1
|
Szabo-Hever A, Running KLD, Seneviratne S, Singh G, Zhang Z, Peters Haugrud AR, Maccaferri M, Tuberosa R, Friesen TL, Xu SS, Faris JD. Evaluation of Durum and Hard Red Spring Wheat Panels for Sensitivity to Necrotrophic Effectors Produced by Parastagonospora nodorum. PLANT DISEASE 2025; 109:851-861. [PMID: 39475585 DOI: 10.1094/pdis-05-24-0990-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Septoria nodorum blotch (SNB) is an important disease of both durum and hard red spring wheat (HRSW) worldwide. The disease is caused by the necrotrophic fungal pathogen Parastagonospora nodorum when compatible gene-for-gene interactions occur between pathogen-produced necrotrophic effectors (NEs) and corresponding host sensitivity genes. To date, nine sensitivity gene-NE interactions have been identified, but there is little information available regarding their overall frequency in durum and HRSW. Here, we infiltrated a global HRSW panel (HRSWP) and the Global Durum Panel (GDP) with P. nodorum NEs SnToxA, SnTox1, SnTox267, SnTox3, and SnTox5. Frequencies of sensitivity to SnTox1 and SnTox5 were higher in durum compared with HRSW and vice versa for SnTox267 and SnTox3. Strong associations for the known sensitivity loci Tsn1, Snn1, Snn2, Snn3, Snn5, and Snn7 along with potentially novel sensitivity loci on chromosome arms 7DS and 3BL, associated with SnToxA and SnTox267, respectively, were identified in the HRSWP. In the GDP, Snn1, Snn3, and Snn5 were identified along with novel loci associated with sensitivity to SnTox267 on chromosome arms 2AS, 2AL, and 6AS and with SnTox5 sensitivity on 2BS and 7BL. These results reveal additional NE sensitivity loci beyond those previously described, demonstrating a higher level of genetic complexity of the wheat-P. nodorum system than was previously thought. Knowledge regarding the prevalence and genomic locations of SNB susceptibility genes in HRSW and durum will prove useful for developing efficient breeding strategies and improving varieties for SNB resistance.
Collapse
Affiliation(s)
- Agnes Szabo-Hever
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, U.S.A
| | | | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Zengcui Zhang
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
| | - Amanda R Peters Haugrud
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Timothy L Friesen
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
| | - Steven S Xu
- Western Regional Research Center, USDA-Agricultural Research Service, Albany, CA 94710, U.S.A
| | - Justin D Faris
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
| |
Collapse
|
2
|
Zhang Z, Running KLD, Seneviratne S, Peters Haugrud AR, Szabo-Hever A, Singh G, Holušová K, Molnár I, Doležel J, Friesen TL, Faris JD. Protein Kinase-Major Sperm Protein (PK-MSP) Genes Mediate Recognition of the Fungal Necrotrophic Effector SnTox3 to Cause Septoria nodorum Blotch in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:315-327. [PMID: 40159102 DOI: 10.1094/mpmi-10-24-0125-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The wheat-Parastagonospora nodorum pathosystem has emerged as a model system for plant-necrotrophic fungal pathogen interactions. In this system, fungal necrotrophic effectors are recognized by specific host genes in an inverse gene-for-gene manner to induce programmed cell death and other host responses, which leads to disease. We previously cloned a wheat gene (Snn3-D1) encoding protein kinase and major sperm protein domains that recognizes the P. nodorum necrotrophic effector SnTox3. Here, we identified an Snn3-D1 homoeolog (Snn3-B1) and a paralog (Snn3-B2) that also recognize SnTox3, leading to susceptibility. DNA sequence divergence of Snn3-B1 and Snn3-B2 and differences in transcriptional expression patterns and three-dimensional protein conformation were associated with a more severe programmed cell death response conferred by Snn3-B2 compared with Snn3-B1. Both Snn3 proteins were localized to the nucleus and cytoplasm in wheat protoplasts, suggesting that they may have acquired novel functions compared with previously characterized major sperm protein domain-containing proteins in other species. Snn3-B2 was previously shown to govern osmotic stress and salt tolerance, indicating that protein kinase-major sperm protein genes can act in plant defense responses to both biotic and abiotic stresses. Evaluation of a large collection of wheat lines showed that several alleles of each gene, including absent alleles, exist within the germplasm. Diagnostic markers were developed for the absent alleles of both genes, which will prove useful for marker-assisted selection in wheat to eliminate SnTox3 sensitivity and achieve better disease resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2025.
