1
|
Yagi T, Nakabuchi R, Muranaka Y, Tanaka G, Katoh Y, Nakayama K, Takatsu H, Shin HW. Lipid flippases ATP9A and ATP9B form a complex and contribute to the exocytic pathway from the Golgi. Life Sci Alliance 2025; 8:e202403163. [PMID: 40234049 PMCID: PMC12000689 DOI: 10.26508/lsa.202403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Type IV P-type ATPases (P4-ATPases) serve as lipid flippases, translocating membrane lipids from the exoplasmic (or luminal) leaflet to the cytoplasmic leaflet of lipid bilayers. In mammals, these P4-ATPases are localized to distinct subcellular compartments. ATP8A1 and ATP9A, members of the P4-ATPase family, are involved in endosome-mediated membrane trafficking, although the roles of P4-ATPases in the exocytic pathway remain to be clarified. ATP9A and ATP9B are located in the TGN, with ATP9A also present in endosomal compartments. This study revealed the overlapping roles of ATP9A and ATP9B in transporting VSVG from the Golgi to the plasma membrane within the exocytic pathway. Furthermore, we demonstrated that the flippase activities of ATP9A and ATP9B were crucial for the transport process. Notably, we discovered the formation of homomeric and/or heteromeric complexes between ATP9A and ATP9B. Therefore, ATP9A and ATP9B play a role in the exocytic pathway from the Golgi to the plasma membrane, forming either homomeric or heteromeric complexes.
Collapse
Affiliation(s)
- Tsukasa Yagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Riki Nakabuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yumeka Muranaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Gaku Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Terrey M, Krivoshein G, Adamson SI, Arystarkhova E, Anderson L, Szwec J, McKee S, Jones H, Perkins S, Selvam V, Piec PA, Chhaya D, Dehn A, Zuberi A, Murray SA, Morsci NS, Sweadner KJ, Knowles DA, Tolner EA, van den Maagdenberg AMJM, Lutz CM. Alternating hemiplegia of childhood associated mutations in Atp1a3 reveal diverse neurological alterations in mice. Neurobiol Dis 2025:106954. [PMID: 40381892 DOI: 10.1016/j.nbd.2025.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
Pathogenic variants in the neuronal Na+/K+ ATPase transmembrane ion transporter (ATP1A3) cause a spectrum of neurological disorders including alternating hemiplegia of childhood (AHC). The most common de novo pathogenic variants in AHC are p.D801N (~40 % of patients) and p.E815K (~25 % of patients), which lead to early mortality by spontaneous death in mice. Nevertheless, knowledge of the development of clinically relevant neurological phenotypes without the obstacle of premature death, is critical for the identification of pathophysiological mechanisms and ultimately, for the testing of therapeutic strategies in disease models. Here, we used hybrid vigor attempting to mitigate the fragility of AHC mice and then performed behavioral, electrophysiological, biochemical, and molecular testing to comparatively analyze mice that carry either of the two most common AHC patient observed variants in the Atp1a3 gene. Collectively, our data reveal the presence but also the differential impact of the p.D801N and p.E815K variants on disease relevant alterations such as spontaneous and stress-induced paroxysmal episodes, motor function, behavioral and neurophysiological activity, and neuroinflammation. Our alternate AHC mouse models with their phenotypic deficits open novel avenues for the investigation of disease biology and therapeutic testing for ATP1A3 research.
