1
|
Wu Z, Du Y, Kirchhausen T, He K. Probing and imaging phospholipid dynamics in live cells. LIFE METABOLISM 2024; 3:loae014. [PMID: 39872507 PMCID: PMC11749120 DOI: 10.1093/lifemeta/loae014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 01/30/2025]
Abstract
Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels. Herein, we summarize the latest developments in phospholipid biosensor design and application, emphasizing the contribution of cutting-edge imaging techniques to elucidating phospholipid dynamics and distribution with unparalleled spatiotemporal precision.
Collapse
Affiliation(s)
- Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Makkai G, Abraham IM, Barabas K, Godo S, Ernszt D, Kovacs T, Kovacs G, Szocs S, Janosi TZ. Maximum likelihood-based estimation of diffusion coefficient is quick and reliable method for analyzing estradiol actions on surface receptor movements. Front Neuroinform 2023; 17:1005936. [PMID: 36970656 PMCID: PMC10031098 DOI: 10.3389/fninf.2023.1005936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid effects of estradiol on membrane receptors are in the focus of the estradiol research field, however, the molecular mechanisms of these non-classical estradiol actions are poorly understood. Since the lateral diffusion of membrane receptors is an important indicator of their function, a deeper understanding of the underlying mechanisms of non-classical estradiol actions can be achieved by investigating receptor dynamics. Diffusion coefficient is a crucial and widely used parameter to characterize the movement of receptors in the cell membrane. The aim of this study was to investigate the differences between maximum likelihood-based estimation (MLE) and mean square displacement (MSD) based calculation of diffusion coefficients. In this work we applied both MSD and MLE to calculate diffusion coefficients. Single particle trajectories were extracted from simulation as well as from α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor tracking in live estradiol-treated differentiated PC12 (dPC12) cells. The comparison of the obtained diffusion coefficients revealed the superiority of MLE over the generally used MSD analysis. Our results suggest the use of the MLE of diffusion coefficients because as it has a better performance, especially for large localization errors or slow receptor movements.
Collapse
Affiliation(s)
- Geza Makkai
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Nano-Bio-Imaging Core Facility at the Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - Istvan M. Abraham
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Klaudia Barabas
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Soma Godo
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamas Kovacs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gergely Kovacs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Szilard Szocs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Z. Janosi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Nano-Bio-Imaging Core Facility at the Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
- *Correspondence: Tibor Z. Janosi,
| |
Collapse
|
3
|
Pandey G, Budhathoki A, Spille JH. Characterizing Properties of Biomolecular Condensates Below the Diffraction Limit In Vivo. Methods Mol Biol 2023; 2563:425-445. [PMID: 36227487 DOI: 10.1007/978-1-0716-2663-4_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fluorescence microscopy assays enable the investigation of endogenous biomolecular condensates directly in their cellular context. With appropriate experimental designs, these assays yield quantitative information on condensate material properties and inform on biophysical mechanisms of condensate formation. Single-molecule super-resolution and tracking experiments grant access to the smallest condensates and early condensation stages not resolved by conventional imaging approaches. Here, we discuss considerations for using single-molecule assays to extract quantitative information about biomolecular condensates directly in their cellular context.
Collapse
Affiliation(s)
- Ganesh Pandey
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alisha Budhathoki
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jan-Hendrik Spille
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Cholesterol-Dependent Dynamics of the Serotonin 1A Receptor Utilizing Single Particle Tracking: Analysis of Diffusion Modes. J Phys Chem B 2022; 126:6682-6690. [PMID: 35973070 DOI: 10.1021/acs.jpcb.2c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are signaling hubs in cell membranes that regulate a wide range of physiological processes and are popular drug targets. Serotonin1A receptors are important members of the GPCR family and are implicated in neuropsychiatric disorders. Cholesterol is a key constituent of higher eukaryotic membranes and is believed to contribute to the segregated distribution of membrane constituents into domains. To explore the role of cholesterol in lateral dynamics of GPCRs, we utilized single particle tracking (SPT) to monitor diffusion of serotonin1A receptors under acute and chronic cholesterol-depleted conditions. Our results show that the short-term diffusion coefficient of the receptor decreases upon cholesterol depletion, irrespective of the method of cholesterol depletion. Analysis of SPT trajectories revealed that relative populations of receptors undergoing various modes of diffusion change upon cholesterol depletion. Notably, in cholesterol-depleted cells, we observed an increase in the confined population of the receptor accompanied by a reduction in diffusion coefficient for chronic cholesterol depletion. These results are supported by our recent work and present observations that show polymerization of G-actin in response to chronic cholesterol depletion. Taken together, our results bring out the interdependence of cholesterol and actin cytoskeleton in regulating diffusion of GPCRs in membranes.
Collapse
Affiliation(s)
- Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse (UPS), 31 077 Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse (UPS), 31 077 Toulouse, France
| | | |
Collapse
|
5
|
Sotolongo Bellón J, Birkholz O, Richter CP, Eull F, Kenneweg H, Wilmes S, Rothbauer U, You C, Walter MR, Kurre R, Piehler J. Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. CELL REPORTS METHODS 2022; 2:100165. [PMID: 35474965 PMCID: PMC9017138 DOI: 10.1016/j.crmeth.2022.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.