Collapse
Affiliation(s)
- Zengcui Zhang
- USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | | | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Amanda R Peters Haugrud
- USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Agnes Szabo-Hever
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc 77900, Czech Republic
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc 77900, Czech Republic
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc 77900, Czech Republic
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Improvement Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| |
Collapse
|
3
|
Tong J, Tarekegn ZT, Jambuthenne D, Alahmad S, Periyannan S, Hickey L, Dinglasan E, Hayes B. Stacking beneficial haplotypes from the Vavilov wheat collection to accelerate breeding for multiple disease resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:274. [PMID: 39570410 DOI: 10.1007/s00122-024-04784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
KEY MESSAGE We revealed the neglected genetic relationships of resistance for six major wheat diseases and established a haploblock-based catalogue with novel forms of resistance by multi-trait haplotype characterisation. Genetic potential to improve multiple disease resistance was highlighted through haplotype stacking simulations. Wheat production is threatened by numerous fungal diseases, but the potential to breed for multiple disease resistance (MDR) mechanisms is yet to be explored. Here, significant global genetic correlations and underlying local genomic regions were identified in the Vavilov wheat diversity panel for six major fungal diseases, including biotrophic leaf rust (LR), yellow rust (YR), stem rust (SR), hemibiotrophic crown rot (CR), and necrotrophic tan spot (TS) and Septoria nodorum blotch (SNB). By adopting haplotype-based local genomic estimated breeding values, derived from an integrated set of 34,899 SNP and DArT markers, we established a novel haplotype catalogue for resistance to the six diseases in over 20 field experiments across Australia and Ethiopia. Haploblocks with high variances of haplotype effects in all environments were identified for three rusts, and pleiotropic haploblocks were identified for at least two diseases, with four haploblocks affecting all six diseases. Through simulation, we demonstrated that stacking optimal haplotypes for one disease could improve resistance substantially, but indirectly affected resistance for other five diseases, which varied depending on the genetic correlation with the non-target disease trait. On the other hand, our simulation results combining beneficial haplotypes for all diseases increased resistance to LR, YR, SR, CR, TS, and SNB, by up to 48.1%, 35.2%, 29.1%, 12.8%, 18.8%, and 32.8%, respectively. Overall, our results highlight the genetic potential to improve MDR in wheat. The haploblock-based catalogue with novel forms of resistance provides a useful resource to guide desirable haplotype stacking for breeding future wheat cultivars with MDR.
Collapse
Affiliation(s)
- Jingyang Tong
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Zerihun T Tarekegn
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Dilani Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Samir Alahmad
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Sambasivam Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- School of Agriculture and Environmental Science and Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Lee Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| | - Ben Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
4
|
Cao B, Wang J, Ma J, Hai Y, Wang X, Fu Z, Xiang Z, Wang Y, Zhang L, Wang J, Li S. Large-Scale Screening and Function Analysis of Rhizoctonia solani Effectors Targeting Rice Chloroplasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24336-24346. [PMID: 39466335 DOI: 10.1021/acs.jafc.4c07329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Rice sheath blight (RSB), caused byRhizoctonia solani, is a major economic threat to global rice crops. The genome of R. solani contains over 103 potential effectors, with most functions still unknown. Previous studies show that chloroplast plays a crucial role in RSB resistance. However, whether R. solani effectors target plant chloroplasts to promote the pathogen infection remains unclear. This study leveraged four RSB-resistant chloroplast proteins to identify five interacting secreted proteins from a 430-protein R. solani yeast library. These proteins, which localize to rice chloroplasts, were shown to cause cell death in Nicotiana benthamiana and rice protoplasts, suggesting that they potentially influence host cellular processes by targeting chloroplasts. Bioinformatic analysis indicates that these five putative effectors almost all contained conserved structures related to pathogenicity. This study provides a novel method for screening specific functional effectors and facilitates the further study of the pathogenic mechanisms of R. solani.
Collapse
Affiliation(s)
- Bing Cao
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
| | - Jun Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Junyi Ma
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
| | - Yingfan Hai
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Xinyu Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
| | - Zhuangyuan Fu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Zongjing Xiang
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Yingling Wang
- Department of Plant Pathology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Lixuan Zhang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China
| | - Jiyang Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China
| | - Shuai Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572000, China
| |
Collapse
|
5
|
Zhang S, Li R, Fan W, Chen X, Tao C, Liu S, Zhu P, Wang S, Zhao A. A novel protein elicitor (Cs08297) from Ciboria shiraiana enhances plant disease resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e70023. [PMID: 39497269 PMCID: PMC11534627 DOI: 10.1111/mpp.70023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Ciboria shiraiana is a necrotrophic fungus that causes mulberry sclerotinia disease resulting in huge economic losses in agriculture. During infection, the fungus uses immunity elicitors to induce plant tissue necrosis that could facilitate its colonization on plants. However, the key elicitors and immune mechanisms remain unclear in C. shiraiana. Herein, a novel elicitor Cs08297 secreted by C. shiraiana was identified, and it was found to target the apoplast in plants to induce cell death. Cs08297 is a cysteine-rich protein unique to C. shiraiana, and cysteine residues in Cs08297 were crucial for its ability to induce cell death. Cs08297 induced a series of defence responses in Nicotiana benthamiana, including the burst of reactive oxygen species (ROS), callose deposition, and activation of defence-related genes. Cs08297 induced-cell death was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1. Purified His-tagged Cs08297-thioredoxin fusion protein triggered cell death in different plants and enhanced plant resistance to diseases. Cs08297 was necessary for sclerotial development, oxidative-stress adaptation, and cell wall integrity but negatively regulated virulence of C. shiraiana. In conclusion, our results revealed that Cs08297 is a novel fungal elicitor in fungi inducing plant immunity. Furthermore, its potential to enhance plant resistance provides a new target to control agricultural diseases biologically.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