Collapse
Affiliation(s)
- Markus Terrey
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Georgii Krivoshein
- Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Laura Anderson
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - John Szwec
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Shelby McKee
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Holly Jones
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Sara Perkins
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Vijay Selvam
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Dweet Chhaya
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Ari Dehn
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Aamir Zuberi
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Stephen A Murray
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA; Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA; JAX Center for Precision Genetics, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Natalia S Morsci
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - David A Knowles
- New York Genome Center, New York, NY, USA; Department of Computer Science and Department of Systems Biology, Columbia, New York, NY, USA
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Cathleen M Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA; JAX Center for Precision Genetics, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
3
|
Guo Z, Chen D, Yao L, Sun Y, Li D, Le J, Dian Y, Zeng F, Chen X, Deng G. The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer. Signal Transduct Target Ther 2025; 10:149. [PMID: 40341098 PMCID: PMC12062509 DOI: 10.1038/s41392-025-02192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 05/10/2025] Open
Abstract
Copper, an essential micronutrient, plays significant roles in numerous biological functions. Recent studies have identified imbalances in copper homeostasis across various cancers, along with the emergence of cuproptosis, a novel copper-dependent form of cell death that is crucial for tumor suppression and therapeutic resistance. As a result, manipulating copper levels has garnered increasing interest as an innovative approach to cancer therapy. In this review, we first delineate copper homeostasis at both cellular and systemic levels, clarifying copper's protumorigenic and antitumorigenic functions in cancer. We then outline the key milestones and molecular mechanisms of cuproptosis, including both mitochondria-dependent and independent pathways. Next, we explore the roles of cuproptosis in cancer biology, as well as the interactions mediated by cuproptosis between cancer cells and the immune system. We also summarize emerging therapeutic opportunities targeting copper and discuss the clinical associations of cuproptosis-related genes. Finally, we examine potential biomarkers for cuproptosis and put forward the existing challenges and future prospects for leveraging cuproptosis in cancer therapy. Overall, this review enhances our understanding of the molecular mechanisms and therapeutic landscape of copper and cuproptosis in cancer, highlighting the potential of copper- or cuproptosis-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
4
|
Viskupicova J, Michel Espinoza-Fonseca L. Allosteric modulation of SERCA pumps in health and disease: structural dynamics, posttranslational modifications, and therapeutic potential. J Mol Biol 2025:169200. [PMID: 40349954 DOI: 10.1016/j.jmb.2025.169200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Sarco/endoplasmic reticulum (SR/ER) Ca2+-ATPase (SERCA) pumps are ubiquitous membrane proteins in all eukaryotic cells, playing a central role in maintaining intracellular calcium homeostasis by re-sequestering Ca2+ ions from the cytosol into the SR/ER at the expense of ATP hydrolysis. SERCA pumps are well-characterized components of the calcium transport machinery in the cell, playing a role in various physiological processes, including muscle contraction, energy metabolism, secretion exocytosis, gene expression, synaptic transmission, cell survival, and fertilization. Allosteric regulation of SERCA pumps plays a key role in health and disease, and modulation of the SERCA pumps has emerged as a therapeutic approach for the treatment of cardiovascular, muscular, metabolic, and neurodegenerative disorders. In this review, we provide a comprehensive overview of the structural dynamics underlying allosteric modulation of SERCA, focusing on the effects of endogenous regulatory proteins, Ca2+ ions, ATP, and small-molecule effectors on the dynamics and function of the pump. We also examine in detail the role of posttranslational modifications as allosteric modulators of SERCA function, focusing on the oxidative modifications S-glutathionylation, S-nitrosylation, tyrosine nitration, and carbonylation, and non-oxidative modifications that include SUMOylation, acetylation, O-GlcNAcylation, phosphorylation, and ubiquitination. Finally, we discuss the therapeutic potential and challenges of allosteric modulation of SERCA pumps, including the design of small-molecule effectors, microRNA-based interventions, and targeted strategies that modulate SERCA posttranslational regulation. Overall, this review aims to bridge the gap between the mechanisms underlying allosteric modulation of SERCA and the translation of basic science discoveries into effective therapies targeting SERCA pumps.
Collapse
Affiliation(s)
- Jana Viskupicova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, 84104 Bratislava, Slovakia.