Collapse
Affiliation(s)
- Junel Sotolongo Bellón
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Christian P. Richter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Florian Eull
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Hella Kenneweg
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
- Division of Cell Signalling and Immunology, University of Dundee, School of Life Sciences, Dundee, UK
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard-Karls-University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rainer Kurre
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
6
|
Ahmed SM. Generation of Endogenously Tagged Membrane Trafficking Regulators Using CRISPR Genome Editing. Methods Mol Biol 2022; 2473:47-63. [PMID: 35819758 DOI: 10.1007/978-1-0716-2209-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vesicle trafficking entails packaging and transport of membrane-associated proteins to their target membranes, and recycling or degradation of endocytosed proteins. Biochemical and cell biological studies of vesicle trafficking often require the introduction of epitope tags or fluorescent protein markers for protein purification and tracking in cells. Previously, such tagging experiments in mammalian cells mainly used overexpression systems, which could lead to artifacts. Abnormally high expression levels also prevent us from studying individual vesicle trafficking events with precision. With the advent of CRISPR technologies, epitope tags and fluorescent proteins can now be introduced into endogenous proteins in almost any cell type that are proliferating in culture. This chapter describes approaches for inserting tags at the endogenous loci of genes, with the vesicle tethering protein complex, exocyst, as an example.
Collapse
Affiliation(s)
- Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
7
|
Xu N, Qiao Q, Liu X, Xu Z. Enhancing Brightness and Photostability of Organic Small Molecular Fluorescent Dyes Through Inhibiting Twisted Intramolecular Charge Transfer (TICT) ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Podh NK, Paliwal S, Dey P, Das A, Morjaria S, Mehta G. In-vivo Single-Molecule Imaging in Yeast: Applications and Challenges. J Mol Biol 2021; 433:167250. [PMID: 34537238 DOI: 10.1016/j.jmb.2021.167250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Single-molecule imaging has gained momentum to quantify the dynamics of biomolecules in live cells, as it provides direct real-time measurements of various cellular activities under their physiological environment. Yeast, a simple and widely used eukaryote, serves as a good model system to quantify single-molecule dynamics of various cellular processes because of its low genomic and cellular complexities, as well as its facile ability to be genetically manipulated. In the past decade, significant developments have been made regarding the intracellular labeling of biomolecules (proteins, mRNA, fatty acids), the microscopy setups to visualize single-molecules and capture their fast dynamics, and the data analysis pipelines to interpret such dynamics. In this review, we summarize the current state of knowledge for the single-molecule imaging in live yeast cells to provide a ready reference for beginners. We provide a comprehensive table to demonstrate how various labs tailored the imaging regimes and data analysis pipelines to estimate various biophysical parameters for a variety of biological processes. Lastly, we present current challenges and future directions for developing better tools and resources for single-molecule imaging in live yeast cells.
Collapse
Affiliation(s)
- Nitesh Kumar Podh
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@PodhNitesh
| | - Sheetal Paliwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@Sheetal62666036
| | - Partha Dey
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@ParthaD63416958
| | - Ayan Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India. https://twitter.com/@AyanDas76471821
| | - Shruti Morjaria
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India. https://twitter.com/@shruti_morjaria
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021; 2:1115-1143. [PMID: 34458827 PMCID: PMC8341777 DOI: 10.1039/d1cb00024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.
Collapse
Affiliation(s)
- Jannik Bruun Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Anne Zebitz Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Claudia Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nanna Wichmann Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Niels Bent Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ann-Kathrin Mündler
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Andrew James Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Henrik Flyvbjerg
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Thomas Lars Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| |
Collapse
|
10
|
Vu XH, Dien ND, Pham TTH, Jaffiol R, Vézy C, Ca NX, Trang TT. Evaluation of diffusion coefficient of P-glycoprotein molecules labeled with green fluorescent protein in living cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183721. [PMID: 34352241 DOI: 10.1016/j.bbamem.2021.183721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
The movement of individual molecules inside living cells has recently been resolved by single particles tracking (SPT) method which is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. Effective treatment of metastatic cancers requires the toxic chemotherapy, however this therapy leads to the multidrug resistance phenomenon of the cancer cells, in which the cancer cells resist simultaneously to different drugs with different targets and chemical structures. P-glycoprotein molecules which are responsible for multidrug resistance of many cancer cells have been studied by cancer biologists during past haft of century. Recently, advances in laser and detector technologies have enabled single fluorophores to be visualized in aqueous solution. The development of the total internal reflection fluorescent microscope (TIRFM) provided means to monitor dynamic molecular localization in living cells. In this paper, P-glycoproteins (PGP) were labeled with green fluorescent protein (GFP) in living cell membrane of Madin-Darby canine kidney (MDCK) and the TIRFM method was used to characterize the dynamics of individual protein molecules on the surface of living cells. An evanescent field was produced by a totally internally reflected and a laser beam was illuminated the glass-water interface. GFP-PGP proteins that entered the evanescent field appeared as individual spots of light which were slighter than background fluorescence. We obtained high-resolution images and diffusion maps of membrane proteins on cell surface and showed the local diffusion properties of specific proteins on single cells. We also determined the diffusion coefficient, the mean square displacement and the average velocity of the tracked particles, as well as the heterogeneity of the cell environment. This study enabled us to understand single-molecule features in living cell and measure the diffusion kinetics of membrane-bound molecules.
