1
|
Li Z, Deng X, Cao Y, Xu H, Wang J, Yuan L, Deng H. Different GJA8 missense variants reveal distinct pathogenic mechanisms in congenital cataract. Life Sci 2025; 371:123596. [PMID: 40158616 DOI: 10.1016/j.lfs.2025.123596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
AIM Congenital cataract, a lenticular opacity diagnosed at birth or early in the postnatal period, often causes visual impairment. The pathogenic mechanisms of various cataract-associated variants are complex and diverse, and current knowledge is insufficient. This study aimed to determine the molecular etiology of congenital nuclear cataract in a Han-Chinese family and to reveal the pathogenic mechanisms of common cataract-associated variants with unclear mechanisms. METHODS Genetic analysis including whole exome sequencing and bioinformatics analysis were conducted in the family. Functional analysis was performed to elucidate the changes in protein cellular distribution, degradation, and function induced by the variants. RESULTS A heterozygous c.773C>T transition (p.S258F) in the gap junction protein alpha 8 gene (GJA8), encoding connexin 50 (Cx50), was identified in a family with congenital nuclear cataract. Functional analysis of this variant and two other GJA8 variants with unclear pathogenic mechanisms showed that the Cx50V44M mutant correctly trafficked to the plasma membrane, whereas the Cx50R76C mutant and Cx50S258F mutant exhibited trafficking defects resulting from delayed degradation and accelerated degradation, respectively. All three mutants exhibited increased autophagic activity, while only the Cx50V44M mutant and Cx50S258F mutant underwent autophagy-mediated Cx50 degradation. All mutants failed to form functional hemichannels and gap junction channels. SIGNIFICANCE This study identified a heterozygous GJA8 missense variant c.773C>T (p.S258F) responsible for congenital nuclear cataract, and revealed three distinct pathogenic mechanisms of three cataract-associated GJA8 variants, particularly emphasizing dysregulated autophagy involving in aberrant Cx50 degradation.
Collapse
Affiliation(s)
- Zexuan Li
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanna Cao
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China.
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Research Center of Medical Experimental Technology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Khan M, Verma L. Crosstalk between signaling pathways (Rho/ROCK, TGF-β and Wnt/β-Catenin Pathways/ PI3K-AKT-mTOR) in Cataract: A Mechanistic Exploration and therapeutic strategy. Gene 2025; 947:149338. [PMID: 39965745 DOI: 10.1016/j.gene.2025.149338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Cataract are a leading cause of visual impairment that is characterized by clouding or lens opacification of the healthy clear lens of the eye or its capsule. It can be classified based on their etiology and clinical presentation such as congenital, age-related, and secondary cataracts. Clinically, it may be further classified as a cortical or nuclear cataract. Cortical cataracts are responsible for opacification of the lens cortex, while nuclear cataracts cause age-related degeneration of the lens nucleus. This review aims to explore the molecular mechanism associated with various signaling pathways underlying cataract formation. Additionally, explore the potential therapeutic strategies for the management of cataracts. A comprehensive literature search was performed utilizing different keywords such as cataract, pathogenesis, signaling pathways, therapeutic approaches, RNA therapeutics, and surgery. Electronic databases such as PubMed, Google Scholar, Springer Link, and Web of Science were used for the literature search. The cataract formation is responsible for protein aggregation, primarily of γ-crystallin, and causes disruptions in signaling pathways. Key pathways include Rho/ROCK, TGF-β, Wnt/β-catenin, NF-κB, and PI3K-AKT-mTOR. Signaling pathways governing lens epithelial cell differentiation and epithelial-to-mesenchymal transition (EMT) are essential for maintaining lens transparency. Disruptions in these pathways, often caused by genetic mutations in genes like MIP, TDRD7, PAX6, FOXE3, HSF4, MAF, and PITX3 lead to cataract formation. While surgical intervention remains the primary treatment, pharmacological therapies and emerging RNA-based strategies offer promising strategies for the prevention and management of cataracts. A deeper understanding of the underlying molecular mechanisms is essential to develop innovative therapeutic strategies and improve the quality of life for individuals affected by cataracts.
Collapse
Affiliation(s)
- Meraj Khan
- Faculty of Pharmaceutical Sciences, Sagar Institute of Research & Technology-Pharmacy, Sanjeev Agrawal Global Educational University, Bhopal, Madhya.Pradesh 462022, India.
| | - Lokesh Verma
- Faculty of Pharmaceutical Sciences, Sagar Institute of Research & Technology-Pharmacy, Sanjeev Agrawal Global Educational University, Bhopal, Madhya.Pradesh 462022, India.
| |
Collapse
|
3
|
Wang Y, Cao K, Guo ZX, Wan XH. Effect of lens crystallins aggregation on cataract formation. Exp Eye Res 2025; 253:110288. [PMID: 39955021 DOI: 10.1016/j.exer.2025.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Cataracts represent one of the leading causes of blindness globally. The World Health Organization's 2019World Report on Vision indicates that approximately 65.2 million individuals worldwide experience varying degrees of visual impairment or blindness attributable to cataracts. The prevalence of this condition is significantly increasing, largely due to the accelerated aging of the global population. The lens of the eye is primarily composed of crystallins, which are categorized into three families: α-, β-, and γ-crystallins. The highly ordered structure and interactions among these crystallins are crucial for maintaining lens transparency. Disruptions in the interactions within or between crystallins can compromise this delicate architecture, exposing hydrophobic surfaces that lead to crystallin aggregation and subsequent cataract formation. Currently, surgical intervention is the sole treatment for cataracts, and the cataract surgery rate in China remains considerably lower than that of developed nations. Investigating the mechanisms of crystallins interaction and aggregation is essential for understanding the molecular pathogenesis of cataract formation, which may inform the development of targeted therapies and preventative strategies. This paper reviews recent scientific advancements in the research field of lens crystallins aggregation and cataract formation.
Collapse
Affiliation(s)
- Yue Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Zhao-Xing Guo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiu-Hua Wan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
5
|
Ma X, Yu S, Zhang M, Mei S, Ling Y, Huang X, Dong S, Fan B, Zhao J. PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis. Biochem Biophys Res Commun 2025; 747:151123. [PMID: 39778216 DOI: 10.1016/j.bbrc.2024.151123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/16/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyveΔ8) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyveΔ8zebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation. PIKFYVE-knockout and PIKFYVE-inhibited human lens epithelial cells with vacuoles further verified these omics results and rescued with Bafilomycin A1(Baf-A1) and U18666A. We discovered no significant differences in lysosomal fusion, but upregulation in acid hydrolase. The composition of late endosomal membrane was changed, and vacuolar ATPase and endosomal sorting complexes required for transport (ESCRT) at late endosome were upregulated. These changes are related with the late endosome homeostasis. Strikingly, vacuoles in human lens epithelial cells could be partially rescued by Baf-A1 and almost completely rescued by U18666A. Collectively, these findings suggest that vacuoles in pikfyveΔ8 zebrafish lens and PIKFYVE-inhibited cells were colocalized with swollen late endosomes, and generated by perturbing late endosome homeostasis due to enhanced ESCRT mechanisms and decreased stability in late endosomal membrane. This study expands our understanding of the mechanisms underlying cataract development and reveals potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Xiaochen Ma
- The Second Clinical Medical College of Jinan University, Department of Ophthalmology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Sejie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Min Zhang
- The Second Clinical Medical College of Jinan University, Department of Ophthalmology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Shaoyi Mei
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Yunzhi Ling
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xiaosheng Huang
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Songguo Dong
- Shenzhen Eye Institute, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Baojian Fan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
6
|
Domenech-Bendaña A, Salazar N, Locascio A, Ponce-Mora A, Gimeno-Mallench L, Bejarano E. Targeting Connexins Biology as Therapeutic Strategies Against Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:485-489. [PMID: 39930242 DOI: 10.1007/978-3-031-76550-6_79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Gap junctions are intercellular channels formed by structural elements called connexins. These intercellular channels play a key role in retinal homeostasis by enabling the exchange of metabolites between neighbouring cells. Several connexins are expressed in different retinal cells, suggesting that the permeability properties of the channels and their physiological relevance could be cell-type dependent. Many studies have revealed that dysfunctional gap junction activity contributes to the development and worsening of retinal diseases. Unravelling the complexity of the retinal connexins' biology is essential to designing effective therapeutic strategies. For instance, new drugs or connexin mimetic peptides that selectively modulate connexin isoforms in each cell type are currently explored as therapeutic options for retinal diseases. To date, Cx43 mimetic peptides have been tested for the treatment of different retinal pathologies.
Collapse
Affiliation(s)
- Alicia Domenech-Bendaña
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Nicolle Salazar
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Antonella Locascio
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Alejandro Ponce-Mora
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Lucía Gimeno-Mallench
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain
| | - Eloy Bejarano
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Moncada, Valencia, Spain.
| |
Collapse
|
7
|
Xu W, Chen J, Chen F, Wu W, Lin N, Guo Y, Hu L, Chen X. A novel cataract-related mutation R10P in γA-crystallin increases susceptibility to thermal shock and ultraviolet radiation of γA-crystallin. Biochem Biophys Res Commun 2024; 739:150585. [PMID: 39186870 DOI: 10.1016/j.bbrc.2024.150585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Congenital cataract is one of the most common causes of childhood blindness, typically resulting from genetic mutations. Over a hundred gene mutations associated with congenital cataract have been identified, with approximately half occurring in the Crystallin genes. In this study, we identified a novel γA-crystallin pathogenic mutation (c. 29G > C, p. Arg10Pro (R10P)), from a four-generation Chinese family with congenital cataract, and investigated its potential molecular mechanisms underlying congenital cataracts. We compared the protein structure and stability of purified the wild type (WT) and R10P under physiological conditions and environmental stresses (UV irradiation, pH imbalance, heat shock, and chemical denaturation) using spectroscopic experiments, SEC analysis, and the UNcle protein analysis system. The results demonstrate that γA-R10P has no significant impact on the structure of γA-crystallin on normal condition. However, it is more sensitive to UV irradiation at high concentrations and prone to aggregation at high temperatures. Therefore, our study reveals the crucial role of the conserved site mutation R10P in maintaining protein structure and stability, providing new insights into the mechanisms of cataract formation.
