1
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL. A holistic review of sodium intake in kidney transplant patients: More questions than answers. Transplant Rev (Orlando) 2024; 38:100859. [PMID: 38749098 DOI: 10.1016/j.trre.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Kidney transplantation (KT) is the best treatment option for end-stage kidney disease (ESKD). Acute rejection rates have decreased drastically in recent years but chronic kidney allograft disease (CKAD) is still an important cause of allograft failure and return to dialysis. Thus, there is unmet need to identify and reverse the cause of CKAD. Additionally, cardiovascular events after KT are still leading causes of morbidity and mortality. One overlooked potential contributor to CKAD and adverse cardiovascular events is increased sodium/salt intake in kidney transplant recipients (KTRs). In general population, the adverse effects of high sodium intake are well known but in KTRs, there is a paucity of evidence despite decades of experience with KT. Limited research showed that sodium intake is high in most KTRs. Moreover, excess sodium intake is associated with elevated blood pressure and albuminuria in some studies involving KTRs. There is also experimental evidence suggesting that increased sodium intake is associated with histologic graft damage. Critical knowledge gaps still remain, including the exact amount of sodium restriction needed in KTRs to optimize outcomes and allograft survival. Additionally, best methods to measure sodium intake and practices to follow-up are not clarified in KTRs. To meet these deficits, prospective long term studies are warranted in KTRs. Moreover, preventive measures must be determined and implemented both at individual and societal levels to achieve sodium restriction in KTRs.
Collapse
Affiliation(s)
- Baris Afsar
- Suleyman Demirel University, School of Medicine, Department of Nephrology, 32260, Cunur, Isparta, Türkiye; Saint Louis University, School of Medicine, Division of Nephrology, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Suleyman Demirel University, School of Medicine, Department of Nephrology, 32260, Cunur, Isparta, Türkiye; Saint Louis University, School of Medicine, Division of Nephrology, St. Louis, MO, USA
| | - Yasar Caliskan
- Saint Louis University, School of Medicine, Division of Nephrology, St. Louis, MO, USA
| | - Krista L Lentine
- Saint Louis University, School of Medicine, Division of Nephrology, St. Louis, MO, USA
| |
Collapse
|
2
|
Arthur G, Poupeau A, Biel K, Osborn JL, Gong M, Hinds TD, Lindner V, Loria AS. Human soluble prorenin receptor expressed in mouse renal collecting duct shows sex-specific effect on cardiorenal function. Am J Physiol Renal Physiol 2024; 326:F611-F621. [PMID: 38385173 PMCID: PMC11208026 DOI: 10.1152/ajprenal.00375.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Soluble prorenin receptor (sPRR), a component of the renin-angiotensin system (RAS), has been identified as a plasma biomarker for hypertension and cardiovascular diseases in humans. Despite studies showing that sPRR in the kidney is produced by tubular cells in the renal collecting duct (CD), its biological actions modulating cardiorenal function in physiological conditions remain unknown. Therefore, the objective of our study was to investigate whether CD-derived human sPRR (HsPRR) expression influences cardiorenal function and examine sex and circadian differences. Thus, we investigated the status of the intrarenal RAS, water and electrolyte balance, renal filtration capacity, and blood pressure (BP) regulation in CD-HsPRR and control (CTL) mice. CD-HsPRR mice were generated by breeding human sPRR-Myc-tag mice with Hoxb7/Cre mice. Renal sPRR expression increased in CD-HsPRR mice, but circulating sPRR and RAS levels were unchanged compared with CTL mice. Only female littermates expressing CD-HsPRR showed 1) increased 24-h BP, 2) an impaired BP response to an acute dose of losartan and attenuated angiotensin II (ANG II)-induced hypertension, 3) reduced angiotensin-converting enzyme activity and ANG II content in the renal cortex, and 4) decreased glomerular filtration rate, with no changes in natriuresis and kaliuresis despite upregulation of the β-subunit of the epithelial Na+ channel in the renal cortex. These cardiorenal alterations were displayed only during the active phase of the day. Taken together, these data suggest that HsPRR could interact with ANG II type 1 receptors mediating sex-specific, ANG II-independent renal dysfunction and a prohypertensive phenotype in a sex-specific manner.NEW & NOTEWORTHY We successfully generated a humanized mouse model that expresses human sPRR in the collecting duct. Collecting duct-derived human sPRR did not change circulating sPRR and RAS levels but increased daytime BP in female mice while showing an attenuated angiotensin II-dependent pressor response. These findings may aid in elucidating the mechanisms by which women show uncontrolled BP in response to antihypertensive treatments targeting the RAS, improving approaches to reduce uncontrolled BP and chronic kidney disease incidences in women.
