1
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
2
|
Kukla-Bartoszek M, Głombik K. Train and Reprogram Your Brain: Effects of Physical Exercise at Different Stages of Life on Brain Functions Saved in Epigenetic Modifications. Int J Mol Sci 2024; 25:12043. [PMID: 39596111 PMCID: PMC11593723 DOI: 10.3390/ijms252212043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple studies have demonstrated the significant effects of physical exercise on brain plasticity, the enhancement of memory and cognition, and mood improvement. Although the beneficial impact of exercise on brain functions and mental health is well established, the exact mechanisms underlying this phenomenon are currently under thorough investigation. Several hypotheses have emerged suggesting various possible mechanisms, including the effects of hormones, neurotrophins, neurotransmitters, and more recently also other compounds such as lactate or irisin, which are released under the exercise circumstances and act both locally or/and on distant tissues, triggering systemic body reactions. Nevertheless, none of these actually explain the long-lasting effect of exercise, which can persist for years or even be passed on to subsequent generations. It is believed that these long-lasting effects are mediated through epigenetic modifications, influencing the expression of particular genes and the translation and modification of specific proteins. This review explores the impact of regular physical exercise on brain function and brain plasticity and the associated occurrence of epigenetic modifications. It examines how these changes contribute to the prevention and treatment of neuropsychiatric and neurological disorders, as well as their influence on the natural aging process and mental health.
Collapse
Affiliation(s)
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| |
Collapse
|
3
|
Danaie M, Yeganegi M, Dastgheib SA, Bahrami R, Jayervand F, Rahmani A, Aghasipour M, Golshan-Tafti M, Azizi S, Marzbanrad Z, Masoudi A, Shiri A, Lookzadeh MH, Noorishadkam M, Neamatzadeh H. The interaction of breastfeeding and genetic factors on childhood obesity. Eur J Obstet Gynecol Reprod Biol X 2024; 23:100334. [PMID: 39224127 PMCID: PMC11367475 DOI: 10.1016/j.eurox.2024.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Childhood obesity represents a pressing global public health concern due to its widespread prevalence and its close connection to early-life exposure to risk factors. The onset of obesity is contingent upon the interplay of genetic composition, lifestyle choices, and environmental as well as nutritional elements encountered during both fetal development and early childhood. This paper critically examines research discoveries in this area and concisely outlines the influence of breastfeeding on genetic predispositions associated with childhood obesity. Studies have demonstrated that breastfeeding has the potential to reduce childhood obesity by impacting anthropometric indicators. Moreover, the duration of breastfeeding is directly correlated with the degree to which it alters the risk of childhood obesity. Current explorations into the link between genetic factors transmitted through breast milk and childhood obesity predominantly focus on genes like FTO, Leptin, RXRα, PPAR-γ, and others. Numerous research endeavors have suggested that an extended period of exclusive breastfeeding is tied to a diminished likelihood of childhood obesity, particularly if sustained during the initial six months. The duration of breastfeeding also correlates with gene methylation, which could serve as the epigenetic mechanism underpinning breastfeeding's preventative influence against obesity. In summary, the thorough evaluation presented in this review underscores the intricate nature of the association between breastfeeding, genetic factors, and childhood obesity, providing valuable insights for future research efforts and policy formulation.
Collapse
Affiliation(s)
- Mahsa Danaie
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jayervand
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Rahmani
- Department of Plastic Surgery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Aghasipour
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Sepideh Azizi
- Shahid Akbarabadi Clinical Research Development Unit, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Marzbanrad
- Department of Obstetrics and Gynecology, Firoozgar Hospital, Firoozgar Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi
- General Practitioner, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirmasoud Shiri
- General Practitioner, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Hosein Lookzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Noorishadkam
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Aljabali AAA, Alkaraki AK, Gammoh O, Tambuwala MM, Mishra V, Mishra Y, Hassan SS, El-Tanani M. Deciphering Depression: Epigenetic Mechanisms and Treatment Strategies. BIOLOGY 2024; 13:638. [PMID: 39194576 PMCID: PMC11351889 DOI: 10.3390/biology13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Depression, a significant mental health disorder, is under intense research scrutiny to uncover its molecular foundations. Epigenetics, which focuses on controlling gene expression without altering DNA sequences, offers promising avenues for innovative treatment. This review explores the pivotal role of epigenetics in depression, emphasizing two key aspects: (I) identifying epigenetic targets for new antidepressants and (II) using personalized medicine based on distinct epigenetic profiles, highlighting potential epigenetic focal points such as DNA methylation, histone structure alterations, and non-coding RNA molecules such as miRNAs. Variations in DNA methylation in individuals with depression provide opportunities to target genes that are associated with neuroplasticity and synaptic activity. Aberrant histone acetylation may indicate that antidepressant strategies involve enzyme modifications. Modulating miRNA levels can reshape depression-linked gene expression. The second section discusses personalized medicine based on epigenetic profiles. Analyzing these patterns could identify biomarkers associated with treatment response and susceptibility to depression, facilitating tailored treatments and proactive mental health care. Addressing ethical concerns regarding epigenetic information, such as privacy and stigmatization, is crucial in understanding the biological basis of depression. Therefore, researchers must consider these issues when examining the role of epigenetics in mental health disorders. The importance of epigenetics in depression is a critical aspect of modern medical research. These findings hold great potential for novel antidepressant medications and personalized treatments, which would significantly improve patient outcomes, and transform psychiatry. As research progresses, it is expected to uncover more complex aspects of epigenetic processes associated with depression, enhance our comprehension, and increase the effectiveness of therapies.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Almuthanna K. Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan;
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan;
| | - Murtaza M. Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (M.M.T.); (M.E.-T.)
