including exogenous drugs, isotopically labeled metabolites, and various types of endogenous metabolites in the brain tissue sections to illustrate their microregional distribution pattern in the brain and locate drug action-related metabolic nodes and pathways. The strategy revealed that the sedative-hypnotic drug candidate YZG-331 was prominently distributed in the pineal gland and entered the thalamus and hypothalamus in relatively small amounts, and can increase glutamate decarboxylase activity to elevate γ-aminobutyric acid (GABA) levels in the hypothalamus, agonize organic cation transporter 3 to release extracellular histamine into peripheral circulation. These findings emphasize the promising capability of spatiotemporally resolved metabolomics and isotope tracing to help elucidate the multiple targets and the mechanisms of action of CNS drugs.
Collapse
Affiliation(s)
- Bo Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuechao Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Man Ga
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China
- Corresponding authors.
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
- Corresponding authors.
| |
Collapse
|
7
|
Watanabe S, Omran AA, Shao AS, Xue C, Zhang Z, Zhang J, Davies DL, Shao XM, Watanabe J, Liang J. Dihydromyricetin improves social isolation-induced cognitive impairments and astrocytic changes in mice. Sci Rep 2022; 12:5899. [PMID: 35393483 PMCID: PMC8989100 DOI: 10.1038/s41598-022-09814-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
Social isolation induces stress, anxiety, and mild cognitive impairment that could progress towards irreversible brain damage. A probable player in the mechanism of social isolation-induced anxiety is astrocytes, specialized glial cells that support proper brain function. Using a social isolation mouse model, we observed worsened cognitive and memory abilities with reductions of Object Recognition Index (ORI) in novel object recognition test and Recognition Index (RI) in novel context recognition test. Social isolation also increased astrocyte density, reduced astrocyte size with shorter branches, and reduced morphological complexity in the hippocampus. Dihydromyricetin, a flavonoid that we previously demonstrated to have anxiolytic properties, improved memory/cognition and restored astrocyte plasticity in these mice. Our study indicates astrocytic involvement in social isolation-induced cognitive impairment as well as anxiety and suggest dihydromyricetin as an early-stage intervention against anxiety, cognitive impairment, and potential permanent brain damage.
Collapse
Affiliation(s)
- Saki Watanabe
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Alzahra Al Omran
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Amy S Shao
- Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, 49007, USA
| | - Chen Xue
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Zeyu Zhang
- Translational Research Laboratory, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jifeng Zhang
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Xuesi M Shao
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Junji Watanabe
- Translational Research Laboratory, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
Zarate CA. Glutamate modulators and beyond: A neuroscience revolution in the making. Eur Neuropsychopharmacol 2022; 54:72-74. [PMID: 34565652 PMCID: PMC9635018 DOI: 10.1016/j.euroneuro.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Affiliation(s)
- Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States.
| |
Collapse
|
9
|
Rush A, Sutherland GT. The future of brain banking in Australia: an integrated brain and body biolibrary. Med J Aust 2021; 214:447-449.e1. [PMID: 33993514 DOI: 10.5694/mja2.51049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Antunes ASLM, de Almeida V, Crunfli F, Carregari VC, Martins-de-Souza D. Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:251-264. [PMID: 33725358 DOI: 10.1007/978-3-030-55035-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Psychiatric and neurodegenerative disorders such as schizophrenia (SCZ), Parkinson's disease (PD), and Alzheimer's disease (AD) continue to grow around the world with a high impact on health, social, and economic outcomes for the patient and society. Despite efforts, the etiology and pathophysiology of these disorders remain unclear. Omics technologies have contributed to the understanding of the molecular mechanisms that underlie these complex disorders and have suggested novel potential targets for treatment and diagnostics. Here, we have highlighted the unique and common pathways shared between SCZ, PD, and AD and highlight the main proteomic findings over the last 5 years using in vitro models, postmortem brain samples, and cerebrospinal fluid (CSF) or blood of patients. These studies have identified possible therapeutic targets and disease biomarkers. Further studies including target validation, the use of large sample sizes, and the integration of omics findings with bioinformatics tools are required to provide a better comprehension of pharmacological targets.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