Collapse
Affiliation(s)
- Xuan Hoa Vu
- Institute of Science and Technology, TNU- University of Sciences (TNUS), Tan Thinh ward, Thai Nguyen city, Viet Nam
| | - Nguyen Dac Dien
- Faculty of Labour Protection, Vietnam Trade Union University, 169 Tay Son street, Hanoi city, Viet Nam
| | - Thi Thu Ha Pham
- Faculty of Chemistry, TNU- University of Sciences (TNUS), Tan Thinh ward, Thai Nguyen city, Viet Nam.
| | - Rodolphe Jaffiol
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, UMR CNRS 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, CS 42060, 10 004 Troyes Cedex, France.
| | - Cyrille Vézy
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, UMR CNRS 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, CS 42060, 10 004 Troyes Cedex, France
| | - Nguyen Xuan Ca
- Institute of Science and Technology, TNU- University of Sciences (TNUS), Tan Thinh ward, Thai Nguyen city, Viet Nam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU- University of Sciences (TNUS), Tan Thinh ward, Thai Nguyen city, Viet Nam
| |
Collapse
|
11
|
Shetty RM, Brady SR, Rothemund PWK, Hariadi RF, Gopinath A. Bench-Top Fabrication of Single-Molecule Nanoarrays by DNA Origami Placement. ACS NANO 2021; 15:11441-11450. [PMID: 34228915 PMCID: PMC9701110 DOI: 10.1021/acsnano.1c01150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Large-scale nanoarrays of single biomolecules enable high-throughput assays while unmasking the underlying heterogeneity within ensemble populations. Until recently, creating such grids which combine the advantages of microarrays and single-molecule experiments (SMEs) has been particularly challenging due to the mismatch between the size of these molecules and the resolution of top-down fabrication techniques. DNA origami placement (DOP) combines two powerful techniques to address this issue: (i) DNA origami, which provides a ∼100 nm self-assembled template for single-molecule organization with 5 nm resolution and (ii) top-down lithography, which patterns these DNA nanostructures, transforming them into functional nanodevices via large-scale integration with arbitrary substrates. Presently, this technique relies on state-of-the-art infrastructure and highly trained personnel, making it prohibitively expensive for researchers. Here, we introduce a cleanroom-free, $1 benchtop technique to create meso-to-macro-scale DNA origami nanoarrays using self-assembled colloidal nanoparticles, thereby circumventing the need for top-down fabrication. We report a maximum yield of 74%, 2-fold higher than the statistical limit of 37% imposed on non-specific molecular loading alternatives. Furthermore, we provide a proof-of-principle for the ability of this nanoarray platform to transform traditionally low-throughput, stochastic, single-molecule assays into high-throughput, deterministic ones, without compromising data quality. Our approach has the potential to democratize single-molecule nanoarrays and demonstrates their utility as a tool for biophysical assays and diagnostics.
Collapse
Affiliation(s)
- Rishabh M. Shetty
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, Arizona 85287, United States; School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah R. Brady
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, Arizona 85287, United States
| | - Paul W. K. Rothemund
- Department of Bioengineering, Computational and Mathematical Sciences, and Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125, United States
| | | | | |
Collapse
|
12
|
Mazzocca M, Fillot T, Loffreda A, Gnani D, Mazza D. The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes. Biochem Soc Trans 2021; 49:1121-1132. [PMID: 34003257 PMCID: PMC8286828 DOI: 10.1042/bst20200709] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) regulate transcription of their target genes by identifying and binding to regulatory regions of the genome among billions of potential non-specific decoy sites, a task that is often presented as a 'needle in the haystack' challenge. The TF search process is now well understood in bacteria, but its characterization in eukaryotes needs to account for the complex organization of the nuclear environment. Here we review how live-cell single molecule tracking is starting to shed light on the TF search mechanism in the eukaryotic cell and we outline the future challenges to tackle in order to understand how nuclear organization modulates the TF search process in physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Mazzocca
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tom Fillot
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Gnani
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
13
|
Shin J, Berezhkovskii AM, Kolomeisky AB. Crowding breaks the forward/backward symmetry of transition times in biased random walks. J Chem Phys 2021; 154:204104. [PMID: 34241169 PMCID: PMC8411889 DOI: 10.1063/5.0053634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 11/14/2022] Open
Abstract
Microscopic mechanisms of natural processes are frequently understood in terms of random walk models by analyzing local particle transitions. This is because these models properly account for dynamic processes at the molecular level and provide a clear physical picture. Recent theoretical studies made a surprising discovery that in complex systems, the symmetry of molecular forward/backward transition times with respect to local bias in the dynamics may be broken and it may take longer to go downhill than uphill. The physical origins of these phenomena remain not fully understood. Here, we explore in more detail the microscopic features of the symmetry breaking in the forward/backward transition times by analyzing exactly solvable discrete-state stochastic models. In particular, we consider a specific case of two random walkers on a four-site periodic lattice as the way to represent the general systems with multiple pathways. It is found that the asymmetry in transition times depends on several factors that include the degree of deviation from equilibrium, the particle crowding, and methods of measurements of dynamic properties. Our theoretical analysis suggests that the asymmetry in transition times can be explored experimentally for determining the important microscopic features of natural processes by quantitatively measuring the local deviations from equilibrium and the degrees of crowding.
