1
|
Yeon J, Chen L, Krishnan N, Bates S, Porwal C, Sengupta P. An enteric neuron-expressed variant ionotropic receptor detects ingested salts to regulate salt stress resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.11.648259. [PMID: 40391324 PMCID: PMC12087990 DOI: 10.1101/2025.04.11.648259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The detection of internal chemicals by interoceptive chemosensory pathways is critical for regulating metabolism and physiology. The molecular identities of interoceptors, and the functional consequences of chemosensation by specific interoceptive neurons remain to be fully described. The C. elegans pharyngeal neuronal network is anatomically and functionally homologous to the mammalian enteric nervous system. Here, we show that the I3 pharyngeal enteric neuron responds to cations via an I3-specific variant ionotropic receptor (IR) to regulate salt stress tolerance. The GLR-9 IR, located at the gut lumen-exposed sensory end of I3, is necessary and sufficient for salt sensation, establishing a chemosensory function for IRs beyond insects. Salt detection by I3 protects specifically against high salt stress, as glr-9 mutants show reduced tolerance of hypertonic salt but not sugar solutions, with or without prior acclimation. While cholinergic signaling from I3 promotes tolerance to acute high salt stress, peptidergic signaling from I3 during acclimation is essential for resistance to a subsequent high salt challenge. Transcriptomic analyses show that I3 regulates salt tolerance in part via regulating the expression of osmotic stress response genes in distal tissues. Our results describe the mechanisms by which chemosensation mediated by a defined enteric neuron regulates physiological homeostasis in response to a specific abiotic stress.
Collapse
|
2
|
Shao Q, Wang H, Li S, Zeng M, Zhang S, Yan X. IRF5 Mediates Artery Inflammation in Salt-Sensitive Hypertension by Regulating STAT1 and STAT2 Phosphorylation to Increase ESM1 Transcription: Insights from Bioinformatics and Mechanistic Analysis. Int J Mol Sci 2025; 26:3722. [PMID: 40332339 PMCID: PMC12027925 DOI: 10.3390/ijms26083722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Salt-sensitive hypertension (SSH) is closely associated with arterial inflammation, yet its molecular mechanisms remain unclear. In this study, we utilized deoxycorticosterone acetate (DOCA)-salt-induced hypertensive mice, which exhibited elevated blood pressure and significant arterial inflammation. Single-cell RNA sequencing (scRNA-seq) identified interferon regulatory factor 5 (IRF5) and its downstream targets, signal transducer and activator of transcription (STAT), as key regulators of these inflammatory changes. In vivo, IRF5 levels were significantly elevated in the DOCA group, while STAT1 and STAT2 protein levels were comparable to those in the normal salt group. However, nuclear levels of phosphorylated STAT1 (pSTAT1) and phosphorylated STAT2 (pSTAT2) were markedly higher in the DOCA group. Furthermore, scRNA-seq analysis showed increased IRF5 expression in endothelial cells (ECs) in both human and mouse aorta samples. In vitro, IRF5 knockdown in artery ECs led to a reduction in nuclear pSTAT1 and pSTAT2 expression. These results suggest that IRF5 promotes STAT1 and STAT2 phosphorylation, enabling their nuclear translocation. Additionally, RNA sequencing indicated a positive correlation between endothelial cell-specific molecule 1 (ESM1) and STAT1/STAT2. Using the UCSC and JASPAR databases, we identified multiple binding sites for the STAT1::STAT2 dimer on the ESM1 promoter. Luciferase reporter assays revealed enhanced ESM1 transcription following pSTAT1::pSTAT2 binding, and pinpoint potential binding sites. Chromatin Immunoprecipitation Quantitative PCR (ChIP-qPCR) further confirmed the specific binding sites between the pSTAT1::pSTAT2 dimer and the ESM1 promoter. These findings highlight the critical role of the IRF5-pSTAT1::pSTAT2-ESM1 pathway in the pathogenesis of SSH and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyu Shao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.S.); (H.W.); (S.L.); (M.Z.)
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.S.); (H.W.); (S.L.); (M.Z.)
| | - Shicheng Li
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.S.); (H.W.); (S.L.); (M.Z.)
| | - Mengying Zeng
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.S.); (H.W.); (S.L.); (M.Z.)
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.S.); (H.W.); (S.L.); (M.Z.)
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.S.); (H.W.); (S.L.); (M.Z.)
| |
Collapse
|
3
|
Molina PA, Edell CJ, Dunaway LS, Kellum CE, Muir RQ, Jennings MS, Colson JC, De Miguel C, Rhoads MK, Buzzelli AA, Harrington LE, Meza-Perez S, Randall TD, Botta D, Müller DN, Pollock DM, Maynard CL, Pollock JS. Aryl Hydrocarbon Receptor Activation Promotes Effector CD4+ T Cell Homeostasis and Restrains Salt-Sensitive Hypertension. FUNCTION 2025; 6:zqaf001. [PMID: 39779302 PMCID: PMC11931625 DOI: 10.1093/function/zqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Excess dietary salt and salt-sensitivity contribute to cardiovascular disease. Distinct T cell phenotypic responses to high salt and hypertension, as well as influences from environmental cues, are not well understood. The aryl hydrocarbon receptor (AhR) is activated by dietary ligands, promoting T cell and systemic homeostasis. We hypothesized that activating AhR supports CD4+ homeostatic functions, such as cytokine production and mobilization, in response to high salt intake while mitigating salt-sensitive hypertension. In the intestinal mucosa, we demonstrate that a high-salt diet (HSD) is a key driving factor, independent of hypertension, in diminishing interleukin 17A (IL-17A) production by CD4+ T (Th17) cells without disrupting circulating cytokines associated with Th17 function. Previous studies suggest that hypertensive patients and individuals on a HSD are deficient in AhR ligands or agonistic metabolites. We found that activating AhR augments Th17 cells during experimental salt-sensitive hypertension. Further, we demonstrate that activating AhR in vitro contributes to sustaining Th17 cells in the setting of excess salt. Using photoconvertible Kikume Green-Red mice, we also revealed that HSD drives CD4+ T cell mobilization. Next, we found that excess salt augments T cell mobilization markers, validating HSD-driven T cell migration. Also, we found that activating AhR mitigates HSD-induced T cell migration markers. Using telemetry in a model of experimental salt-sensitivity, we found that activating AhR prevents the development of salt-sensitive hypertension. Collectively, stimulating AhR through dietary ligands facilitates immunologic and systemic functions amid excess salt intake and restrains the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patrick A Molina
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Claudia J Edell
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Luke S Dunaway
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jackson C Colson
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Megan K Rhoads
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Ashlyn A Buzzelli
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Laurie E Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Lindenberger Weg 80, Berlin 13092, Germany
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
4
|
Napiórkowska-Baran K, Treichel P, Dardzińska A, Majcherczak A, Pilichowicz A, Szota M, Szymczak B, Alska E, Przybyszewska J, Bartuzi Z. Immunomodulatory Effects of Selected Non-Nutritive Bioactive Compounds and Their Role in Optimal Nutrition. Curr Issues Mol Biol 2025; 47:89. [PMID: 39996810 PMCID: PMC11854453 DOI: 10.3390/cimb47020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The contemporary approach to nutrition increasingly considers the role of non-nutritive bioactive compounds in modulating the immune system and maintaining health. This article provides up-to-date insight into the immunomodulatory effects of selected bioactive compounds, including micro- and macronutrients, vitamins, as well as other health-promoting substances, such as omega-3 fatty acids, probiotics, prebiotics, postbiotics (including butyric acid and sodium butyrate), coenzyme Q10, lipoic acid, and plant-derived components such as phenolic acids, flavonoids, coumarins, alkaloids, polyacetylenes, saponins, carotenoids, and terpenoids. Micro- and macronutrients, such as zinc, selenium, magnesium, and iron, play a pivotal role in regulating the immune response and protecting against oxidative stress. Vitamins, especially vitamins C, D, E, and B, are vital for the optimal functioning of the immune system as they facilitate the production of cytokines, the differentiation of immunological cells, and the neutralization of free radicals, among other functions. Omega-3 fatty acids exhibit strong anti-inflammatory effects and enhance immune cell function. Probiotics, prebiotics, and postbiotics modulate the intestinal microbiota, thereby promoting the integrity of the intestinal barrier and communication between the microbiota and the immune system. Coenzyme Q10, renowned for its antioxidant attributes, participates in the protection of cells from oxidative stress and promotes energy processes essential for immune function. Sodium butyrate and lipoic acid exhibit anti-inflammatory effects and facilitate the regeneration of the intestinal epithelium, which is crucial for the maintenance of immune homeostasis. This article emphasizes the necessity of an integrative approach to optimal nutrition that considers not only nutritional but also non-nutritional bioactive compounds to provide adequate support for immune function. Without them, the immune system will never function properly, because it has been adapted to this in the course of evolution. The data presented in this article may serve as a foundation for further research into the potential applications of bioactive components in the prevention and treatment of diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anita Dardzińska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Agata Majcherczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anastazja Pilichowicz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Maciej Szota
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Ewa Alska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Justyna Przybyszewska
- Department of Nutrition and Dietetics, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| |
Collapse
|
5
|
Demirci M, Afolabi JM, Kirabo A. Aging and sex differences in salt sensitivity of blood pressure. Clin Sci (Lond) 2025; 139:CS20240788. [PMID: 39873323 DOI: 10.1042/cs20240788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Salt sensitivity of blood pressure (SSBP) is a complex physiological trait characterized by changes in blood pressure in response to dietary salt intake. Aging introduces an additional layer of complexity to the pathophysiology of SSBP, with mitochondrial dysfunction, epigenetic modifications, and alterations in gut microbiota emerging as critical factors. Despite advancements in understanding these mechanisms, the processes driving increased salt sensitivity with age and their differential impacts across sexes remain unclear. This review explores the current understanding of salt sensitivity, delving into its underlying mechanisms, the role of inflammation, and the influence of aging and sex differences on these processes. We also aim to provide insights into the multifaceted nature of salt sensitivity and its implications for personalized treatment strategies in hypertension management.