Collapse
Affiliation(s)
- Gertrude Arthur
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Audrey Poupeau
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Katherine Biel
- Department of Nutrition and Dietetics, University of Kentucky, Lexington, Kentucky, United States
| | - Jeffrey L Osborn
- Department of Pathophysiology, Arkansas Colleges of Health Education, Fort Smith, Arkansas, United States
| | - Ming Gong
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Volkhard Lindner
- MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
- SAHA Cardiovascular Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Crislip GR, Costello HM, Juffre A, Cheng KY, Lynch IJ, Johnston JG, Drucker CB, Bratanatawira P, Agarwal A, Mendez VM, Thelwell RS, Douma LG, Wingo CS, Alli AA, Scindia YM, Gumz ML. Male kidney-specific BMAL1 knockout mice are protected from K +-deficient, high-salt diet-induced blood pressure increases. Am J Physiol Renal Physiol 2023; 325:F656-F668. [PMID: 37706232 PMCID: PMC10874679 DOI: 10.1152/ajprenal.00126.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Charles B Drucker
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Phillip Bratanatawira
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Annanya Agarwal
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Victor M Mendez
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Ryanne S Thelwell
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Lauren G Douma
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Charles S Wingo
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Abdel A Alli
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Yogesh M Scindia
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
4
|
Rey-Serra C, Tituaña J, Lin T, Herrero JI, Miguel V, Barbas C, Meseguer A, Ramos R, Chaix A, Panda S, Lamas S. Reciprocal regulation between the molecular clock and kidney injury. Life Sci Alliance 2023; 6:e202201886. [PMID: 37487638 PMCID: PMC10366531 DOI: 10.26508/lsa.202201886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Tubulointerstitial fibrosis is the common pathological substrate for many etiologies leading to chronic kidney disease. Although perturbations in the circadian rhythm have been associated with renal disease, the role of the molecular clock in the pathogenesis of fibrosis remains incompletely understood. We investigated the relationship between the molecular clock and renal damage in experimental models of injury and fibrosis (unilateral ureteral obstruction, folic acid, and adenine nephrotoxicity), using genetically modified mice with selective deficiencies of the clock components Bmal1, Clock, and Cry We found that the molecular clock pathway was enriched in damaged tubular epithelial cells with marked metabolic alterations. In human tubular epithelial cells, TGFβ significantly altered the expression of clock components. Although Clock played a role in the macrophage-mediated inflammatory response, the combined absence of Cry1 and Cry2 was critical for the recruitment of neutrophils, correlating with a worsening of fibrosis and with a major shift in the expression of metabolism-related genes. These results support that renal damage disrupts the kidney peripheral molecular clock, which in turn promotes metabolic derangement linked to inflammatory and fibrotic responses.
Collapse
Affiliation(s)
- Carlos Rey-Serra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Ricardo Ramos
- Genomic Facility, Fundación Parque Científico de Madrid, Madrid, Spain
| | - Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
5
|
Coskun A, Zarepour A, Zarrabi A. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci 2023; 24:ijms24076275. [PMID: 37047252 PMCID: PMC10094461 DOI: 10.3390/ijms24076275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The concentration of biomolecules in living systems shows numerous systematic and random variations. Systematic variations can be classified based on the frequency of variations as ultradian (<24 h), circadian (approximately 24 h), and infradian (>24 h), which are partly predictable. Random biological variations are known as between-subject biological variations that are the variations among the set points of an analyte from different individuals and within-subject biological variation, which is the variation of the analyte around individuals’ set points. The random biological variation cannot be predicted but can be estimated using appropriate measurement and statistical procedures. Physiological rhythms and random biological variation of the analytes could be considered the essential elements of predictive, preventive, and particularly personalized laboratory medicine. This systematic review aims to summarize research that have been done about the types of physiological rhythms, biological variations, and their effects on laboratory tests. We have searched the PubMed and Web of Science databases for biological variation and physiological rhythm articles in English without time restrictions with the terms “Biological variation, Within-subject biological variation, Between-subject biological variation, Physiological rhythms, Ultradian rhythms, Circadian rhythm, Infradian rhythms”. It was concluded that, for effective management of predicting, preventing, and personalizing medicine, which is based on the safe and valid interpretation of patients’ laboratory test results, both physiological rhythms and biological variation of the measurands should be considered simultaneously.