Collapse
Affiliation(s)
| | - Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
14
|
Kapadia N, El-Hajj ZW, Reyes-Lamothe R. Bound2Learn: a machine learning approach for classification of DNA-bound proteins from single-molecule tracking experiments. Nucleic Acids Res 2021; 49:e79. [PMID: 33744965 PMCID: PMC8373171 DOI: 10.1093/nar/gkab186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/13/2021] [Accepted: 03/05/2021] [Indexed: 11/14/2022] Open
Abstract
DNA-bound proteins are essential elements for the maintenance, regulation, and use of the genome. The time they spend bound to DNA provides useful information on their stability within protein complexes and insight into the understanding of biological processes. Single-particle tracking allows for direct visualization of protein-DNA kinetics, however, identifying whether a molecule is bound to DNA can be non-trivial. Further complications arise when tracking molecules for extended durations in processes with slow kinetics. We developed a machine learning approach, termed Bound2Learn, using output from a widely used tracking software, to robustly classify tracks in order to accurately estimate residence times. We validated our approach in silico, and in live-cell data from Escherichia coli and Saccharomyces cerevisiae. Our method has the potential for broad utility and is applicable to other organisms.
Collapse
Affiliation(s)
- Nitin Kapadia
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1 Canada
| | - Ziad W El-Hajj
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1 Canada
| | - Rodrigo Reyes-Lamothe
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1 Canada
| |
Collapse
|
15
|
Sarkar P, Chattopadhyay A. Insights into cellular signaling from membrane dynamics. Arch Biochem Biophys 2021; 701:108794. [PMID: 33571482 DOI: 10.1016/j.abb.2021.108794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Biological membranes allow morphological compartmentalization of cells and represent complex micro-heterogeneous fluids exhibiting a range of dynamics. The plasma membrane occupies a central place in cellular signaling which allows the cell to perform a variety of functions. In this review, we analyze cellular signaling in a dynamic biophysical framework guided by the "mobile receptor hypothesis". We describe a variety of examples from literature in which lateral diffusion of signaling membrane proteins acts as an important determinant in the efficiency of signaling. A major focus in our review is on membrane-embedded G protein-coupled receptors (GPCRs) which act as cellular signaling hubs for diverse cellular functions. Taken together, we describe a dynamics-based signaling paradigm with chosen examples from literature to elucidate how such a paradigm helps us understand signaling by GPCRs, maintenance of cellular polarity in yeast and infection by pathogens. We envision that with further technological advancement, it would be possible to explore cellular signaling more holistically as cells undergo development, differentiation and aging, thereby providing us a robust window into the dynamics of the cellular interior and its functional correlates.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
16
|
Separovic F, Keizer DW, Sani MA. In-cell Solid-State NMR Studies of Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:610203. [PMID: 35047891 PMCID: PMC8757805 DOI: 10.3389/fmedt.2020.610203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial peptides (AMPs) have attracted attention as alternatives to classic antibiotics due to their expected limited pressure on bacterial resistance mechanisms. Yet, their modes of action, in particular in vivo, remain to be elucidated. In situ atomistic-scale details of complex biomolecular assemblies is a challenging requirement for deciphering the complex modes of action of AMPs. The large diversity of molecules that modulate complex interactions limits the resolution achievable using imaging methodology. Herein, the latest advances in in-cell solid-state NMR (ssNMR) are discussed, which demonstrate the power of this non-invasive technique to provide atomic details of molecular structure and dynamics. Practical requirements for investigations of intact bacteria are discussed. An overview of recent in situ NMR investigations of the architecture and metabolism of bacteria and the effect of AMPs on various bacterial structures is presented. In-cell ssNMR revealed that the studied AMPs have a disruptive action on the molecular packing of bacterial membranes and DNA. Despite the limited number of studies, in-cell ssNMR is emerging as a powerful technique to monitor in situ the interplay between bacteria and AMPs.
Collapse
Affiliation(s)
- Frances Separovic
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - David W. Keizer
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc-Antoine Sani
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Marc-Antoine Sani
| |
Collapse
|
17
|
Shin J, Berezhkovskii AM, Kolomeisky AB. Biased Random Walk in Crowded Environment: Breaking Uphill/Downhill Symmetry of Transition Times. J Phys Chem Lett 2020; 11:4530-4535. [PMID: 32433884 DOI: 10.1021/acs.jpclett.0c01113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various natural processes can be analyzed using the concept of random walks. For a single random walker, the mean waiting times for uphill and downhill transitions between neighboring sites are equal. Here we investigate the uphill/downhill symmetry of waiting times for transitions of a tracer in crowded environment using exactly solvable one-dimensional stochastic models. It is found that, unexpectedly, the time to move in the direction of the bias (downhill) is always longer than the time to move against the bias (uphill). The degree of asymmetry depends on the particle density, the strength of the bias, and the size of the system. The microscopic origin of the symmetry breaking is discussed.