Collapse
Affiliation(s)
- Wanyue Xu
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Jing Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Fanrui Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Ningqin Lin
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, 310020, China
| | - Yan Guo
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, 310020, China.
| |
Collapse
|
8
|
Sarmiso S, Tediso D, Tafese T, Gari T. Time to recovery following cataract surgery and its predictors among patients undergoing surgery at two selected Public Hospitals in Hawassa, Sidama, Ethiopia. PLoS One 2024; 19:e0313118. [PMID: 39495789 PMCID: PMC11534261 DOI: 10.1371/journal.pone.0313118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Cataract surgery is a commonly performed procedure aimed at restoring vision in individuals affected by cataracts. The duration of recovery following cataract surgery can vary among patients and is influenced by a multitude of factors. Therefore, the purpose of this study was to determine the time to recovery from cataracts and its predictors among patients treated with cataract surgery at two selected Public Hospitals in Hawassa, Sidama regional state, Ethiopia. METHODS Institution-based retrospective cohort study was conducted among 444 cataract patients treated with surgery from January 01, 2019, to December 30, 2021. A simple random sampling method was used to select two public hospitals. The data was collected using Kobo toolbox Version 4 and trained data collectors. STATA Version 16 was used for analysis. To estimate the recovery time and compare survival probability among variables Kaplan-Meir curve and Log-rank test were used. The cox-Proportional hazards model was used to identify significant predictors of time to recovery. The association was reported using the adjusted hazards ratio (AHR) with a 95% confidence interval (95%CI), and the significance level was set at a p-value of 0.05. RESULTS This study showed that 76.14% of cataract patients recovered from cataracts. The average time taken to recover from a cataract was 30 weeks (IQR = 15 to 48) 95%, CI, (26-33). Age 40-60 years (AHR = 2.04 CI; 1.12-3.82), urban dwellers (AHR = 1.48; 95% CI, 1.13-1.93), medium/high level of visual acuity (AHR = 1.49 CI; 1.14-1.94), secondary cataract (AHR = 1.56 CI; 1.11-2.18) and traumatic cataract (AHR = 1.82 CI; 1.32-2.52) were associated with time to recovery of cataract patients. CONCLUSIONS According to this study, the time to recovery of cataract patients was slightly high. Cataract patients' time to recovery was affected by age, residence, pre-operative visual acuity, presence of diabetes mellitus, and post-operative complications. To improve recovery time of cataract patients, treatment strategies must be prioritized.
Collapse
Affiliation(s)
- Shilota Sarmiso
- Department of Public Health, Hawassa College of Health Sciences, Hawassa, Ethiopia
| | - Dansamo Tediso
- Department of Public Health, Hawassa College of Health Sciences, Hawassa, Ethiopia
| | - Temesgen Tafese
- School of Public Health, College of Medicine and Health Science, Hawassa University Hawassa, Ethiopia
| | - Taye Gari
- School of Public Health, College of Medicine and Health Science, Hawassa University Hawassa, Ethiopia
| |
Collapse
|
9
|
Jia W, Zhang C, Luo Y, Gao J, Yuan C, Zhang D, Zhou X, Tan Y, Wang S, Chen Z, Li G, Zhang X. GBF1 deficiency causes cataracts in human and mouse. Hum Genet 2024; 143:1281-1291. [PMID: 39110251 DOI: 10.1007/s00439-024-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/29/2024] [Indexed: 10/30/2024]
Abstract
Any opacification of the lens can be defined as cataracts, and lens epithelium cells play a crucial role in guaranteeing lens transparency by maintaining its homeostasis. Although several causative genes of congenital cataracts have been reported, the mechanisms underlying lens opacity remain unclear. In this study, a large family with congenital cataracts was collected and genetic analysis revealed a pathological mutation (c.3857 C > T, p.T1287I) in the GBF1 gene; all affected individuals in the family carried this heterozygous mutation, while unaffected family members did not. Functional studies in human lens epithelium cell line revealed that this mutation led to a reduction in GBF1 protein levels. Knockdown of endogenous GBF1 activated XBP1s in the unfolded protein response signal pathway, and enhances autophagy in an mTOR-independent manner. Heterozygous Gbf1 knockout mice also displayed typic cataract phenotype. Together, our study identified GBF1 as a novel causative gene for congenital cataracts. Additionally, we found that GBF1 deficiency activates the unfolded protein response and leads to enhanced autophagy, which may contribute to lens opacity.
Collapse
Affiliation(s)
- Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yalin Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Yuan
- Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Hejtmancik JF. Oxidative Stress in Genetic Cataract Formation. Antioxidants (Basel) 2024; 13:1315. [PMID: 39594457 PMCID: PMC11591473 DOI: 10.3390/antiox13111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Cataracts are the leading cause of blindness worldwide, and age-related cataracts are the result of environmental insults that largely lead to oxidative stress imposed on a genetic background that determines susceptibility to these stresses. METHODS A comprehensive literature review was performed to identify GWAS, targeted association studies, and TWAS that identified genes associated with age-related cataract. Additional genes associated with age-related cataracts were identified through the CAT-MAP online database. Pathway analysis was performed using Qiagen Ingenuity Pathway Analysis and pathways related to oxidative stress were analyzed using the same program. RESULTS A large number of genes have been identified as causes of both Mendelian and complex cataracts. Of these, 10 genes related to oxidative stress were identified, and all were associated with age-related cataracts. These genes fall into seven canonical pathways primarily related to glutathione metabolism and other pathways related to detoxifying reactive oxygen species. CONCLUSIONS While a relatively small number of antioxidant related genes were identified as being associated with cataracts, they allow the identification of redox pathways important for lens metabolism and homeostasis. These are largely related to glutathione and its metabolism, other pathways for detoxification of reactive oxygen species, and the transcriptional systems that control their expression.
Collapse
Affiliation(s)
- James Fielding Hejtmancik
- Ophthalmic Molecular Genetics Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Kumar VP, Kong Y, Dolland R, Brown SR, Wang K, Dolland D, Mu D, Brown ML. Exploring Angiotensin II and Oxidative Stress in Radiation-Induced Cataract Formation: Potential for Therapeutic Intervention. Antioxidants (Basel) 2024; 13:1207. [PMID: 39456460 PMCID: PMC11504979 DOI: 10.3390/antiox13101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the mechanisms underlying RIC formation (RICF). This study investigates the roles of angiotensin II (Ang II) and oxidative stress in RIC development, with a focus on their combined effects on lens transparency and cellular function. Key mechanisms include the generation of reactive oxygen species (ROS) and oxidative damage to lens proteins and lipids, as well as the impact of Ang II on inflammatory responses and cellular apoptosis. While the generation of ROS from water radiolysis is well established, the impact of Ang II on RICs is less understood. Ang II intensifies oxidative stress by activating type 1 receptors (AT1Rs) on lens epithelial cells, resulting in increased ROS production and inflammatory responses. This oxidative damage leads to protein aggregation, lipid peroxidation, and apoptosis, ultimately compromising lens transparency and contributing to cataract formation. Recent studies highlight Ang II's dual role in promoting both oxidative stress and inflammation, which accelerates cataract development. RICs pose a substantial public health concern due to their widespread prevalence and impact on quality of life. Targeting Ang II signaling and oxidative stress simultaneously could represent a promising therapeutic approach. Continued research is necessary to validate these strategies and explore their efficacy in preventing or reversing RIC development.
Collapse
Affiliation(s)
- Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA;
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
| | - Riana Dolland
- Trocar Pharma Inc., 8101 Sandy Spring Rd., Suite 300-W9, Laurel, MD 20707, USA; (R.D.); (D.D.)
| | - Sandra R. Brown
- LensCrafters, Inc., 110 Mall Circle, Suite 2001, Waldorf, MD 20603, USA;
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
| | - Damian Dolland
- Trocar Pharma Inc., 8101 Sandy Spring Rd., Suite 300-W9, Laurel, MD 20707, USA; (R.D.); (D.D.)
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
- Leroy T. Canoles, Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
12
|
Lin N, Song H, Zhang Y, Chen F, Xu J, Wu W, Tian Q, Luo C, Yao K, Hu L, Chen X. Truncation mutations of CRYGD gene in congenital cataracts cause protein aggregation by disrupting the structural stability of γD-crystallin. Int J Biol Macromol 2024; 277:134292. [PMID: 39084439 DOI: 10.1016/j.ijbiomac.2024.134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Congenital cataracts, a prevalent cause of blindness in children, are associated with protein aggregation. γD-crystallin, essential for sustaining lens transparency, exists as a monomer and exhibits excellent structural stability. In our cohort, we identified a nonsense mutation (c.451_452insGACT, p.Y151X) in the CRYGD gene. To explore the effect of truncation mutations on the structure of γD-crystallin, we examined the Y151X and T160RfsX8 mutations, both located in the Greek key motif 4 at the cellular and protein level in this study. Both truncation mutations induced protein misfolding and resulted in the formation of insoluble aggregates when overexpressed in HLE B3 and HEK 293T cells. Moreover, heat, UV irradiation, and oxidative stress increased the proportion of aggregates of mutants in the cells. We next purified γD-crystallin to estimate its structural changes. Truncation mutations led to conformational disruption and a concomitant decrease in protein solubility. Molecular dynamics simulations further demonstrated that partial deletion of the conserved domain within the Greek key motif 4 markedly compromised the overall stability of the protein structure. Finally, co-expression of α-crystallins facilitated the proper folding of truncated mutants and mitigated protein aggregation. In summary, the structural integrity of the Greek key motif 4 in γD-crystallin is crucial for overall structural stability.