Collapse
Affiliation(s)
- Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | - Jeremiah M Afolabi
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, U.S.A
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Mutchler AL, Haynes AP, Saleem M, Jamison S, Khan MM, Ertuglu L, Kirabo A. Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension. Circ Res 2025; 136:232-254. [PMID: 39819017 PMCID: PMC11750173 DOI: 10.1161/circresaha.124.325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohd Mabood Khan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
7
|
Dousdampanis P, Aggeletopoulou I, Mouzaki A. The role of M1/M2 macrophage polarization in the pathogenesis of obesity-related kidney disease and related pathologies. Front Immunol 2025; 15:1534823. [PMID: 39867890 PMCID: PMC11758166 DOI: 10.3389/fimmu.2024.1534823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function. Among the immune cells of the innate and adaptive immune response involved in the pathogenesis of obesity-related diseases, macrophages play a crucial role in the inflammation associated with CKD. In obese individuals, macrophages enter a pro-inflammatory state known as M1 polarization, which contributes to chronic inflammation. This polarization promotes tissue damage, inflammation and fibrosis, leading to progressive loss of kidney function. In addition, macrophage-induced oxidative stress is a key feature of CKD as it also promotes cell damage and inflammation. Macrophages also contribute to insulin resistance in type 2 diabetes by releasing inflammatory molecules that impair glucose metabolism, complicating the management of diabetes in obese patients. Hypertension and atherosclerosis, which are often associated with obesity, also contribute to the progression of CKD via immune and inflammatory pathways. Macrophages influence blood pressure regulation and contribute to vascular inflammation, particularly via the renin-angiotensin system. In atherosclerosis, macrophages accumulate in arterial plaques, leading to chronic inflammation and plaque instability, which may increase the risk of CVD in CKD patients. This review focuses on the involvement of macrophages in CKD and highlights their role as a critical link between CKD and other pathologies. Targeting macrophage polarization and the ensuing macrophage-induced inflammation could be an effective therapeutic strategy for CKD and related diseases and improve outcomes for patients with obesity-related kidney disease.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
8
|
Ramirez-Becerra C, Oeser AM, Pridmore M, Crescenzi R, Titze JM, Stein CM, Ormseth MJ. Tissue sodium in patients with rheumatoid arthritis: a novel potential driver of hypertension in autoimmunity. Sci Rep 2024; 14:32105. [PMID: 39738798 PMCID: PMC11685933 DOI: 10.1038/s41598-024-83873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Patients with rheumatoid arthritis (RA) have increased hypertension. Tissue sodium may contribute to development and progression of hypertension through immune cell activation. This study aimed to determine if skin sodium content is: 1) higher in RA versus control participants, and 2) associated with blood pressure and disease activity. This cross-sectional study included 32 patients with RA and 33 control participants. Lower leg skin sodium content was measured using magnetic resonance imaging. Ambulatory 24-h blood pressure measurements were obtained, and disease activity was assessed by Disease Activity Score-28 for RA with CRP (DAS28-CRP). Skin sodium content was higher in RA versus control participants (14.22 [12.82, 18.04] vs 12.41 [10.67, 14.55] mmol/L), p = 0.005. Every 1 mmol/l increase in skin sodium was associated with a 1.05 mmHg (95% CI 0.29, 1.82 mmHg, p = 0.009) increase in average 24-h systolic blood pressure in patients with RA, but this relationship was not present in control participants. Skin sodium was not associated with DAS28-CRP or its components. Skin sodium is increased in RA versus control participants and is correlated with 24-h and diurnal systolic blood pressure in patients with RA but not in control participants. Skin sodium content may help explain increased hypertension in patients with RA.
Collapse
Affiliation(s)
| | - Annette M Oeser
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Pridmore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle Crescenzi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jens M Titze
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle J Ormseth
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
9
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Yakoub M, Rahman M, Kleimann P, Hoffe J, Feige M, Bouvain P, Alter C, Kluczny JI, Reidel S, Nederlof R, Hering L, Argov D, Arifaj D, Kantauskaite M, Meister J, Kleinewietfeld M, Rump LC, Jantsch J, Flögel U, Müller DN, Temme S, Stegbauer J. Transient High Salt Intake Promotes T-Cell-Mediated Hypertensive Vascular Injury. Hypertension 2024; 81:2415-2429. [PMID: 39411864 DOI: 10.1161/hypertensionaha.124.23115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Dietary high salt (HS) intake has a strong impact on cardiovascular diseases. Here, we investigated the link between HS-aggravated immune responses and the development of hypertensive vascular disease. METHODS ApolipoproteinE-deficient mice were transiently treated with HS (1% NaCl) via drinking water for 2 weeks, followed by a washout period, and subsequent Ang II (angiotensin II) infusion (1000 ng/kg per min for 10 days) to induce abdominal aortic aneurysms/dissections and inflammation. RESULTS While transient HS intake alone triggered nonpathologic infiltration of activated T cells into the aorta, subsequent Ang II infusion increased mortality and the incidence of abdominal aortic aneurysms/dissections and atherosclerosis compared with hypertensive control mice. There were no differences in blood pressure between both groups. In transient HS-treated hypertensive mice, the aortic injury was associated with increased inflammation, accumulation of neutrophils, monocytes, CD69+CD4+ T cells, as well as CD4+ and CD8+ memory T cells. Mechanistically, transient HS intake increased expression levels of aortic RORγt as well as splenic CD4+TH17 and CD8+TC1 T cells in Ang II-treated mice. Isolated aortas of untreated mice were incubated with supernatants of TH17, TH1, or TC1 cells polarized in vitro under HS or normal conditions which revealed that secreted factors of HS-differentiated TH17 and TC1 cells, but not TH1 cells accelerated endothelial dysfunction. CONCLUSIONS Our data suggest that transient HS intake induces a subclinical T-cell-mediated aortic immune response, which is enhanced by Ang II. We propose a 2-hit model, in which HS acts as a predisposing factor to enhance hypertension-induced TH17 and TC1 polarization and aortic disease.
Collapse
Affiliation(s)
- Mina Yakoub
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Masudur Rahman
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology (P.K., P.B., U.F., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
- Department of Molecular Cardiology (P.K., P.B., C.A.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Jasmina Hoffe
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Milena Feige
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology (P.K., P.B., U.F., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
- Department of Molecular Cardiology (P.K., P.B., C.A.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology (P.K., P.B., C.A.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Isabel Kluczny
- Department of Anaesthesiology, Faculty of Medicine, University Hospital (J.-I.K., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Sophia Reidel
- Institut für Herz-Kreislauf-Physiologie (S.R., R.N.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Rianne Nederlof
- Institut für Herz-Kreislauf-Physiologie (S.R., R.N.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Lydia Hering
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Doron Argov
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Denada Arifaj
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Marta Kantauskaite
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Jaroslawna Meister
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Researc at Heinrich Heine University, Düsseldorf, Germany (J.M.)
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany (J.M.)
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC) (M. Kleinewietfeld), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute (M. Kleinewietfeld), Hasselt University, Diepenbeek, Belgium
- University Multiple Sclerosis Center (UMSC) (M. Kleinewietfeld), Hasselt University, Diepenbeek, Belgium
| | - Lars Christian Rump
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf (L.C.R., U.F., S.T., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany (J.J.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology (P.K., P.B., U.F., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf (L.C.R., U.F., S.T., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Dominik N Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.)
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany (D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (D.N.M.)
- DZHK (German Centre for Cardiovascular Research), Germany (D.N.M.)
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology (P.K., P.B., U.F., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf (L.C.R., U.F., S.T., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
- Department of Anaesthesiology, Faculty of Medicine, University Hospital (J.-I.K., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf (L.C.R., U.F., S.T., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
11
|
Luong PQ, Lee GB, Kim JI. Inhibition of HDAC6 mitigates high-fat diet-induced kidney inflammation and hypertension via reduced infiltration of macrophages. Biochem Biophys Res Commun 2024; 735:150800. [PMID: 39406024 DOI: 10.1016/j.bbrc.2024.150800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Obesity-mediated hypertension is a worldwide problem. Recent research has indicated that chronic inflammation is associated with the pathogenesis of obese hypertension. Activated immune cells infiltrate target organs, such as arteries, kidneys, and brain, causing end-organ damage and hypertension. Histone deacetylase 6 (HDAC6) regulates the inflammatory cell activity mediating the production of inflammatory cytokines and may play a role in the crosstalk between inflammation and hypertension. In this study, we investigated the roles of HDAC6 in high-fat diet (HFD)-induced kidney inflammation and hypertension. Nine-week-old male C57BL/6 mice were fed either a normal diet (ND) or HFD for 15 weeks. HFD-induced hypertension with increased HDAC6 activities in the kidney and bone marrow-derived macrophages (BMDM). When HFD group reached the hypertensive phase, each group of mice was intraperitoneally injected with vehicle or selective HDAC6 inhibitor Tubacin (1 mg/kg/day) for 14 days. Tubacin treatment lowered blood pressure (BP) of HFD-fed mice to the normal level with successful inhibition of HDAC6 activity. Immunohistochemical staining of F4/80, which is known as a macrophage marker, revealed that HFD promoted macrophage infiltration into the kidney. Consequently, pro-inflammatory factors TNFα and IL-6 gene expressions in the kidney were increased by HFD. Tubacin canceled HFD-induced macrophage infiltration and inflammation in the kidney. HDAC6 gene silencing and Tubacin treatment in Raw 264.7 cells also blocked the chemoattractant-stimulated cell migration in vitro. The results reveal the novel role of HDAC6 in BMDM migration, kidney inflammation, and high BP induced by HFD providing HDAC6 inhibitors as a therapeutic option for obesity-mediated hypertension.
Collapse
Affiliation(s)
- Phuong Quynh Luong
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Gwan Beom Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea.
| |
Collapse
|
12
|
Xu B, Dissanayake LV, Levchenko V, Zietara A, Kravtsova O, Staruschenko A. Deletion of Kcnj16 altered transcriptomic and metabolomic profiles of Dahl salt-sensitive rats. iScience 2024; 27:110901. [PMID: 39328933 PMCID: PMC11424968 DOI: 10.1016/j.isci.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/06/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The inwardly rectifying K+ channel Kir5.1 (Kcnj16) is essential in renal salt handling and blood pressure control. However, the underlying mechanisms are not fully understood. Here, we integrated transcriptomics and metabolomics to comprehensively profile the changes in genes and metabolites in the Dahl salt-sensitive (SS) rat lacking Kcnj16 to identify potential mechanisms. Consistent with the phenotype of knockout (KO) rats, the transcriptomic profile predicted reduced blood pressure, kidney damage, and increased ion transport. Canonical pathway analysis suggested activation of metabolic-related pathways while suppression of immune response-related pathways in KO rats. Untargeted metabolomic analysis revealed different metabolic profiles between wild-type (WT) and KO rats. Integration of transcriptomic and metabolomic profiles suggested altered tricarboxylic acid (TCA) cycle, amino acid metabolism, and reactive oxygen species (ROS) metabolism that are related to SS hypertension. In conclusion, besides increased ion transport, our data suggest suppressed immune response-related and altered metabolic-related pathways of SS rats lacking Kir5.1.
Collapse
Affiliation(s)
- Biyang Xu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lashodya V. Dissanayake
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Adrian Zietara
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Olha Kravtsova
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA
- James A. Haley Veteran’s Hospital, Tampa, FL, USA
| |
Collapse
|
13
|
Ye Q, Ren M, Fan D, Mao Y, Zhu YZ. Identification and Validation of the miR/RAS/RUNX2 Autophagy Regulatory Network in AngII-Induced Hypertensive Nephropathy in MPC5 Cells Treated with Hydrogen Sulfide Donors. Antioxidants (Basel) 2024; 13:958. [PMID: 39199205 PMCID: PMC11351630 DOI: 10.3390/antiox13080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
The balanced crosstalk between miRNAs and autophagy is essential in hypertensive nephropathy. Hydrogen sulfide donors have been reported to attenuate renal injury, but the mechanism is unclear. We aimed to identify and verify the miRNAs and autophagy regulatory networks in hypertensive nephropathy treated with hydrogen sulfide donors through bioinformatics analysis and experimental verification. From the miRNA dataset, autophagy was considerably enriched in mice kidney after angiotensin II (AngII) and combined hydrogen sulfide treatment (H2S_AngII), among which there were 109 differentially expressed miRNAs (DEMs) and 21 hub ADEGs (autophagy-related differentially expressed genes) in the AngII group and 70 DEMs and 13 ADEGs in the H2S_AngII group. A miRNA-mRNA-transcription factors (TFs) autophagy regulatory network was then constructed and verified in human hypertensive nephropathy samples and podocyte models. In the network, two DEMs (miR-98-5p, miR-669b-5p), some hub ADEGs (KRAS, NRAS), and one TF (RUNX2) were altered, accompanied by a reduction in autophagy flux. However, significant recovery occurred after treatment with endogenous or exogenous H2S donors, as well as an overexpression of miR-98-5p and miR-669b-5p. The miR/RAS/RUNX2 autophagy network driven by H2S donors was related to hypertensive nephropathy. H2S donors or miRNAs increased autophagic flux and reduced renal cell injury, which could be a potentially effective medical therapy.