Collapse
Affiliation(s)
- Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Brown JWP, Bauer A, Polinkovsky ME, Bhumkar A, Hunter DJB, Gaus K, Sierecki E, Gambin Y. Single-molecule detection on a portable 3D-printed microscope. Nat Commun 2019; 10:5662. [PMID: 31827096 PMCID: PMC6906517 DOI: 10.1038/s41467-019-13617-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022] Open
Abstract
Single-molecule assays have, by definition, the ultimate sensitivity and represent the next frontier in biological analysis and diagnostics. However, many of these powerful technologies require dedicated laboratories and trained personnel and have therefore remained research tools for specialists. Here, we present a single-molecule confocal system built from a 3D-printed scaffold, resulting in a compact, plug and play device called the AttoBright. This device performs single photon counting and fluorescence correlation spectroscopy (FCS) in a simple format and is widely applicable to the detection of single fluorophores, proteins, liposomes or bacteria. The power of single-molecule detection is demonstrated by detecting single α-synuclein amyloid fibrils, that are currently evaluated as biomarkers for Parkinson’s disease, with an improved sensitivity of >100,000-fold over bulk measurements. Single-molecule in vitro assays require dedicated confocal microscopes equipped with fluorescence correlation spectroscopy (FCS) modules. Here the authors present a compact, cheap and open-source 3D-printed confocal microscope for single photon counting and FCS measurements, and use it to detect α-synuclein aggregation.
Collapse
Affiliation(s)
- James W P Brown
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Arnaud Bauer
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Mark E Polinkovsky
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Dominic J B Hunter
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.
| |
Collapse
|
19
|
Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A. Role of Actin Cytoskeleton in Dynamics and Function of the Serotonin 1A Receptor. Biophys J 2019; 118:944-956. [PMID: 31606121 DOI: 10.1016/j.bpj.2019.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.
Collapse
Affiliation(s)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Pascal Preira
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
20
|
Cui TJ, Joo C. Facilitated diffusion of Argonaute-mediated target search. RNA Biol 2019; 16:1093-1107. [PMID: 31068066 PMCID: PMC6693542 DOI: 10.1080/15476286.2019.1616353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022] Open
Abstract
Argonaute (Ago) proteins are of key importance in many cellular processes. In eukaryotes, Ago can induce translational repression followed by deadenylation and degradation of mRNA molecules through base pairing of microRNAs (miRNAs) with a complementary target on a mRNA sequence. In bacteria, Ago eliminates foreign DNA through base pairing of siDNA (small interfering DNA) with a target on a DNA sequence. Effective targeting activities of Ago require fast recognition of the cognate target sequence among numerous off-target sites. Other target search proteins such as transcription factors (TFs) are known to rely on facilitated diffusion for this goal, but it is undetermined to what extent these small nucleic acid-guided proteins utilize this mechanism. Here, we review recent single-molecule studies on Ago target search. We discuss the consequences of the recent findings on the search mechanism. Furthermore, we discuss the open standing research questions that need to be addressed for a complete picture of facilitated target search by small nucleic acids.
Collapse
Affiliation(s)
- Tao Ju Cui
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
21
|
A quest for coordination among activities at the replisome. Biochem Soc Trans 2019; 47:1067-1075. [PMID: 31395754 DOI: 10.1042/bst20180402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
Faithful DNA replication is required for transmission of the genetic material across generations. The basic mechanisms underlying this process are shared among all organisms: progressive unwinding of the long double-stranded DNA; synthesis of RNA primers; and synthesis of a new DNA chain. These activities are invariably performed by a multi-component machine called the replisome. A detailed description of this molecular machine has been achieved in prokaryotes and phages, with the replication processes in eukaryotes being comparatively less known. However, recent breakthroughs in the in vitro reconstitution of eukaryotic replisomes have resulted in valuable insight into their functions and mechanisms. In conjunction with the developments in eukaryotic replication, an emerging overall view of replisomes as dynamic protein ensembles is coming into fruition. The purpose of this review is to provide an overview of the recent insights into the dynamic nature of the bacterial replisome, revealed through single-molecule techniques, and to describe some aspects of the eukaryotic replisome under this framework. We primarily focus on Escherichia coli and Saccharomyces cerevisiae (budding yeast), since a significant amount of literature is available for these two model organisms. We end with a description of the methods of live-cell fluorescence microscopy for the characterization of replisome dynamics.
Collapse
|
22
|
Chavez-Abiega S, Goedhart J, Bruggeman FJ. Physical biology of GPCR signalling dynamics inferred from fluorescence spectroscopy and imaging. Curr Opin Struct Biol 2019; 55:204-211. [PMID: 31319372 DOI: 10.1016/j.sbi.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
The physical biology of G protein-coupled receptor (GPCR) signalling can be inferred from imaging of single molecules and single living cells. In this opinion paper, we highlight recent developments in technologies to study GPCR signalling in vitro and in cyto. We start from mobility and localisation characteristics of single receptors in membranes. Subsequently, we discuss the kinetics of shifts in receptor-conformation equilibrium due to allosteric binding events and G protein activation. We continue with recent insights into downstream signalling and the role of delayed negative feedback to suppress GPCR signalling. Finally, we discuss new strategies to reveal how the multiplex signalling responses of cells to ligand mixtures, mediated by their entire receptor arsenal, can be disentangled, using single-cell data.