Collapse
Affiliation(s)
- Ningqin Lin
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Hang Song
- Department of Ophthalmology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Beijing 100730, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Fanrui Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Chenqi Luo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| |
Collapse
|
13
|
Wang Q, Xu X, Ye J, Zhang Z. The role of cGAS/STING signaling in ophthalmological diseases. Biomed Pharmacother 2024; 177:117078. [PMID: 38968795 DOI: 10.1016/j.biopha.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
The eye is one of the most vulnerable parts of the human body. There are many kinds of ophthalmic diseases, which are caused by multiple factors. Generally, ophthalmic diseases have the characteristics of complicated etiology and difficult therapy. With the development of the times, ophthalmic diseases have become a major problem that affects people's lives. Inflammation, a major factor inducing ocular diseases, is one of the most popular research directions. The cGAS/STING pathway is a recently discovered inflammatory signaling pathway, which recognizes double-stranded DNA (dsDNA) as an activation signal to promote the expression of downstream cytokines that promote inflammatory response or autoimmune response. Since most of the current treatments for ophthalmic diseases mainly rely on surgery, it is of positive significance to explore the pathogenesis for the discovery of drug targets. This review summarize the research progress of the cGAS/STING pathway in major ophthalmic diseases by introducing the correlation between classical inflammatory pathway and ophthalmic diseases, in order to predict the research direction and methods targeting the cGAS/STING pathway in the pathogenesis of ophthalmic diseases, and also provide guidance for the mechanism as well as molecular targets of ophthalmic diseases.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The First People's Hospital of Jingzhou City, Jingzhou 434000, China
| | - Xiaozhi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China.
| | - Zuhai Zhang
- Department of Ophthalmology, The First People's Hospital of Jingzhou City, Jingzhou 434000, China.
| |
Collapse
|
14
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
15
|
Darvazi M, Ghorbani M, Ramazi S, Allahverdi A, Abdolmaleki P. A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality. J Biomol Struct Dyn 2024; 42:5788-5798. [PMID: 37354135 DOI: 10.1080/07391102.2023.2229434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
The eye is a vital organ in the visual system, which is composed of transparent vascular tissue. αB-crystallin, a significant protein found in the lens, plays a crucial role in our understanding of lens diseases. Mutations in the αB-crystallin protein can cause lens diseases, such as cataracts and myopathy. However, the molecular mechanism underlying the R120G mutation is not fully understood. In this study, we utilized molecular dynamics simulations to illustrate, in atomic detail, how the R120G mutation leads to the aggregation of αB-crystallin and scattering of light in the lens. Our findings show that the R120G mutation alters the dynamic and structural properties of the αB-crystallin protein. Specifically, this mutation causes the angle of the hairpin at the C-terminal to increase from 80° to 150°, while reducing the distance between the hydrophobic patches around residues 10 and 44-55 from 1.5 nm to 1 nm. In addition, our results showed that the mutation could disrupt the IPI motif - β4/β8 interaction. The disruption of this interaction could affect the αB-crystallin oligomerization and the chaperone activity of αB-crystallin protein. The exposed hydrophobic area at the IPI motif - β4/β8 could become the primary site for interprotein interactions, which are responsible for large-scale aggregation. We have demonstrated that, in wild-type αB-crystallin protein, salt bridges R120 and D109, R107 and D80 are formed. However, in the case of the R120G mutation, the salt bridges R120 and R109 are disrupted, and a new salt bridge with a different pattern is formed. In our study, it has been found that all of the changes associated with the R120G mutation are located at the interface of chains A and B, which could impact the multimerization of the αB-crystallin. Previous research on the K92-E99 residue has shown that a salt bridge in the dimer I can reduce the chaperone activity of the protein. Furthermore, the salt bridges R120 and D109, as well as R107 and D80 in dimer II, induce changes in the hydrophobic envelope of β-sheets in the α-crystallin domain (ACD). These changes could have an impact on the multimerization of the αB-crystallin, leading to disruption of the oligomer structure and aggregation. Moreover, the changes in the αB-crystallin resulting from the R120G mutation can lead to faulty interactions with other proteins, which can cause the aggregation of αB-crystallin with other proteins, such as desmin. These findings may provide new insights into the development of treatments for lens diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mona Darvazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Wang Q, Wang D, Qin T, Zhang X, Lin X, Chen J, Chen W, Zhao L, Huang W, Lin Z, Li J, Dongye M, Wu X, Wang X, Li X, Lin Y, Tan H, Liu Y, Lin H, Chen W. Early Diagnosis of Syndromic Congenital Cataracts in a Large Cohort of Congenital Cataracts. Am J Ophthalmol 2024; 263:206-213. [PMID: 38184101 DOI: 10.1016/j.ajo.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE To explore the factors related to the diagnosis yield of syndromic congenital cataracts and describe the phenotype-genotype correlation in congenital cataract patients. DESIGN Prospective cohort study. METHODS Setting: the participants from underwent clinical examinations between 2021 and 2022. Facial and anterior eye segment photographs, pre- and postoperative ocular parameters, and medical and family histories were recorded. Bioinformatics analysis was performed using whole-exome sequencing data. Statistical and correlation analyses were performed using the basic characteristics, deep phenotype, and genotype data. PARTICIPANTS 115 patients with unrelated congenital cataract. INTERVENTIONS performing clinical examinations, whole-exome sequencing, and bioinformatics analysis for all participants. MAIN OUTCOMES AND MEASURES factors related to the genetic diagnosis yield of syndromic congenital cataracts. RESULTS Bilaterally asymmetrical cataracts were identified to be associated with syndromic congenital cataracts. The overall genetic diagnostic yield in the cohort was 72.2%. In total, 34.8% of the probands were early diagnosed with various syndromes with the help of genetic information. A phenotype-genotype correlation was detected for some genes and deep phenotypes. CONCLUSIONS We highlight the importance of screening syndromic diseases in the patients with asymmetrical congenital cataracts. Application of whole-exome sequencing helps provide early diagnosis and treatment for the patients with syndromic congenital cataracts. This study also achieved a high genetic diagnostic yield, expanded the genotypic spectrum, and found phenotype-genotype correlations. A comprehensive analysis of cataract symmetricity, family history, and deep phenotypes makes the genotype prediction of some congenital cataract patients possible.
Collapse
Affiliation(s)
- Qiwei Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Dongni Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Tingfeng Qin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xulin Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xiaoshan Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Jingjing Chen
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Wan Chen
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Lanqin Zhao
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Weiming Huang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Zhuoling Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Jing Li
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Meimei Dongye
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xiaohang Wu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xun Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xiaoyan Li
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Yongbin Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Haowen Tan
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Yizhi Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Haotian Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China.
| | - Weirong Chen
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
17
|
Shiels A. Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes (Basel) 2024; 15:785. [PMID: 38927721 PMCID: PMC11202810 DOI: 10.3390/genes15060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clouding of the transparent eye lens, or cataract(s), is a leading cause of visual impairment that requires surgical replacement with a synthetic intraocular lens to effectively restore clear vision. Most frequently, cataract is acquired with aging as a multifactorial or complex trait. Cataract may also be inherited as a classic Mendelian trait-often with an early or pediatric onset-with or without other ocular and/or systemic features. Since the early 1990s, over 85 genes and loci have been genetically associated with inherited and/or age-related forms of cataract. While many of these underlying genes-including those for lens crystallins, connexins, and transcription factors-recapitulate signature features of lens development and differentiation, an increasing cohort of unpredicted genes, including those involved in cell-signaling, membrane remodeling, and autophagy, has emerged-providing new insights regarding lens homeostasis and aging. This review provides a brief history of gene discovery for inherited and age-related forms of cataract compiled in the Cat-Map database and highlights potential gene-based therapeutic approaches to delay, reverse, or even prevent cataract formation that may help to reduce the increasing demand for cataract surgery.
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
He T, Zhou J, Wen Y, Liu Q, Zhi W, Yang W, He S, Ouyang L, Xia X, Zhou Z. Identification of spontaneous age-related cataract in Microtus fortis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:553-561. [PMID: 39019784 PMCID: PMC11255186 DOI: 10.11817/j.issn.1672-7347.2024.230534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 07/19/2024]
Abstract
OBJECTIVES Age-related cataract is the most common type of adult cataract and a leading cause of blindness. Currently, there are few reports on the establishment of animal models for age-related cataract. During the experimental breeding of Microtus fortis (M. fortis), we first observed that M. fortis aged 12 to 15 months could naturally develop cataracts. This study aims to explore the possibility of developing them as an animal model for age-related cataract via identifing and analyzing spontaneous cataract in M. fortis. METHODS The 12-month-old healthy M. fortis were served as a control group and 12-month-old cataractous M. fortis were served as an experimental group. The lens transparency was observed using the slit-lamp biomicroscope. Hematoxylin and eosin staining was used to detect pathological changes in the lens. Biochemical detection methods were applied to detect blood routine, blood glucose levels, the serum activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in both groups. Finally, real-time RT-PCR was used to detect the transcription levels of cataract-related genes in the lens of 2 groups. RESULTS Compared with the control group, the lens of cataract M. fortis showed severely visible opacity, the structure of lens was destroyed seriously, and some pathological damage, such as swelling, degeneration/necrosis, calcification, hyperplasia, and fiber liquefaction were found in lens epithelial cells (LECs). The fibrous structure was disorganized and irregularly distributed with morgagnian globules (MGs) aggregated in the degenerated lens fibers. There was no statistically significant difference in blood glucose levels between the experimental and control groups (P>0.05). However, white blood cell (WBC) count (P<0.05), lymphocyte count (P<0.01), and lymphocyte ratio (P<0.05) were significantly decreased, while neutrophil percentage (P<0.05) and monocyte ratio (P<0.01) were significantly increased. The serum activities of SOD and GSH-Px (both P<0.05) were both reduced. The mRNAs of cataract-related genes, including CRYAA, CRYBA1, CRYBB3, Bsfp1, GJA3, CRYBA2, MIP, HspB1, DNase2B, and GJA8, were significantly downregultaed in the lenses of the experimental group (all P<0.05). CONCLUSIONS There are significant differences in lens pathological changes, peroxidase levels, and cataract-related gene expression between cataract and healthy M. fortis. The developed cataract spontaneously in M. fortis is closely related to age, the cataract M. fortis might be an ideal animal model for the research of age-related cataract.