Collapse
Affiliation(s)
- Qing Ye
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Ren
- The Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Di Fan
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai 201203, China
- State Key Laboratory of Quality Research in Chinese Medicines, (R & D Center) Lab. for Drug Discovery from Natural Resource, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
14
|
Ma X, Zhuo Y, Zhang Z, Yang Y, He P, Zeng Y, Huang Y, Wen X. Association of T-cell receptor repertoires and arterial stiffness in patients with essential hypertension. J Hypertens 2024; 42:1440-1448. [PMID: 38934191 DOI: 10.1097/hjh.0000000000003757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND Abnormal immune responses, particularly T-cell activity, are linked to vascular complications in hypertension, but mechanisms remain unknown. Our study aims to explore the association between arterial stiffness, assessed by brachial-ankle pulse wave velocity (baPWV), and T-cell receptor (TCR) repertoires in essential hypertension patients, focusing on understanding the role of T cells in the development of arterial stiffness in this population. METHODS The study included 301 essential hypertension patients and 48 age-matched normotensive controls. Essential hypertension patients were stratified into high (baPWV ≥1400 cm/s, n = 213) and low (baPWV <1400 cm/s, n = 88) baPWV groups. High-throughput sequencing analyzed peripheral TCRβ repertoires. RESULTS Significant TCRβ repertoire differences were observed between essential hypertension and normotensive groups, as well as between high and low baPWV essential hypertension subgroups. Specifically, patients in the high baPWV group exhibited notable variations in the utilization of specific TCR beta joining (TRBJ) and variable (TRBV) genes compared to the low baPWV group. These alterations were accompanied by reduced TCRβ diversity (represented by diversity 50 s), increased percentages of the largest TCRβ clones, and a higher number of TCRβ clones exceeding 0.1%. The presence of specific TCRβ clones was detected in both groups. Furthermore, reduced diversity 50s and elevated percentages of the largest TCRβ clones were independently correlated with baPWV, emerging as potential risk factors for increased baPWV in essential hypertension patients. CONCLUSION TCR repertoires were independently associated with arterial stiffness in patients with essential hypertension, implicating a potential role for dysregulated T-cell responses in the pathogenesis of arterial stiffness in this patient population.Trial registration: ChiCTR2100054414.
Collapse
Affiliation(s)
- Xiaoxiang Ma
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Yue Zhuo
- Department of Laboratory Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China
| | | | - Yanhua Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Pengming He
- Chengdu ExAb Biotechnology LTD, Chengdu, China
| | - Yi Zeng
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Yan Huang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Xueping Wen
- Chengdu ExAb Biotechnology LTD, Chengdu, China
| |
Collapse
|
15
|
Masenga SK, Liweleya S, Kirabo A. High salt intake and HIV infection on endothelial glycocalyx shedding in salt-sensitive hypertension. Front Cell Dev Biol 2024; 12:1395885. [PMID: 39081863 PMCID: PMC11286502 DOI: 10.3389/fcell.2024.1395885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is closely associated with various physiological and pathophysiological events. Significant modification of the endothelial glycocalyx is an early process in the pathogenesis of cardiovascular disease. High dietary salt and HIV infection damages the endothelial glycocalyx causing endothelial dysfunction and increasing the risk for salt-sensitive hypertension and cardiovascular disease. The two factors, HIV infection and dietary salt are critical independent predictors of hypertension and cardiovascular disease and often synergize to exacerbate and accelerate disease pathogenesis. Salt-sensitive hypertension is more common among people living with HIV and is associated with risk for cardiovascular disease, stroke, heart attack and even death. However, the underlying mechanisms linking endothelial glycocalyx damage to dietary salt and HIV infection are lacking. Yet, both HIV infection/treatment and dietary salt are closely linked to endothelial glycocalyx damage and development of salt-sensitive hypertension. Moreover, the majority of individuals globally, consume more salt than is recommended and the burden of HIV especially in sub-Sahara Africa is disproportionately high. In this review, we have discussed the missing link between high salt and endothelial glycocalyx shedding in the pathogenesis of salt-sensitive hypertension. We have further elaborated the role played by HIV infection and treatment in modifying endothelial glycocalyx integrity to contribute to the development of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Situmbeko Liweleya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Nashville, TN, United States
| |
Collapse
|
16
|
Lee H, Amatya B, Villar VAM, Asico LD, Jeong JK, Feranil J, Moore SC, Zheng X, Bishop M, Gomes JP, Polzin J, Smeriglio N, de Castro PASV, Armando I, Felder RA, Hao L, Jose PA. Renal autocrine neuropeptide FF (NPFF) signaling regulates blood pressure. Sci Rep 2024; 14:15407. [PMID: 38965251 PMCID: PMC11224344 DOI: 10.1038/s41598-024-64484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.
Collapse
Affiliation(s)
- Hewang Lee
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Bibhas Amatya
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Laureano D Asico
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Jun Feranil
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shaun C Moore
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Michael Bishop
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Jerald P Gomes
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacob Polzin
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Noah Smeriglio
- Department of Chemistry, Columbian College of Arts and Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Pedro A S Vaz de Castro
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
| | - Ines Armando
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robin A Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA, 22908.5, USA
| | - Ling Hao
- Department of Chemistry, Columbian College of Arts and Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye Street, NW, Washington, DC, 20052, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| |
Collapse
|
17
|
Chen Q, Zhou H, Tang J, Sun Y, Ao G, Zhao H, Chang X. An analysis of exogenous harmful substance exposure as risk factors for COPD and hypertension co-morbidity using PSM. Front Public Health 2024; 12:1414768. [PMID: 38983261 PMCID: PMC11231093 DOI: 10.3389/fpubh.2024.1414768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
Background Some occupational and environmental exposures could increase the risk of chronic obstructive pulmonary disease (COPD) and hypertension in various work and living environments. However, the effect of exposure to multiple exogenous harmful substances on COPD and hypertension co-morbidities remains unclear. Methods Participants were selected from eight hospitals in five provinces in China using a multistage cluster sampling procedure. Participants' demographic, exposure, and disease information were collected through questionnaires, spirometry, and blood pressure examinations. Demographic data were used as matching factors, and 1:1 matching between the exposed and non-exposed groups was performed by employing propensity score matching (PSM) to minimize the influence on the results. A one-way chi-squared analysis and multifactorial logistic regression were used to analyze the association between the exposure to exogenous harmful substances (metals and their compound dust, inorganic mineral dust, organic chemicals, and livestock by-products) and the co-morbidity of COPD and hypertension. Results There were 6,610 eligible participants in the final analysis, of whom 2,045 (30.9%) were exposed to exogenous harmful substances. The prevalence of co-morbidities of COPD and hypertension (6.0%) in the exposure group was higher than their prevalence in the total population (4.6%). After PSM, exogenous harmful substance exposure was found to be a risk factor for the co-morbidity of COPD and hypertension [odds ratio (OR) = 1.347, 95% confidence interval (CI): 1.011-1.794], which was not statistically significant before PSM (OR = 1.094, 95% CI: 0.852-1.405). Meanwhile, the results of different outcomes showed that the association between hypertension and exogenous harmful substance exposure was not statistically significant (OR = 0.965, 95% CI: 0.846-1.101). Smoking (OR = 4.702, 95% CI: 3.321-6.656), history of a respiratory disease during childhood (OR = 2.830, 95% CI: 1.600-5.006), and history of respiratory symptoms (OR = 1.897, 95% CI: 1.331-2.704) were also identified as risk factors for the co-morbidity of COPD and hypertension. Conclusion The distribution of exogenous harmful substance exposure varies in the population, and the prevalence of co-morbidities is generally higher in susceptible populations. Exposure to exogenous harmful substances was found to be a key risk factor after adjusting for demographic confounders.
Collapse
Affiliation(s)
- Qingyang Chen
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haodong Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jiarong Tang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Geriletu Ao
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Hongjun Zhao
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Sood S, Methven L, Cheng Q. Role of taste receptors in salty taste perception of minerals and amino acids and developments in salt reduction strategies: A review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38907620 DOI: 10.1080/10408398.2024.2365962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Salt (sodium chloride) plays a key role in maintaining the textural, microbiological, and sensorial aspects of the foods. However high dietary salt intake in the population has led to a series of health problems. Currently manufacturers are under pressure to reduce the sodium levels in foods without compromising the consumer experience. Because of the clean salty taste produced by sodium chloride, it has been challenging for the food industry to develop a suitable salt substitute. Studies have shown that different components within a food matrix can influence the perception of saltiness. This review aims to comprehend the potential synergistic effect of compounds such as minerals and amino acids on the perception of saltiness and covers the mechanism of perception where relevant to taste resulting from sodium ions and other metallic ions (such as K, Mg, Ca), as well as various amino acids and their derivatives. Finally, the review summarizes various salt reduction strategies explored by researchers, government organizations and food industry, including the potential use of plant-based extracts.
Collapse
Affiliation(s)
- Saumya Sood
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
19
|
Zhou X, Lin X, Yu J, Yang Y, Muzammel H, Amissi S, Schini-Kerth VB, Lei X, Jose PA, Yang J, Shi D. Effects of DASH diet with or without time-restricted eating in the management of stage 1 primary hypertension: a randomized controlled trial. Nutr J 2024; 23:65. [PMID: 38886740 PMCID: PMC11181626 DOI: 10.1186/s12937-024-00967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Time-restricted eating (TRE), a popular form of intermittent fasting, has shown benefits for improving metabolic diseases and cardiometabolic health. However, the effect of TRE in the regulation of blood pressure in primary hypertension remains unclear. METHODS A 6-week randomized controlled trial was conducted, in which a total of 74 stage 1 primary hypertensive patients without high-risk were randomly assigned to Dietary Approaches to Stop Hypertension (DASH) group (n = 37) or DASH + TRE group (n = 37). Participants in the DASH + TRE group were instructed to consume their food within an 8-h window. Scientific research platform in We Chat application was used to track participants. The primary outcome was blood pressure. The secondary outcomes included body composition, cardiometabolic risk factors, inflammation-related parameters, urinary Na+ excretion, other clinical variables and safety outcomes. RESULTS The reduction of systolic blood pressure and diastolic blood pressure were 5.595 ± 4.072 and 5.351 ± 5.643 mm Hg in the DASH group and 8.459 ± 4.260 and 9.459 ± 4.375 mm Hg in the DASH + TRE group. DASH + TRE group improved blood pressure diurnal rhythm. Subjects in DASH + TRE group had decreased extracellular water and increased urinary Na+ excretion. Furthermore, the decrease in blood pressure was associated with a reduction of extracellular water or increase in urinary Na+ excretion. In addition, safety outcomes such as nighttime hunger were also reported. CONCLUSION Our study demonstrated that 8-h TRE + DASH diet caused a greater decrease in blood pressure in stage 1 primary hypertensive patients than DASH diet. This study may provide novel insights into the benefits of lifestyle modification in the treatment of primary hypertension. TRIAL REGISTRATION https://www.chictr.org.cn/ (ChiCTR2300069393, registered on March 15, 2023).