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
François D, Reichart GJ, de Nooijer LJ. Open or closed: pH modulation and calcification by foraminifera. SCIENCE ADVANCES 2025; 11:eadq8425. [PMID: 40315320 PMCID: PMC12047421 DOI: 10.1126/sciadv.adq8425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
Marine calcifying organisms precipitate their shells either in equilibrium with seawater or under strict biological control. Here, we show that these two options represent two ends of a spectrum. In species with a more "closed" system, rates of H+ removal and Ca2+ uptake are high and exceed the amount of ions required for calcification. This explains the relatively low Mg/Ca of the calcite of this species by dilution of the [Mg2+] in the calcifying fluid. Conversely, in species with a more open system, the H+ and Ca2+ fluxes are lower, with more seawater exchanged between the environment and calcifying fluid, explaining the relatively high Mg/Ca in these foraminifera. In either of these species, mitochondria were found to be located at the site where the Ca2+/H+ exchange takes place and the mitochondrial density aligned with the rate of pumping. These findings highlight the crucial role of transmembrane transporters and mitochondria in foraminifera calcification and explain the species-specific elemental signatures.
Collapse
Affiliation(s)
- Daniel François
- Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Gert-Jan Reichart
- Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Lennart J. de Nooijer
- Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, Netherlands
| |
Collapse
|
6
|
Soeda I, Shibata M, Inaishi T, Ichikawa T, Sugino K, Kanaya E, Kanda M, Hayashi M, Masuda N. ATPase copper transporting beta attenuates malignant features with high expression as an indicator of favorable prognosis in breast cancer. Breast Cancer 2025:10.1007/s12282-025-01705-7. [PMID: 40316883 DOI: 10.1007/s12282-025-01705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND ATPase copper transporting beta (ATP7B) functions as a copper-transporting ATPase that ejects copper from cells. Although high expression of ATP7B has been reported to increase cisplatin resistance, its role in breast cancer (BC) remains unclear. This study aimed to elucidate the function of ATP7B in BC cells and its significance in patients with BC. METHODS The mRNA and protein expression levels of ATP7B were evaluated in BC and non-cancerous mammary cell lines. Polymerase chain reaction (PCR) array analysis was conducted to determine the correlation between ATP7B and 84 cancer-related genes. ATP7B knockdown was performed using small interfering RNA, and cell proliferation, invasiveness, and migration were analyzed. The associations between the mRNA and protein expression of ATP7B and clinicopathological factors were also investigated in 156 patients with BC. RESULTS ATP7B was found to be highly expressed in estrogen receptor-positive and human epidermal growth factor receptor 2-positive BC cell lines. PCR array analysis revealed a significant correlation between the expression level of ATP7B and those of cadherin 1, estrogen receptor 1, and MET proto-oncogene. ATP7B knockdown significantly increased the proliferation, invasiveness, and migration of MDA-MB-361 and MDA-MB-415 cells. Patients with high ATP7B expression at the mRNA and protein levels experienced favorable prognoses. In addition, ATP7B expression level was identified as an independent prognostic factor in multivariate analysis. CONCLUSIONS ATP7B is involved in promoting anti-cancer activities of tumor suppressors in BC cells across different subtypes and is considered a prognostic marker for BC.
Collapse
Affiliation(s)
- Ikumi Soeda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiro Shibata
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Department of Surgery, Nagoya Ekisaikai Hospital, 4-66, Shonen-cho, Nakagawa-ku, Nagoya, 454-8502, Japan.