Collapse
Affiliation(s)
- Tianqiong He
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013.
| | - Junkang Zhou
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Yixin Wen
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Qian Liu
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Wenling Zhi
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Wenhao Yang
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Shuangyan He
- Laboratory Animal Center, AIER Eye Hospital, Changsha 410015
| | - Lingxuan Ouyang
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha 410008
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijun Zhou
- Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University; Changsha 410013.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410013.
| |
Collapse
|
19
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
20
|
Zhang M, Zhang R, Zhao X, Ma Z, Xin J, Xu S, Guo D. The role of oxidative stress in the pathogenesis of ocular diseases: an overview. Mol Biol Rep 2024; 51:454. [PMID: 38536516 DOI: 10.1007/s11033-024-09425-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 02/06/2025]
Abstract
Dysregulation of oxidative stress serves as a pivotal predisposing or exacerbating factor in the intricate development of numerous pathological processes and diseases. In recent years, substantial evidence has illuminated the crucial role of reactive oxygen species (ROS) in many fundamental cellular functions, including proliferation, inflammation, apoptosis, and gene expression. Notably, producing free radicals within ROS profoundly impacts a wide range of biomolecules, such as proteins and DNA, instigating cellular damage and impairing vital cellular functions. Consequently, oxidative stress emerges as a closely intertwined factor across diverse disease spectra. Remarkably, the pathogenesis of several eye diseases, including age-related macular degeneration, glaucoma, and diabetic retinopathy, manifests an intrinsic association with oxidative stress. In this comprehensive review, we briefly summarize the recent progress in elucidating the intricate role of oxidative stress in the development of ophthalmic diseases, shedding light on potential therapeutic avenues and future research directions.
Collapse
Affiliation(s)
- Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xiaoyue Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, No. 48#. Yingxiongshan Road, Jinan, 250002, China.
| |
Collapse
|
21
|
Lin ZJ, Long JY, Li J, Wang FN, Chu W, Zhu L, Li YL, Fan LL. Case report: Whole exome sequencing identified a novel mutation (p.Y301H) of MAF in a Chinese family with congenital cataracts. Front Med (Lausanne) 2024; 11:1332992. [PMID: 38487030 PMCID: PMC10937461 DOI: 10.3389/fmed.2024.1332992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Background Congenital cataracts stand as the primary cause of childhood blindness globally, characterized by clouding of the eye's lens at birth or shortly thereafter. Previous investigations have unveiled that a variant in the V-MAF avian musculoaponeurotic-fibrosarcoma oncogene homolog (MAF) gene can result in Ayme-Gripp syndrome and solitary cataract. Notably, MAF mutations have been infrequently reported in recent years. Methods In this investigation, we recruited a Chinese family with non-syndromic cataracts. Whole exome sequencing and Sanger sequencing were applied to scrutinize the genetic anomaly within the family. Results Through whole exome sequencing and subsequent data filtration, a new mutation (NM_005360, c.901T>C/p.Y301H) in the MAF gene was detected. Sanger sequencing validated the presence of this mutation in another affected individual. The p.Y301H mutation, situated in an evolutionarily preserved locus, was not detected in our 200 local control cohorts and various public databases. Additionally, multiple bioinformatic programs predicted that the mutation was deleterious and disrupted the bindings between MAF and its targets. Conclusion Hence, we have documented a new MAF mutation within a Chinese family exhibiting isolated congenital cataracts. Our study has the potential to broaden the spectrum of MAF mutations, offering insights into the mechanisms underlying cataract formation and facilitating genetic counseling and early diagnosis for congenital cataract patients.
Collapse
Affiliation(s)
- Zhao-Jing Lin
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie-Yi Long
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Juan Li
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, China
| | - Fang-Na Wang
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, China
| | - Wei Chu
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, China
| | - Lei Zhu
- Department of Obstetrics and Gynecology, Ordos Central Hospital, Ordos, China
| | - Ya-Li Li
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
22
|
Zhou L, Wang G, Hu B, Jiang H, Jiang F, Xu Z. Microphthalmia and anterior segment dysgenesis due to a double gene variant in GJA8 and CRYGC. Eur J Ophthalmol 2024; 34:NP12-NP17. [PMID: 36916241 DOI: 10.1177/11206721231163611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION To report a family with severe ocular disorder caused by double gene variants in causative genes of autosomal dominant cataracts, GJA8 and CRYGC. CASE PRESENTATION A 5-month-old boy with poor vision and enophthalmos was referred to our hospital. Further ocular examination showed horizontal nystagmus, iris abnormalities with pinpoint pupils, and extreme microphthalmia with axial right and left eye lengths of 13.48 mm and 13.75 mm, respectively. Digenic heterozygous variants (c.269T > G, p.Leu90Arg in CRYGC and c.151G > A, p.Asp51Asn in GJA8) have been detected based on the whole exome sequencing. His mother, who carried variant in CRYGC (c.269T > G, p.Leu90Arg), had nuclear cataract, microcornea and nystagmus, while his father, who carried variant in GJA8 (c.151G > A, p.Asp51Asn), showed bilateral membranous cataract, microphthalmia, sclerocornea, glaucoma, and nystagmus. CONCLUSIONS To our knowledge, this is the first report of a patient with variants in two cataract-related genes. Importantly, patient with double heterozygous variants in two dominantly inherited genes may suffer more serious phenotypes than those with heterozygous variant in a single dominantly inherited gene. Whole exome or genome sequencing is necessary for a genetic diagnosis in case of multiple gene variants.
Collapse
Affiliation(s)
- Lin Zhou
- Department of ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ganghua Wang
- Department of ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Hu
- Department of ophthalmology, Chengdu tianfu new district people's hospital, Chengdu, 641400, China
| | - Hui Jiang
- Department of ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanwen Jiang
- Department of ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhuping Xu
- Department of ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Lin N, Zhang Y, Song X, Xu J, Luo C, Tian Q, Yao K, Wu W, Chen X, Hu L. Cataract-causing mutations S78F and S78P of γD-crystallin decrease protein conformational stability and drive aggregation. Int J Biol Macromol 2023; 253:126910. [PMID: 37739288 DOI: 10.1016/j.ijbiomac.2023.126910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Congenital cataract is the leading cause of childhood blindness, which primarily results from genetic factors. γD-crystallin is the most abundant γ-crystallin and is essential for maintaining lens transparency and refractivity. Numerous mutations in γD-crystallin have been reported with unclear pathogenic mechanism. Two different cataract-causing mutations Ser78Phe and Ser78Pro in γD-crystallin were previously identified at the same conserved Ser78 residue. In this work, firstly, we purified the mutants and characterized for the structural change using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and size-exclusion chromatography (SEC). Both mutants were prone to form insoluble precipitates when expressed in Escherichia coli strain BL21 (DE3) cells. Compared with wild-type (WT), both mutations caused structural disruption, increased hydrophobic exposure, decreased solubility, and reduced thermal stability. Next, we investigated the aggregation of the mutants at the cellular level. Overexpression the mutants in HLE-B3 and HEK 293T cells could induce aggresome formations. The environmental stresses (including heat, ultraviolet irradiation and oxidative stress) promoted the formation of aggregates. Moreover, the intracellular S78F and S78P aggregates could be reversed by lanosterol. Molecular dynamic simulation indicated that both mutations disrupted the structural integrity of Greek-key motif 2. Hence, our results reveal the vital role of conserved Ser78 in maintaining the structural stability, which can offer new insights into the mechanism of cataract formation.
Collapse
Affiliation(s)
- Ningqin Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Xiaohui Song
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Chenqi Luo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
24
|
Wang H, Ouyang G, Zhu Y. D348N Mutation of BFSP1 Gene in Congenital Cataract: it Does Matter. Cell Biochem Biophys 2023; 81:757-763. [PMID: 37667037 DOI: 10.1007/s12013-023-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Beaded filament structural protein 1 (BFSP1) gene plays important role in the development of congenital cataract. We aimed to investigate and analyze the molecular mechanism of congenital cataract caused by D348N mutation of BFSP1 gene, and to provide evidence for the intervention of congenital cataract. BFSP1 and CP49 genes were cloned, wild type and mutant expression plasmids of BFSP1 were constructed and transfected into 293T cells. The BFSP1 wild type and mutant (D348N) gene sequence (NM_001195) were constructed into pEGFP-N1 vector by the restriction site NheI/KpnI. The effect of mutation on cell proliferation and apoptosis was analyzed. There was no significant change between the expression site of BFSP1 D348N mutation and the wild type. The expression of BFSP1 protein in wild group was higher than that in mutant group. CCK8 detection showed that the proliferation ability of 293T cells in mutant group was weaker than that in BFSP1 group. The mutation led to an increase in apoptosis. BFSP1 mutation significantly decreases the expression of BFSP1 protein, weakened the ability of cell proliferation and increased apoptosis. BFSP1 D348N mutation may be closely associated with congenital cataract and is of great significance to the investigations of the mechanism and intervention of congenital cataract.