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (M.M.T.); (M.E.-T.)
| |
Collapse
|
5
|
Opare-Addo PA, Sarfo FS, Aikins M, Bediako SA, Ovbiagele B. Epigenetics as a target to mitigate excess stroke risk in people of African ancestry: A scoping review. J Stroke Cerebrovasc Dis 2024; 33:107585. [PMID: 38253246 PMCID: PMC11060795 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Globally, individuals of African ancestry have a relatively greater stroke preponderance compared to other racial/ethnic groups. The higher prevalence of traditional stroke risk factors in this population, however, only partially explains this longstanding disparity. Epigenetic signatures are transgenerational and could be a plausible therapeutic target to further bend the stroke disparities curve for people of African ancestry. There is, however, limited data on epigenetics and stroke risk in this population. PURPOSE To examine existing evidence and knowledge gaps on the potential contribution of epigenetics to excess stroke risk in people of African ancestry and avenues for mitigation. MATERIALS AND METHODS We conducted a scoping review of studies published between January 2003 and July 2023, on epigenetics and stroke risk. We then summarized our findings, highlighting the results for people of African ancestry. RESULTS Of 104 studies, there were only 6 studies that specifically looked at epigenetic mechanisms and stroke risk in people of African ancestry. Results of these studies show how patterns of DNA methylation and non-coding RNA interact with lifestyle choices, xenobiotics, and FVIII levels to raise stroke risk in people of African ancestry. However, no studies evaluated epigenetic patterns as actionable targets for the influence of psychosocial stressors or social context and excess stroke risk in this population (versus others). Also, no studies interrogated the role of established or novel therapeutic agents with the potential to reprogram DNA by adding or removing epigenetic markers in people of African ancestry. CONCLUSION Epigenetics potentially offers a promising target for modifying the effects of lifestyle, environmental exposures, and other factors that differentially affect people of African ancestry and place them at relatively greater stroke risk compared to other populations. Studies that precisely assess the pathways by which epigenetic mechanisms modulate population-specific disparities in the risk of stroke are needed.
Collapse
Affiliation(s)
| | - Fred Stephen Sarfo
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Neurology Division, Kwame Nkrumah University of Science & Technology, P. O. Box 1934, Kumasi, Ghana.
| | | | | | | |
Collapse
|
6
|
Cacabelos R. [Pharmacogenomics: A gateway to personalized medicine]. Med Clin (Barc) 2024; 162:179-181. [PMID: 38142210 DOI: 10.1016/j.medcli.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/25/2023]
Affiliation(s)
- Ramón Cacabelos
- Centro Internacional de Neurociencias y Medicina Genómica, Centro de Investigación Biomédica EuroEspes, Bergondo (La Coruña), España.