| | - Ruolan Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
| | - Wei Fan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
| | - Xuefei Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
| | - Caiquan Tao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
| | - Shuman Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
| | - Panpan Zhu
- Resource Institute for Chinese & Ethnic Materia MedicaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Shuchang Wang
- Institute of Environment and Plant ProtectionChinese Academy of Tropical Agricultural SciencesHaikouChina
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
| |
Collapse
|
6
|
Li J, Wyatt NA, Skiba RM, Kariyawasam GK, Richards JK, Effertz K, Rehman S, Liu Z, Brueggeman RS, Friesen TL. Variability in Chromosome 1 of Select Moroccan Pyrenophora teres f. teres Isolates Overcomes a Highly Effective Barley Chromosome 6H Source of Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:676-687. [PMID: 38888557 DOI: 10.1094/mpmi-10-23-0159-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Barley net form net blotch (NFNB) is a destructive foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the broadly effective chromosome 6H resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we generated a P. teres f. teres mapping population using a cross between the Moroccan CIho5791-virulent isolate MorSM40-3 and the avirulent reference isolate 0-1. Full genome sequences were generated for 103 progenies. Saturated chromosome-level genetic maps were generated, and quantitative trait locus (QTL) mapping identified two major QTL associated with P. teres f. teres avirulence/virulence on CIho5791. The most significant QTL mapped to chromosome (Ch) 1, where the virulent allele was contributed by MorSM40-3. A second QTL mapped to Ch8; however, this virulent allele was contributed by the avirulent parent 0-1. The Ch1 and Ch8 loci accounted for 27 and 15% of the disease variation, respectively, and the avirulent allele at the Ch1 locus was epistatic over the virulent allele at the Ch8 locus. As a validation, we used a natural P. teres f. teres population in a genome-wide association study that identified the same Ch1 and Ch8 loci. We then generated a new reference quality genome assembly of parental isolate MorSM40-3 with annotation supported by deep transcriptome sequencing of infection time points. The annotation identified candidate genes predicted to encode small, secreted proteins, one or more of which are likely responsible for overcoming the CIho5791 resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Nathan A Wyatt
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Ryan M Skiba
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Karl Effertz
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco
- Field Crop Development Center of the Olds College, Lacombe, Alberta T4L1W8, Canada
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Robert S Brueggeman
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
7
|
Lhamo D, Sun Q, Friesen TL, Karmacharya A, Li X, Fiedler JD, Faris JD, Xia G, Luo M, Gu YQ, Liu Z, Xu SS. Association mapping of tan spot and septoria nodorum blotch resistance in cultivated emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:193. [PMID: 39073628 DOI: 10.1007/s00122-024-04700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
KEY MESSAGE A total of 65 SNPs associated with resistance to tan spot and septoria nodorum blotch were identified in a panel of 180 cultivated emmer accessions through association mapping Tan spot and septoria nodorum blotch (SNB) are foliar diseases caused by the respective fungal pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum that affect global wheat production. To find new sources of resistance, we evaluated a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for reactions to four P. tritici-repentis isolates Pti2, 86-124, 331-9 and DW5, two P. nodorum isolate, Sn4 and Sn2000, and four necrotrophic effectors (NEs) produced by the pathogens. About 8-36% of the accessions exhibited resistance to the four P. tritici-repentis isolates, with five accessions demonstrating resistance to all isolates. For SNB, 64% accessions showed resistance to Sn4, 43% to Sn2000 and 36% to both isolates, with Spain (11% accessions) as the most common origin of resistance. To understand the genetic basis of resistance, association mapping was performed using SNP (single nucleotide polymorphism) markers generated by genotype-by-sequencing and the 9 K SNP Infinium array. A total of 46 SNPs were significantly associated with tan spot and 19 SNPs with SNB resistance or susceptibility. Six trait loci on chromosome arms 1BL, 3BL, 4AL (2), 6BL and 7AL conferred resistance to two or more isolates. Known NE sensitivity genes for disease development were undetected except Snn5 for Sn2000, suggesting novel genetic factors are controlling host-pathogen interaction in cultivated emmer. The emmer accessions with the highest levels of resistance to the six pathogen isolates (e.g., CItr 14133-1, PI 94634-1 and PI 377672) could serve as donors for tan spot and SNB resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Dhondup Lhamo
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Qun Sun
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Anil Karmacharya
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mingcheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yong-Qiang Gu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
| | - Steven S Xu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA.
| |
Collapse
|
8
|
Lovatto M, Vidigal Filho PS, Gonçalves-Vidigal MC, Vaz Bisneta M, Calvi AC, Gilio TAS, Nascimento EA, Melotto M. Alterations in Gene Expression during Incompatible Interaction between Amendoim Cavalo Common Bean and Colletotrichum lindemuthianum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1245. [PMID: 38732460 PMCID: PMC11085365 DOI: 10.3390/plants13091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 05/13/2024]
Abstract
Anthracnose, caused by the fungus Colletotrichum lindemuthianum, poses a significant and widespread threat to the common bean crop. The use of plant genetic resistance has proven to be the most effective strategy for managing anthracnose disease. The Amendoim Cavalo (AC) Andean cultivar has resistance against multiple races of C. lindemuthianum, which is conferred by the Co-AC gene. Fine mapping of this resistance gene to common bean chromosome Pv01 enabled the identification of Phvul.001G244300, Phvul.001G244400, and Phvul.001G244500 candidate genes for further validation. In this study, the relative expression of Co-AC candidate genes was assessed, as well as other putative genes in the vicinity of this locus and known resistance genes, in the AC cultivar following inoculation with the race 73 of C. lindemuthianum. Gene expression analysis revealed significantly higher expression levels of Phvul.001G244500. Notably, Phvul.001G244500 encodes a putative Basic Helix-Loop-Helix transcription factor, suggesting its involvement in the regulation of defense responses. Furthermore, a significant modulation of the expression of defense-related genes PR1a, PR1b, and PR2 was observed in a time-course experiment. These findings contribute to the development of improved strategies for breeding anthracnose-resistant common bean cultivars, thereby mitigating the impact of this pathogen on crop yields and ensuring sustainable bean production.