Collapse
Affiliation(s)
- Xiaoxin Zhou
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Translational CardioVascular Medicine, Faculty of Pharmacy, UR 3074, University of Strasbourg, Strasbourg, France
| | - Xiaoqian Lin
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China
- Research Centre for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yi Yang
- Department of Logistics Management Division, Chongqing Medical University, Chongqing, China
| | - Hira Muzammel
- Translational CardioVascular Medicine, Faculty of Pharmacy, UR 3074, University of Strasbourg, Strasbourg, France
| | - Said Amissi
- Translational CardioVascular Medicine, Faculty of Pharmacy, UR 3074, University of Strasbourg, Strasbourg, France
| | - Valérie B Schini-Kerth
- Translational CardioVascular Medicine, Faculty of Pharmacy, UR 3074, University of Strasbourg, Strasbourg, France
| | - Xun Lei
- Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pedro A Jose
- Department of Medicine and Department of Physiology and Pharmacology, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China.
- Research Centre for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Cieślik M, Strobel SD, Bryniarski P, Twardowska H, Chmielowski A, Rudek M, Felkle D, Zięba K, Kaleta K, Jarczyński M, Nowak B, Bryniarski K, Nazimek K. Hypotensive drugs mitigate the high-sodium diet-induced pro-inflammatory activation of mouse macrophages in vivo. Biomed Pharmacother 2024; 175:116648. [PMID: 38677242 DOI: 10.1016/j.biopha.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Nowadays, there is an increasing emphasis on the need to alleviate the chronic inflammatory response to effectively treat hypertension. However, there are still gaps in our understanding on how to achieve this. Therefore, research on interaction of antihypertensive drugs with the immune system is extremely interesting, since their therapeutic effect could partly result from amelioration of hypertension-related inflammation, in which macrophages seem to play a pivotal role. Thus, current comprehensive studies have investigated the impact of repeatedly administered hypotensive drugs (captopril, olmesartan, propranolol, carvedilol, amlodipine, verapamil) on macrophage functions in the innate and adaptive immunity, as well as if drug-induced effects are affected by a high-sodium diet (HSD), one of the key environmental risk factors of hypertension. Although the assayed medications increased the generation of reactive oxygen and nitrogen intermediates by macrophages from standard fed donors, they reversed HSD-induced enhancing effects on macrophage oxidative burst and secretion of pro-inflammatory cytokines. On the other hand, some drugs increased macrophage phagocytic activity and the expression of surface markers involved in antigen presentation, which translated into enhanced macrophage ability to activate B cells for antibody production. Moreover, the assayed medications augmented macrophage function and the effector phase of contact hypersensitivity reaction, but suppressed the sensitization phase of cell-mediated hypersensitivity under HSD conditions. Our current findings contribute to the recognition of mechanisms, by which excessive sodium intake affects macrophage immune activity in hypertensive individuals, and provide evidence that the assayed medications mitigate most of the HSD-induced adverse effects, suggesting their additional protective therapeutic activity.
Collapse
Affiliation(s)
- Martyna Cieślik
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Spencer D Strobel
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Paweł Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Hanna Twardowska
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Adam Chmielowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Michał Rudek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Dominik Felkle
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Zięba
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Konrad Kaleta
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Mateusz Jarczyński
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland.
| |
Collapse
|
21
|
Zhang X, Li G, Wu W, Li B. Causal role of immune cells in hypertension: a bidirectional Mendelian randomization study. Front Cardiovasc Med 2024; 11:1375704. [PMID: 38859818 PMCID: PMC11163045 DOI: 10.3389/fcvm.2024.1375704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
Background Although Hypertension (HTN) is considered to be a cardiovascular disease caused by multiple factors, the cause of it is still unknown. In this study, we aim to find out whether circulating immune cell characteristics have an impact on susceptibility to HTN. Methods This study employed a comprehensive two-sample Mendelian randomization (MR) analysis to investigate the causal association between immune cell characteristics and HTN. Utilizing publicly accessible genetic data, we examined the causal relationship between HTN and the susceptibility to 731 immune cell signatures. To ensure the reliability and validity of the findings, a comprehensive sensitivity analysis was conducted to assess heterogeneity, confirm the robustness of the results and evaluate the presence of horizontal pleiotropy. Results After FDR correction, immune phenotype had an effect on HTN. In our study, one immunophenotype was identified as being positively associated with HTN risk significance: HLA DR on CD33- HLA DR+. In addition, we examined 8 immune phenotype with no statistically significant effect of HTN, but it is worth mentioning that they had an unadjusted low P-value phenotype. Conclusions Our MR study by genetic means demonstrated the close relationship between HTN and immune cells, thus providing guidance for future clinical prediction and subsequent treatment of HTN.
Collapse
Affiliation(s)
- Xinhe Zhang
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong First Medical University, Jinan, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guanying Li
- Jinan Foreign Language School International Center, Jinan, China
| | - Wei Wu
- Department of Cardiology, Hekou District People Hospital, Dongying, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Kim B, Hwang G, Yoon SE, Kuang MC, Wang JW, Kim YJ, Suh GSB. Postprandial sodium sensing by enteric neurons in Drosophila. Nat Metab 2024; 6:837-846. [PMID: 38570627 DOI: 10.1038/s42255-024-01020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Sodium is essential for all living organisms1. Animals including insects and mammals detect sodium primarily through peripheral taste cells2-7. It is not known, however, whether animals can detect this essential micronutrient independently of the taste system. Here, we report that Drosophila Ir76b mutants that were unable to detect sodium2 became capable of responding to sodium following a period of salt deprivation. From a screen for cells required for the deprivation-induced sodium preference, we identified a population of anterior enteric neurons, which we named internal sodium-sensing (INSO) neurons, that are essential for directing a behavioural preference for sodium. Enteric INSO neurons innervate the gut epithelia mainly through their dendritic processes and send their axonal projections along the oesophagus to the brain and to the crop duct. Through calcium imaging and CaLexA experiments, we found that INSO neurons respond immediately and specifically to sodium ions. Notably, the sodium-evoked responses were observed only after a period of sodium deprivation. Taken together, we have identified a taste-independent sodium sensor that is essential for the maintenance of sodium homeostasis.
Collapse
Affiliation(s)
- Byoungsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gayoung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Eun Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Korea Drosophila Resource Center (KDRC), Gwangju, Republic of Korea
| | - Meihua Christina Kuang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Korea Drosophila Resource Center (KDRC), Gwangju, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
23
|
Cao J, Zhang D, Li W, Yuan W, Luo G, Xie S. Azilsartan improves urinary albumin excretion in hypertension mice. Aging (Albany NY) 2024; 16:4138-4148. [PMID: 38462692 PMCID: PMC10968693 DOI: 10.18632/aging.205271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 03/12/2024]
Abstract
Hypertension is one of the most important risk factors for chronic kidney diseases, leading to hypertensive nephrosclerosis, including excessive albuminuria. Azilsartan, an angiotensin II type 1 receptor blocker, has been widely used for the treatment of hypertension. However, the effects of Azilsartan on urinary albumin excretion in hypertension haven't been reported before. In this study, we investigated whether Azilsartan possesses a beneficial property against albuminuria in mice treated with angiotensin II and a high-salt diet (ANG/HS). Compared to the control group, the ANG/HS group had higher blood pressure, oxidative stress, and inflammatory response, all of which were rescued by Azilsartan dose-dependently. Importantly, the ANG/HS-induced increase in urinary albumin excretion and decrease in the expression of occludin were reversed by Azilsartan. Additionally, it was shown that increased fluorescence intensity of FITC-dextran, declined trans-endothelial electrical resistance (TEER) values, and reduction of occludin and krüppel-like factor 2 (KLF2) were observed in ANG/HS-treated human renal glomerular endothelial cells (HrGECs), then prevented by Azilsartan. Moreover, the regulatory effect of Azilsartan on endothelial monolayer permeability in ANG/HS-treated HrGECs was abolished by the knockdown of KLF2, indicating KLF2 is required for the effect of Azilsartan. We concluded that Azilsartan alleviated diabetic nephropathy-induced increase in Uterine artery embolization (UAE) mediated by the KLF2/occludin axis.
Collapse
Affiliation(s)
- Jun Cao
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Dandan Zhang
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Wenfeng Li
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Wenjin Yuan
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Gang Luo
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Shaofeng Xie
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| |
Collapse
|
24
|
Zhou X, Zhang L, Lin X, Chen X, Liu H, Yuan X, Zhao Q, Wang W, Lei X, Jose PA, Deng C, Yang J. Thrombospondin 2 is a novel biomarker of essential hypertension and associated with nocturnal Na + excretion and insulin resistance. Clin Exp Hypertens 2023; 45:2276029. [PMID: 37943619 DOI: 10.1080/10641963.2023.2276029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Thrombospondins (TSPs) play important roles in several cardiovascular diseases. However, the association between circulating (plasma) thrombospondin 2 (TSP2) and essential hypertension remains unclear. The present study was aimed to investigate the association of circulating TSP2 with blood pressure and nocturnal urine Na+ excretion and evaluate the predictive value of circulating TSP2 in subjects with hypertension. METHODS AND RESULTS 603 newly diagnosed essential hypertensive subjects and 508 healthy subjects were preliminarily screened, 47 healthy subjects and 40 newly diagnosed essential hypertensive subjects without any chronic diseases were recruited. The results showed that the levels of circulating TSP2 were elevated in essential hypertensive subjects. The levels of TSP2 positively associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and other clinical parameters, including homeostasis model assessment of insulin resistance (HOMA-IR), brachial-ankle pulse wave velocity, and serum triglycerides, but negatively associated with nocturnal urine Na+ concentration and excretion and high-density lipoprotein cholesterol. Results of multiple linear regressions showed that HOMA-IR and nocturnal Na+ excretion were independent factors related to circulating TSP2. Mantel-Haenszel chi-square test displayed linear relationships between TSP2 and SBP (χ2 = 35.737) and DBP (χ2 = 26.652). The area under receiver operating characteristic curve (AUROC) of hypertension prediction was 0.901. CONCLUSION Our study suggests for the first time that the circulating levels of TSP2 may be a novel potential biomarker for essential hypertension. The association between TSP2 and blood pressure may be, at least in part, related to the regulation of renal Na+ excretion, insulin resistance, and/or endothelial function.