| |
Collapse
|
7
|
Sviridov D, Bukrinsky M. Neuro-HIV-New insights into pathogenesis and emerging therapeutic targets. FASEB J 2023; 37:e23301. [PMID: 37942865 PMCID: PMC11032165 DOI: 10.1096/fj.202301239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term describing a complex set of cognitive impairments accompanying HIV infection. Successful antiretroviral therapy (ART) reduces the most severe forms of HAND, but milder forms affect over 50% of people living with HIV (PLWH). Pathogenesis of HAND in the ART era remains unknown. A variety of pathogenic factors, such as persistent HIV replication in the brain reservoir, HIV proteins released from infected brain cells, HIV-induced neuroinflammation, and some components of ART, have been implicated in driving HAND pathogenesis in ART-treated individuals. Here, we propose another factor-impairment of cholesterol homeostasis and lipid rafts by HIV-1 protein Nef-as a possible contributor to HAND pathogenesis. These effects of Nef on cholesterol may also underlie the effects of other pathogenic factors that constitute the multifactorial nature of HAND pathogenesis. The proposed Nef- and cholesterol-focused mechanism may provide a long-sought unified explanation of HAND pathogenesis that takes into account all contributing factors. Evidence for the impairment by Nef of cellular cholesterol balance, potential effects of this impairment on brain cells, and opportunities to therapeutically target this element of HAND pathogenesis are discussed.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
8
|
Fogliano C, Motta CM, Acloque H, Avallone B, Carotenuto R. Water contamination by delorazepam induces epigenetic defects in the embryos of the clawed frog Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165300. [PMID: 37414173 DOI: 10.1016/j.scitotenv.2023.165300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Delorazepam, a derivative of diazepam, is a psychotropic drug belonging to the benzodiazepine class. Used as a nervous-system inhibitor, it treats anxiety, insomnia, and epilepsy, but is also associated with misuse and abuse. Nowadays benzodiazepines are considered emerging pollutants: conventional wastewater treatment plants indeed are unable to eliminate these compounds. Consequently, they persist in the environment and bioaccumulate in non-target aquatic organisms with consequences still not fully clear. To collect more information, we investigated the possible epigenetic activity of delorazepam, at three concentrations (1, 5 and 10 μg/L) using Xenopus laevis embryos as a model. Analyses demonstrated a significant increase in genomic DNA methylation and differential methylation of the promoters of some early developmental genes (otx2, sox3, sox9, pax6, rax1, foxf1, and myod1). Moreover, studies on gene expression highlighted an unbalancing in apoptosis/proliferation pathways and an aberrant expression of DNA-repair genes. Results are alarming considering the growing trend of benzodiazepine concentrations in superficial waters, especially after the peak occurred as a consequence of the pandemic COVID-19, and the fact that benzodiazepine GABA-A receptors are highly conserved and present in all aquatic organisms.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bice Avallone
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Rosa Carotenuto
- Department of Biology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
9
|
Tsalenchuk M, Gentleman SM, Marzi SJ. Linking environmental risk factors with epigenetic mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:123. [PMID: 37626097 PMCID: PMC10457362 DOI: 10.1038/s41531-023-00568-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease, with a complex risk structure thought to be influenced by interactions between genetic variants and environmental exposures, although the full aetiology is unknown. Environmental factors, including pesticides, have been reported to increase the risk of developing the disease. Growing evidence suggests epigenetic changes are key mechanisms by which these environmental factors act upon gene regulation, in disease-relevant cell types. We present a systematic review critically appraising and summarising the current body of evidence of the relationship between epigenetic mechanisms and environmental risk factors in PD to inform future research in this area. Epigenetic studies of relevant environmental risk factors in animal and cell models have yielded promising results, however, research in humans is just emerging. While published studies in humans are currently relatively limited, the importance of the field for the elucidation of molecular mechanisms of pathogenesis opens clear and promising avenues for the future of PD research. Carefully designed epidemiological studies carried out in PD patients hold great potential to uncover disease-relevant gene regulatory mechanisms. Therefore, to advance this burgeoning field, we recommend broadening the scope of investigations to include more environmental exposures, increasing sample sizes, focusing on disease-relevant cell types, and recruiting more diverse cohorts.
Collapse
Affiliation(s)
- Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK.
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
10
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|
11
|
Islam F, Mitra S, Nafady MH, Rahman MT, Tirth V, Akter A, Emran TB, Mohamed AAR, Algahtani A, El-Kholy SS. Neuropharmacological and Antidiabetic Potential of Lannea coromandelica (Houtt.) Merr. Leaves Extract: An Experimental Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6144733. [PMID: 35388308 PMCID: PMC8979700 DOI: 10.1155/2022/6144733] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
The present study examines the neuropharmacological and antidiabetic properties of methanol leaves extract of Lannea coromandelica in animal models. This study is carried out by elevated plus-maze apparatus, motor coordination, thiopental sodium has an induction role in sleeping time, hole board, hole cross, open field, antidiabetic studies. Mice were treated doses of 100, 150, and 200 mg/kg body weight in elevated plus-maze apparatus and motor coordination; 100 and 200 mg/kg body weight in sleeping time, hole cross, hole board, and open field tests; and 200 and 400 mg/kg body weight in the antidiabetic activity test. Extraction specifies a significantly decreased time duration and sleeping time in a thiopental sodium-induced sleeping time test. The experimental extract decreased locomotor and exploratory behaviors of mice in the open-field and hole-cross tests compared to the effects of the control. Furthermore, the extract increased sleeping time with a dose-dependent onset of action. The hole-board test extract also demonstrated a reduced number of head dips. The findings showed that L. coromandelica has potential neuropharmacological effects. In addition, in alloxan-induced diabetic mice, leaves extract at 200 and 400 mg/kg body weight revealed significant antidiabetic properties and could be used to manage blood glucose levels with more research.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | | | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha 61413, Asir, P.O. Box No. 9004, Saudi Arabia