11
|
Goh JY, O'Sullivan SE, Shortall SE, Zordan N, Piccinini AM, Potter HG, Fone KCF, King MV. Gestational poly(I:C) attenuates, not exacerbates, the behavioral, cytokine and mTOR changes caused by isolation rearing in a rat 'dual-hit' model for neurodevelopmental disorders. Brain Behav Immun 2020; 89:100-117. [PMID: 32485291 DOI: 10.1016/j.bbi.2020.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many psychiatric illnesses have a multifactorial etiology involving genetic and environmental risk factors that trigger persistent neurodevelopmental impairments. Several risk factors have been individually replicated in rodents, to understand disease mechanisms and evaluate novel treatments, particularly for poorly-managed negative and cognitive symptoms. However, the complex interplay between various factors remains unclear. Rodent dual-hit neurodevelopmental models offer vital opportunities to examine this and explore new strategies for early therapeutic intervention. This study combined gestational administration of polyinosinic:polycytidylic acid (poly(I:C); PIC, to mimic viral infection during pregnancy) with post-weaning isolation of resulting offspring (to mirror adolescent social adversity). After in vitro and in vivo studies required for laboratory-specific PIC characterization and optimization, we administered 10 mg/kg i.p. PIC potassium salt to time-mated Lister hooded dams on gestational day 15. This induced transient hypothermia, sickness behavior and weight loss in the dams, and led to locomotor hyperactivity, elevated striatal cytokine levels, and increased frontal cortical JNK phosphorylation in the offspring at adulthood. Remarkably, instead of exacerbating the well-characterized isolation syndrome, gestational PIC exposure actually protected against a spectrum of isolation-induced behavioral and brain regional changes. Thus isolation reared rats exhibited locomotor hyperactivity, impaired associative memory and reversal learning, elevated hippocampal and frontal cortical cytokine levels, and increased mammalian target of rapamycin (mTOR) activation in the frontal cortex - which were not evident in isolates previously exposed to gestational PIC. Brains from adolescent littermates suggest little contribution of cytokines, mTOR or JNK to early development of the isolation syndrome, or resilience conferred by PIC. But notably hippocampal oxytocin, which can protect against stress, was higher in adolescent PIC-exposed isolates so might contribute to a more favorable outcome. These findings have implications for identifying individuals at risk for disorders like schizophrenia who may benefit from early therapeutic intervention, and justify preclinical assessment of whether adolescent oxytocin manipulations can modulate disease onset or progression.
Collapse
Affiliation(s)
- Jen-Yin Goh
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Sinead E Shortall
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicole Zordan
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kevin C F Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
12
|
Miyajima R, Sakai K, Otani Y, Wadatsu T, Sakata Y, Nishikawa Y, Tanaka M, Yamashita Y, Hayashi M, Kondo K, Hayashi T. Novel Tetrafunctional Probes Identify Target Receptors and Binding Sites of Small-Molecule Drugs from Living Systems. ACS Chem Biol 2020; 15:2364-2373. [PMID: 32786265 DOI: 10.1021/acschembio.0c00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant advancement of chemoproteomics has contributed to uncovering the mechanism of action (MoA) of small-molecule drugs by characterizing drug-protein interactions in living systems. However, cell-membrane proteins such as G protein-coupled receptors (GPCRs) and ion channels, due to their low abundance and unique biophysical properties associated with multiple transmembrane domains, can present challenges for proteome-wide mapping of drug-receptor interactions. Herein, we describe the development of novel tetrafunctional probes, consisting of (1) a ligand of interest, (2) 2-aryl-5-carboxytetrazole (ACT) as a photoreactive group, (3) a hydrazine-labile cleavable linker, and (4) biotin for enrichment. In live cell labeling studies, we demonstrated that the ACT-based probe showed superior reactivity and selectivity for labeling on-target GPCR by mass spectrometry analysis compared with control probes including diazirine-based probes. By leveraging ACT-based cleavable probes, we further identified a set of representative ionotropic receptors, targeted by CNS drugs, with remarkable selectivity and precise binding site information from mouse brain slices. We anticipate that the robust chemoproteomic platform using the ACT-based cleavable probe coupled with phenotypic screening should promote identification of pharmacologically relevant target receptors of drug candidates and ultimately development of first-in-class drugs with novel MoA.