Collapse
Affiliation(s)
- Maike Lovatto
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | | | | | - Mariana Vaz Bisneta
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Alexandre Catto Calvi
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | | | - Eduardo A. Nascimento
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Hafez M, Gourlie R, McDonald M, Telfer M, Carmona MA, Sautua FJ, Moffat CS, Moolhuijzen PM, See PT, Aboukhaddour R. Evolution of the Toxb Gene in Pyrenophora tritici-repentis and Related Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:327-337. [PMID: 37759383 DOI: 10.1094/mpmi-08-23-0114-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Pyrenophora tritici-repentis (tan spot) is a destructive foliar pathogen of wheat with global impact. This ascomycete fungus possesses a highly plastic open pangenome shaped by the gain and loss of effector genes. This study investigated the allelic variations in the chlorosis-encoding gene ToxB across 422 isolates representing all identified pathotypes and worldwide origins. To gain better insights into ToxB evolution, we examined its presence and variability in other Pyrenophora spp. A ToxB haplotype network was constructed, revealing the evolutionary relationships of this gene (20 haplotypes) across four Pyrenophora species. Notably, toxb, the homolog of ToxB, was detected for the first time in the barley pathogen Pyrenophora teres. The ToxB/toxb genes display evidence of selection that is characterized by loss of function, duplication, and diverse mutations. Within the ToxB/toxb open reading frame, 72 mutations were identified, including 14 synonymous, 55 nonsynonymous, and 3 indel mutations. Remarkably, a, ∼5.6-kb Copia-like retrotransposon, named Copia-1_Ptr, was found inserted in the toxb gene of a race 3 isolate. This insert disrupted the ToxB gene's function, a first case of effector gene disruption by a transposable element in P. tritici-repentis. Additionally, a microsatellite with 25 nucleotide repeats (0 to 10) in the upstream region of ToxB suggested a potential mechanism influencing ToxB expression and regulation. Exploring ToxB-like protein distribution in other ascomycetes revealed the presence of ToxB-like proteins in 19 additional species, including the Leotiomycetes class for the first time. The presence/absence pattern of ToxB-like proteins defied species relatedness compared with a phylogenetic tree, suggesting a past horizontal gene transfer event during the evolution of the ToxB gene. [Formula: see text] Copyright © 2024 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food. This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mohamed Hafez
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Ryan Gourlie
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Megan McDonald
- School of Biosciences, University of Birmingham, Institute of Microbiology and Infection, Edgbaston, Birmingham, U.K
| | - Melissa Telfer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Marcelo A Carmona
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco J Sautua
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Australia
| | - Paula M Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Australia
| | - Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Australia
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
10
|
Derbyshire MC, Raffaele S. Till death do us pair: Co-evolution of plant-necrotroph interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102457. [PMID: 37852141 DOI: 10.1016/j.pbi.2023.102457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023]
Abstract
Plants use programmed cell death as a potent defense response against biotrophic pathogens that require living host cells to thrive. However, cell death can promote infection by necrotrophic pathogens. This discrepancy creates specific co-evolutionary dynamics in the interaction between plants and necrotrophs. Necrotrophic pathogens produce diverse cell death-inducing effectors that act redundantly on several plant targets and sometimes suppress plant immune responses as an additional function. Plants use surface receptors that recognize necrotrophic effectors to increase quantitative disease resistance, some of which evolved independently in several plant lineages. Co-evolution has shaped molecular mechanisms involved in plant-necrotroph interactions into robust systems, relying on degenerate and multifunctional modules, general-purpose components, and compartmentalized functioning.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sylvain Raffaele
- Université de Toulouse, INRAE, CNRS, Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), 31326, Castanet-Tolosan, France.
| |
Collapse
|
11
|
Kariyawasam GK, Nelson AC, Williams SJ, Solomon PS, Faris JD, Friesen TL. The Necrotrophic Pathogen Parastagonospora nodorum Is a Master Manipulator of Wheat Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:764-773. [PMID: 37581456 DOI: 10.1094/mpmi-05-23-0067-irw] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Parastagonospora nodorum is a necrotrophic pathogen of wheat that is particularly destructive in major wheat-growing regions of the United States, northern Europe, Australia, and South America. P. nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD), resulting in increased colonization of host tissue and, ultimately, sporulation to complete its pathogenic life cycle. Intensive research over the last two decades has led to the functional characterization of five proteinaceous necrotrophic effectors, SnTox1, SnToxA, SnTox267, SnTox3, and SnTox5, and three wheat susceptibility genes, Tsn1, Snn1, and Snn3D-1. Functional characterization has revealed that these effectors, in addition to inducing PCD, have additional roles in pathogenesis, including chitin binding that results in protection from wheat chitinases, blocking defense response signaling, and facilitating plant colonization. There are still large gaps in our understanding of how this necrotrophic pathogen is successfully manipulating wheat defense to complete its life cycle. This review summarizes our current knowledge, identifies knowledge gaps, and provides a summary of well-developed tools and resources currently available to study the P. nodorum-wheat interaction, which has become a model for necrotrophic specialist interactions. Further functional characterization of the effectors involved in this interaction and work toward a complete understanding of how P. nodorum manipulates wheat defense will provide fundamental knowledge about this and other necrotrophic interactions. Additionally, a broader understanding of this interaction will contribute to the successful management of Septoria nodorum blotch disease on wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Ashley C Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Justin D Faris
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| |
Collapse
|
12
|
Moolhuijzen P, Sanglard LMVP, Paterson DJ, Gray S, Khambatta K, Hackett MJ, Zerihun A, Gibberd MR, Naim F. Spatiotemporal patterns of wheat response to Pyrenophora tritici-repentis in asymptomatic regions revealed by transcriptomic and X-ray fluorescence microscopy analyses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4707-4720. [PMID: 37201950 PMCID: PMC10433925 DOI: 10.1093/jxb/erad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis. We show, with improved spatiotemporal resolution, that calcium oscillations are modified in the susceptible cultivar, resulting in 'frozen' host defence signals at the mature disease stage, and silencing of the host's recognition and defence mechanisms that would otherwise protect it from further attacks. In contrast, calcium accumulation and a heightened defence response were observed in the moderately resistant cultivar in the later stage of disease development. Furthermore, in the susceptible interaction, the asymptomatic green region was unable to recover after disease disruption. Our targeted sampling technique also enabled detection of eight previously predicted proteinaceous effectors in addition to the known ToxA effector. Collectively, our results highlight the benefits of spatially resolved molecular analysis and nutrient mapping to provide high-resolution spatiotemporal snapshots of host-pathogen interactions, paving the way for disentangling complex disease interactions in plants.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Lilian M V P Sanglard