Collapse
Affiliation(s)
- Xiaoxin Zhou
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longlong Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Lin
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Chen
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Liu
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Yuan
- Health Management Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuxia Zhao
- Health Management Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiwei Wang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Lei
- Research Center for Medicine and Social Development, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, New York, WA, USA
| | - Chunyan Deng
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Lin T, Jiang D, Chen W, Lin JS, Zhang X, Chen C, Hsu C, Lai L, Chen P, Yang K, Sansing LH, Chang C. Trained immunity induced by high-salt diet impedes stroke recovery. EMBO Rep 2023; 24:e57164. [PMID: 37965920 PMCID: PMC10702837 DOI: 10.15252/embr.202357164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
A high-salt diet (HSD) elicits sustained sterile inflammation and worsens tissue injury. However, how this occurs after stroke, a leading cause of morbidity and mortality, remains unknown. Here, we report that HSD impairs long-term brain recovery after intracerebral hemorrhage, a severe form of stroke, despite salt withdrawal prior to the injury. Mechanistically, HSD induces innate immune priming and training in hematopoietic stem and progenitor cells (HSPCs) by downregulation of NR4a family and mitochondrial oxidative phosphorylation. This training compromises alternative activation of monocyte-derived macrophages (MDMs) without altering the initial inflammatory responses of the stroke brain. Healthy mice transplanted with bone marrow from HSD-fed mice retain signatures of reduced MDM reparative functions, further confirming a persistent form of innate immune memory that originates in the bone marrow. Loss of NR4a1 in macrophages recapitulates HSD-induced negative impacts on stroke outcomes while gain of NR4a1 enables stroke recovery in HSD animals. Together, we provide the first evidence that links HSD-induced innate immune memory to the acquisition of persistent dysregulated inflammatory responses and unveils NR4a1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Tze‐Yen Lin
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Danye Jiang
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center in HoustonHoustonTXUSA
| | - Wan‐Ru Chen
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
- School of MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| | - Jhih Syuan Lin
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Xin‐Yu Zhang
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chih‐Hung Chen
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chia‐Lang Hsu
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Liang‐Chuan Lai
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Ping‐Hung Chen
- Department and Graduate Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Kai‐Chien Yang
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Lauren H Sansing
- Department of NeurologyYale University School of MedicineNew HavenCTUSA
| | - Che‐Feng Chang
- Department and Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
26
|
Aung K, Ream-Winnick S, Lane M, Akinlusi I, Shi T, Htay T. Sodium Homeostasis and Hypertension. Curr Cardiol Rep 2023; 25:1123-1129. [PMID: 37578690 DOI: 10.1007/s11886-023-01931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize and discuss the relationship between sodium homeostasis and hypertension, including emerging concepts of factors outside cardiovascular and renal systems influencing sodium homeostasis and hypertension. RECENT FINDINGS Recent studies support the dose-response association between higher sodium and lower potassium intakes and a higher cardiovascular risk in addition to the dose-response relationship between sodium restriction and blood pressure lowering. The growing body of evidence suggests the role of genetic determinants, immune system, and gut microbiota in sodium homeostasis and hypertension. Although higher sodium and lower potassium intakes increase cardiovascular risk, salt restriction is beneficial only to a certain limit. The immune system contributes to hypertension through pro-inflammatory effects. Sodium can affect the gut microbiome and induce pro-inflammatory and immune responses that contribute to salt-sensitive hypertension.
Collapse
Affiliation(s)
- KoKo Aung
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA.
| | - Sarah Ream-Winnick
- Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Mariela Lane
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Idris Akinlusi
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Ted Shi
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Thwe Htay
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA
| |
Collapse
|
27
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The role and underlying mechanisms mediated by dietary salt in modulating the gut microbiota and contributing to heart failure (HF) are not clear. This review summarizes the mechanisms of dietary salt and the gut-heart axis in HF. RECENT FINDINGS The gut microbiota has been implicated in several cardiovascular diseases (CVDs) including HF. Dietary factors including high consumption of salt play a role in influencing the gut microbiota, resulting in dysbiosis. An imbalance of microbial species due to a reduction in microbial diversity with accompanying immune cell activation has been implicated in the pathogenesis of HF via several mechanisms. The gut microbiota and gut-associated metabolites contribute to HF by reducing gut microbiota biodiversity and activating several signaling pathways. High dietary salt modulates the gut microbiota composition and exacerbate or induce HF by increasing the expression of the epithelial sodium/hydrogen exchanger isoform 3 in the gut, cardiac expression of beta myosin heavy chain, activation of the myocyte enhancer factor/nuclear factor of activated T cell, and salt-inducible kinase 1. These mechanisms explain the resulting structural and functional derangements in patients with HF.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
29
|
Zhuang T, Lei Y, Chang JJ, Zhou YP, Li Y, Li YX, Yang YF, Chen MH, Meng T, Fu SM, Huang LH, Cheang WS, Cooke JP, Dong ZH, Bai YN, Ruan CC. A2AR-mediated lymphangiogenesis via VEGFR2 signaling prevents salt-sensitive hypertension. Eur Heart J 2023; 44:2730-2742. [PMID: 37377160 PMCID: PMC10393074 DOI: 10.1093/eurheartj/ehad377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS Excess dietary sodium intake and retention lead to hypertension. Impaired dermal lymphangiogenesis and lymphatic dysfunction-mediated sodium and fluid imbalance are pathological mechanisms. The adenosine A2A receptor (A2AR) is expressed in lymphatic endothelial cells (LECs), while the roles and mechanisms of LEC-A2AR in skin lymphangiogenesis during salt-induced hypertension are not clear. METHODS AND RESULTS The expression of LEC-A2AR correlated with lymphatic vessel density in both high-salt diet (HSD)-induced hypertensive mice and hypertensive patients. Lymphatic endothelial cell-specific A2AR knockout mice fed HSD exhibited 17 ± 2% increase in blood pressure and 17 ± 3% increase in Na+ content associated with decreased lymphatic density (-19 ± 2%) compared with HSD-WT mice. A2AR activation by agonist CGS21680 increased lymphatic capillary density and decreased blood pressure in HSD-WT mice. Furthermore, this A2AR agonist activated MSK1 directly to promote VEGFR2 activation and endocytosis independently of VEGF as assessed by phosphoprotein profiling and immunoprecipitation assays in LECs. VEGFR2 kinase activity inhibitor fruquintinib or VEGFR2 knockout in LECs but not VEGF-neutralizing antibody bevacizumab suppressed A2AR activation-mediated decrease in blood pressure. Immunostaining revealed phosphorylated VEGFR2 and MSK1 expression in the LECs were positively correlated with skin lymphatic vessel density and A2AR level in hypertensive patients. CONCLUSION The study highlights a novel A2AR-mediated VEGF-independent activation of VEGFR2 signaling in dermal lymphangiogenesis and sodium balance, which might be a potential therapeutic target in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Tao Zhuang
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Yu Lei
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Jin-Jia Chang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China
| | - Yan-Ping Zhou
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pu-Jian Road, Shanghai 200032, China
| | - Yan Li
- Department of Cardiology, RuiJin Hospital/LuWan Branch, Shanghai Jiao Tong University School of Medicine, 149 Chong-Qing-Nan Road, Shanghai 200032, China
| | - Yan-Xiu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guang-Zhou Road, Nanjing 210000, China
| | - Yong-Feng Yang
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Mei-Hua Chen
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Ting Meng
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Shi-Man Fu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Li-Hao Huang
- Department of Chemistry and Institute of Metabolism and Integrative Biology, Shanghai Key Laboratory of Metabolic Remodeling and Health, Fudan University, 38 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Wai-San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Long-Ma Road, Macau 999078, China
| | - John P Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zhi-Hui Dong
- Department of Vascular Surgery, Zhongshan Hospital, and Center for Vascular Surgery and Wound Care, Jinshan Hospital, Fudan University, 180 Feng-Lin Road, Shanghai 200032, China
| | - Ying-Nan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Feng-Lin Road, Shanghai 200032, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, and Jinshan Hospital, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| |
Collapse
|
30
|
Sánchez-Lozada LG, Madero M, Mazzali M, Feig DI, Nakagawa T, Lanaspa MA, Kanbay M, Kuwabara M, Rodriguez-Iturbe B, Johnson RJ. Sugar, salt, immunity and the cause of primary hypertension. Clin Kidney J 2023; 16:1239-1248. [PMID: 37529651 PMCID: PMC10387395 DOI: 10.1093/ckj/sfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
Despite its discovery more than 150 years ago, the cause of primary hypertension remains unknown. Most studies suggest that hypertension involves genetic, congenital or acquired risk factors that result in a relative inability of the kidney to excrete salt (sodium chloride) in the kidneys. Here we review recent studies that suggest there may be two phases, with an initial phase driven by renal vasoconstriction that causes low-grade ischemia to the kidney, followed by the infiltration of immune cells that leads to a local autoimmune reaction that maintains the renal vasoconstriction. Evidence suggests that multiple mechanisms could trigger the initial renal vasoconstriction, but one way may involve fructose that is provided in the diet (such as from table sugar or high fructose corn syrup) or produced endogenously. The fructose metabolism increases intracellular uric acid, which recruits NADPH oxidase to the mitochondria while inhibiting AMP-activated protein kinase. A drop in intracellular ATP level occurs, triggering a survival response. Leptin levels rise, triggering activation of the sympathetic central nervous system, while vasopressin levels rise, causing vasoconstriction in its own right and stimulating aldosterone production via the vasopressin 1b receptor. Low-grade renal injury and autoimmune-mediated inflammation occur. High-salt diets can amplify this process by raising osmolality and triggering more fructose production. Thus, primary hypertension may result from the overactivation of a survival response triggered by fructose metabolism. Restricting salt and sugar and hydrating with ample water may be helpful in the prevention of primary hypertension.