Collapse
Affiliation(s)
- Rin Miyajima
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Koji Sakai
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yuki Otani
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takashi Wadatsu
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yasuyo Sakata
- The Time-Limited Research Project for MSM, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yuki Nishikawa
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaki Tanaka
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yu Yamashita
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Mikayo Hayashi
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Kazumi Kondo
- Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takashi Hayashi
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| |
Collapse
|
13
|
Hjorth S, Waters S, Waters N, Tedroff J, Svensson P, Fagerberg A, Edling M, Svanberg B, Ljung E, Gunnergren J, McLean SL, Grayson B, Idris NF, Neill JC, Sonesson C. (3 S)-3-(2,3-difluorophenyl)-3-methoxypyrrolidine (IRL752) -a Novel Cortical-Preferring Catecholamine Transmission- and Cognition-Promoting Agent. J Pharmacol Exp Ther 2020; 374:404-419. [PMID: 32605972 DOI: 10.1124/jpet.120.000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/25/2020] [Indexed: 03/08/2025] Open
Abstract
Here we describe for the first time the distinctive pharmacological profile for (3S)-3-(2,3-difluorophenyl)-3-methoxypyrrolidine (IRL752), a new phenyl-pyrrolidine derivative with regioselective central nervous system transmission-enhancing properties. IRL752 (3.7-150 µmol/kg, s.c.) was characterized through extensive in vivo studies using behavioral, tissue neurochemical, and gene expression as well as microdialysis methods. Behaviorally, the compound normalized tetrabenazine-induced hypoactivity, whereas it was unable to stimulate basal locomotion in normal animals or either accentuate or reverse hyperactivity induced by amphetamine or MK-801. IRL752 induced but minor changes in monoaminergic tissue neurochemistry across noradrenaline (NA)- and dopamine (DA)-dominated brain regions. The expression of neuronal activity-, plasticity-, and cognition-related immediate early genes (IEGs), however, increased by 1.5-fold to 2-fold. Furthermore, IRL752 dose-dependently enhanced cortical catecholamine dialysate output to 600%-750% above baseline, whereas striatal DA remained unaltered, and NA rose to ∼250%; cortical and hippocampal dialysate acetylcholine (ACh) increased to ∼250% and 190% above corresponding baseline, respectively. In line with this cortically preferential transmission-promoting action, the drug was also procognitive in the novel object recognition and reversal learning tests. In vitro neurotarget affinity and functional data coupled to drug exposure support the hypothesis that 5-hydroxytryptamine 7 receptor and α2(C)-adrenoceptor antagonism are key contributors to the in vivo efficacy and original profile of IRL752. The cortical-preferring facilitatory impact on catecholamine (and ACh) neurotransmission, along with effects on IEG expression and cognition-enhancing features, are in line with the potential clinical usefulness of IRL752 in conditions wherein these aspects may be dysregulated, such as in axial motor and cognitive deficits in Parkinson disease. SIGNIFICANCE STATEMENT: This report describes the distinctive preclinical profile of (3S)-3-(2,3-difluorophenyl)-3-methoxypyrrolidine (IRL752). Its in vivo neurochemical, behavioral, microdialysis, and gene expression properties are consistent with a cortically regioselective facilitatory impact on catecholaminergic and cholinergic neurotransmission accompanied by cognitive impairment-reversing features. The pharmacological characteristics of IRL752 are in line with the clinical usefulness of IRL752 in conditions wherein these aspects may be dysregulated, such as in axial motor and cognitive deficits in Parkinson disease.
Collapse
Affiliation(s)
- S Hjorth
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - S Waters
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - N Waters
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - J Tedroff
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - P Svensson
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - A Fagerberg
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - M Edling
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - B Svanberg
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - E Ljung
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - J Gunnergren
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - S L McLean
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - B Grayson
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - N F Idris
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - J C Neill
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| | - C Sonesson
- Integrative Research Laboratories Sweden AB (IRL AB), Gothenburg, Sweden (S.H., S.W., N.W., J.T., P.S., A.F., M.E., B.S., E.L., J.G., C.S.); Pharmacilitator AB, Vallda, Sweden (S.H.); Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden (S.H.); School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, United Kingdom (S.L.M.); and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom (B.G., N.F.I., J.C.N.)