| | - Takahiro Inaishi
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Surgery, Komaki City Hospital, 1-20, Joubushi, Komaki, Aichi, 485-8520, Japan
| | - Takahiro Ichikawa
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kayoko Sugino
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Emi Kanaya
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, 930-0194, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Norikazu Masuda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
7
|
Li Y, Yang J, Zhang Q, Zhang K, Xue Q, Liu W, Ding X, Niu Z. CRISPR-Cas9 Mediated Gene Editing Platform Through Callus-to-Plant Regeneration and Functional Analysis of DoALA4─DoALA6 in Dendrobium officinale. PLANT, CELL & ENVIRONMENT 2025; 48:2923-2936. [PMID: 39641183 DOI: 10.1111/pce.15312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Dendrobium orchids are well known for their great horticultural and medicinal values; however, the CRISPR/Cas9 gene editing system for Dendrobium species still needs to be improved. Therefore, this study aims to establish a CRISPR/Cas9-based functional validation system using Dendrobium officinale as a model species for the Dendrobium genus and to validate the DoALA4─DoALA6 genes, which may relate to growth and disease resistance. We first conducted a bioinformatics analysis of the P-type ATPase gene family in D. officinale, revealing the evolutionary diversity of P-type ATPase genes in orchids. Second, we inserted the GFP gene into the vector of CRISPR/Cas9 gene editing system to enhance the selection efficiency of genome-edited plants. Comparative analysis showed that different explants exhibited varying transformation efficiencies, ranging from 5% to 46.2%. Considering the regeneration capability, survival rate and gene editing efficiency, we selected callus as the transformation explant. Third, we used this editing system to generate DoALA4─DoALA6 mutants. Phenotypic observations of the mutants and inoculation of D. officinale with Sclerotium rolfsii indicated that DoALA4─DoALA6 are crucial for the growth of D. officinale and its resistance to southern blight disease. This efficient and stable CRISPR/Cas9 platform offers a foundation for further gene studies and Dendrobium breeding.
Collapse
Affiliation(s)
- Ying Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Qian Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Ke Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| |
Collapse
|
8
|
Wu J, Luo X, Huang Y, Tang F. Nitric oxide enhances copper tolerance by regulating cell wall composition and copper transporting-related transcripts in cotton roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109621. [PMID: 39952160 DOI: 10.1016/j.plaphy.2025.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Little is known about nitric oxide (NO)-mediated cotton plants' response to copper (Cu) stress and the underlying tolerance mechanism. It was hypothesized that NO can alleviate Cu toxicity to cotton roots by regulating the root cell wall composition and the transcription of Cu ion transporting-related genes. Cu stress significantly increased NO synthase (EC 1.14.14.47) activity, leading to elevated endogenous NO content. Cu excess-induced growth inhibition was reversed by sodium nitroprusside (SNP, NO donor) application but exacerbated by cPTIO (NO scavenger) addition. The SNP + Cu treatment promoted more Cu ions accumulation in roots and less Cu ions transportation to leaves than Cu treatment, which also produced the largest Cu uptake amount per plant among all treatments. The concentration of cell wall pectin was significantly enhanced by 16.95% by the SNP application. Pectin methylesterase activity was up-regulated by 30.86% (p < 0.05), thus resulting in a reduction of 10.39% in pectin methylesterification degree in the Cu + SNP treatment than in Cu stress alone; additionally, Cu chaperons COX17, CCH, and ATX1, Cu chelator MT2, and Cu homeostasis regulator SPL7 exhibited higher transcriptional levels. Collectively, NO improved cotton roots' tolerance to Cu stress through the enhancement of Cu ions binding to cell wall due to increased polysaccharide biosynthesis and pectin demethylesterification degree, and via the promotion of Cu ions sequestration owing to up-regulated expressions of Cu chaperones and chelators. These findings should have significant implications for the phytoremediation of Cu-contaminated soils by using cotton plants, which needs further validation under field conditions.