Collapse
Affiliation(s)
- Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Magdalena Madero
- Division of Nephrology, Department of Medicine, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Marilda Mazzali
- Division of Nephrology, University of Campinas, São Paulo, Brazil
| | - Daniel I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, AL, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
31
|
Ahmad R, Narwaria M, Singh A, Kumar S, Haque M. Detecting Diabetic Ketoacidosis with Infection: Combating a Life-Threatening Emergency with Practical Diagnostic Tools. Diagnostics (Basel) 2023; 13:2441. [PMID: 37510185 PMCID: PMC10378387 DOI: 10.3390/diagnostics13142441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Diabetic ketoacidosis (DKA) is a life-threatening acute complication of diabetes mellitus and can lead to patient demise if not immediately treated. From the recent literature, the diabetic ketoacidosis mortality rate, depending on age, is 2-5%. Insulin discontinuation and infection remain the two most common triggers for diabetic ketoacidosis. About 50% of cases of ketoacidosis result from bacterial infections like urinary tract infections and pneumonia. It is also important to diagnose the presence of infection in diabetic ketoacidosis patients to prevent the excessive use of antibiotics, which may lead to antibiotic resistance. Although performing bacterial culture is confirmatory for the presence or absence of bacterial infection, the time required to obtain the result is long. At the same time, emergency treatment needs to be started as early as possible. METHODS This narrative review examines various septic markers to identify the appropriate tools for diagnosis and to distinguish between diabetic ketoacidosis with and without infection. Electronic databases were searched using the Google engine with the keywords "Diabetes Mellitus", "Diabetic Ketoacidosis", "Infection with Diabetic Ketoacidosis", "biomarkers for infection in Diabetic Ketoacidosis", "Procalcitonin", "Inflammatory cytokines in DKA", "Lactic acidosis in DKA", and "White blood cell in infection in DKA". RESULTS This narrative review article presents the options for diagnosis and also aims to create awareness regarding the gravity of diabetic ketoacidosis with infection and emphasizes the importance of early diagnosis for appropriate management. Diabetes mellitus is a clinical condition that may lead to several acute and chronic complications. Acute diabetic ketoacidosis is a life-threatening condition in which an excess production of ketone bodies results in acidosis and hypovolemia. Infection is one of the most common triggers of diabetic ketoacidosis. When bacterial infection is present along with diabetic ketoacidosis, the mortality rate is even higher than for patients with diabetic ketoacidosis without infection. The symptoms and biomarkers of diabetic ketoacidosis are similar to that of infection, like fever, C reactive protein, and white blood cell count, since both create an environment of systemic inflammation. It is also essential to distinguish between the presence and absence of bacterial infection to ensure the appropriate use of antibiotics and prevent antimicrobial resistance. A bacterial culture report is confirmatory for the existence of bacterial infection, but this may take up to 24 h. Diagnosis needs to be performed approximately in the emergency room upon admission since there is a need for immediate management. Therefore, researching the possible diagnostic tools for the presence of infection in diabetic ketoacidosis patients is of great importance. Several of such biomarkers have been discussed in this research work.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh
| | - Mahendra Narwaria
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, S G Highways, Ahmedabad 380054, India
| | - Arya Singh
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, S G Highways, Ahmedabad 380054, India
| | - Santosh Kumar
- Department of Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur 57000, Malaysia
- Department of Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, India
| |
Collapse
|
32
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
33
|
Gao Y, Liu B, Guo X, Nie J, Zou H, Wen S, Yu W, Liang H. Interferon regulatory factor 4 deletion protects against kidney inflammation and fibrosis in deoxycorticosterone acetate/salt hypertension. J Hypertens 2023; 41:794-810. [PMID: 36883469 DOI: 10.1097/hjh.0000000000003401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Inflammation and renal interstitial fibrosis are the main pathological features of hypertensive nephropathy. Interferon regulatory factor 4 (IRF-4) has an important role in the pathogenesis of inflammatory and fibrotic diseases. However, its role in hypertension-induced renal inflammation and fibrosis remains unexplored. METHOD AND RESULTS We showed that deoxycorticosterone acetate (DOCA)-salt resulted in an elevation of blood pressure and that there was no difference between wild-type and IRF-4 knockout mice. IRF-4 -/- mice presented less severe renal dysfunction, albuminuria, and fibrotic response after DOCA-salt stress compared with wild-type mice. Loss of IRF-4 inhibited extracellular matrix protein deposition and suppressed fibroblasts activation in the kidneys of mice subjected to DOCA-salt treatment. IRF-4 disruption impaired bone marrow-derived fibroblasts activation and macrophages to myofibroblasts transition in the kidneys in response to DOCA-salt treatment. IRF-4 deletion impeded the infiltration of inflammatory cells and decreased the production of proinflammatory molecules in injured kidneys. IRF-4 deficiency activated phosphatase and tensin homolog and weakened phosphoinositide-3 kinase/AKT signaling pathway in vivo or in vitro . In cultured monocytes, TGFβ1 also induced expression of fibronectin and α-smooth muscle actin and stimulated the transition of macrophages to myofibroblasts, which was blocked in the absence of IRF-4. Finally, macrophages depletion blunted macrophages to myofibroblasts transition, inhibited myofibroblasts accumulation, and ameliorated kidney injury and fibrosis. CONCLUSION Collectively, IRF-4 plays a critical role in the pathogenesis of kidney inflammation and fibrosis in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Ying Gao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Benquan Liu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | | | - Jiayi Nie
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Hao Zou
- Department of Anesthesiology, Foshan Women and Children Hospital
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan
| | - Shihong Wen
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Hua Liang
- Guangdong Medical University, Zhanjiang
- Department of Anesthesiology, Foshan Women and Children Hospital
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan
| |
Collapse
|
34
|
Linder BA, Babcock MC, Pollin KU, Watso JC, Robinson AT. Short-term high-salt consumption does not influence resting or exercising heart rate variability but increases MCP-1 concentration in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2023; 324:R666-R676. [PMID: 36939211 PMCID: PMC10110701 DOI: 10.1152/ajpregu.00240.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
High salt consumption increases blood pressure (BP) and cardiovascular disease risk by altering autonomic function and increasing inflammation. However, it is unclear whether salt manipulation alters resting and exercising heart rate variability (HRV), a noninvasive measure of autonomic function, in healthy young adults. The purpose of this investigation was to determine whether short-term high-salt intake 1) alters HRV at rest, during exercise, or exercise recovery and 2) increases the circulating concentration of the inflammatory biomarker monocyte chemoattractant protein 1 (MCP-1). With the use of a randomized, placebo-controlled, crossover study, 20 participants (8 females; 24 ± 4 yr old, 110 ± 10/64 ± 8 mmHg) consumed salt (3,900 mg sodium) or placebo capsules for 10 days each separated by ≥2 wk. We assessed HRV during 10 min of baseline rest, 50 min of cycling (60% V̇o2peak), and recovery. We quantified HRV using the standard deviation of normal-to-normal RR intervals, the root mean square of successive differences (RMSSD), and additional time and frequency domain metrics of HRV. Plasma samples were collected to assess MCP-1 concentration. No main effect of high salt or condition × time interaction was observed for HRV metrics. However, acute exercise reduced HRV (e.g., RMSSD time: P < 0.001, condition: P = 0.877, interaction: P = 0.422). High salt elevated plasma MCP-1 (72.4 ± 12.5 vs. 78.14 ± 14.7 pg/mL; P = 0.010). Irrespective of condition, MCP-1 was moderately associated (P values < 0.05) with systolic (r = 0.32) and mean BP (r = 0.33). Short-term high-salt consumption does not affect HRV; however, it increases circulating MCP-1, which may influence BP in young adults.
Collapse
Affiliation(s)
- Braxton A Linder
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kamila U Pollin
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- War Related Illness and Injury Study Center, Washington DC Veteran Affairs Medical Center, Washington, District of Columbia, United States
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
35
|
Ahmad T, Ertuglu LA, Masenga SK, Kleyman TR, Kirabo A. The epithelial sodium channel in inflammation and blood pressure modulation. Front Cardiovasc Med 2023; 10:1130148. [PMID: 37123470 PMCID: PMC10132033 DOI: 10.3389/fcvm.2023.1130148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
A major regulator of blood pressure and volume homeostasis in the kidney is the epithelial sodium channel (ENaC). ENaC is composed of alpha(α)/beta(β)/gamma(γ) or delta(δ)/beta(β)/gamma(γ) subunits. The δ subunit is functional in the guinea pig, but not in routinely used experimental rodent models including rat or mouse, and thus remains the least understood of the four subunits. While the δ subunit is poorly expressed in the human kidney, we recently found that its gene variants are associated with blood pressure and kidney function. The δ subunit is expressed in the human vasculature where it may influence vascular function. Moreover, we recently found that the δ subunit is also expressed human antigen presenting cells (APCs). Our studies indicate that extracellular Na+ enters APCs via ENaC leading to inflammation and salt-induced hypertension. In this review, we highlight recent findings on the role of extra-renal ENaC in inflammation, vascular dysfunction, and blood pressure modulation. Targeting extra-renal ENaC may provide new drug therapies for salt-induced hypertension.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
36
|
Imig JD, Khan MAH, Stavniichuk A, Jankiewicz WK, Goorani S, Yeboah MM, El-Meanawy A. Salt-sensitive hypertension after reversal of unilateral ureteral obstruction. Biochem Pharmacol 2023; 210:115438. [PMID: 36716827 PMCID: PMC10107073 DOI: 10.1016/j.bcp.2023.115438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
The incidence of ureter obstruction is increasing and patients recovering from this kidney injury often progress to chronic kidney injury. There is evidence that a long-term consequence of recovery from ureter obstruction is an increased risk for salt-sensitive hypertension. A reversal unilateral ureteral obstruction (RUUO) model was used to study long-term kidney injury and salt-sensitive hypertension. In this model, we removed the ureteral obstruction at day 10 in mice. Mice were divided into four groups: (1) normal salt diet, (2) high salt diet, (3) RUUO normal salt diet, and (4) RUUO high salt diet. At day 10, the mice were fed a normal or high salt diet for 4 weeks. Blood pressure was measured, and urine and kidney tissue collected. There was a progressive increase in blood pressure in the RUUO high salt diet group. RUUO high salt group had decreased sodium excretion and glomerular injury. Renal epithelial cell injury was evident in RUUO normal and high salt mice as assessed by neutrophil gelatinase-associated lipocalin (NGAL). Kidney inflammation in the RUUO high salt group involved an increase in F4/80 positive macrophages; however, CD3+ positive T cells were not changed. Importantly, RUUO normal and high salt mice had decreased vascular density. RUUO was also associated with renal fibrosis that was further elevated in RUUO mice fed a high salt diet. Overall, these findings demonstrate long-term renal tubular injury, inflammation, decreased vascular density, and renal fibrosis following reversal of unilateral ureter obstruction that could contribute to impaired sodium excretion and salt-sensitive hypertension.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Md Abdul Hye Khan
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anna Stavniichuk
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wojciech K Jankiewicz
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samaneh Goorani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael M Yeboah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashraf El-Meanawy
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
37
|
Zhang Y, Tu J, Li Y, Wang Y, Lu L, Wu C, Yu XY, Li Y. Inflammation macrophages contribute to cardiac homeostasis. CARDIOLOGY PLUS 2023. [DOI: 10.1097/cp9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
38
|
Purinoceptor: a novel target for hypertension. Purinergic Signal 2023; 19:185-197. [PMID: 35181831 PMCID: PMC9984596 DOI: 10.1007/s11302-022-09852-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Hypertension is the leading cause of morbidity and mortality globally among all cardiovascular diseases. Purinergic signalling plays a crucial role in hypertension through the sympathetic nerve system, neurons in the brain stem, carotid body, endothelium, immune system, renin-angiotensin system, sodium excretion, epithelial sodium channel activity (ENaC), and renal autoregulation. Under hypertension, adenosine triphosphate (ATP) is released as a cotransmitter from the sympathetic nerve. It mediates vascular tone mainly through P2X1R activation on smooth muscle cells and activation of P2X4R and P2YR on endothelial cells and also via interaction with other purinoceptors, showing dual effects. P2Y1R is linked to neurogenic hypertension. P2X7R and P2Y11R are potential targets for immune-related hypertension. P2X3R located on the carotid body is the most promising novel therapeutic target for hypertension. A1R, A2AR, A2BR, and P2X7R are all related to renal autoregulation, which contribute to both renal damage and hypertension. The main focus is on the evidence addressing the involvement of purinoceptors in hypertension and therapeutic interventions.
Collapse
|
39
|
Zheng T, Wu Y, Guo KX, Tan ZJ, Yang T. The process of hypertension induced by high-salt diet: Association with interactions between intestinal mucosal microbiota, and chronic low-grade inflammation, end-organ damage. Front Microbiol 2023; 14:1123843. [PMID: 36925479 PMCID: PMC10011071 DOI: 10.3389/fmicb.2023.1123843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammation and immunity play a major role in the development of hypertension, and a potential correlation between host mucosal immunity and inflammatory response regulation. We explored the changes of intestinal mucosal microbiota in hypertensive rats induced by high-salt diet and the potential link between the intestinal mucosal microbiota and inflammation in rats. Therefore, we used PacBio (Pacific Bioscience) SMRT sequencing technology to determine the structure of intestinal mucosal microbiota, used enzyme-linked immunosorbent assay (ELISA) to determined the proinflammatory cytokines and hormones associated with hypertension in serum, and used histopathology methods to observe the kidney and vascular structure. We performed a potential association analysis between intestinal mucosal characteristic bacteria and significantly different blood cytokines in hypertensive rats induced by high-salt. The results showed that the kidney and vascular structures of hypertensive rats induced by high salt were damaged, the serum concentration of necrosis factor-α (TNF-α), angiotensin II (AngII), interleukin-6 (IL-6), and interleukin-8 (IL-8) were significantly increased (p < 0.05), and the coefficient of immune organ spleen was significantly changed (p < 0.05), but there was no significant change in serum lipids (p > 0.05). From the perspective of gut microbiota, high-salt diet leads to significant changes in intestinal mucosal microbiota. Bifidobacterium animalis subsp. and Brachybacterium paraconglomeratum were the dominant differential bacteria in intestinal mucosal, with the AUC (area under curve) value of Bifidobacterium animalis subsp. and Brachybacterium paraconglomeratum were 1 and 0.875 according to ROC (receiver operating characteristic) analysis. Correlation analysis showed that Bifidobacterium animalis subsp. was correlated with IL-6, IL-8, TNF-α, and Ang II. Based on our results, we can speculated that high salt diet mediated chronic low-grade inflammation through inhibited the growth of Bifidobacterium animalis subsp. in intestinal mucosa and caused end-organ damage, which leads to hypertension.