| |
Collapse
|
14
|
Drukarch B, Jacobs GE, Wilhelmus MMM. Solving the crisis in psychopharmacological research: Cellular-membrane(s) pharmacology to the rescue? Biomed Pharmacother 2020; 130:110545. [PMID: 32731134 DOI: 10.1016/j.biopha.2020.110545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need for the introduction of novel and better (i.e., improved risk-benefit profile) compounds for the treatment of major psychiatric disorders, in particular mood and psychotic disorders. However, despite increased societal awareness and a rising public and professional demand for such agents from patients and physicians, the pharmaceutical industry continues to close down its psychopharmacology research facilities in reaction to the lack of success with the search for new psychotropics. It is high time to stop this untoward trend and explore "new" lines of investigation to solve the current crisis in psychopharmacological research. In line with the prevailing molecular view in drug research in general, also in psychopharmacology mechanistic explanations for drug effects are "traditionally" looked for at the level of molecular targets, like receptors and transporters. Also, more recent approaches, although using so-called systems- and function-based approaches to model the multidimensional characteristics of psychiatric disorders and psychotropic drug action, still emphasize this search strategy for new therapeutic leads by identification of single molecules or molecular pathways. This "psychomolecular gaze" overlooks and disregards the fact that psychotropic agents usually are highly hydrophobic and amphipathic/amphiphilic agents that, in addition to their interaction with membrane-bound proteins in the form of e.g. receptors or transporters, also interact strongly with the lipid component of cellular membranes. Here we suggest to develop a program of systematic, whole-cell level based, investigation into the role of these physical-chemical cellular membrane interactions in the therapeutic action of known psychotherapeutics. This complementary yet conceptually different approach, in our opinion, will complement drug development in psychopharmacology and thereby assist in overcoming the current crisis. In this way the "old" physical theory of drug action, which antedates the current, primary molecular, paradigm may offer "new" options for lead discovery in psychopharmacological research.
Collapse
Affiliation(s)
- B Drukarch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - G E Jacobs
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - M M M Wilhelmus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Shortall SE, Brown AM, Newton-Mann E, Dawe-Lane E, Evans C, Fowler M, King MV. Calbindin Deficits May Underlie Dissociable Effects of 5-HT 6 and mGlu 7 Antagonists on Glutamate and Cognition in a Dual-Hit Neurodevelopmental Model for Schizophrenia. Mol Neurobiol 2020; 57:3439-3457. [PMID: 32533466 PMCID: PMC7340678 DOI: 10.1007/s12035-020-01938-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Despite several compounds entering clinical trials for the negative and cognitive symptoms of schizophrenia, few have progressed beyond phase III. This is partly attributed to a need for improved preclinical models, to understand disease and enable predictive evaluation of novel therapeutics. To this end, one recent approach incorporates "dual-hit" neurodevelopmental insults like neonatal phencyclidine plus isolation rearing (PCP-Iso). Glutamatergic dysfunction contributes to schizophrenia pathophysiology and may represent a treatment target, so we used enzyme-based microsensors to evaluate basal- and drug-evoked glutamate release in hippocampal slices from rats that received neonatal PCP and/or isolation rearing. 5-HT6 antagonist-evoked glutamate release (thought to be mediated indirectly via GABAergic disinhibition) was reduced in PCP-Iso, as were cognitive effects of a 5-HT6 antagonist in a hippocampal glutamate-dependent novel object discrimination task. Yet mGlu7 antagonist-evoked glutamatergic and cognitive responses were spared. Immunohistochemical analyses suggest these findings (which mirror the apparent lack of clinical response to 5-HT6 antagonists in schizophrenia) are not due to reduced hippocampal 5-HT input in PCP-Iso, but may be explained by reduced calbindin expression. This calcium-binding protein is present in a subset of GABAergic interneurons receiving preferential 5-HT innervation and expressing 5-HT6 receptors. Its loss (in schizophrenia and PCP-Iso) would be expected to reduce interneuron firing and potentially prevent further 5-HT6 antagonist-mediated disinhibition, without impacting on responses of VIP-expressing interneurons to mGlu7 antagonism. This research highlights the importance of improved understanding for selection of appropriate preclinical models, especially where disease neurobiology impacts on cells mediating the effects of potential therapeutics.
Collapse
Affiliation(s)
- Sinead E Shortall
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Angus M Brown
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eliot Newton-Mann
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Erin Dawe-Lane
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Chanelle Evans
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Maxine Fowler
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
16
|
Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management. Mol Neurobiol 2020; 57:2144-2166. [PMID: 31960362 PMCID: PMC7170834 DOI: 10.1007/s12035-020-01875-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Abstract
Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40–200 mg/kg) and ORG24598 (0.63–5 mg/kg), the agonists, glycine (40–800 mg/kg), and D-serine (10–160 mg/kg) and the partial agonists, S18841 (2.5 mg/kg s.c.) and D-cycloserine (2.5–40 mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20 mg/kg), and the glycine modulatory site antagonist, L701,324 (10 mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5–10 μg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10 mg/kg s.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired.