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha 61413, Asir, P.O. Box No. 9004, Saudi Arabia
| | - Sanad S. El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
12
|
Costa M, Blaschke TF, Amara SG, Meyer UA, Insel PA. Introduction to the Theme "Old and New Toxicology: Interfaces with Pharmacology". Annu Rev Pharmacol Toxicol 2021; 61:1-7. [PMID: 33411582 DOI: 10.1146/annurev-pharmtox-092220-033032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The theme of Volume 61 is "Old and New Toxicology: Interfaces with Pharmacology." Old toxicology is exemplified by the authors of the autobiographical articles: B.M. Olivera's work on toxins and venoms from cone snails and P. Taylor's studies of acetylcholinesterase and the nicotinic cholinergic receptor, which serve as sites of action for numerous pesticides and venoms. Other articles in this volume focus on new understanding and new types of toxicology, including (a) arsenic toxicity, which is an ancient poison that, through evolution, has caused most multicellular organisms to express an active arsenic methyltransferase to methylate arsenite, which accelerates the excretion of arsenic from the body; (b) small molecules that react with lipid dicarbonyls, which are now considered the most toxic oxidative stress end products; (c) immune checkpoint inhibitors (ICIs), which have revolutionized cancer therapy but have numerous immune-related adverse events, including cardiovascular complications; (d) autoimmunity caused by the environment; (e) idiosyncratic drug-induced liver disease, which together with the toxicity of ICIs represents new toxicology interfacing with pharmacology; and (f) sex differences in the development of cardiovascular disease, with men more susceptible than women to vascular inflammation that initiates and perpetuates disease. These articles and others in Volume 61 reflect the interface and close integration of pharmacology and toxicology that began long ago but continues today.
Collapse
Affiliation(s)
- Max Costa
- Department of Environmental Medicine, NYU Grossman School of Medicine, New York, New York 10010, USA;
| | | | - Susan G Amara
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Park HS, Kim J, Ahn SH, Ryu HY. Epigenetic Targeting of Histone Deacetylases in Diagnostics and Treatment of Depression. Int J Mol Sci 2021; 22:5398. [PMID: 34065586 PMCID: PMC8160658 DOI: 10.3390/ijms22105398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Depression is a highly prevalent, disabling, and often chronic illness that places substantial burdens on patients, families, healthcare systems, and the economy. A substantial minority of patients are unresponsive to current therapies, so there is an urgent need to develop more broadly effective, accessible, and tolerable therapies. Pharmacological regulation of histone acetylation level has been investigated as one potential clinical strategy. Histone acetylation status is considered a potential diagnostic biomarker for depression, while inhibitors of histone deacetylases (HDACs) have garnered interest as novel therapeutics. This review describes recent advances in our knowledge of histone acetylation status in depression and the therapeutic potential of HDAC inhibitors.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 47392, Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Korea;
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
14
|
Ghosh S, Sinha JK, Khan T, Devaraju KS, Singh P, Vaibhav K, Gaur P. Pharmacological and Therapeutic Approaches in the Treatment of Epilepsy. Biomedicines 2021; 9:470. [PMID: 33923061 PMCID: PMC8146518 DOI: 10.3390/biomedicines9050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Epilepsy affects around 50 million people across the globe and is the third most common chronic brain disorder. It is a non-communicable disease of the brain that affects people of all ages. It is accompanied by depression, anxiety, and substantially increased morbidity and mortality. A large number of third-generation anti-epileptic drugs are available, but they have multiple side-effects causing a decline in the quality of life. The inheritance and etiology of epilepsy are complex with multiple underlying genetic and epigenetic mechanisms. Different neurotransmitters play intricate functions to maintain the normal physiology of various neurons. If there is any dysregulation of neurotransmission due to aberrant transmitter levels or their receptor biology, it can result in seizures. In this review, we have discussed the roles played by various neurotransmitters and their receptors in the pathophysiology of epilepsy. Drug-resistant epilepsy (DRE) has remained one of the forefront areas of epilepsy research for a long time. Understanding the mechanisms underlying DRE is of utmost importance because of its high incidence rate among epilepsy patients and increased risks of psychosocial problems and premature death. Here we have enumerated various hypotheses of DRE. Further, we have discussed different non-conventional therapeutic strategies, including combination therapy and non-drug treatment. The recent studies supporting the modern approaches for the treatment of epilepsy have been deliberated with particular reference to the mTOR pathway, breakdown of the blood-brain barrier, and inflammatory pathways.
Collapse
Affiliation(s)
- Shampa Ghosh
- ICMR-National Institute of Nutrition (NIN), Tarnaka, Hyderabad 500007, India;
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Noida 201303, India;
| | - Tarab Khan
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Noida 201303, India;
| | | | - Prabhakar Singh
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India;
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Pankaj Gaur
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
15
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|