Collapse
|
6
|
Gumz ML, Shimbo D, Abdalla M, Balijepalli RC, Benedict C, Chen Y, Earnest DJ, Gamble KL, Garrison SR, Gong MC, Hogenesch JB, Hong Y, Ivy JR, Joe B, Laposky AD, Liang M, MacLaughlin EJ, Martino TA, Pollock DM, Redline S, Rogers A, Dan Rudic R, Schernhammer ES, Stergiou GS, St-Onge MP, Wang X, Wright J, Oh YS. Toward Precision Medicine: Circadian Rhythm of Blood Pressure and Chronotherapy for Hypertension - 2021 NHLBI Workshop Report. Hypertension 2023; 80:503-522. [PMID: 36448463 PMCID: PMC9931676 DOI: 10.1161/hypertensionaha.122.19372] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Healthy individuals exhibit blood pressure variation over a 24-hour period with higher blood pressure during wakefulness and lower blood pressure during sleep. Loss or disruption of the blood pressure circadian rhythm has been linked to adverse health outcomes, for example, cardiovascular disease, dementia, and chronic kidney disease. However, the current diagnostic and therapeutic approaches lack sufficient attention to the circadian rhythmicity of blood pressure. Sleep patterns, hormone release, eating habits, digestion, body temperature, renal and cardiovascular function, and other important host functions as well as gut microbiota exhibit circadian rhythms, and influence circadian rhythms of blood pressure. Potential benefits of nonpharmacologic interventions such as meal timing, and pharmacologic chronotherapeutic interventions, such as the bedtime administration of antihypertensive medications, have recently been suggested in some studies. However, the mechanisms underlying circadian rhythm-mediated blood pressure regulation and the efficacy of chronotherapy in hypertension remain unclear. This review summarizes the results of the National Heart, Lung, and Blood Institute workshop convened on October 27 to 29, 2021 to assess knowledge gaps and research opportunities in the study of circadian rhythm of blood pressure and chronotherapy for hypertension.
Collapse
Affiliation(s)
- Michelle L Gumz
- Department of Physiology and Aging; Center for Integrative Cardiovascular and Metabolic Disease, Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL (M.L.G.)
| | - Daichi Shimbo
- Department of Medicine, The Columbia Hypertension Center, Columbia University Irving Medical Center, New York, NY (D.S.)
| | - Marwah Abdalla
- Department of Medicine, Center for Behavioral Cardiovascular Health, Columbia University Irving Medical Center, New York, NY (M.A.)
| | - Ravi C Balijepalli
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Sweden (C.B.)
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, and Research Department, Birmingham VA Medical Center, AL (Y.C.)
| | - David J Earnest
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, Bryan, TX (D.J.E.)
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL (K.L.G.)
| | - Scott R Garrison
- Department of Family Medicine, University of Alberta, Canada (S.R.G.)
| | - Ming C Gong
- Department of Physiology, University of Kentucky, Lexington, KY (M.C.G.)
| | | | - Yuling Hong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Jessica R Ivy
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom (J.R.I.)
| | - Bina Joe
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (B.J.)
| | - Aaron D Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (A.D.L.)
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (M.L.)
| | - Eric J MacLaughlin
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Amarillo, TX (E.J.M.)
| | - Tami A Martino
- Center for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Ontario, Canada (T.A.M.)
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL (D.M.P.)
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.R.)
| | - Amy Rogers
- Division of Molecular and Clinical Medicine, University of Dundee, United Kingdom (A.R.)
| | - R Dan Rudic
- Department of Pharmacology and Toxicology, Augusta University, GA (R.D.R.)
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (E.S.S.)
| | - George S Stergiou
- Hypertension Center, STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece (G.S.S.)
| | - Marie-Pierre St-Onge
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center' New York, NY (M.-P.S.-O.)
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Medicine, Augusta University, GA (X.W.)
| | - Jacqueline Wright
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Young S Oh
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| |
Collapse
|
7
|
Liu C, Li S, Ji S, Zhang J, Zheng F, Guan Y, Yang G, Chen L. Proximal tubular Bmal1 protects against chronic kidney injury and renal fibrosis by maintaining of cellular metabolic homeostasis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166572. [PMID: 36252941 DOI: 10.1016/j.bbadis.2022.166572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine β-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.