Collapse
|
17
|
Balikov DA, Neal EH, Lippmann ES. Organotypic Neurovascular Models: Past Results and Future Directions. Trends Mol Med 2019; 26:273-284. [PMID: 31699496 DOI: 10.1016/j.molmed.2019.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
The high failure rates of clinical trials in neurodegeneration, perhaps most apparent in recent high-profile failures of potential Alzheimer's disease therapies, have partially motivated the development of improved human cell-based models to bridge the gap between well-plate assays and preclinical efficacy studies in mice. Recently, cerebral organoids derived from stem cells have gained significant traction as 3D models of central nervous system (CNS) regions. Although this technology is promising, several limitations still exist; most notably, improper structural organization of neural cells and a lack of functional glia and vasculature. Here, we provide an overview of the cerebral organoid field and speculate how engineering strategies, including biomaterial fabrication and templating, might be used to overcome existing challenges.
Collapse
Affiliation(s)
- Daniel A Balikov
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Poloyac SM, Bertz RJ, McDermott LA, Marathe P. Pharmacological Optimization for Successful Traumatic Brain Injury Drug Development. J Neurotrauma 2019; 37:2435-2444. [PMID: 30816062 DOI: 10.1089/neu.2018.6295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purpose of this review is to highlight the pharmacological barrier to drug development for traumatic brain injury (TBI) and to discuss best practice strategies to overcome such barriers. Specifically, this article will review the pharmacological considerations of moving from the disease target "hit" to the "lead" compound with drug-like and central nervous system (CNS) penetrant properties. In vitro assessment of drug-like properties will be detailed, followed by pre-clinical studies to ensure adequate pharmacokinetic and pharmacodynamic characteristics of response. The importance of biomarker development and utilization in both pre-clinical and clinical studies will be detailed, along with the importance of identifying diagnostic, pharmacodynamic/response, and prognostic biomarkers of injury type or severity, drug target engagement, and disease progression. This review will detail the important considerations in determining in vivo pre-clinical dose selection, as well as cross-species and human equivalent dose selection. Specific use of allometric scaling, pharmacokinetic and pharmacodynamic criteria, as well as incorporation of biomarker assessments in human dose selection for clinical trial design will also be discussed. The overarching goal of this review is to detail the pharmacological considerations in the drug development process as a method to improve both pre-clinical and clinical study design as we evaluate novel therapies to improve outcomes in patients with TBI.
Collapse
Affiliation(s)
- Samuel M Poloyac
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Richard J Bertz
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Lee A McDermott
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
19
|
O’Rourke MB, Smith CC, De La Monte SM, Sutherland GT, Padula MP. Higher Mass Accuracy MALDI-TOF/TOF Lipid Imaging of Human Brain Tissue in Alzheimer's Disease. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2019; 126:e86. [PMID: 30735313 PMCID: PMC10867813 DOI: 10.1002/cpmb.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is a well-established technique for elucidating the location and relative abundance of a range of biomolecules. More recently, research into this technique has shifted from simple discovery and demonstration of utility to application in biomedical research. Here, we describe a protocol utilizing MALDI-IMS for the spatial mapping of lipids in brain tissue from normal human brains and brains from patients with Alzheimer's disease, in the context of Alzheimer's disease. Improved accuracy calibration of the instrument from the tissue surface is emphasized, as this allows for significantly improved mass determination in time of flight (TOF)-based instruments enabling more confident preliminary lipid identification. This improved initial result allows MALDI-IMS data to be complemented with additional instrumentation, such as liquid chromatography mass spectrometry workflows or specialized non-TOF systems such as Fourier transform cyclotron resonance instruments. This method is not limited to human tissue and can be applied to virtually any lipid-rich formalin-fixed tissue. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Matthew B. O’Rourke
- Sydney Mass Spectrometry, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Proteomics Core Facility, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Caine C. Smith
- Neuropathology Group, Discipline of Pathology, School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Suzanne M. De La Monte
- Department of Pathology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Neurology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Greg T. Sutherland