Collapse
Affiliation(s)
- Han Wang
- Department of Ophthalmology, Dalian No.3 People's Hospital, Dalian, China.
| | - Gaoxiang Ouyang
- Department of Ophthalmology, Dalian No.3 People's Hospital, Dalian, China
| | - Ying Zhu
- Department of Ophthalmology, Dalian No.3 People's Hospital, Dalian, China.
| |
Collapse
|
25
|
Xu J, Zhang Y, Liu J, Hu L, Luo C, Yao K, Chen X. Heteromeric formation with βA3 protects the low thermal stability of βB1-L116P. Br J Ophthalmol 2023; 107:1936-1942. [PMID: 36126102 DOI: 10.1136/bjo-2022-322247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Congenital cataract is the leading cause of visual disability and blindness in childhood. βB1-crystallin (CRYBB1) comprises about 1/10th of crystallin structural proteins, forming heteromers to maintain lens transparency. We previously reported a CRYBB1 mutation (c.347T>C, p.L116P) affecting 16 patients in a congenital nuclear cataract family. In this study, we investigate the underlying pathogenic mechanism of βB1-L116P. METHODS Protein isolation, size-exclusion chromatography, spectroscopy, Uncle stability screens and molecular dynamics simulations were used to assess βA3- and βB1-crystallin thermal stability, structural properties and heteromer formation. RESULTS Cells that overexpressed βB1-L116P tended to form aggregates and precipitations under heat-shock stress. Thermal denaturation and time-dependent turbidity experiments showed that thermal stability was significantly impaired. Moreover, protein instability appeared to increase with elevated concentrations detected by the Uncle system. Additionally, βA3 had a relative protective effect on βB1-L116P after heteromers were formed, although βA3 was relatively unstable and was usually protected by basic β-crystallins. Molecular dynamic simulations revealed that L116P mutation altered the hydrophobic residues at the surface around the mutant site, providing solvents more access to the internal and hydrophobic parts of the protein. CONCLUSIONS Decreased βB1-crystallin thermal stability in the presence of the cataract-related L116P mutation contributes significantly to congenital cataract formation. Moreover, its formation of heteromers with βA3 protects against the low thermal stability of βB1-L116P.
Collapse
Affiliation(s)
- Jingjie Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Liu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Lidan Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Chenqi Luo
- Eye Center, Second Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Yao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjun Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| |
Collapse
|
26
|
Jezler PCOC, Magalhães HIR, Silva MD, Ribeiro LA, Miglino MA, Pereira AA. Evaluation of the ratio of different major and trace elements in the lens of dogs with cataract. Vet Ophthalmol 2023; 26:489-499. [PMID: 36691384 DOI: 10.1111/vop.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Understanding the elements that support cataract development and searching for available therapeutic methods is essential for scientific and social interest. For that purpose, the role of trace elements has been investigated in this study to better understand the development of cataracts in dogs. OBJECTIVE The aim of this study was to evaluate the ratio of the major and trace elements by X-ray fluorescence spectrometry in dog cataract lenses to contribute to diagnostic, non-surgical, and ophthalmological preventive data. METHODS A single lens with a cataract from each of a total of 88 dogs (cataract group) and a healthy lens from each of 6 dogs (control group) were evaluated. The elements calcium (Ca), iron (Fe), copper (Cu), zinc (Zn), magnesium (Mg), manganese (Mn), and potassium (K) were analyzed by energy dispersive X-ray fluorescence and X-ray microfluorescence. RESULTS The results indicated an increase of Ca, Fe, Cu, and Zn, in association with the reabsorption mechanism of hypermature cataracts. CONCLUSIONS The ratio of elements Ca, Fe, Cu, and Zn was different in cataract lenses than in healthy lenses, and our results may support the development of therapeutic strategies for cataracts in dogs. The Ca concentrations were distinct in the cataract development stages, and the Fe concentration was relatively higher in males when compared to females. Finally, this research stands out with a particular contribution to the understanding of both cataract formation and prevention.
Collapse
Affiliation(s)
- Patrícia Christiane O C Jezler
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Henrique I R Magalhães
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mônica D Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lucas A Ribeiro
- School of Veterinary Medicine and Animal Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea A Pereira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
- Institute of Physics, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
27
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye Lens Organoids Made Simple: Characterization of a New Three-Dimensional Organoid Model for Lens Development and Pathology. Cells 2023; 12:2478. [PMID: 37887322 PMCID: PMC10605248 DOI: 10.3390/cells12202478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cataract, the opacification of the lens, is the leading cause of blindness worldwide. Although effective, cataract surgery is costly and can lead to complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined three-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization and biology. These organoids can be rapidly produced in large amounts. High-throughput RNA sequencing (RNA-seq) on specific organoid regions isolated via laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display a spatiotemporal expression of key lens genes, e.g., Jag1, Pax6, Prox1, Hsf4 and Cryab. Further, these lens organoids are amenable to the induction of opacities. Finally, the knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1, induces opacities in these organoids, indicating their use in rapidly screening for genes that are functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataracts.
Collapse
Affiliation(s)
- Matthieu Duot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes, 35000 Rennes, France
| | - Justine Viet
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Catherine Le Goff-Gaillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Luc Paillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Carole Gautier-Courteille
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - David Reboutier
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| |
Collapse
|
28
|
Ajikumar A, Premkumar AKN, Narayanan SP. The self-assembly of L-histidine might be the cause of histidinemia. Sci Rep 2023; 13:17461. [PMID: 37838762 PMCID: PMC10576791 DOI: 10.1038/s41598-023-44749-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
L-Histidine is an essential amino acid with unique biochemical and physiological properties. Histidinemia is a disease condition caused by the elevated level of L-histidine in our blood. Mutations in the histidase, an enzyme for the breakdown of histidine, is the cause of the rise in histidine concentration. To our knowledge, no research has been done on why a high concentration of histidine causes histidinemia. In this study, we provide a potential explanation why the elevated levels of histidine in the human body causes histidinemia. In this study we have found that L-histidine self-assembled in water to form nano sheet structures at physiological pH and temperature, using 1D 1H NMR spectroscopy, diffusion ordered spectroscopy (DOSY) and scanning electron microscope (SEM) techniques. The kinetics of self-assembly has been studied using real time NMR spectroscopy. We observed that both the aromatic ring and aliphatic part are equally contributing to the self-assembly of L-histidine. The symptoms of histidinemia, neurological deficits and speech delays, are similar to that of the neurodegenerative diseases caused by the self-assembly of peptides and proteins. We speculate that the self-assembly of L-histidine might be the cause of histidinemia.
Collapse
Affiliation(s)
- Ajitha Ajikumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686560, Kerala, India
| | - Anakha Kandara Nikarthil Premkumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686560, Kerala, India
| | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O., Kottayam, 686560, Kerala, India.
| |
Collapse
|
29
|
Jing X, Zhu M, Lu X, Wei P, Shi L, Zhang BY, Xu Y, Tang YP, Xiang DM, Gong P. Cataract-causing Y204X mutation of crystallin protein CRYβB1 promotes its C-terminal degradation and higher-order oligomerization. J Biol Chem 2023; 299:104953. [PMID: 37356717 PMCID: PMC10382669 DOI: 10.1016/j.jbc.2023.104953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023] Open
Abstract
Crystallin proteins are a class of main structural proteins of the vertebrate eye lens, and their solubility and stability directly determine transparency and refractive power of the lens. Mutation in genes that encode these crystallin proteins is the most common cause for congenital cataracts. Despite extensive studies, the pathogenic and molecular mechanisms that effect congenital cataracts remain unclear. In this study, we identified a novel mutation in CRYBB1 from a congenital cataract family, and demonstrated that this mutation led to an early termination of mRNA translation, resulting in a 49-residue C-terminally truncated CRYβB1 protein. We show this mutant is susceptible to proteolysis, which allowed us to determine a 1.2-Å resolution crystal structure of CRYβB1 without the entire C-terminal domain. In this crystal lattice, we observed that two N-terminal domain monomers form a dimer that structurally resembles the WT monomer, but with different surface characteristics. Biochemical analyses and cell-based data also suggested that this mutant is significantly more liable to aggregate and degrade compared to WT CRYβB1. Taken together, our results provide an insight into the mechanism regarding how a mutant crystalin contributes to the development of congenital cataract possibly through alteration of inter-protein interactions that result in protein aggregation.
Collapse
Affiliation(s)
- Xuping Jing
- Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Mingwei Zhu
- Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaoyun Lu
- Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ping Wei
- Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lingyu Shi
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bu-Yu Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xu
- Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ya-Ping Tang
- Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Goungdong Key Laboratory of Structural Birth Defects, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Imaging, Affiliated Hospital 3, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dao-Man Xiang
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Fu JL, Zheng SY, Wang Y, Hu XB, Xiao Y, Wang JM, Zhang L, Wang L, Nie Q, Hou M, Bai YY, Gan YW, Liang XM, Xie LL, Li DWC. HSP90β prevents aging-related cataract formation through regulation of the charged multivesicular body protein (CHMP4B) and p53. Proc Natl Acad Sci U S A 2023; 120:e2221522120. [PMID: 37487085 PMCID: PMC10400967 DOI: 10.1073/pnas.2221522120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Cataract is a leading ocular disease causing global blindness. The mechanism of cataractogenesis has not been well defined. Here, we demonstrate that the heat shock protein 90β (HSP90β) plays a fundamental role in suppressing cataractogenesis. HSP90β is the most dominant HSP in normal lens, and its constitutive high level of expression is largely derived from regulation by Sp1 family transcription factors. More importantly, HSP90β is significantly down-regulated in human cataract patients and in aging mouse lenses, whereas HSP90β silencing in zebrafish causes cataractogenesis, which can only be rescued by itself but not other HSP90 genes. Mechanistically, HSP90β can directly interact with CHMP4B, a newly-found client protein involved in control of cytokinesis. HSP90β silencing causes upregulation of CHMP4B and another client protein, the tumor suppressor p53. CHMP4B upregulation or overexpression induces excessive division of lens epithelial cells without proper differentiation. As a result, these cells were triggered to undergo apoptosis due to activation of the p53/Bak-Bim pathway, leading to cataractogenesis and microphthalmia. Silence of both HSP90β and CHMP4B restored normal phenotype of zebrafish eye. Together, our results reveal that HSP90β is a critical inhibitor of cataractogenesis through negative regulation of CHMP4B and the p53-Bak/Bim pathway.