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Sean Gray
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Karina Khambatta
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mark R Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Fatima Naim
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
13
|
Wang Z, Su C, Hu W, Su Q, Luan Y. The effectors of Phytophthora infestans impact host immunity upon regulation of antagonistic hormonal activities. PLANTA 2023; 258:59. [PMID: 37530861 DOI: 10.1007/s00425-023-04215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
MAIN CONCLUSION Phytophthora infestans effectors manipulate the antagonism of host hormones to interfere with the immune response of plants at different infection stages. Phytophthora infestans (P. infestans) poses a serious threat to global crop production, and its effectors play an indispensable role in its pathogenicity. However, the function of these effectors during the switch from biotrophy to necrotrophy of P. infestans remains unclear. Further research on the effectors that manipulate the antagonistic response of host hormones is also lacking. In this study, a coexpression analysis and infection assays were performed to identify distinct gene expression changes in both P. infestans and tomato. During the switch from biotrophy to necrotrophy, P. infestans secretes three types of effectors to interfere with host salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) levels. The three aforementioned effectors also regulate the host gene expression including NPR1, TGA2.1, PDF1.2, NDR1, ERF3, NCED6, GAI4, which are involved in hormone crosstalk. The changes in plant hormones are mediated by the three types of effectors, which may accelerate infection and drive completion of the P. infestans lifecycle. Our findings provide new insight into plant‒pathogen interactions that may contribute to the prevention growth of hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenyun Hu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiao Su
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
14
|
Peters Haugrud AR, Shi G, Seneviratne S, Running KLD, Zhang Z, Singh G, Szabo-Hever A, Acharya K, Friesen TL, Liu Z, Faris JD. Genome-wide association mapping of resistance to the foliar diseases septoria nodorum blotch and tan spot in a global winter wheat collection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:54. [PMID: 37337566 PMCID: PMC10276793 DOI: 10.1007/s11032-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01400-5.
Collapse
Affiliation(s)
- Amanda R. Peters Haugrud
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | | | - Zengcui Zhang
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Agnes Szabo-Hever
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Krishna Acharya
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Timothy L. Friesen
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Justin D. Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| |
Collapse
|
15
|
Alhashel AF, Fiedler JD, Nandety RS, Skiba RM, Bruggeman RS, Baldwin T, Friesen TL, Yang S. Genetic and physical localization of a major susceptibility gene to Pyrenophora teres f. maculata in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:118. [PMID: 37103563 PMCID: PMC10140075 DOI: 10.1007/s00122-023-04367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Genetic characterization of a major spot form net blotch susceptibility locus to using linkage mapping to identify a candidate gene and user-friendly markers in barley. Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is an economically important foliar diseases in barley. Although various resistance loci have been identified, breeding for SFNB-resistant varieties has been hampered due to the complex virulence profile of Ptm populations. One resistance locus in the host may be effective against one specific isolate, but it may confer susceptibility to other isolates. A major susceptibility QTL on chromosome 7H, named Sptm1, was consistently identified in many studies. In the present study, we conduct fine mapping to localize Sptm1 with high resolution. A segregating population was developed from selected F2 progenies of the cross Tradition (S) × PI 67381 (R), in which the disease phenotype was determined by the Sptm1 locus alone. Disease phenotypes of critical recombinants were confirmed in the following two consecutive generations. Genetic mapping anchored the Sptm1 gene to an ⁓400 kb region on chromosome 7H. Gene prediction and annotation identified six protein-coding genes in the delimited Sptm1 region, and the gene encoding a putative cold-responsive protein kinase was selected as a strong candidate. Therefore, providing fine localization and candidate of Sptm1 for functional validation, our study will facilitate the understanding of susceptibility mechanism underlying the barley-Ptm interaction and offers a potential target for gene editing to develop valuable materials with broad-spectrum resistance to SFNB.
Collapse
Affiliation(s)
- Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Ryan M Skiba
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA.
| |
Collapse
|
16
|
Xing Q, Zhou X, Cao Y, Peng J, Zhang W, Wang X, Wu J, Li X, Yan J. The woody plant-degrading pathogen Lasiodiplodia theobromae effector LtCre1 targets the grapevine sugar-signaling protein VvRHIP1 to suppress host immunity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2768-2785. [PMID: 36788641 PMCID: PMC10112684 DOI: 10.1093/jxb/erad055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/14/2023] [Indexed: 06/06/2023]
Abstract
Lasiodiplodia theobromae is a causal agent of Botryosphaeria dieback, which seriously threatens grapevine production worldwide. Plant pathogens secrete diverse effectors to suppress host immune responses and promote the progression of infection, but the mechanisms underlying the manipulation of host immunity by L. theobromae effectors are poorly understood. In this study, we characterized LtCre1, which encodes a L. theobromae effector that suppresses BAX-triggered cell death in Nicotiana benthamiana. RNAi-silencing and overexpression of LtCre1 in L. theobromae showed impaired and increased virulence, respectively, and ectopic expression in N. benthamiana increased susceptibility. These results suggest that LtCre1 is as an essential virulence factor for L. theobromae. Protein-protein interaction studies revealed that LtCre1 interacts with grapevine RGS1-HXK1-interacting protein 1 (VvRHIP1). Ectopic overexpression of VvRHIP1 in N. benthamiana reduced infection, suggesting that VvRHIP1 enhances plant immunity against L. theobromae. LtCre1 was found to disrupt the formation of the VvRHIP1-VvRGS1 complex and to participate in regulating the plant sugar-signaling pathway. Thus, our results suggest that L. theobromae LtCre1 targets the grapevine VvRHIP1 protein to manipulate the sugar-signaling pathway by disrupting the association of the VvRHIP1-VvRGS1 complex.