Collapse
Affiliation(s)
- Sergei Chavez-Abiega
- Section Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH, Amsterdam, The Netherlands; Section Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines and Systems, VU University, De Boelelaan 1085, NL-1081 HV, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH, Amsterdam, The Netherlands
| | - Frank Johannes Bruggeman
- Section Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines and Systems, VU University, De Boelelaan 1085, NL-1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Serebryannyy LA, Ball DA, Karpova TS, Misteli T. Single molecule analysis of lamin dynamics. Methods 2019; 157:56-65. [PMID: 30145357 PMCID: PMC6387858 DOI: 10.1016/j.ymeth.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
The nuclear envelope (NE) is an essential cellular structure that contributes to nuclear stability, organization, and function. Mutations in NE-associated proteins result in a myriad of pathologies with widely diverse clinical manifestations, ages of onsets, and affected tissues. Notably, several hundred disease-causing mutations have been mapped to the LMNA gene, which encodes the intermediate filament proteins lamin A and C, two of the major architectural components of the nuclear envelope. However, how NE dysfunction leads to the highly variable pathologies observed in patient cells and tissues remains poorly understood. One model suggests alterations in the dynamic properties of the nuclear lamina and its associated proteins contribute to disease phenotype. Here, we describe the application of single molecule tracking (SMT) methodology to characterize the behavior of nuclear envelope transmembrane proteins and nuclear lamins in their native cellular environment at the single molecule level. As proof-of-concept, we demonstrate by SMT that Halo-tagged lamin B1, Samp1, lamin A, and lamin AΔ50 have distinct binding and kinetic properties, and we identify several disease-relevant mutants which exhibit altered binding dynamics. SMT is also able to separately probe the dynamics of the peripheral and the nucleoplasmic populations of lamin A mutants. We suggest that SMT is a robust and sensitive method to investigate the relationship between pathogenic mutations or cellular processes and protein dynamics at the NE.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA
| | - David A Ball
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tatiana S Karpova
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Vega AR, Freeman SA, Grinstein S, Jaqaman K. Multistep Track Segmentation and Motion Classification for Transient Mobility Analysis. Biophys J 2019. [PMID: 29539390 DOI: 10.1016/j.bpj.2018.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular interactions are often transient and might change within the window of observation, leading to changes in molecule movement. Therefore, accurate motion analysis often requires transient motion classification. Here we present an accurate and computationally efficient transient mobility analysis framework, termed "divide-and-conquer moment scaling spectrum" (DC-MSS). DC-MSS works in a multistep fashion: 1) it utilizes a local movement descriptor throughout a track to divide it into initial segments of putatively different motion classes; 2) it classifies these segments via moment scaling spectrum (MSS) analysis of molecule displacements; and 3) it uses the MSS analysis results to refine the track segmentation. This strategy uncouples the initial identification of motion switches from motion classification, allowing DC-MSS to circumvent the sensitivity-accuracy tradeoff of classic rolling window approaches for transient motion analysis, while at the same time harnessing the classification power of MSS analysis. Testing of DC-MSS demonstrates that it detects switches among free diffusion, confined diffusion, directed diffusion, and immobility with great sensitivity. To illustrate the utility of DC-MSS, we have applied it to single-particle tracks of the transmembrane protein CD44 on the surface of macrophages, revealing actin cortex-dependent transient mobility changes.
Collapse
Affiliation(s)
- Anthony R Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
25
|
Huang T, Phelps C, Wang J, Lin LJ, Bittel A, Scott Z, Jacques S, Gibbs SL, Gray JW, Nan X. Simultaneous Multicolor Single-Molecule Tracking with Single-Laser Excitation via Spectral Imaging. Biophys J 2019; 114:301-310. [PMID: 29401428 DOI: 10.1016/j.bpj.2017.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Single-molecule tracking (SMT) offers rich information on the dynamics of underlying biological processes, but multicolor SMT has been challenging due to spectral cross talk and a need for multiple laser excitations. Here, we describe a single-molecule spectral imaging approach for live-cell tracking of multiple fluorescent species at once using a single-laser excitation. Fluorescence signals from all the molecules in the field of view are collected using a single objective and split between positional and spectral channels. Images of the same molecule in the two channels are then combined to determine both the location and the identity of the molecule. The single-objective configuration of our approach allows for flexible sample geometry and the use of a live-cell incubation chamber required for live-cell SMT. Despite a lower photon yield, we achieve excellent spatial (20-40 nm) and spectral (10-15 nm) resolutions comparable to those obtained with dual-objective, spectrally resolved Stochastic Optical Reconstruction Microscopy. Furthermore, motions of the fluorescent molecules did not cause loss of spectral resolution owing to the dual-channel spectral calibration. We demonstrate SMT in three (and potentially more) colors using spectrally proximal fluorophores and single-laser excitation, and show that trajectories of each species can be reliably extracted with minimal cross talk.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Carey Phelps
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jing Wang
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Li-Jung Lin
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Amy Bittel
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Zubenelgenubi Scott
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Steven Jacques
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Joe W Gray
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Xiaolin Nan
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
26
|
Isaacoff BP, Li Y, Lee SA, Biteen JS. SMALL-LABS: Measuring Single-Molecule Intensity and Position in Obscuring Backgrounds. Biophys J 2019; 116:975-982. [PMID: 30846363 DOI: 10.1016/j.bpj.2019.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/27/2019] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Single-molecule and super-resolution imaging relies on successful, sensitive, and accurate detection of the emission from fluorescent molecules. Yet, despite the widespread adoption of super-resolution microscopies, single-molecule data processing algorithms can fail to provide accurate measurements of the brightness and position of molecules in the presence of backgrounds that fluctuate significantly over time and space. Thus, samples or experiments that include obscuring backgrounds can severely, or even completely, hinder this process. To date, no general data analysis approach to this problem has been introduced that is capable of removing obscuring backgrounds for a wide variety of experimental modalities. To address this need, we present the Single-Molecule Accurate LocaLization by LocAl Background Subtraction (SMALL-LABS) algorithm, which can be incorporated into existing single-molecule and super-resolution analysis packages to accurately locate and measure the intensity of single molecules, regardless of the shape or brightness of the background. Accurate background subtraction is enabled by separating the foreground from the background based on differences in the temporal variations of the foreground and the background (i.e., fluorophore blinking, bleaching, or moving). We detail the function of SMALL-LABS here, and we validate the SMALL-LABS algorithm on simulated data as well as real data from single-molecule imaging in living cells.