Collapse
Affiliation(s)
- Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Xue-Bin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Ling Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Qian Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Yue-Yue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Xing-Miao Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - Liu-Liu Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong510060, China
| |
Collapse
|
31
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye lens organoids going simple: characterization of a new 3-dimensional organoid model for lens development and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548679. [PMID: 37503005 PMCID: PMC10370037 DOI: 10.1101/2023.07.12.548679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ocular lens, along with the cornea, focuses light on the retina to generate sharp images. Opacification of the lens, or cataract, is the leading cause of blindness worldwide. Presently, the best approach for cataract treatment is to surgically remove the diseased lens and replace it with an artificial implant. Although effective, this is costly and can have post-surgical complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and anti-cataract drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined 3-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization at the tissue, cellular and transcriptomic levels. These 3D cultured lens organoids can be rapidly produced in large amounts. High-throughput RNA-sequencing (RNA-seq) on specific organoid regions isolated by laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display spatiotemporal expression of key lens genes, e.g. , Jag1 , Pax6 , Prox1 , Hsf4 and Cryab . Further, these lens organoids are amenable to induction of opacities. Finally, knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1 , induces opacities in these organoids, indicating their use in rapidly screening for genes functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology, and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataract.
Collapse
|
32
|
Li B, Tan W, Wang Z, Zhou H, Zou J, Li Y, Yoshida S, Zhou Y. Progress and prospects of gene therapy in ophthalmology from 2000 to 2022: A bibliometric analysis. Heliyon 2023; 9:e18228. [PMID: 37539253 PMCID: PMC10395483 DOI: 10.1016/j.heliyon.2023.e18228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Background Gene therapy is a treatment approach at the genetic level, which brings great advances in many diseases and develops rapidly in recent years. Currently, its mechanism of action is mainly through the replacement of missing or defective genes, or the reduction of harmful gene products. However, the application of gene therapy in ophthalmology remains limited. Methods A total of 1143 articles and reviews published in the field of ocular gene therapies were found in the Web of Science Core Collection database and used for the bibliometric analysis. CiteSpace was mainly applied to the network analysis of countries, institutions, keywords, and dual-map overlay of journals. The visual analysis of authors, journals, and references was used by VOSviewer. The geographical distribution of publications was conducted by R language. Results The annual publications are increasing in general. Currently, the USA and the UK are two main sources of publications in this field. Switzerland, Denmark, and Finland are the top 3 countries that establish the most cooperation and exchanges with other countries or regions. The most cited and co-cited journal in this field is Investigative Ophthalmology & Visual Science. Gene therapy studies for eye diseases are mainly focused on retinal dysfunctions by the analysis of references, keywords, and counting of original research, including Leber's congenital amaurosis and retinitis pigmentosa. Conclusion This study used bibliometrics to analyze overall characteristics and put forward prospects for the future in the field of gene therapy in ophthalmology. Ocular diseases, especially hereditary retinal diseases, will be the major focus of gene therapy in the future.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
33
|
Bennett TM, Zhou Y, Meyer KJ, Anderson MG, Shiels A. Whole-exome sequencing prioritizes candidate genes for hereditary cataract in the Emory mouse mutant. G3 (BETHESDA, MD.) 2023; 13:jkad055. [PMID: 36891866 PMCID: PMC10151407 DOI: 10.1093/g3journal/jkad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
The Emory cataract (Em) mouse mutant has long been proposed as an animal model for age-related or senile cataract in humans-a leading cause of visual impairment. However, the genetic defect(s) underlying the autosomal dominant Em phenotype remains elusive. Here, we confirmed development of the cataract phenotype in commercially available Em/J mice [but not ancestral Carworth Farms White (CFW) mice] at 6-8 months of age and undertook whole-exome sequencing of candidate genes for Em. Analysis of coding and splice-site variants did not identify any disease-causing/associated mutations in over 450 genes known to underlie inherited and age-related forms of cataract and other lens disorders in humans and mice, including genes for lens crystallins, membrane/cytoskeleton proteins, DNA/RNA-binding proteins, and those associated with syndromic/systemic forms of cataract. However, we identified three cataract/lens-associated genes each with one novel homozygous variant including predicted missense substitutions in Prx (p.R167C) and Adamts10 (p.P761L) and a disruptive in-frame deletion variant (predicted missense) in Abhd12 (p.L30_A32delinsS) that were absent in CFW and over 35 other mouse strains. In silico analysis predicted that the missense substitutions in Prx and Adamts10 were borderline neutral/damaging and neutral, respectively, at the protein function level, whereas, that in Abhd12 was functionally damaging. Both the human counterparts of Adamts10 and Abhd12 are clinically associated with syndromic forms of cataract known as Weil-Marchesani syndrome 1 and polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract syndrome, respectively. Overall, while we cannot exclude Prx and Adamts10, our data suggest that Abhd12 is a promising candidate gene for cataract in the Em/J mouse.
Collapse
Affiliation(s)
- Thomas M Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kacie J Meyer
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Shanbagh S, Matalia J, Kannan R, Shetty R, Panmand P, Muthu SO, Chaurasia SS, Deshpande V, Bhattacharya SS, Gopalakrishnan AV, Ghosh A. Distinct gene expression profiles underlie morphological and etiological differences in pediatric cataracts. Indian J Ophthalmol 2023; 71:2143-2151. [PMID: 37203095 PMCID: PMC10391435 DOI: 10.4103/ijo.ijo_3269_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Purpose Pediatric cataract is a major cause of preventable childhood blindness worldwide. Although genetic mutations or infections have been described in patients, the mechanistic basis of human cataract development remains poorly understood. Therefore, gene expression of structural, developmental, profibrotic, and transcription factors in phenotypically and etiologically distinct forms of pediatric cataracts were evaluated. Methods This cross-sectional study included 89 pediatric cataract subjects subtyped into 1) prenatal infectious (cytomegalovirus, rubella, and combined cytomegalovirus with rubella infection), 2) prenatal non-infectious, 3) posterior capsular anomalies, 4) postnatal, 5) traumatic, and 6) secondary, and compared to clear, non-cataractous material of eyes with the subluxated lenses. Expression of lens structure-related genes (Aqp-0, HspA4/Hsp70, CrygC), transcription factors (Tdrd7, FoxE3, Maf, Pitx 3) and profibrotic genes (Tgfβ, Bmp7, αSmA, vimentin) in surgically extracted cataract lens material were studied and correlated clinically. Results In cataract material, the lens-related gene expression profiles were uniquely associated with phenotype/etiology of different cataracts. Postnatal cataracts showed a significantly altered FoxE3 expression. Low levels of Tdrd7 expression correlated with posterior subcapsular opacity, whereas CrygC correlated significantly with anterior capsular ruptures. The expression of Aqp0 and Maf was elevated in infectious cataracts, particularly in CMV infections, compared to other cataract subtypes. Tgfβ showed significantly low expression in various cataract subtypes, whereas vimentin had elevated gene expression in infectious and prenatal cataracts. Conclusion A significant association between lens gene expression patterns in phenotypically and etiologically distinct subtypes of pediatric cataracts suggests regulatory mechanisms in cataractogenesis. The data reveal that cataract formation and presentation is a consequence of altered expression of a complex network of genes.
Collapse
Affiliation(s)
- Shaika Shanbagh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka; Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Jyoti Matalia
- Department of Paediatric Ophthalmology and Strabismus, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Ramaraj Kannan
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| | - Rohit Shetty
- Cornea and Refractive Services, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Pratibha Panmand
- Department of Paediatric Ophthalmology and Strabismus, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Sumitha O Muthu
- Department of Paediatric Ophthalmology and Strabismus, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Shyam S Chaurasia
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vrushali Deshpande
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| | - Shomi S Bhattacharya
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India; Institute of Ophthalmology, University College London, London, UK
| | - Abilash V Gopalakrishnan
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| |
Collapse
|
35
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Ma B, Zhang W, Wang X, Jiang H, Tang L, Yang W, Kang Q, Cao J. Polymorphisms in TRIB2 and CAPRIN2 Genes Contribute to the Susceptibility to High Myopia-Induced Cataract in Han Chinese Population. Med Sci Monit 2023; 29:e937702. [PMID: 36710479 PMCID: PMC9896844 DOI: 10.12659/msm.937702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Myopia has been shown to be associated with many pathological complications including cataracts, and previous evidence supported that high myopia facilitates the formation of cataracts. However, no studies have identified a link between the genetic susceptibility of high myopia-induced cataracts (HMC) and the underlying genetic mechanisms. Our study aimed to determine how the TRIB2 and CAPRIN2 genes correlate to the risk of HMC. MATERIAL AND METHODS In total, we successfully recruited 3162 participants, including 1026 participants with high myopia and cataracts and 2136 controls with high myopia only. For genotyping, 22 tag single nucleotide polymorphisms (SNPs) in TRIB2 and CAPRIN2 genes were chosen. Single marker association analysis and functional effects of significant SNPs were carried out. RESULTS Strong correlation signals were captured for SNP rs890069 (χ²=22.13, P=2.55×10-6) in TRIB2 and SNP rs17739338 (χ²=16.07, P=6.10×10-5) in CAPRIN2. In patients with high myopia, the C allele at SNP rs890069 was strongly linked to cataract risk (OR [95% CI]=1.36 [1.20-1.55]). In patients with high myopia, the T allele at SNP rs17739338 was significantly related to a lower risk of cataract (OR [95% CI]=0.54 [0.40-0.74]). In different types of human tissues, SNPs rs890069 and rs17739338 were found to be significantly correlated to the levels of TRIB2 and CAPRIN2 gene expression. CONCLUSIONS Our study indicated that both TRIB2 and CAPRIN2 genes conferred the susceptibility to cataract in patients with high myopia and Chinese Han ancestry. Future research remains necessary for fully understanding the pathogenic mechanisms and genetic characteristics of cataract.