- Neuropathology Group, Discipline of Pathology, School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew P. Padula
- Proteomics Core Facility, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
20
|
Fan P, Wang N, Wang L, Xie X-Q. Autophagy and Apoptosis Specific Knowledgebases-guided Systems Pharmacology Drug Research. Curr Cancer Drug Targets 2019; 19:716-728. [PMID: 30727895 DOI: 10.2174/1568009619666190206122149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Autophagy and apoptosis are the basic physiological processes in cells that clean up aged and mutant cellular components or even the entire cells. Both autophagy and apoptosis are disrupted in most major diseases such as cancer and neurological disorders. Recently, increasing attention has been paid to understand the crosstalk between autophagy and apoptosis due to their tightly synergetic or opposite functions in several pathological processes. OBJECTIVE This study aims to assist autophagy and apoptosis-related drug research, clarify the intense and complicated connections between two processes, and provide a guide for novel drug development. METHODS We established two chemical-genomic databases which are specifically designed for autophagy and apoptosis, including autophagy- and apoptosis-related proteins, pathways and compounds. We then performed network analysis on the apoptosis- and autophagy-related proteins and investigated the full protein-protein interaction (PPI) network of these two closely connected processes for the first time. RESULTS The overlapping targets we discovered show a more intense connection with each other than other targets in the full network, indicating a better efficacy potential for drug modulation. We also found that Death-associated protein kinase 1 (DAPK1) is a critical point linking autophagy- and apoptosis-related pathways beyond the overlapping part, and this finding may reveal some delicate signaling mechanism of the process. Finally, we demonstrated how to utilize our integrated computational chemogenomics tools on in silico target identification for small molecules capable of modulating autophagy- and apoptosis-related pathways. CONCLUSION The knowledge-bases for apoptosis and autophagy and the integrated tools will accelerate our work in autophagy and apoptosis-related research and can be useful sources for information searching, target prediction, and new chemical discovery.
Collapse
Affiliation(s)
- Peihao Fan
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, University of Pittsburgh, 3501 Terrace Street, PA, United States
| | - Nanyi Wang
- School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, 206 Salk Pavilion, PA, United States
| | - Lirong Wang
- School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, 206 Salk Pavilion, PA, United States
| | - Xie X-Q
- School of Pharmacy, University of Pittsburgh, 335 Sutherland Drive, 206 Salk Pavilion, PA, United States
| |
Collapse
|
21
|
Lima LAR, Lopes MJP, Costa RO, Lima FAV, Neves KRT, Calou IBF, Andrade GM, Viana GSB. Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation 2018; 15:249. [PMID: 30170624 PMCID: PMC6119240 DOI: 10.1186/s12974-018-1266-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/01/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The deficiency in 1α, 25-dihydroxyvitamin D3 (VD3) seems to increase the risk for neurodegenerative pathologies, including Parkinson's disease (PD). The majority of its actions are mediated by the transcription factor, VD3 receptor (VD3R). METHODS The neuroprotective effects of VD3 were investigated on a PD model. Male Wistar rats were divided into the following groups: sham-operated (SO), 6-OHDA-lesioned (non-treated), and 6-OHDA-lesioned and treated with VD3 (7 days before the lesion, pre-treatment or for 14 days after the 6-OHDA striatal lesion, post-treatment). Afterwards, the animals were subjected to behavioral tests and euthanized for striatal neurochemical and immunohistochemical assays. The data were analyzed by ANOVA and the Tukey test and considered significant for p < 0.05. RESULTS We showed that pre- or post-treatments with VD3 reversed behavioral changes and improved the decreased DA contents of the 6-OHDA group. In addition, VD3 reduced the oxidative stress, increased (TH and DAT), and reduced (TNF-alpha) immunostainings in the lesioned striata. While significant decreases in VD3R immunoreactivity were observed after the 6-OHDA lesion, these changes were blocked after VD3 pre- or post-treatments. We showed that VD3 offers neuroprotection, decreasing behavioral changes, DA depletion, and oxidative stress. In addition, it reverses partially or completely TH, DAT, TNF-alpha, and VD3R decreases of immunoreactivities in the non-treated 6-OHDA group. CONCLUSIONS Taken together, VD3 effects could result from its anti-inflammatory and antioxidant actions and from its actions on VD3R. These findings should stimulate translational research towards the VD3 potential for prevention or treatment of neurodegenerative diseases, as PD.