Collapse
Affiliation(s)
- Chengcheng Liu
- Health Science Center, East China Normal University, Shanghai 200241, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuyao Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai 200241, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Izmailova O, Kabaliei A, Shynkevych V, Shlykova O, Kaidashev I. PPARG agonist pioglitazone influences diurnal kidney medulla mRNA expression of core clock, inflammation-, and metabolism-related genes disrupted by reverse feeding in mice. Physiol Rep 2022; 10:e15535. [PMID: 36511486 PMCID: PMC9746034 DOI: 10.14814/phy2.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023] Open
Abstract
This study examined the influence of PPARG activation by pioglitazone (PG) on the mRNA of core clock, inflammation- and metabolism-related genes in the mouse kidney medulla as well as urinary sodium/potassium excretion rhythms disrupted by reverse feeding. Mice were assigned to daytime feeding and nighttime feeding groups. PG 20 mg/kg was administered at 7 am or 7 pm. On day 8 of the feeding intervention, mice were killed at noon and midnight. Kidney medulla expression of Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, Per2, Nfe2l2, Pparg, and Scnn1g was determined by qRT PCR. We measured urinary K+ , Na+ , urine volume, food, and H2 O intake. The reverse feeding uncoupled the peripheral clock gene rhythm in mouse kidney tissues. It was accompanied by a decreased expression of Nfe2l2 and Pparg as well as an increased expression of Rela and Scnn1g. These changes in gene expressions concurred with an increase in urinary Na+ , K+ , water excretion, microcirculation disorders, and cell loss, especially in distal tubules. PG induced the restoration of diurnal core clock gene expression as well as Nfe2l2, Pparg, Scnn1g mRNA, and decreased Rela expressions, stimulating Na+ reabsorption and inhibiting K+ excretion. PG intake at 7 pm was more effective than at 7 am.
Collapse
|
9
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Soliman RH, Jin C, Taylor CM, Moura Coelho da Silva E, Pollock DM. Sex Differences in Diurnal Sodium Handling During Diet-Induced Obesity in Rats. Hypertension 2022; 79:1395-1408. [PMID: 35545941 PMCID: PMC9186154 DOI: 10.1161/hypertensionaha.121.18690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Emerging evidence over the past several years suggests that diurnal control of sodium excretion is sex dependent and involves the renal endothelin system. Given recent awareness of disruptions of circadian function in obesity, we determined whether diet-induced obesity impairs renal handling of an acute salt load at different times of day and whether this varies by sex and is associated with renal endothelin dysfunction. METHODS Male and female Sprague-Dawley rats were placed on a high-fat diet for 8 weeks before assessing renal sodium handling and blood pressure. RESULTS Male, but not female, rats on high fat had a significantly reduced natriuretic response to acute NaCl injection at the beginning of their active period that was associated with lower endothelin 1 (ET-1) excretion, lower ET-1 mRNA expression in the cortex and outer medulla as well as lower ETB receptor expression in the outer medulla of the high-fat rats. Obese males also had significantly higher blood pressure (telemetry) that was exacerbated by adding high salt to the diet during the last 2 weeks. While female rats developed hypertension with a high-fat diet, they were not salt sensitive and ET-1 excretion was unchanged. CONCLUSIONS These data identify diet-induced obesity as a sex-specific disruptive factor for maintaining proper sodium handling. Although high-fat diets induce hypertension in both sexes, these data reveal that males are at greater risk of salt-dependent hypertension and further suggest that females have more redundant systems that can be productive against salt-sensitive hypertension in at least some circumstances.
Collapse
Affiliation(s)
- Reham H. Soliman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - Chunhua Jin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - Crystal M. Taylor
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - Emile Moura Coelho da Silva
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| |
Collapse
|
11
|
Ibarz-Blanch N, Morales D, Calvo E, Ros-Medina L, Muguerza B, Bravo FI, Suárez M. Role of Chrononutrition in the Antihypertensive Effects of Natural Bioactive Compounds. Nutrients 2022; 14:nu14091920. [PMID: 35565887 PMCID: PMC9103085 DOI: 10.3390/nu14091920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is one of the main cardiovascular risk factors and is considered a major public health problem. Numerous approaches have been developed to lower blood pressure (BP) in hypertensive patients, most of them involving pharmacological treatments. Within this context, natural bioactive compounds have emerged as a promising alternative to drugs in HTN prevention. This work reviews not only the mechanisms of BP regulation by these antihypertensive compounds, but also their efficacy depending on consumption time. Although a plethora of studies has investigated food-derived compounds, such as phenolic compounds or peptides and their impact on BP, only a few addressed the relevance of time consumption. However, it is known that BP and its main regulatory mechanisms show a 24-h oscillation. Moreover, evidence shows that phenolic compounds can interact with clock genes, which regulate the biological rhythm followed by many physiological processes. Therefore, further research might be carried out to completely elucidate the interactions along the time–nutrition–hypertension axis within the framework of chrononutrition.