Collapse
Affiliation(s)
- Tao Zheng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Kang-xiao Guo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhou-jin Tan
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
40
|
Luo A, Wu Z, Li S, McReynolds CB, Wang D, Liu H, Huang C, He T, Zhang X, Wang Y, Liu C, Hammock BD, Hashimoto K, Yang C. The soluble epoxide hydrolase inhibitor TPPU improves comorbidity of chronic pain and depression via the AHR and TSPO signaling. J Transl Med 2023; 21:71. [PMID: 36732752 PMCID: PMC9896784 DOI: 10.1186/s12967-023-03917-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Patients suffering from chronic pain often also exhibit depression symptoms. Soluble epoxide hydrolase (sEH) inhibitors can decrease blood levels of inflammatory cytokines. However, whether inhibiting sEH signaling is beneficial for the comorbidity of pain and depression is unknown. METHODS According to a sucrose preference test (SPT), spared nerve injury (SNI) mice were classified into pain with or without an anhedonia phenotype. Then, sEH protein expression and inflammatory cytokines were assessed in selected tissues. Furthermore, we used sEH inhibitor TPPU to determine the role of sEH in chronic pain and depression. Importantly, agonists and antagonists of aryl hydrocarbon receptor (AHR) and translocator protein (TSPO) were used to explore the pathogenesis of sEH signaling. RESULTS In anhedonia-susceptible mice, the tissue levels of sEH were significantly increased in the medial prefrontal cortex (mPFC), hippocampus, spinal cord, liver, kidney, and gut. Importantly, serum CYP1A1 and inflammatory cytokines, such as interleukin 1β (IL-1β) and the tumor necrosis factor α (TNF-α), were increased simultaneously. TPPU improved the scores of mechanical withdrawal threshold (MWT) and SPT, and decreased the levels of serum CYP1A1 and inflammatory cytokines. AHR antagonist relieved the anhedonia behaviors but not the algesia behaviors in anhedonia-susceptible mice, whereas an AHR agonist abolished the antidepressant-like effect of TPPU. In addition, a TSPO agonist exerted a similar therapeutic effect to that of TPPU, whereas pretreatment with a TSPO antagonist abolished the antidepressant-like and analgesic effects of TPPU. CONCLUSIONS sEH underlies the mechanisms of the comorbidity of chronic pain and depression and that TPPU exerts a beneficial effect on anhedonia behaviors in a pain model via AHR and TSPO signaling.
Collapse
Affiliation(s)
- Ailin Luo
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zifeng Wu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Shan Li
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Cindy B. McReynolds
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616 USA
| | - Di Wang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Hanyu Liu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chaoli Huang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, 210061 China
| | - Teng He
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xinying Zhang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yuanyuan Wang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Cunming Liu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Bruce D. Hammock
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616 USA
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
41
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
42
|
Uchida S, Mori T, Susa K, Sohara E. NCC regulation by WNK signal cascade. Front Physiol 2023; 13:1081261. [PMID: 36685207 PMCID: PMC9845728 DOI: 10.3389/fphys.2022.1081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
With-no-lysine (K) (WNK) kinases have been identified as the causal genes for pseudohypoaldosteronism type II (PHAII), a rare hereditary hypertension condition characterized by hyperkalemia, hyperchloremic metabolic acidosis, and thiazide-hypersensitivity. We thought that clarifying the link between WNK and NaCl cotransporter (NCC) would bring us new mechanism(s) of NCC regulation. For the first time, we were able to produce a knock-in mouse model of PHAII and anti-phosphorylated NCC antibodies against the putative NCC phosphorylation sites and discover that constitutive activation of NCC and increased phosphorylation of NCC are the primary pathogenesis of the disease in vivo. We have since demonstrated that this regulatory mechanism is mediated by the kinases oxidative stress-response protein 1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK) (WNK-OSR1/SPAK-NCC signaling cascade) and that the signaling is not only important in the pathological condition of PHAII but also plays a crucial physiological role in the regulation of NCC.
Collapse
|
43
|
Wang Z, Zhao X, Bu L, Liu K, Li Z, Zhang H, Zhang X, Yuan F, Wang S, Guo Z, Shi L. Low sodium intake ameliorates hypertension and left ventricular hypertrophy in mice with primary aldosteronism. Front Physiol 2023; 14:1136574. [PMID: 36875038 PMCID: PMC9974669 DOI: 10.3389/fphys.2023.1136574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
The goal of this paper is to elucidate the effects of sodium restriction on hypertension and left ventricular (LV) hypertrophy in a mouse model with primary aldosteronism (PA). Mice with genetic deletion of TWIK-related acid-sensitive K (TASK)-1 and TASK-3 channels (TASK-/-) were used as the animal model of PA. Parameters of the LV were assessed using echocardiography and histomorphology analysis. Untargeted metabolomics analysis was conducted to reveal the mechanisms underlying the hypertrophic changes in the TASK-/- mice. The TASK-/- adult male mice exhibited the hallmarks of PA, including hypertension, hyperaldosteronism, hypernatremia, hypokalemia, and mild acid-base balance disorders. Two weeks of low sodium intake significantly reduced the 24-h average systolic and diastolic BP in TASK-/- but not TASK+/+ mice. In addition, TASK-/- mice showed increasing LV hypertrophy with age, and 2 weeks of the low-sodium diet significantly reversed the increased BP and LV wall thickness in adult TASK-/- mice. Furthermore, a low-sodium diet beginning at 4 weeks of age protected TASK-/- mice from LV hypertrophy at 8-12 weeks of age. Untargeted metabolomics demonstrated that the disturbances in heart metabolism in the TASK-/- mice (e.g., Glutathione metabolism; biosynthesis of unsaturated fatty acids; amino sugar and nucleotide sugar metabolism; pantothenate and CoA biosynthesis; D-glutamine and D-glutamate metabolism), some of which were reversed after sodium restriction, might be involved in the development of LV hypertrophy. In conclusion, adult male TASK-/- mice exhibit spontaneous hypertension and LV hypertrophy, which are ameliorated by a low-sodium intake.
Collapse
Affiliation(s)
- Zitian Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue Zhao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lifang Bu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kun Liu
- Department of Laboratory Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ziping Li
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huaxing Zhang
- Core Facilities and Centers, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoguang Zhang
- Core Facilities and Centers, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, China
| | - Zan Guo
- Core Facilities and Centers, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Luo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, China
| |
Collapse
|
44
|
Scutca AC, Nicoară DM, Mărăzan M, Brad GF, Mărginean O. Neutrophil-to-Lymphocyte Ratio Adds Valuable Information Regarding the Presence of DKA in Children with New-Onset T1DM. J Clin Med 2022; 12:jcm12010221. [PMID: 36615022 PMCID: PMC9821096 DOI: 10.3390/jcm12010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetic ketoacidosis (DKA) is an acute life-threatening complication occurring mainly at the onset of type 1 diabetes mellitus. The neutrophil-to-lymphocyte ratio (NLR), a marker for systemic inflammation, has recently generated increasing interest in many chronic diseases. The aim of this cross-sectional study was to determine the value of the neutrophil-to-lymphocyte ratio (NLR) in association with DKA severity across these cases. A total of 155 children with new-onset type 1 DM from one large center were included in the study. Total and differential leukocyte counts were measured upon admission and calculation of the NLR was performed. Patients were classified into four groups: without DKA, mild, moderate, and severe DKA at disease onset. Total WBCs, neutrophils, and monocytes increased with DKA severity (p-value < 0.005), while eosinophiles displayed an inverse relationship (p-value < 0.001). Median NLR scores increased from those without ketoacidosis (1.11) to mild (1.58), moderate (3.71), and severe (5.77) ketoacidosis groups. The statistical threshold value of the NLR in predicting DKA was 1.84, with a sensitivity of 80.2% and a specificity of 80%. Study findings indicate that a higher NLR score adds valuable information regarding the presence of DKA in children with new-onset T1DM.
Collapse
Affiliation(s)
- Alexandra-Cristina Scutca
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, 300040 Timisoara, Romania
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Delia-Maria Nicoară
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, 300040 Timisoara, Romania
- Correspondence:
| | - Monica Mărăzan
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Giorgiana-Flavia Brad
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, 300040 Timisoara, Romania
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Otilia Mărginean
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, 300040 Timisoara, Romania
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
- Department XI Pediatrics, Discipline I Pediatrics, Disturbances of Growth and Development in Children–BELIVE, 300011 Timisoara, Romania
| |
Collapse
|
45
|
Zhang Y, Zhang M, Xie Z, Ding Y, Huang J, Yao J, Lv Y, Zuo J. Research Progress and Direction of Novel Organelle-Migrasomes. Cancers (Basel) 2022; 15:cancers15010134. [PMID: 36612129 PMCID: PMC9817827 DOI: 10.3390/cancers15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Migrasomes are organelles that are similar in structure to pomegranates, up to 3 μm in diameter, and contain small vesicles with a diameter of 50-100 nm. These membranous organelles grow at the intersections or tips of retracting fibers at the back of migrating cells. The process by which cells release migrasomes and their contents outside the cell is called migracytosis. The signal molecules are packaged in the migrasomes and released to the designated location by migrasomes to activate the surrounding cells. Finally, the migrasomes complete the entire process of information transmission. In this sense, migrasomes integrate time, space, and specific chemical information, which are essential for regulating physiological processes such as embryonic development and tumor invasion and migration. In this review, the current research progress of migrasomes, including the discovery of migrasomes and migracytosis, the structure of migrasomes, and the distribution and functions of migrasomes is discussed. The migratory marker protein TSPAN4 is highly expressed in various cancers and is associated with cancer invasion and migration. Therefore, there is still much research space for the pathogenesis of migratory bodies and cancer. This review also makes bold predictions and prospects for the research directions of the combination of migrasomes and clinical applications.