Collapse
Affiliation(s)
- Jianfei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoxia Luo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Feiyu Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
9
|
Basse Hansen S, Flygaard RK, Kjaergaard M, Nissen P. Structure of the [Ca]E2P intermediate of Ca 2+-ATPase 1 from Listeria monocytogenes. EMBO Rep 2025; 26:1709-1723. [PMID: 40016426 PMCID: PMC11977196 DOI: 10.1038/s44319-025-00392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Active transport by P-type Ca2+-ATPases maintain internal calcium stores and a low cytosolic calcium concentration. Structural studies of mammalian sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) have revealed several steps of the transport cycle, but a calcium-releasing intermediate has remained elusive. Single-molecule FRET studies of the bacterial Ca2+-ATPase LMCA1 revealed an intermediate of the transition between so-called [Ca]E1P and E2P states and suggested that calcium release from this intermediate was the essentially irreversible step of transport. Here, we present a 3.5 Å resolution cryo-EM structure for a four-glycine insertion mutant of LMCA1 in a lipid nanodisc obtained under conditions with calcium and ATP and adopting such an intermediate state, denoted [Ca]E2P. The cytosolic domains are positioned in the E2P-like conformation, while the calcium-binding transmembrane (TM) domain adopts a calcium-bound E1P-ADP-like conformation. Missing density for the E292 residue at the calcium site (the equivalent of SERCA1a E309) suggests flexibility and a site poised for calcium release and proton uptake. The structure suggests a mechanism where ADP release and re-organization of the cytoplasmic domains precede calcium release.
Collapse
Affiliation(s)
- Sara Basse Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
- The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark.
- The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Aarhus, Denmark.
| |
Collapse
|
10
|
Hu Q, Sitsel O, Bågenholm V, Grønberg C, Lyu P, Pii Svane AS, Andersen KR, Laursen NS, Meloni G, Nissen P, Juhl DW, Nielsen JT, Nielsen NC, Gourdon P. Transition metal transporting P-type ATPases: terminal metal-binding domains serve as sensors for autoinhibitory tails. FEBS J 2025; 292:1654-1674. [PMID: 39609265 PMCID: PMC11970713 DOI: 10.1111/febs.17330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
Copper is an essential micronutrient and yet is highly toxic to cells at elevated concentrations. P1B-ATPase proteins are critical for this regulation, providing active extrusion across cellular membranes. One unique molecular adaptation of P1B-ATPases compared to other P-type ATPases is the presence of metal-binding domains (MBDs) at the cytosolic termini, which however are poorly characterized with an elusive mechanistic role. Here we present the MBD architecture in metal-free and metal-bound forms of the archetype Cu+-specific P1B-ATPase LpCopA, determined using NMR. The MBD is composed of a flexible tail and a structured core with a metal ion binding site defined by three sulfur atoms, one of which is pertinent to the so-called CXXC motif. Furthermore, we demonstrate that the MBD rather than being involved in ion delivery likely serves a regulatory role, which is dependent on the classical P-type ATPase E1-E2 transport mechanism. Specifically, the flexible tail appears responsible for autoinhibition while the metal-binding core is used for copper sensing. This model is validated by a conformation-sensitive and MBD-targeting nanobody that can structurally and functionally replace the flexible tail. We propose that autoinhibition of Cu+-ATPases occurs at low copper conditions via MBD-mediated interference with the soluble domains of the ATPase core and that metal transport is enabled when copper levels rise, through metal-induced dissociation of the MBD. This allows P1B-ATPase 'vacuum cleaners' to tune their own activity, balancing the levels of critical micronutrients in the cells.