Collapse
Affiliation(s)
| | | | - Enrique Calvo
- Correspondence: (E.C.); (F.I.B.); Tel.: +34-977558837 (E.C.)
| | | | | | | | | |
Collapse
|
12
|
Rhoads MK, Speed JS, Roth KJ, Zhang D, Jin C, Gamble KL, Pollock DM. Short-term daytime restricted feeding in rats with high salt impairs diurnal variation of Na + excretion. Am J Physiol Renal Physiol 2022; 322:F335-F343. [PMID: 35100821 PMCID: PMC8896996 DOI: 10.1152/ajprenal.00287.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Night shift work increases risk of cardiovascular disease associated with an irregular eating schedule. Elevating this risk is the high level of salt intake observed in the typical Western diet. Renal Na+ excretion has a distinct diurnal pattern, independent of time of intake, yet the interactions between the time of intake and the amount of salt ingested are not clear. The hypothesis of the present study was that limiting food intake to the typically inactive period in addition to high-salt (HS) feeding will disrupt the diurnal rhythm of renal Na+ excretion. Male Sprague-Dawley rats were placed on either normal-salt (NS; 0.49% NaCl) or HS (4% NaCl) diets. Rats were housed in metabolic cages and allowed food ad libitum and then subjected to inactive period time-restricted feeding (iTRF) for 5 days. As expected, rats fed NS and allowed food ad libitum had a diurnal pattern of Na+ excretion. The diurnal pattern of Na+ excretion was not significantly different after 5 days of iTRF compared with ad libitum rats. In response to HS, the diurnal pattern of Na+ excretion was similar to NS-fed rats. However, this pattern was attenuated after 5 days of HS iTRF. The diurnal excretion pattern of urinary aldosterone was abolished in both NS iTRF and HS iTRF rats. These data support the hypothesis that HS intake combined with iTRF impairs circadian mechanisms associated with renal Na+ excretion.NEW & NOTEWORTHY Timing of food intake normally has little effect on the diurnal pattern of Na+ and water excretion. However, rats on a high-salt diet were unable to maintain this pattern, yet K+ excretion was more readily adjusted to match timing of intake. These data support the hypothesis that Na+ and water homeostasis are impacted by timing of high-salt diets.
Collapse
Affiliation(s)
- Megan K Rhoads
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kaehler J Roth
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dingguo Zhang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L Gamble
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
14
|
Mumtaz S, Ali S, Tahir HM, Kazmi SAR, Shakir HA, Mughal TA, Mumtaz S, Summer M, Farooq MA. Aging and its treatment with vitamin C: a comprehensive mechanistic review. Mol Biol Rep 2021; 48:8141-8153. [PMID: 34655018 DOI: 10.1007/s11033-021-06781-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023]
Abstract
Aging and age-related disorders have become one of the prominent issue of world. Oxidative stress due to overproduction of reactive oxygen species is the most significant cause of aging. The aim of literature compilation was to elucidate the therapeutic effect of vitamin C against oxidative stress. Various mediators with anti-inflammatory and anti-oxidant properties might be probable competitors of vitamin C for the improvement of innovative anti-aging treatments. More attention has been paid to vitamin C due to its anti-oxidant property and potentially beneficial biological activities for inhibiting aging.Vitamin C acts as an antioxidant agent and free radical scavenger that can protect the cell from oxidative stress, disorganization of chromatin, telomere attrition, and prolong the lifetime. This review emphasizes mechanism of aging and various biomarkers that are directly related to aging and also focuses on the therapeutic aspect of vitamin C against oxidative stress and age-related disorders.