Collapse
Affiliation(s)
| | | | - Yang Cao
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiahong Wu
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruits Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | |
Collapse
|
17
|
Gupta PK, Vasistha NK, Singh S, Joshi AK. Genetics and breeding for resistance against four leaf spot diseases in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1023824. [PMID: 37063191 PMCID: PMC10096043 DOI: 10.3389/fpls.2023.1023824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
In wheat, major yield losses are caused by a variety of diseases including rusts, spike diseases, leaf spot and root diseases. The genetics of resistance against all these diseases have been studied in great detail and utilized for breeding resistant cultivars. The resistance against leaf spot diseases caused by each individual necrotroph/hemi-biotroph involves a complex system involving resistance (R) genes, sensitivity (S) genes, small secreted protein (SSP) genes and quantitative resistance loci (QRLs). This review deals with resistance for the following four-leaf spot diseases: (i) Septoria nodorum blotch (SNB) caused by Parastagonospora nodorum; (ii) Tan spot (TS) caused by Pyrenophora tritici-repentis; (iii) Spot blotch (SB) caused by Bipolaris sorokiniana and (iv) Septoria tritici blotch (STB) caused by Zymoseptoria tritici.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Murdoch’s Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| | - Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Sahadev Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
- The International Maize and Wheat Improvement Center (CIMMYT), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| |
Collapse
|
18
|
Chen H, King R, Smith D, Bayon C, Ashfield T, Torriani S, Kanyuka K, Hammond-Kosack K, Bieri S, Rudd J. Combined pangenomics and transcriptomics reveals core and redundant virulence processes in a rapidly evolving fungal plant pathogen. BMC Biol 2023; 21:24. [PMID: 36747219 PMCID: PMC9903594 DOI: 10.1186/s12915-023-01520-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Studying genomic variation in rapidly evolving pathogens potentially enables identification of genes supporting their "core biology", being present, functional and expressed by all strains or "flexible biology", varying between strains. Genes supporting flexible biology may be considered to be "accessory", whilst the "core" gene set is likely to be important for common features of a pathogen species biology, including virulence on all host genotypes. The wheat-pathogenic fungus Zymoseptoria tritici represents one of the most rapidly evolving threats to global food security and was the focus of this study. RESULTS We constructed a pangenome of 18 European field isolates, with 12 also subjected to RNAseq transcription profiling during infection. Combining this data, we predicted a "core" gene set comprising 9807 sequences which were (1) present in all isolates, (2) lacking inactivating polymorphisms and (3) expressed by all isolates. A large accessory genome, consisting of 45% of the total genes, was also defined. We classified genetic and genomic polymorphism at both chromosomal and individual gene scales. Proteins required for essential functions including virulence had lower-than average sequence variability amongst core genes. Both core and accessory genomes encoded many small, secreted candidate effector proteins that likely interact with plant immunity. Viral vector-mediated transient in planta overexpression of 88 candidates failed to identify any which induced leaf necrosis characteristic of disease. However, functional complementation of a non-pathogenic deletion mutant lacking five core genes demonstrated that full virulence was restored by re-introduction of the single gene exhibiting least sequence polymorphism and highest expression. CONCLUSIONS These data support the combined use of pangenomics and transcriptomics for defining genes which represent core, and potentially exploitable, weaknesses in rapidly evolving pathogens.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
- Present address: School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Guangming District, Shenzhen, Guangdong People’s Republic of China
| | - Robert King
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| | - Dan Smith
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| | - Carlos Bayon
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| | - Tom Ashfield
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
- Crop Health and Protection (CHaP), Rothamsted Research, Harpenden, Herts UK
| | - Stefano Torriani
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Kostya Kanyuka
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
- Present address: National Institute for Agricultural Botany (NIAB), 93 Lawrence Weaver Road, Cambridge, UK
| | - Kim Hammond-Kosack
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| | - Stephane Bieri
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Jason Rudd
- Department of Protecting Crops and the Environment, Rothamsted Research, Harpenden, Herts UK
| |
Collapse
|
19
|
Poddar S, Tanaka J, Running KLD, Kariyawasam GK, Faris JD, Friesen TL, Cho MJ, Cate JHD, Staskawicz B. Optimization of highly efficient exogenous-DNA-free Cas9-ribonucleoprotein mediated gene editing in disease susceptibility loci in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1084700. [PMID: 36704157 PMCID: PMC9872142 DOI: 10.3389/fpls.2022.1084700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
The advancement of precision engineering for crop trait improvement is important in the face of rapid population growth, climate change, and disease. To this end, targeted double-stranded break technology using RNA-guided Cas9 has been adopted widely for genome editing in plants. Agrobacterium or particle bombardment-based delivery of plasmids encoding Cas9 and guide RNA (gRNA) is common, but requires optimization of expression and often results in random integration of plasmid DNA into the plant genome. Recent advances have described gene editing by the delivery of Cas9 and gRNA as pre-assembled ribonucleoproteins (RNPs) into various plant tissues, but with moderate efficiency in resulting regenerated plants. In this report we describe significant improvements to Cas9-RNP mediated gene editing in wheat. We demonstrate that Cas9-RNP assays in protoplasts are a fast and effective tool for rational selection of optimal gRNAs for gene editing in regenerable immature embryos (IEs), and that high temperature treatment enhances gene editing rates in both tissue types. We also show that Cas9-mediated editing persists for at least 14 days in gold particle bombarded wheat IEs. The regenerated edited wheat plants in this work are recovered at high rates in the absence of exogenous DNA and selection. With this method, we produce knockouts of a set of three homoeologous genes and two pathogenic effector susceptibility genes, engineering insensitivity to corresponding necrotrophic effectors produced by Parastagonospora nodorum. The establishment of highly efficient, exogenous DNA-free gene editing technology holds promise for accelerated trait diversity production in an expansive array of crops.