Collapse
Affiliation(s)
- Qiaoxia Hu
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | - Oleg Sitsel
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
- Present address:
Marine Structural Biology UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | | | | | - Pin Lyu
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | - Anna Sigrid Pii Svane
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | | | - Nick Stub Laursen
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
| | - Gabriele Meloni
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Poul Nissen
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
| | - Dennis W. Juhl
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Jakob Toudahl Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Niels Chr. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Pontus Gourdon
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
- Department of Experimental Medical ScienceLund UniversitySweden
| |
Collapse
|
11
|
Beyer T, Caliebe J, Kähler L, Beitz E. A Soluble Expression Construct of the Isolated Catalytic Domain of Plasmodium falciparum ATP4 Exhibits ATPase Activity Independent of a γ-Phosphate Receiving Aspartate. Mol Microbiol 2025. [PMID: 40091859 DOI: 10.1111/mmi.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The sodium/proton-exchanging ATPase of Plasmodium falciparum malaria parasites, PfATP4, is an emerging drug target. Inhibition results in detrimental cell swelling due to cytosolic accumulation of sodium and alkalization. PfATP4 is a sodium-releasing type II P-type ATPase restricted to apicomplexan parasites. Experimental data on structure-function relationships of the isolated protein are absent. Here, we produced and purified the soluble catalytic domain of PfATP4 and evaluated kinetic properties by in vitro phosphate colorimetry. The protein exhibited Mg2+-dependent ATPase activity at the same order of magnitude as the native cellular PfATP4 and was insensitive to the presence of sodium. AlphaFold 3-based structure and ATP/Mg2+ interaction predictions identified key residues of the nucleotide binding domain (Lys619, Lys652, Arg703). Replacement of the lysines by methionine decreased the enzymatic activity to one quarter. Individual mutation of the putative Mg2+-coordinating Asp865 of the phosphorylation domain was tolerated, while a joint replacement with Asp869 decreased ATPase again to one quarter. Mutation of the putative γ-phosphate receiving Asp451 maintained the rate of Pi release. Our data attribute typical functional roles for P-type ATPases to the basic and acidic residues of the soluble PfATP4 catalytic domain and show that its ATP hydrolysis is independent of phosphorylation of Asp451.
Collapse
Affiliation(s)
- Timo Beyer
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jesko Caliebe
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Lara Kähler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
12
|
Cordovado A, Hérenger Y, Cormier C, López-Martín E, Stamberger H, Faivre L, Denommé-Pichon AS, Vitobello A, Abdallah HH, Barcia G, Courtin T, Martínez-Delgado B, Bermejo-Sánchez E, Barrero MJ, Gasser B, Bezieau S, Küry S, Weckhuysen S, Laumonnier F, Toutain A, Vuillaume ML. Heterozygous Missense Variants in the ATPase Phospholipid Transporting 9A Gene, ATP9A, Alter Dendritic Spine Maturation and Cause Dominantly Inherited Nonsyndromic Intellectual Disability. Hum Mutat 2025; 2025:7085599. [PMID: 40226306 PMCID: PMC11987072 DOI: 10.1155/humu/7085599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
Intellectual disability is a neurodevelopmental disorder, affecting 2%-3% of the population, with a genetic cause in the majority of cases. ATP9A (Online Mendelian Inheritance in Man (OMIM)∗609126, NM_006045.3) has recently been added to the list of candidate genes involved in this disorder with the identification of biallelic truncating variants in patients with a neurodevelopmental disorder. In this study, we propose a novel mode of inheritance for ATP9A-related disorders with the identification of five de novo heterozygous missense variants (p.(Thr393Arg), p.(Glu400Gln), p.(Lys461Glu), p.(Gly552Ala), and p.(His713Asp)), in patients with intellectual disability. In a patient with a similar phenotype, we also identified two truncating variants in ATP9A (p.(Arg145∗), p.(Glu901∗)), adding a novel family to the six already described in the literature with the recessive mode of inheritance. Functional studies were performed to assess the pathogenicity of these variants. Overexpression of four selected missense mutant forms of Atp9a in HeLa cells and in primary neuronal cultures led to a loss of mature dendritic spines. In HeLa cells, the endosomal localization of the protein encoded by three of these missense variants was preserved whereas the fourth remained blocked in the endoplasmic reticulum. To mimic the effect on neuronal morphology and spine density of nonsense variants, small hairpin RNAs (shRNAs) were used. They induced a decreased expression of ATP9A, affecting the neuronal arborization by decreasing the number of dendrites per neuron. Our results therefore demonstrate the pathogenicity of ATP9A heterozygous missense variants and confirm the role of ATP9A in neuronal maturation and in brain wiring during development. They strengthen the association of ATP9A with neurodevelopmental disorders and demonstrate that a double mode of inheritance should be considered for ATP9A-related disorders.