Collapse
Affiliation(s)
| | - Yilai Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Stephen A Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
27
|
Clarke DT, Martin-Fernandez ML. A Brief History of Single-Particle Tracking of the Epidermal Growth Factor Receptor. Methods Protoc 2019; 2:mps2010012. [PMID: 31164594 PMCID: PMC6481046 DOI: 10.3390/mps2010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Single-particle tracking (SPT) has been used and developed over the last 25 years as a method to investigate molecular dynamics, structure, interactions, and function in the cellular context. SPT is able to show how fast and how far individual molecules move, identify different dynamic populations, measure the duration and strength of intermolecular interactions, and map out structures on the nanoscale in cells. In combination with other techniques such as macromolecular crystallography and molecular dynamics simulation, it allows us to build models of complex structures, and develop and test hypotheses of how these complexes perform their biological roles in health as well as in disease states. Here, we use the example of the epidermal growth factor receptor (EGFR), which has been studied extensively by SPT, demonstrating how the method has been used to increase our understanding of the receptor’s organization and function, including its interaction with the plasma membrane, its activation, clustering, and oligomerization, and the role of other receptors and endocytosis. The examples shown demonstrate how SPT might be employed in the investigation of other biomolecules and systems.
Collapse
Affiliation(s)
- David T Clarke
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Marisa L Martin-Fernandez
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| |
Collapse
|
28
|
Volkov IL, Johansson M. Single-Molecule Tracking Approaches to Protein Synthesis Kinetics in Living Cells. Biochemistry 2018; 58:7-14. [PMID: 30404437 DOI: 10.1021/acs.biochem.8b00917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Decades of traditional biochemistry, structural approaches, and, more recently, single-molecule-based in vitro techniques have provided us with an astonishingly detailed understanding of the molecular mechanism of ribosome-catalyzed protein synthesis. However, in order to understand these details in the context of cell physiology and population biology, new techniques to probe the dynamics of molecular processes inside the cell are needed. Recent years' development in super-resolved fluorescence microscopy has revolutionized imaging of intracellular processes, and we now have the possibility to directly peek into the microcosm of biomolecules in their native environment. In this Perspective, we discuss how these methods are currently being applied and further developed to study the kinetics of protein synthesis directly inside living cells.
Collapse
Affiliation(s)
- Ivan L Volkov
- Department of Cell and Molecular Biology , Uppsala University , Uppsala 75124 , Sweden
| | - Magnus Johansson
- Department of Cell and Molecular Biology , Uppsala University , Uppsala 75124 , Sweden
| |
Collapse
|
29
|
Shao S, Xue B, Sun Y. Intranucleus Single-Molecule Imaging in Living Cells. Biophys J 2018; 115:181-189. [PMID: 29861035 DOI: 10.1016/j.bpj.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022] Open
Abstract
Many critical processes occurring in mammalian cells are stochastic and can be directly observed at the single-molecule level within their physiological environment, which would otherwise be obscured in an ensemble measurement. There are various fundamental processes in the nucleus, such as transcription, replication, and DNA repair, the study of which can greatly benefit from intranuclear single-molecule imaging. However, the number of such studies is relatively small mainly because of lack of proper labeling and imaging methods. In the past decade, tremendous efforts have been devoted to developing tools for intranuclear imaging. Here, we mainly describe the recent methodological developments of single-molecule imaging and their emerging applications in the live nucleus. We also discuss the remaining issues and provide a perspective on future developments and applications of this field.
Collapse
Affiliation(s)
- Shipeng Shao
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, BIOPIC, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
30
|
Wang L, Xue Y, Xing J, Song K, Lin J. Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:525-551. [PMID: 29489393 DOI: 10.1146/annurev-arplant-042817-040233] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plasma membrane proteins have important roles in transport and signal transduction. Deciphering the spatiotemporal organization of these proteins provides crucial information for elucidating the links between the behaviors of different molecules. However, monitoring membrane proteins without disrupting their membrane environment remains difficult. Over the past decade, many studies have developed single-molecule techniques, opening avenues for probing the stoichiometry and interactions of membrane proteins in their native environment by providing nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we assess recent progress in the development of labeling and imaging technology for membrane protein analysis. We focus in particular on several single-molecule techniques for quantifying the dynamics and assembly of membrane proteins. Finally, we provide examples of how these new techniques are advancing our understanding of the complex biological functions of membrane proteins.