Collapse
Affiliation(s)
- Ludmila A R Lima
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil
| | - Maria Janice P Lopes
- Faculty of Medicine Estácio of Juazeiro do Norte (Estácio/FMJ), Juazeiro do Norte, Brazil
| | - Roberta O Costa
- Faculty of Medicine Estácio of Juazeiro do Norte (Estácio/FMJ), Juazeiro do Norte, Brazil
| | - Francisco Arnaldo V Lima
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil
| | - Kelly Rose T Neves
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil
| | | | - Geanne M Andrade
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil
| | - Glauce S B Viana
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil.
| |
Collapse
|
22
|
Ferguson LB, Harris RA, Mayfield RD. From gene networks to drugs: systems pharmacology approaches for AUD. Psychopharmacology (Berl) 2018; 235:1635-1662. [PMID: 29497781 PMCID: PMC6298603 DOI: 10.1007/s00213-018-4855-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022]
Abstract
The alcohol research field has amassed an impressive number of gene expression datasets spanning key brain areas for addiction, species (humans as well as multiple animal models), and stages in the addiction cycle (binge/intoxication, withdrawal/negative effect, and preoccupation/anticipation). These data have improved our understanding of the molecular adaptations that eventually lead to dysregulation of brain function and the chronic, relapsing disorder of addiction. Identification of new medications to treat alcohol use disorder (AUD) will likely benefit from the integration of genetic, genomic, and behavioral information included in these important datasets. Systems pharmacology considers drug effects as the outcome of the complex network of interactions a drug has rather than a single drug-molecule interaction. Computational strategies based on this principle that integrate gene expression signatures of pharmaceuticals and disease states have shown promise for identifying treatments that ameliorate disease symptoms (called in silico gene mapping or connectivity mapping). In this review, we suggest that gene expression profiling for in silico mapping is critical to improve drug repurposing and discovery for AUD and other psychiatric illnesses. We highlight studies that successfully apply gene mapping computational approaches to identify or repurpose pharmaceutical treatments for psychiatric illnesses. Furthermore, we address important challenges that must be overcome to maximize the potential of these strategies to translate to the clinic and improve healthcare outcomes.
Collapse
Affiliation(s)
- Laura B Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA
- Intitute for Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA
| | - Roy Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA.
| |
Collapse
|
23
|
Ferguson LB, Ozburn AR, Ponomarev I, Metten P, Reilly M, Crabbe JC, Harris RA, Mayfield RD. Genome-Wide Expression Profiles Drive Discovery of Novel Compounds that Reduce Binge Drinking in Mice. Neuropsychopharmacology 2018; 43:1257-1266. [PMID: 29251283 PMCID: PMC5916369 DOI: 10.1038/npp.2017.301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Transcriptome-based drug discovery has identified new treatments for some complex diseases, but has not been applied to alcohol use disorder (AUD) or other psychiatric diseases, where there is a critical need for improved pharmacotherapies. High Drinking in the Dark (HDID-1) mice are a genetic model of AUD risk that have been selectively bred (from the HS/Npt line) to achieve intoxicating blood alcohol levels (BALs) after binge-like drinking. We compared brain gene expression of HDID-1 and HS/Npt mice, to determine a molecular signature for genetic risk for high intensity, binge-like drinking. Using multiple computational methods, we queried LINCS-L1000 (Library of Integrated Network-Based Cellular Signatures), a database containing gene expression signatures of thousands of compounds, to predict candidate drugs with the greatest potential to decrease alcohol consumption. Our analyses predicted novel compounds for testing, many with anti-inflammatory properties, providing further support for a neuroimmune mechanism of excessive alcohol drinking. We validated the top 2 candidates in vivo as a proof-of-concept. Terreic acid (a Bruton's tyrosine kinase inhibitor) and pergolide (a dopamine and serotonin receptor agonist) robustly reduced alcohol intake and BALs in HDID-1 mice, providing the first evidence for transcriptome-based drug discovery to target an addiction trait. Effective drug treatments for many psychiatric diseases are lacking, and the emerging tools and approaches outlined here offer researchers studying complex diseases renewed opportunities to discover new or repurpose existing compounds and expedite treatment options.
Collapse
Affiliation(s)
- Laura B Ferguson
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Igor Ponomarev
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Pamela Metten
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Matthew Reilly
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - R Adron Harris
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Dayne Mayfield
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
24
|
de Lange ECM, van den Brink W, Yamamoto Y, de Witte WEA, Wong YC. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 2017; 12:1207-1218. [PMID: 28933618 DOI: 10.1080/17460441.2017.1380623] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.