Collapse
Affiliation(s)
- Amélie Cordovado
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
| | - Yvan Hérenger
- Genetica AG, Human Genetics and Genetic Counselling Unit, Zurich, Switzerland
| | - Coline Cormier
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
| | - Estrella López-Martín
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hannah Stamberger
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Laurence Faivre
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
- Medical Genomics Laboratory, FHU TRANSLAD, University Hospital, Dijon, France
| | - Antonio Vitobello
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
- Medical Genomics Laboratory, FHU TRANSLAD, University Hospital, Dijon, France
| | - Hamza Hadj Abdallah
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Giulia Barcia
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Thomas Courtin
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | | | - Eva Bermejo-Sánchez
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María J. Barrero
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Stéphane Bezieau
- Medical Genetics Department, University Hospital, Nantes, France
- Thorax Institute Research Unit, INSERM, CNRS, Nantes University, Nantes, France
| | - Sébastien Küry
- Medical Genetics Department, University Hospital, Nantes, France
- Thorax Institute Research Unit, INSERM, CNRS, Nantes University, Nantes, France
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Frédéric Laumonnier
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| | - Annick Toutain
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| | - Marie-Laure Vuillaume
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| |
Collapse
|
13
|
Lapshin NK, Trofimova MS. The role of interplay between the plant plasma membrane H +-ATPase and its lipid environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112343. [PMID: 39638092 DOI: 10.1016/j.plantsci.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The mechanisms behind the regulation of plasma membrane (PM) P-type H+-ATPase in plant cells mediated by lipid-protein interactions and lateral heterogeneity of the plasma membrane are discussed. This review will focus on 1) the structural organization and mechanisms of the catalytic cycle of the enzyme, 2) phosphorylation as the primary mechanism of pump regulation; 3) the possible role of lateral heterogeneity of the plasma membrane in this process, as well as 4) the role of lipids in the H+-ATPase biosynthesis and its delivery to the plasma membrane. In addition, 5) the potential role of membrane lipids in the H+-ATPase co-localisation with secondary active transporters is speculated.
Collapse
Affiliation(s)
- Nikita K Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Marina S Trofimova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
14
|
Yang B, Xiao Y, Li L, Shen M, Lei X, Zhu X, Fang W. The Physiological Responses of Tea to pH and Cd Conditions and the Effect of the CsHMA2 on Cd Transport. PLANTS (BASEL, SWITZERLAND) 2025; 14:570. [PMID: 40006829 PMCID: PMC11859789 DOI: 10.3390/plants14040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Soil acidification in tea (Camellia sinensis L.) gardens leads to nutrient depletion, inhibits the growth of tea plants, reduces tea quality, and activates heavy metals such as cadmium (Cd) in the soil. To clarify the impact of soil pH under acidified conditions on tea plant growth physiology and the key genes involved in Cd2+ transport in tea plants, this study planted 'Longjing 43' under different pH levels (4.0, 4.5, and 5.5) and Cd concentrations (T1 = 0 mg L-1, T2 = 0.01 mg L-1, T3 = 0.05 mg L-1, and T4 = 0.2 mg L-1). The results showed that the concentration of Cd in tea plants from highest to lowest was root > stem > mature leaves > young leaves. Under T4, with decreasing pH, the total chlorophyll significantly decreased, the Fv/Fm significantly decreased, stomatal aperture reduced, and net photosynthetic rate and transpiration rate significantly decreased. In the T4 treatment at pH = 4.0, the contents of free proline and malondialdehyde were both the highest, while superoxide dismutase (SOD), peroxidase (POD), and catalase from micrococcus lysodeiktic (CAT) showed a significant negative correlation with pH. By screening the tea genome data, a total of nine CsHMAs involved in metal ion transport were identified. The qRT-PCR results indicated that the expression level of CsHMA2 was the highest in young leaves of tea, and CsHMA2 was localized on the cell membrane. Under T4 and pH = 4.0, transient overexpression of CsHMA2 enhanced the ability of tea to transport Cd2+, whereas transient silencing of CsHMA2 weakened this ability. These findings not only help understand how tea adapts and regulates its physiological processes in acidic environments but also provide an important theoretical basis and technical guidance for soil improvement in tea gardens, the control of heavy metal pollution, and the optimization of tea quality.