Collapse
Affiliation(s)
- Shumaila Mumtaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Hafiz Muhammad Tahir
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | | | | | - Tafail Akbar Mughal
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Samaira Mumtaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
15
|
Abstract
Circadian clocks are biological timing mechanisms that generate 24-h rhythms of physiology and behavior, exemplified by cycles of sleep/wake, hormone release, and metabolism. The adaptive value of clocks is evident when internal body clocks and daily environmental cycles are mismatched, such as in the case of shift work and jet lag or even mistimed eating, all of which are associated with physiological disruption and disease. Studies with animal and human models have also unraveled an important role of functional circadian clocks in modulating cellular and organismal responses to physiological cues (ex., food intake, exercise), pathological insults (e.g. virus and parasite infections), and medical interventions (e.g. medication). With growing knowledge of the molecular and cellular mechanisms underlying circadian physiology and pathophysiology, it is becoming possible to target circadian rhythms for disease prevention and treatment. In this review, we discuss recent advances in circadian research and the potential for therapeutic applications that take patient circadian rhythms into account in treating disease.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - Jeffrey M. Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Zhang J, Sun R, Jiang T, Yang G, Chen L. Circadian Blood Pressure Rhythm in Cardiovascular and Renal Health and Disease. Biomolecules 2021; 11:biom11060868. [PMID: 34207942 PMCID: PMC8230716 DOI: 10.3390/biom11060868] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Blood pressure (BP) follows a circadian rhythm, it increases on waking in the morning and decreases during sleeping at night. Disruption of the circadian BP rhythm has been reported to be associated with worsened cardiovascular and renal outcomes, however the underlying molecular mechanisms are still not clear. In this review, we briefly summarized the current understanding of the circadian BP regulation and provided therapeutic overview of the relationship between circadian BP rhythm and cardiovascular and renal health and disease.
Collapse
Affiliation(s)
- Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Ruoyu Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Tingting Jiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
- Correspondence: ; Tel.: +86-411-86118984
| |
Collapse
|
17
|
Douma LG, Barral D, Gumz ML. Interplay of the Circadian Clock and Endothelin System. Physiology (Bethesda) 2021; 36:35-43. [PMID: 33325818 DOI: 10.1152/physiol.00021.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The peptide hormone endothelin-1 and its receptors are linked to several disease states. Pharmacological inhibition of this pathway has proven beneficial in pulmonary hypertension, yet its potential in other disease states remains to be realized. This review considers an often understudied aspect of endothelin biology, circadian rhythm regulation and how understanding the intersection between endothelin signaling and the circadian clock may be leveraged to realize the potential of endothelin-based therapeutics.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Dominique Barral
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Ivy JR, Bailey MA. Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling? Physiology (Bethesda) 2021; 36:21-34. [PMID: 33325814 DOI: 10.1152/physiol.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Crislip GR, Douma LG, Masten SH, Cheng KY, Lynch IJ, Johnston JG, Barral D, Glasford KB, Holzworth MR, Verlander JW, Wingo CS, Gumz ML. Differences in renal BMAL1 contribution to Na + homeostasis and blood pressure control in male and female mice. Am J Physiol Renal Physiol 2020; 318:F1463-F1477. [PMID: 32338037 PMCID: PMC7311713 DOI: 10.1152/ajprenal.00014.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Sarah H Masten
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - I Jeanette Lynch
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
- North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jermaine G Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Dominique Barral
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Krystal B Glasford
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Meaghan R Holzworth
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Charles S Wingo
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
- North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
20
|
Carriazo S, Ramos AM, Sanz AB, Sanchez-Niño MD, Kanbay M, Ortiz A. Chronodisruption: A Poorly Recognized Feature of CKD. Toxins (Basel) 2020; 12:E151. [PMID: 32121234 PMCID: PMC7150823 DOI: 10.3390/toxins12030151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple physiological variables change over time in a predictable and repetitive manner, guided by molecular clocks that respond to external and internal clues and are coordinated by a central clock. The kidney is the site of one of the most active peripheral clocks. Biological rhythms, of which the best known are circadian rhythms, are required for normal physiology of the kidneys and other organs. Chronodisruption refers to the chronic disruption of circadian rhythms leading to disease. While there is evidence that circadian rhythms may be altered in kidney disease and that altered circadian rhythms may accelerate chronic kidney disease (CKD) progression, there is no comprehensive review on chronodisruption and chronodisruptors in CKD and its manifestations. Indeed, the term chronodisruption has been rarely applied to CKD despite chronodisruptors being potential therapeutic targets in CKD patients. We now discuss evidence for chronodisruption in CKD and the impact of chronodisruption on CKD manifestations, identify potential chronodisruptors, some of them uremic toxins, and their therapeutic implications, and discuss current unanswered questions on this topic.
Collapse
Affiliation(s)
- Sol Carriazo
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Adrián M Ramos
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Ana B Sanz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey;
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| |
Collapse
|