Collapse
Affiliation(s)
- Elizabeth C M de Lange
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Willem van den Brink
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yumi Yamamoto
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Wilhelmus E A de Witte
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| | - Yin Cheong Wong
- a Leiden Academic Center of Drug Research, Translational Pharmacology , Leiden University , Leiden , The Netherlands
| |
Collapse
|
25
|
Palacios JM, Mengod G. Receptor visualization and the atomic bomb. A historical account of the development of the chemical neuroanatomy of receptors for neurotransmitters and drugs during the Cold War. J Chem Neuroanat 2017; 88:76-112. [PMID: 28755996 DOI: 10.1016/j.jchemneu.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/24/2023]
Abstract
This is a historical account of how receptors for neurotransmitters and drugs got to be seen at the regional, cellular, and subcellular levels in brain, in the years going from the end of the World War II until the collapse of the Soviet Union, the Cold War (1945-1991). The realization in the US of the problem of mental health care, as a consequence of the results of medical evaluation for military service during the war, let the US Government to act creating among other things the National Institute for Mental Health (NIMH). Coincident with that, new drug treatments for these disorders were introduced. War science also created an important number of tools and instruments, such as the radioisotopes, that played a significant role in the development of our story. The scientific context was marked by the development of Biochemistry, Molecular Biology and the introduction in the early 80's of the DNA recombinant technologies. The concepts of chemical neurotransmission in the brain and of receptors for drugs and transmitters, although proposed before the war, where not generally accepted. Neurotransmitters were identified and the mechanisms of biosynthesis, storage, release and termination of action by mechanisms such as reuptake, elucidated. Furthermore, the synapse was seen with the electron microscope and more important for our account, neurons and their processes visualized in the brain first by fluorescence histochemistry, then using radioisotopes and autoradiography, and later by immunohistochemistry (IHC), originating the Chemical Neuroanatomy. The concept of chemical neurotransmission evolved from the amines, expanded to excitatory and inhibitory amino acids, then to neuropeptides and finally to gases and other "atypical" neurotransmitters. In addition, coexpression of more than one transmitter in a neuron, changed the initial ideas of neurotransmission. The concept of receptors for these and other messengers underwent a significant evolution from an abstract chemical concept to their physical reality as gene products. Important steps were the introduction in the 70's of radioligand binding techniques and the cloning of receptor genes in the 80's. Receptors were first visualized using radioligands and autoradiography, and analyzed with the newly developed computer-assisted image analysis systems. Using Positron Emission Tomography transmitters and receptors were visualized in living human brain. The cloning of receptor genes allowed the use of in situ hybridization histochemistry and immunohistochemistry to visualize with the light and electron microscopes the receptor mRNAs and proteins. The results showed the wide heterogeneity of receptors and the diversity of mode of signal transmission, synaptic and extra-synaptic, again radically modifying the early views of neurotransmission. During the entire period the interplay between basic science and Psychopharmacology and Psychiatry generated different transmitter or receptor-based theories of brain drug action. These concepts and technologies also changed the way new drugs were discovered and developed. At the end of the period, a number of declines in these theories, the use of certain tools and the ability to generate new diagnostics and treatments, the end of an era and the beginning of a new one in the research of how the brain functions.
Collapse
Affiliation(s)
| | - G Mengod
- IIBB-CSIC, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
26
|
Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic Biomarkers for Schizophrenia. Int J Mol Sci 2017; 18:E733. [PMID: 28358316 PMCID: PMC5412319 DOI: 10.3390/ijms18040733] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide.
Collapse
Affiliation(s)
| | | | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, 10090 Zagreb, Croatia.
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
27
|
Insel PA, Amara SG, Blaschke TF, Meyer UA. Introduction to the Theme "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology". Annu Rev Pharmacol Toxicol 2017; 57:13-17. [PMID: 27732830 DOI: 10.1146/annurev-pharmtox-091616-023708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major advances in scientific discovery and insights can result from the development and use of new techniques, as exemplified by the work of Solomon Snyder, who writes a prefatory article in this volume. The Editors have chosen "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology" as the Theme for a number of articles in this volume. These include ones that review the development and use of new experimental tools and approaches (e.g., nanobodies and techniques to explore protein-protein interactions), new types of therapeutics (e.g., aptamers and antisense oligonucleotides), and systems pharmacology, which assembles (big) data derived from omics studies together with information regarding drugs and patients. The application of these new methods and therapeutic approaches has the potential to have a major impact on basic and clinical research in pharmacology and toxicology as well as on patient care.
Collapse
Affiliation(s)
- Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093.,Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Susan G Amara
- National Institute of Mental Health, Bethesda, Maryland 20892
| | - Terrence F Blaschke
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Urs A Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|