Collapse
Affiliation(s)
- Snigdha Poddar
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jaclyn Tanaka
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | | | - Gayan K. Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Justin D. Faris
- United States Department of Agriculture (USDA)-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Timothy L. Friesen
- United States Department of Agriculture (USDA)-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Brian Staskawicz
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
20
|
Anderegg J, Kirchgessner N, Kronenberg L, McDonald BA. Automated Quantitative Measurement of Yellow Halos Suggests Activity of Necrotrophic Effectors in Septoria tritici Blotch. PHYTOPATHOLOGY 2022; 112:2560-2573. [PMID: 35793150 DOI: 10.1094/phyto-11-21-0465-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many necrotrophic plant pathogens utilize host-selective toxins or necrotrophic effectors during the infection process. We hypothesized that the chlorotic yellow halos frequently observed around necrotic lesions caused by the wheat pathogen Zymoseptoria tritici could result from the activity of necrotrophic effectors interacting with the products of toxin sensitivity genes. As an initial step toward testing this hypothesis, we developed an automated image analysis (AIA) workflow that could quantify the degree of yellow halo formation occurring in wheat leaves naturally infected by a highly diverse pathogen population under field conditions. This AIA based on statistical learning was applied to more than 10,000 naturally infected leaves collected from 335 wheat cultivars grown in a replicated field experiment. We estimated a high heritability (h2 = 0.71) for the degree of yellow halo formation, suggesting that this quantitative trait has a significant genetic component. Using genome-wide association mapping, we identified six chromosome segments significantly associated with the yellow halo phenotype. Most of these segments contained candidate genes associated with targets of necrotrophic effectors in other necrotrophic pathogens. Our findings conform with the hypothesis that toxin sensitivity genes could account for a significant fraction of the observed variation in quantitative resistance to Septoria tritici blotch. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jonas Anderegg
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Norbert Kirchgessner
- Crop Science Group, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Lukas Kronenberg
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Peters Haugrud AR, Zhang Z, Friesen TL, Faris JD. Genetics of resistance to septoria nodorum blotch in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3685-3707. [PMID: 35050394 DOI: 10.1007/s00122-022-04036-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Septoria nodorum blotch (SNB) is a foliar disease of wheat caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Research over the last two decades has shown that the wheat-P. nodorum pathosystem mostly follows an inverse gene-for-gene model. The fungus produces necrotrophic effectors (NEs) that interact with specific host gene products encoded by dominant sensitivity (S) genes. When a compatible interaction occurs, a 'defense response' in the host leads to programmed cell death thereby provided dead/dying cells from which the pathogen, being a necrotroph, can acquire nutrients allowing it to grow and sporulate. To date, nine S gene-NE interactions have been characterized in this pathosystem. Five NE-encoding genes, SnTox1, SnTox3, SnToxA, SnTox5, and SnTox267, have been cloned along with three host S genes, Tsn1, Snn1, and Snn3-D1. Studies have shown that P. nodorum hijacks multiple and diverse host targets to cause disease. SNB resistance is often quantitative in nature because multiple compatible interactions usually occur concomitantly. NE gene expression plays a key role in disease severity, and the effect of each compatible interaction can vary depending on the other existing compatible interactions. Numerous SNB-resistance QTL have been identified in addition to the known S genes, and more research is needed to understand the nature of these resistance loci. Marker-assisted elimination of S genes through conventional breeding practices and disruption of S genes using gene editing techniques are both effective strategies for the development of SNB-resistant wheat cultivars, which will become necessary as the global demand for sustenance grows.
Collapse
Affiliation(s)
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
22
|
Skiba RM, Wyatt NA, Kariyawasam GK, Fiedler JD, Yang S, Brueggeman RS, Friesen TL. Host and pathogen genetics reveal an inverse gene-for-gene association in the P. teres f. maculata-barley pathosystem. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3597-3609. [PMID: 36065067 DOI: 10.1007/s00122-022-04204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 05/12/2023]
Abstract
Pathogen and host genetics were used to uncover an inverse gene-for-gene interaction where virulence genes from the pathogen Pyrenophora teres f. maculata target barley susceptibility genes, resulting in disease. Although models have been proposed to broadly explain how plants and pathogens interact and coevolve, each interaction evolves independently, resulting in various scenarios of host manipulation and plant defense. Spot form net blotch is a foliar disease of barley caused by Pyrenophora teres f. maculata. We developed a barley population (Hockett × PI 67381) segregating for resistance to a diverse set of P. teres f. maculata isolates. Quantitative trait locus analysis identified major loci on barley chromosomes (Chr) 2H and 7H associated with resistance/susceptibility. Subsequently, we used avirulent and virulent P. teres f. maculata isolates to develop a pathogen population, identifying two major virulence loci located on Chr1 and Chr2. To further characterize this host-pathogen interaction, progeny from the pathogen population harboring virulence alleles at either the Chr1 or Chr2 locus was phenotyped on the Hockett × PI 67381 population. Progeny harboring only the Chr1 virulence allele lost the barley Chr7H association but maintained the 2H association. Conversely, isolates harboring only the Chr2 virulence allele lost the barley Chr2H association but maintained the 7H association. Hockett × PI 67381 F2 individuals showed susceptible/resistant ratios not significantly different than 15:1 and results from F2 inoculations using the single virulence genotypes were not significantly different from a 3:1 (S:R) ratio, indicating two dominant susceptibility genes. Collectively, this work shows that P. teres f. maculata virulence alleles at the Chr1 and Chr2 loci are targeting the barley 2H and 7H susceptibility alleles in an inverse gene-for-gene manner to facilitate colonization.