Collapse
Affiliation(s)
- Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, PR China
| | - Wenpei Zhang
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, PR China
| | - Xiaochen Wang
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, PR China
| | - Huili Jiang
- Department of Ophthalmology, Xi’an Fourth Hospital, Xi’an, Shaanxi, PR China
| | - Li Tang
- Department of Ophthalmology, Xi’an Fourth Hospital, Xi’an, Shaanxi, PR China
| | - Wen Yang
- Department of Ophthalmology, Xi’an Fourth Hospital, Xi’an, Shaanxi, PR China
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, PR China
| | - Juan Cao
- Department of Ophthalmology, Xi’an Fourth Hospital, Xi’an, Shaanxi, PR China
| |
Collapse
|
37
|
KAPLAN AT. Bibliometric analysis of the 100 most cited articles on congenital cataracts. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1213922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim
It was aimed to present a summary of the articles published between 1980-2022 on congenital cataract, to identify the 100 most cited articles in the field, to analyze the most active journals and the development in countries by years.
Material and Method
Search was made using keywords “Congenital Cataract”, “OR: Pediatric Cataract”, “OR: Infantile Cataract”, “AND: 1980-2022 (Year Published)”, “AND: English (Language)” in Web of Science (WOS) database via Boolean operators (Access Date: 01.11.2022). Bibliometric analyzes were made using VOSviewer (ver.1.6.18), statistical analyzes were made using rstudio (ver.2022.02.1), other analyzes were made using Microsoft Excel.
Results
In the bibliometric analysis, 1383 articles were included between the dates determined. Over the past few decades, the total number of publications on congenital cataracts continually increased from 2 in 1980 to 68 in 2022 November. The most productive year was 2021 (n=93), while the most cited year was 2004 (1,184 citations, 32 publications). The most studied WOS categories were ophthalmology (n=900), pediatrics (183) and genetics (167). The most widely used keywords were congenital cataract (n=235), cataract (n=124) and pediatric cataract (n=75). The most cited paper in congenital cataract was “Pax6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central-nervous-system defects”, which was published in Nature Genetics in 1994 and cited 562 times (impact factor: 8.78). In ophthalmology journals, the most cited article was published in Survey of Ophthalmology (267 times, 1996) and the Molecular Vision was the most attractive journal with 104 publications. The United States of America, England and Peoples R China had the highest total link strength (TLS), 226 (10,325 citations), 134 (3,621 citations) and 73 (3,871 citations), respectively.
Conclusion
These findings provide useful information on the status and trends of current clinical research on congenital cataracts. Our study can be used to identify areas of study and standard bibliographic references for better diagnosis and disease control.
Collapse
Affiliation(s)
- Ayşin Tuba KAPLAN
- UNIVERSITY OF HEALTH SCIENCES, İSTANBUL KARTAL DR. LÜTFİ KIRDAR HEALTH RESEARCH CENTER, DEPARTMENT OF SURGICAL MEDICAL SCIENCES, DEPARTMENT OF OPHTHALMOLOGY
| |
Collapse
|
38
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
39
|
Muacevic A, Adler JR, Xie W, Li M, Zhong L, Zhao S, Liang H. Novel Mutations of PAX6 and WFS1 Associated With Congenital Cataract in a Chinese Family. Cureus 2023; 15:e34208. [PMID: 36843716 PMCID: PMC9957680 DOI: 10.7759/cureus.34208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Congenital cataract is a common cause of blindness in childhood. About half of the cases have a genetic etiology, and more than 100 genes have been associated with congenital cataracts. This study reports the clinical and genetic findings of a two-generation Chinese family affected by congenital cataract. METHODS Ophthalmologic examinations were performed for clinical evaluation of the cataract patients. Whole exome sequencing (WES) and Sanger sequencing were used to identify potentially relevant mutations. The online programsProtein Variation Effect Analyzer (PROVEAN) and Sorting Intolerant from Tolerant (SIFT) were employed to predict the impact of variation on protein function. RESULTS Both the proband and her mother were blind because of bilateral nuclear cataracts, and the elder brother of the proband also manifested obvious bilateral cataracts. Sanger sequencing confirmed the mutations in the proband as well as in her mother. The elder brother simply carried the PAX6 c.221G>A variation. The WFS1 c.2070_2079del variation potentially generates a loss-of-function mutant. CONCLUSION The novel PAX6mutation (c.221G>A) is associated with congenital cataract, and the WFS1 mutation (c.2070_2079del) may interactively aggravates this process. These findings may increase our understanding of the genetic etiology of congenital cataract.
Collapse
|
40
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
41
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
42
|
Hou W, Pande A, Pande J. Oxidation of active cysteines mediates protein aggregation of S10R, the cataract-associated mutant of mouse GammaB-crystallin. Proteins 2022; 90:1987-2000. [PMID: 35726360 PMCID: PMC9561057 DOI: 10.1002/prot.26391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
The Ser10 to Arg mutation in mouse γB-crystallin (MGB) has been associated with protein aggregation, dense nuclear opacity, and the degeneration of fiber cells in the lens core. Overexpression of the gap junction protein, connexin 46 (Cx46), was found to suppress the nuclear opacity and restore normal cell-cell contact. However, the molecular basis for the protein aggregation and related downstream effects were not evident from these studies. Here, we provide a comparison of the structures and solution properties of wild type MGB and the S10R mutant in vitro and show that, even though the mutation does not directly involve cysteine residues, some cysteines in the mutant protein are activated, leading to the enhanced formation of intermolecular disulfide-crosslinked protein aggregates relative to the wild-type. This occurs even as the protein structure is essentially unaltered. Thus, the primary event is enhanced protein aggregation due to the disulfide crosslinking of the mutant protein. We suggest that these aggregates eventually get deposited on fiber cell membranes. Since the gap junction protein, Cx46 is involved in the transport of reduced glutathione, we posit that these deposits interfere in Cx46-mediated glutathione transport and facilitate the oxidative stress-mediated downstream changes. Overexpression of Cx46 suppresses such oxidative aggregation. These studies provide a plausible explanation for the protein aggregation and other changes that accompany this mutation. If indeed cysteine oxidation is the primary event for protein aggregation also in vivo, then the S10R mutant mouse, which is currently available, could serve as a viable animal model for human age-onset cataract.
Collapse
Affiliation(s)
- Wenjuan Hou
- Department of Chemistry, Life Sciences, University at
Albany, State University of New York, Albany, NY, USA
- Current address: BioLegend Inc., 8999 BioLegend Way, San
Diego, CA 92121, United States
| | - Ajay Pande
- Department of Chemistry, Life Sciences, University at
Albany, State University of New York, Albany, NY, USA
| | - Jayanti Pande
- Department of Chemistry, Life Sciences, University at
Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
43
|
Wang Q, Qin T, Tan H, Ding X, Lin X, Li J, Lin Z, Sun L, Lin H, Chen W. Broadening the genotypic and phenotypic spectrum of MAF in three Chinese Han congenital cataracts families. Am J Med Genet A 2022; 188:2888-2898. [PMID: 36097645 DOI: 10.1002/ajmg.a.62947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 01/31/2023]
Abstract
Pathogenic variants in the v-maf avian musculoaponeurotic fibrosarcoma oncogene homologue (MAF) encoding a transcription factor (from a unique subclass of basic leucine zipper transcription factors) are associated with isolated congenital cataracts (CCs) and Aymé-Gripp syndrome (AYGRPS). We collected detailed disease histories from, and performed comprehensive ophthalmic and systemic examinations in 269 patients with CCs; we then performed whole-exome sequencing. Pathogenicity assessments were evaluated using multiple predictive tools. The clinical validities of the reported gene-disease relationships for MAF genes (MAF-CCs and MAF-AYGRPS) were assessed using the ClinGen gene curation framework. We identified two novel (c.173C>A, p.Thr58Asn and c.947T>C, p. Leu316Pro) variants and one known (c.173C>T, p.Thr58Ile) MAF missense variant in three patients. We described novel phenotypes including cleft palate, macular hypoplasia, and retinal neovascularization in the peripheral avascular area and analyzed the genotype-phenotype correlations. We demonstrated associations of variants in the MAF C-terminal DNA-binding domain with CCs and associations of variants in the N-terminal transactivation domain of MAF with AYGRPS. We thus expand the genotypic and phenotypic spectrum of the MAF gene. The ClinGen gene curation framework results suggested that variants in different domains of MAF are associated with different diseases.