Collapse
Affiliation(s)
- Yu Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Minghui Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Zhuoyi Xie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Yubo Ding
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Jialu Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
| | - Jingwei Yao
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Yufan Lv
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
| | - Jianhong Zuo
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang 421001, China
- Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
- Clinical Laboratory, The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421900, China
- Correspondence:
| |
Collapse
|
46
|
Li XC, Hassan R, Leite APO, Katsurada A, Dugas C, Sato R, Zhuo JL. Genetic Deletion of AT 1a Receptor or Na +/H + Exchanger 3 Selectively in the Proximal Tubules of the Kidney Attenuates Two-Kidney, One-Clip Goldblatt Hypertension in Mice. Int J Mol Sci 2022; 23:ijms232415798. [PMID: 36555438 PMCID: PMC9779213 DOI: 10.3390/ijms232415798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The roles of angiotensin II (Ang II) AT1 (AT1a) receptors and its downstream target Na+/H+ exchanger 3 (NHE3) in the proximal tubules in the development of two-kidney, 1-clip (2K1C) Goldblatt hypertension have not been investigated previously. The present study tested the hypothesis that deletion of the AT1a receptor or NHE3 selectively in the proximal tubules of the kidney attenuates the development of 2K1C hypertension using novel mouse models with proximal tubule-specific deletion of AT1a receptors or NHE3. 2K1C Goldblatt hypertension was induced by placing a silver clip (0.12 mm) on the left renal artery for 4 weeks in adult male wild-type (WT), global Agtr1a−/−, proximal tubule (PT)-specific PT-Agtr1a−/− or PT-Nhe3−/− mice, respectively. As expected, telemetry blood pressure increased in a time-dependent manner in WT mice, reaching a maximal response by Week 3 (p < 0.01). 2K1C hypertension in WT mice was associated with increases in renin expression in the clipped kidney and decreases in the nonclipped kidney (p < 0.05). Plasma and kidney Ang II were significantly increased in WT mice with 2K1C hypertension (p < 0.05). Tubulointerstitial fibrotic responses were significantly increased in the clipped kidney (p < 0.01). Whole-body deletion of AT1a receptors completely blocked the development of 2K1C hypertension in Agtr1a−/− mice (p < 0.01 vs. WT). Likewise, proximal tubule-specific deletion of Agtr1a in PT-Agtr1a−/− mice or NHE3 in PT-Nhe3−/− mice also blocked the development of 2K1C hypertension (p < 0.01 vs. WT). Taken together, the present study provides new evidence for a critical role of proximal tubule Ang II/AT1 (AT1a)/NHE3 axis in the development of 2K1C Goldblatt hypertension.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ana Paula O. Leite
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Akemi Katsurada
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Courtney Dugas
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ryosuke Sato
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-988-4363; Fax: +1-504-988-2675
| |
Collapse
|
47
|
Goodlett BL, Balasubbramanian D, Navaneethabalakrishnan S, Love SE, Luera EM, Konatham S, Chiasson VL, Wedgeworth S, Rutkowski JM, Mitchell BM. Genetically inducing renal lymphangiogenesis attenuates hypertension in mice. Clin Sci (Lond) 2022; 136:1759-1772. [PMID: 36345993 PMCID: PMC10586591 DOI: 10.1042/cs20220547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypertension (HTN) is associated with renal proinflammatory immune cell infiltration and increased sodium retention. We reported previously that renal lymphatic vessels, which are responsible for trafficking immune cells from the interstitial space to draining lymph nodes, increase in density under hypertensive conditions. We also demonstrated that augmenting renal lymphatic density can prevent HTN in mice. Whether renal lymphangiogenesis can treat HTN in mice is unknown. We hypothesized that genetically inducing renal lymphangiogenesis after the establishment of HTN would attenuate HTN in male and female mice from three different HTN models. METHODS Mice with inducible kidney-specific overexpression of VEGF-D (KidVD) experience renal lymphangiogenesis upon doxycycline administration. HTN was induced in KidVD+ and KidVD- mice by subcutaneous release of angiotensin II, administration of the nitric oxide synthase inhibitor L-NAME, or consumption of a 4% salt diet following a L-NAME priming and washout period. After a week of HTN stimuli treatment, doxycycline was introduced. Systolic blood pressure (SBP) readings were taken weekly. Kidney function was determined from urine and serum measures. Kidneys were processed for RT-qPCR, flow cytometry, and imaging. RESULTS Mice that underwent renal-specific lymphangiogenesis had significantly decreased SBP and renal proinflammatory immune cells. Additionally, renal lymphangiogenesis was associated with a decrease in sodium transporter expression and increased fractional excretion of sodium, indicating improved sodium handling efficiency. CONCLUSIONS These findings demonstrate that augmenting renal lymphangiogenesis can treat HTN in male and female mice by improving renal immune cell trafficking and sodium handling.
Collapse
Affiliation(s)
- Bethany L Goodlett
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | | | | | - Sydney E Love
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Emily M Luera
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sunitha Konatham
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Valorie L Chiasson
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Sophie Wedgeworth
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| |
Collapse
|
48
|
Gildea JJ, Xu P, Schiermeyer KA, Yue W, Carey RM, Jose PA, Felder RA. Inverse Salt Sensitivity of Blood Pressure Is Associated with an Increased Renin-Angiotensin System Activity. Biomedicines 2022; 10:2811. [PMID: 36359330 PMCID: PMC9687845 DOI: 10.3390/biomedicines10112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
High and low sodium diets are associated with increased blood pressure and cardiovascular morbidity and mortality. The paradoxical response of elevated BP in low salt diets, aka inverse salt sensitivity (ISS), is an understudied vulnerable 11% of the adult population with yet undiscovered etiology. A linear relationship between the number of single nucleotide polymorphisms (SNPs) in the dopamine D2 receptor (DRD2, rs6276 and 6277), and the sodium myo-inositol cotransporter 2 (SLC5A11, rs11074656), as well as decreased expression of these two genes in urine-derived renal proximal tubule cells (uRPTCs) isolated from clinical study participants suggest involvement of these cells in ISS. Insight into this newly discovered paradoxical response to sodium is found by incubating cells in low sodium (LS) conditions that unveil cell physiologic differences that are then reversed by mir-485-5p miRNA blocker transfection and bypassing the genetic defect by DRD2 re-expression. The renin-angiotensin system (RAS) is an important counter-regulatory mechanism to prevent hyponatremia under LS conditions. Oversensitive RAS under LS conditions could partially explain the increased mortality in ISS. Angiotensin-II (AngII, 10 nmol/L) increased sodium transport in uRPTCs to a greater extent in individuals with ISS than SR. Downstream signaling of AngII is verified by identifying lowered expression of nuclear factor erythroid 2-related factor 2 (NRF2), CCCTC-binding factor (CTCF), and manganese-dependent mitochondrial superoxide dismutase (SOD2) only in ISS-derived uRPTCs and not SR-derived uRPTCs when incubated in LS conditions. We conclude that DRD2 and SLC5A11 variants in ISS may cause an increased low sodium sensitivity to AngII and renal sodium reabsorption which can contribute to inverse salt-sensitive hypertension.
Collapse
Affiliation(s)
- John J. Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Peng Xu
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Katie A. Schiermeyer
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Wei Yue
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, The University of Virginia, Charlottesville, VA 22903, USA;
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
- Department of Physiology/Pharmacology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Robin A. Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| |
Collapse
|
49
|
Niu LG, Sun N, Liu KL, Su Q, Qi J, Fu LY, Xin GR, Kang YM. Genistein Alleviates Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus by Activating the Sirt1/Nrf2 Pathway in High Salt-Induced Hypertension. Cardiovasc Toxicol 2022; 22:898-909. [PMID: 35986807 DOI: 10.1007/s12012-022-09765-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Hypertension caused by a high-salt (HS) diet is one of the major causes of cardiovascular diseases. Underlining pathology includes oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN). This study investigates genistein's (Gen) role in HS-induced hypertension and the underlying molecular mechanism. We placed male Wistar rats on HS (8% NaCl) or normal salt diet (0.3% NaCl). Then, we injected bilateral PVN in rats with Gen, vehicle, or nicotinamide (NAM) for 4 weeks. Tail cuff was used weekly to assess the systolic pressure, diastolic pressure, and mean arterial pressure (MAP). Cardiac hypertrophy was analyzed by heart weight/body weight ratio and wheat germ agglutinin staining. ELISA kits, Western blot, or dihydroethidium staining determined the levels of inflammatory cytokines and oxidative stress markers. Western blot measured protein levels of Sirt1, Ac-FOXO1, Nrf2, NQO-1, HO-1, and gp91phox. Our result showed that PVN infusion of Gen significantly reduced the increase of systolic pressure, diastolic pressure, and MAP induced by an HS diet. Additionally, there was a decrease in cardiac hypertrophy and the levels of inflammatory cytokines in PVN and plasma. Meanwhile, PVN infusion of Gen notably inhibited the levels of oxidized glutathione and superoxide dismutase and improved the glutathione level and total antioxidant capacities and superoxide dismutase activities. It also decreased the level of reactive oxygen species and gp91phox expression in PVN. Furthermore, Gen infusion markedly increases the Sirt1, Nrf2, HO-1, and NQO-1 levels and decreases the Ac-FOXO1 level. However, PVN infusion of NAM could significantly block these changes induced by Gen in HS diet rats. Our results demonstrated that PVN infusion of Gen could inhibit the progression of hypertension induced by an HS diet by activating the Sirt1/Nrf2 pathway.
Collapse
Affiliation(s)
- Li-Gang Niu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Na Sun
- Department of Physiology, Xi'an Medical University, Xi'an, 710021, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Guo-Rui Xin
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China.
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
50
|
Zeng M, Xie Z, Zhang J, Li S, Wu Y, Yan X. Arctigenin Attenuates Vascular Inflammation Induced by High Salt through TMEM16A/ESM1/VCAM-1 Pathway. Biomedicines 2022; 10:2760. [PMID: 36359280 PMCID: PMC9687712 DOI: 10.3390/biomedicines10112760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 02/25/2024] Open
Abstract
Salt-sensitive hypertension is closely related to inflammation, but the mechanism is barely known. Transmembrane member 16A (TMEM16A) is the Ca2+-activated chloride channel in epithelial cells, smooth muscle cells, and sensory neurons. It can promote inflammatory responses by increasing proinflammatory cytokine release. Here, we identified a positive role of TMEM16A in vascular inflammation. The expression of TMEM16A was increased in high-salt-stimulated vascular smooth muscle cells (VSMCs), whereas inhibiting TMEM16A or silencing TMEM16A with small interfering RNA (siRNA) can abolish this effect in vitro or in vivo. Transcriptome analysis of VSMCs revealed some differential downstream genes of TMEM16A related to inflammation, such as endothelial cell-specific molecule 1 (ESM1) and CXC chemokine ligand 16 (CXCL16). Overexpression of TMEM16A in VSMCs was accompanied by high levels of ESM1, CXCL16, intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-1). We treated VSMCs cultured with high salt and arctigenin (ARC), T16Ainh-A01 (T16), and TMEM16A siRNA (siTMEM16A), leading to greatly decreased ESM1, CXCL16, VCAM-1, and ICAM-1. Beyond that, silencing ESM1, the expression of VCAM-1 and ICAM-1, and CXCL16 was attenuated. In conclusion, our results outlined a signaling scheme that increased TMEM16 protein upregulated ESM1, which possibly activated the CXCL16 pathway and increased VCAM-1 and ICAM-1 expression, which drives VSMC inflammation. Beyond that, arctigenin, as a natural inhibitor of TMEM16A, can reduce the systolic blood pressure (SBP) of salt-sensitive hypertension mice and alleviate vascular inflammation.
Collapse
Affiliation(s)
- Mengying Zeng
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jiahao Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shicheng Li
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yanxiang Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|