Collapse
Affiliation(s)
- Li Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yiqun Xue
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Xing
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kai Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
31
|
Davis CM, Gruebele M. Labeling for Quantitative Comparison of Imaging Measurements in Vitro and in Cells. Biochemistry 2018; 57:1929-1938. [PMID: 29546761 DOI: 10.1021/acs.biochem.8b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Qualitative imaging of biomolecular localization and distribution inside cells has revolutionized cell biology. Most of these powerful techniques require modifications to the target biomolecule. Over the past 10 years, these techniques have been extended to quantitative measurements, from in-cell protein folding rates to complex dissociation constants to RNA lifetimes. Such measurements can be affected even when a target molecule is just mildly perturbed by its labels. Here, the impact of labeling on protein (and RNA) structure, stability, and function in cells is discussed via practical examples from the recent literature. General guidelines for selecting and validating modification sites are provided to bring the best from cell biology and imaging to quantitative biophysical experiments inside cells.
Collapse
|
32
|
Goodin MM. Protein Localization and Interaction Studies in Plants: Toward Defining Complete Proteomes by Visualization. Adv Virus Res 2017; 100:117-144. [PMID: 29551133 DOI: 10.1016/bs.aivir.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein interaction and localization studies in plants are a fundamental component of achieving mechanistic understanding of virus:plant interactions at the systems level. Many such studies are conducted using transient expression assays in leaves of Nicotiana benthamiana, the most widely used experimental plant host in virology, examined by laser-scanning confocal microscopy. This chapter provides a workflow for protein interaction and localization experiments, with particular attention to the many control and supporting assays that may also need to be performed. Basic principles of microscopy are introduced to aid researchers in the early stages of adding imaging techniques to their experimental repertoire. Three major types of imaging-based experiments are discussed in detail: (i) protein localization using autofluorescent proteins, (ii) colocalization studies, and (iii) bimolecular fluorescence complementation, with emphasis on judicious interpretation of the data obtained from these approaches. In addition to establishing a general framework for protein localization experiments in plants, the need for proteome-scale localization projects is discussed, with emphasis on nuclear-localized proteins.
Collapse
|
33
|
Super resolution imaging of chromatin in pluripotency, differentiation, and reprogramming. Curr Opin Genet Dev 2017; 46:186-193. [DOI: 10.1016/j.gde.2017.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
|
34
|
Cuvier O, Fierz B. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat Rev Genet 2017; 18:457-472. [DOI: 10.1038/nrg.2017.28] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions. Proc Natl Acad Sci U S A 2017; 114:3832-3836. [PMID: 28348224 DOI: 10.1073/pnas.1618206114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superresolution microscopy has fundamentally altered our ability to resolve subcellular proteins, but improving on these techniques to study dense structures composed of single-molecule-sized elements has been a challenge. One possible approach to enhance superresolution precision is to use cryogenic fluorescent imaging, reported to reduce fluorescent protein bleaching rates, thereby increasing the precision of superresolution imaging. Here, we describe an approach to cryogenic photoactivated localization microscopy (cPALM) that permits the use of a room-temperature high-numerical-aperture objective lens to image frozen samples in their native state. We find that cPALM increases photon yields and show that this approach can be used to enhance the effective resolution of two photoactivatable/switchable fluorophore-labeled structures in the same frozen sample. This higher resolution, two-color extension of the cPALM technique will expand the accessibility of this approach to a range of laboratories interested in more precise reconstructions of complex subcellular targets.
Collapse
|
36
|
Colomb W, Czerski J, Sau JD, Sarkar SK. Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers. J Microsc 2017; 266:298-306. [PMID: 28328030 DOI: 10.1111/jmi.12539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 01/10/2023]
Abstract
Fiducial markers are used to correct the microscope drift and should be photostable, be usable at multiple wavelengths and be compatible for multimodal imaging. Fiducial markers such as beads, gold nanoparticles, microfabricated patterns and organic fluorophores lack one or more of these criteria. Moreover, the localization accuracy and drift correction can be degraded by other fluorophores, instrument noise and artefacts due to image processing and tracking algorithms. Estimating mechanical drift by assuming Gaussian distributed noise is not suitable under these circumstances. Here we present a method that uses fluorescent nanodiamonds as fiducial markers and uses an improved maximum likelihood algorithm to estimate the drift with both accuracy and precision within the range 1.55-5.75 nm.
Collapse
Affiliation(s)
- W Colomb
- Department of Physics, Colorado School of Mines, Golden, Colorado, U.S.A
| | - J Czerski
- Department of Physics, Colorado School of Mines, Golden, Colorado, U.S.A
| | - J D Sau
- Department of Physics, University of Maryland, College Park, MD, U.S.A
| | - S K Sarkar
- Department of Physics, Colorado School of Mines, Golden, Colorado, U.S.A
| |
Collapse
|
37
|
Custer TC, Walter NG. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines. Protein Sci 2017; 26:1363-1379. [PMID: 28028853 PMCID: PMC5477532 DOI: 10.1002/pro.3108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling.
Collapse
Affiliation(s)
- Thomas C Custer
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
38
|
Techniques for Single-Molecule mRNA Imaging in Living Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:425-441. [DOI: 10.1007/978-3-319-53889-1_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|