Collapse
Affiliation(s)
- Qiwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Tingfeng Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | | | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Xiaoshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Zhuolin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, China
| |
Collapse
|
44
|
Khan SY, Ali M, Kabir F, Na CH, Delannoy M, Ma Y, Qiu C, Costello MJ, Hejtmancik JF, Riazuddin SA. The role of FYCO1-dependent autophagy in lens fiber cell differentiation. Autophagy 2022; 18:2198-2215. [PMID: 35343376 PMCID: PMC9397473 DOI: 10.1080/15548627.2022.2025570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 11/02/2022] Open
Abstract
FYCO1 (FYVE and coiled-coil domain containing 1) is an adaptor protein, expressed ubiquitously and required for microtubule-dependent, plus-end-directed transport of macroautophagic/autophagic vesicles. We have previously shown that loss-of-function mutations in FYCO1 cause cataracts with no other ocular and/or extra-ocular phenotype. Here, we show fyco1 homozygous knockout (fyco1-/-) mice recapitulate the cataract phenotype consistent with a critical role of FYCO1 and autophagy in lens morphogenesis. Transcriptome coupled with proteome and metabolome profiling identified many autophagy-associated genes, proteins, and lipids respectively perturbed in fyco1-/- mice lenses. Flow cytometry of FYCO1 (c.2206C>T) knock-in (KI) human lens epithelial cells revealed a decrease in autophagic flux and autophagic vesicles resulting from the loss of FYCO1. Transmission electron microscopy showed cellular organelles accumulated in FYCO1 (c.2206C>T) KI lens-like organoid structures and in fyco1-/- mice lenses. In summary, our data confirm the loss of FYCO1 function results in a diminished autophagic flux, impaired organelle removal, and cataractogenesis.Abbreviations: CC: congenital cataracts; DE: differentially expressed; ER: endoplasmic reticulum; FYCO1: FYVE and coiled-coil domain containing 1; hESC: human embryonic stem cell; KI: knock-in; OFZ: organelle-free zone; qRT-PCR: quantitative real-time PCR; PE: phosphatidylethanolamine; RNA-Seq: RNA sequencing; SD: standard deviation; sgRNA: single guide RNA; shRNA: shorthairpin RNA; TEM: transmission electron microscopy; WT: wild type.
Collapse
Affiliation(s)
- Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Delannoy
- Department of Cell Biology and Imaging Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yinghong Ma
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Caihong Qiu
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - M. Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Patel SD, Anand D, Motohashi H, Katsuoka F, Yamamoto M, Lachke SA. Deficiency of the bZIP transcription factors Mafg and Mafk causes misexpression of genes in distinct pathways and results in lens embryonic developmental defects. Front Cell Dev Biol 2022; 10:981893. [PMID: 36092713 PMCID: PMC9459095 DOI: 10.3389/fcell.2022.981893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 01/11/2023] Open
Abstract
Deficiency of the small Maf proteins Mafg and Mafk cause multiple defects, namely, progressive neuronal degeneration, cataract, thrombocytopenia and mid-gestational/perinatal lethality. Previous data shows Mafg -/-:Mafk +/- compound knockout (KO) mice exhibit cataracts age 4-months onward. Strikingly, Mafg -/-:Mafk -/- double KO mice develop lens defects significantly early in life, during embryogenesis, but the pathobiology of these defects is unknown, and is addressed here. At embryonic day (E)16.5, the epithelium of lens in Mafg -/-:Mafk -/- animals appears abnormally multilayered as demonstrated by E-cadherin and nuclear staining. Additionally, Mafg -/-:Mafk -/- lenses exhibit abnormal distribution of F-actin near the "fulcrum" region where epithelial cells undergo apical constriction prior to elongation and reorientation as early differentiating fiber cells. To identify the underlying molecular changes, we performed high-throughput RNA-sequencing of E16.5 Mafg -/-:Mafk -/- lenses and identified a cohort of differentially expressed genes that were further prioritized using stringent filtering criteria and validated by RT-qPCR. Several key factors associated with the cytoskeleton, cell cycle or extracellular matrix (e.g., Cdk1, Cdkn1c, Camsap1, Col3a1, Map3k12, Sipa1l1) were mis-expressed in Mafg -/-:Mafk -/- lenses. Further, the congenital cataract-linked extracellular matrix peroxidase Pxdn was significantly overexpressed in Mafg -/-:Mafk -/- lenses, which may cause abnormal cell morphology. These data also identified the ephrin signaling receptor Epha5 to be reduced in Mafg -/-:Mafk -/- lenses. This likely contributes to the Mafg -/-:Mafk -/- multilayered lens epithelium pathology, as loss of an ephrin ligand, Efna5 (ephrin-A5), causes similar lens defects. Together, these findings uncover a novel early function of Mafg and Mafk in lens development and identify their new downstream regulatory relationships with key cellular factors.
Collapse
Affiliation(s)
- Shaili D. Patel
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States,*Correspondence: Salil A. Lachke,
| |
Collapse
|
46
|
Zhao Q, Huang X. A case of fetal inherited congenital cataract. AJOG GLOBAL REPORTS 2022; 2:100068. [PMID: 36276787 PMCID: PMC9563538 DOI: 10.1016/j.xagr.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Qiaomei Zhao
- Department of Ultrasound, Huai'an Maternity and Children Hospital, Huai'an, China
| | - Xiaoli Huang
- Department of Medical Genetics and Prenatal Diagnosis, Huai'an Maternity and Children Hospital, Huai'an 223002, China
| |
Collapse
|
47
|
Xu W, Xu J, Shi C, Wu J, Wang H, Wu W, Chen X, Hu L. A novel cataract-causing mutation Ile82Met of γA crystallin trends to aggregate with unfolding intermediate. Int J Biol Macromol 2022; 211:357-367. [PMID: 35513103 DOI: 10.1016/j.ijbiomac.2022.04.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/06/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Cataract is the most common pathogenic ophthalmic disease leading to blindness in children worldwide. Genetic disorder is the leading cause of congenital cataract, among which crystallin mutations have a high incidence. There are few reports on γA-crystallin, one critical member of crystallin superfamilies. In this study, we identified a novel pathogenic mutation (Ile82Met) in γA-crystallin from a three-generation Chinese family with cataract, and investigated the potential molecular mechanism in detail. To elucidate the pathogenic mechanism of I82M mutant, spectroscopic and solubility experiments were performed to determine the difference between the purified γA-crystallin wild type (WT) and I82M mutant under both physiological conditions and environmental stresses (UV irradiation, thermal denaturation or chemical denaturation). The I82M mutant did not affect the secondary/tertiary structure of monomeric γA-crystallin under physiological status, but decreased protein stability and increased aggregatory potency under the stressful treatment. Surprisingly, the chemical denaturation caused I82M to switch from the two-state unfolding of γA-crystallin to three-state unfolding involving an unfolding intermediate. This study expands the genetic variation map of cataract, and provides novel insights into the pathomechanism, in particular, filling in a gap in the understanding of γA-crystallin mutants causing cataract.
Collapse
Affiliation(s)
- Wanyue Xu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Caiping Shi
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jing Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Huaxia Wang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
48
|
Berry V, Fujinami K, Mochizuki K, Iwata T, Pontikos N, Quinlan RA, Michaelides M. A recurrent variant in LIM2 causes an isolated congenital sutural/lamellar cataract in a Japanese family. Ophthalmic Genet 2022; 43:622-626. [PMID: 35736209 PMCID: PMC9612932 DOI: 10.1080/13816810.2022.2090010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Genetically determined cataract is both clinically and molecularly highly heterogeneous. Here, we have identified a heterozygous variant in the lens integral membrane protein LIM2, the second most abundant protein in the lens, responsible for congenital sutural/lamellar cataract in a three-generation Japanese family. Methods Whole exome sequencing (WES) was undertaken in one affected and one unaffected individual from a family with autosomal dominant congenital cataract to establish the underlying genetic basis. Results A recurrent missense variant LIM2: c.388C>T; p.R130C was identified and found to co-segregate with disease. In addition, one variant COL11A1:c.3788C>T of unknown significance (VUS) was also identified. Conclusions We report a variant in LIM2 causing an isolated autosomal-dominant congenital sutural/lamellar cataract in a Japanese family. This is the first report of a LIM2 variant in the Japanese population. Hence, we expand the mutation spectrum of LIM2 variants in different ethnic groups.
Collapse
Affiliation(s)
- Vanita Berry
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Centre, Tokyo, Japan
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Nikolas Pontikos
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Durham, UK
| | - Michel Michaelides
- Department of Genetics, UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
49
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|
50
|
Berry V, Pontikos N, Ionides A, Kalitzeos A, Quinlan RA, Michaelides M. Pathogenic variants in the CYP21A2 gene cause isolated autosomal dominant congenital posterior polar cataracts. Ophthalmic Genet 2022; 43:218-223. [PMID: 34748434 DOI: 10.1080/13816810.2021.1998556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Congenital cataracts are the most common cause of visual impairment worldwide. Inherited cataract is a clinically and genetically heterogeneous disease. Here we report disease-causing variants in a novel gene, CYP21A2, causing autosomal dominant posterior polar cataract. Variants in this gene are known to cause autosomal recessive congenital adrenal hyperplasia (CAH). METHODS Using whole-exome sequencing (WES), we have identified disease-causing sequence variants in two families of British and Irish origin, and in two isolated cases of Asian-Indian and British origin. Bioinformatics analysis confirmed these variants as rare with damaging pathogenicity scores. Segregation was tested within the families using direct Sanger sequencing. RESULTS A nonsense variant NM_000500.9 c.955 C > T; p.Q319* was identified in CYP21A2 in two families with posterior polar cataract and in an isolated case with unspecified congenital cataract phenotype. This is the same variant previously linked to CAH and identified as Q318* in the literature. We have also identified a rare missense variant NM_000500.9 c.770 T > C; p.M257T in an isolated case with unspecified congenital cataract phenotype. CONCLUSION This is the first report of separate sequence variants in CYP21A2 associated with congenital cataract. Our findings extend the genetic basis for congenital cataract and add to the phenotypic spectrum of CYP21A2 variants and particularly the CAH associated Q318* variant. CYP21A2 has a significant role in mineralo- and gluco-corticoid biosynthesis. These findings suggest that CYP21A2 may be important for extra-adrenal biosynthesis of aldosterone and cortisol in the eye lens.
Collapse
Affiliation(s)
- Vanita Berry
- Department of Genetics, Ucl Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- Department of Genetics, Ucl Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Alex Ionides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Angelos Kalitzeos
- Department of Genetics, Ucl Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Roy A Quinlan
- School of Biological and Medical Sciences, University of Durham, Durham, UK
| | - Michel Michaelides
- Department of Genetics, Ucl Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|