Collapse
Affiliation(s)
- Ryan M Skiba
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Nathan A Wyatt
- USDA-ARS, Sugar Beet and Potato Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Shengming Yang
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, Fargo, ND, 58102, USA.
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
23
|
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int J Biol Macromol 2022; 206:188-202. [PMID: 35227707 DOI: 10.1016/j.ijbiomac.2022.02.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Plant pathogenic fungi encode and secrete effector proteins to promote pathogenesis. In recent years, the important role of effector proteins in fungi and plant host interactions has become increasingly prominent. In this review, the functional characterization and molecular mechanisms by which fungal effector proteins modulate biological processes and suppress the defense of plant hosts are discussed, with an emphasis on cell localization during fungal infection. This paper also provides a comprehensive review of bioinformatic and experimental methods that are currently available for the identification of fungal effector proteins. We additionally summarize the secretion pathways and the methods for verifying the presence effector proteins in plant host cells. For future research, comparative genomic studies of different pathogens with varying life cycles will allow comprehensive and systematic identification of effector proteins. Additionally, functional analysis of effector protein interactions with a wider range of hosts (especially non-model crops) will provide more detailed repertoires of fungal effectors. Identifying effector proteins and verifying their functions will improve our understanding of their role in causing disease and in turn guide future strategies for combatting fungal infections.
Collapse
|
24
|
Kariyawasam GK, Richards JK, Wyatt NA, Running KLD, Xu SS, Liu Z, Borowicz P, Faris JD, Friesen TL. The Parastagonospora nodorum necrotrophic effector SnTox5 targets the wheat gene Snn5 and facilitates entry into the leaf mesophyll. THE NEW PHYTOLOGIST 2022; 233:409-426. [PMID: 34231227 PMCID: PMC9291777 DOI: 10.1111/nph.17602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/27/2021] [Indexed: 05/11/2023]
Abstract
Parastagonospora nodorum is an economically important necrotrophic fungal pathogen of wheat. Parastagonospora nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD). In this study, we cloned and functionally validated SnTox5 and characterized its role in pathogenesis. We used whole genome sequencing, genome-wide association study (GWAS) mapping, CRISPR-Cas9-based gene disruption, gain-of-function transformation, quantitative trait locus (QTL) analysis, haplotype and isoform analysis, protein modeling, quantitative PCR, and laser confocal microscopy to validate SnTox5 and functionally characterize SnTox5. SnTox5 is a mature 16.26 kDa protein with high structural similarity to SnTox3. Wild-type and mutant P. nodorum strains and wheat genotypes of SnTox5 and Snn5, respectively, were used to show that SnTox5 not only targets Snn5 to induce PCD but also facilitates the colonization of the mesophyll layer even in the absence of Snn5. Here we show that SnTox5 facilitates the efficient colonization of the mesophyll tissue and elicits PCD specific to host lines carrying Snn5. The homology to SnTox3 and the ability of SnTox5 to facilitate the colonizing of the mesophyll also suggest a role in the suppression of host defense before PCD induction.
Collapse
Affiliation(s)
| | - Jonathan K. Richards
- Department of Plant Pathology and Crop PhysiologyLouisiana State University – Agricultural CenterBaton RougeLA70803USA
| | - Nathan A. Wyatt
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | | | - Steven S. Xu
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Zhaohui Liu
- Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
| | - Pawel Borowicz
- Department of Animal SciencesNorth Dakota State UniversityFargoND58102USA
| | - Justin D. Faris
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
- Department of Plant ScienceNorth Dakota State UniversityFargoND58102USA
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| |
Collapse
|
25
|
Fan H, Yang W, Nie J, Lin C, Wu J, Wu D, Wang Y. Characterization of a Secretory YML079-like Cupin Protein That Contributes to Sclerotinia sclerotiorum Pathogenicity. Microorganisms 2021; 9:2519. [PMID: 34946121 PMCID: PMC8704077 DOI: 10.3390/microorganisms9122519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Sclerotinia sclerotiorum causes devastating diseases in many agriculturally important crops, including oilseed rape and sunflower. However, the mechanisms of Sclerotinia sclerotiorum pathogenesis remain poorly understood. In this study, we characterized a YML079-like cupin protein (SsYCP1) from Sclerotinia sclerotiorum. We showed that SsYCP1 is strongly expressed and secreted during Sclerotinia sclerotiorum infection. Sclerotinia sclerotiorum infection was promoted by SsYCP1 overexpression and inhibited by silencing this gene with synthetic double-stranded RNA. These results collectively indicate SsYCP1 as a putative effector protein that contributes to Sclerotinia sclerotiorum pathogenicity. These findings extend our understanding of effector-mediated Sclerotinia sclerotiorum pathogenesis and suggest a novel role for YML079-like cupin proteins in plant-pathogen interactions.
Collapse
Affiliation(s)
- Hongxia Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Wenwen Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Jiayue Nie
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Dewei Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (H.F.); (W.Y.); (J.N.); (C.L.); (J.W.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|