Collapse
Affiliation(s)
- Bin Yang
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (B.Y.); (L.L.); (M.S.)
| | - Yao Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (X.L.)
| | - Lei Li
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (B.Y.); (L.L.); (M.S.)
| | - Min Shen
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (B.Y.); (L.L.); (M.S.)
| | - Xiaogang Lei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (X.L.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (X.L.)
| | - Wanping Fang
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (B.Y.); (L.L.); (M.S.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (X.L.)
| |
Collapse
|
15
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2025; 46:271-291. [PMID: 39117969 PMCID: PMC11756407 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
16
|
Shin HW, Takatsu H. Substrates, regulation, cellular functions, and disease associations of P4-ATPases. Commun Biol 2025; 8:135. [PMID: 39875509 PMCID: PMC11775268 DOI: 10.1038/s42003-025-07549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases. Initially identified as aminophospholipid translocases, P4-ATPases have since been found to translocate other phospholipids, including phosphatidylcholine, phosphatidylinositol, and even glycosphingolipids. Recent advances in structural analysis have significantly improved our understanding of the lipid transport machinery associated with P4-ATPases, as documented in recent reviews. In this review, we highlight the emerging evidence related to substrate diversity, the regulation of cellular localization, enzymatic activities, and their impact on organism homeostasis and diseases.
Collapse
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
17
|
Sun Y, Tao H, Han H, Zou Y, Xue Y, Chen S, Tao F. Identification and expression analysis of P-type ATPase IIIA subfamily in Puccinia Striiformis f. sp. tritici. BMC Genomics 2025; 26:68. [PMID: 39856561 PMCID: PMC11759449 DOI: 10.1186/s12864-025-11219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Puccinia striiformis f. sp. tritici (Pst) causes wheat stripe (yellow) rust disease, which is one of the most destructive diseases affecting wheat worldwide. ATPases, a class of membrane proteins, play an important role in material exchange and signal transduction both within and outside biological cells by transporting ions and phospholipids. In plant pathogens, P-type ATPases primarily participate in pathogen development and virulence regulation. However, the P-type ATPase of subfamily IIIA (PMA) has not yet been identified in Pst. To investigate the potential functions of the PMA gene family in Pst, we conducted a genome-wide bioinformatics analysis and examined the expression profiles of the PMA gene family. RESULTS Six PMA genes were identified in the genome of P. striiformis f. sp. tritici (CYR34 race). The PMA proteins encoded by these genes ranged in length from 811 to 960 amino acids (aa). Each of the six PMA genes contained a typical ATPase IIIA H superfamily domain and was distributed across four chromosomes. Thirty-six major cis-regulatory elements were detected within the PMA gene family members. Elements such as the CGTCA-motif and TGACG-motif play significant roles in responding to environmental stresses and hormone signals. Quantitative PCR analysis revealed that the expression of the PMA04 gene was generally higher at 9 °C under various temperature stresses. The PMA06 gene typically exhibited higher expression levels at 16 °C. During the infection of Pst, the expression levels of PMA04, PMA05, and PMA06 were elevated at 72 h post treatment. CONCLUSIONS Our results indicate that the PMA gene family in the CYR34 strain comprises six PMA genes, which are crucial for managing temperature stress and pathogen infection, and exhibit a distinctive splicing pattern. This study not only identifies a target and direction for the development of new, efficient, and environmentally friendly control agents for wheat stripe rust but also establishes a foundation for analyzing its pathogenic mechanisms.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hong Tao
- Forest Seedling Service Station of Linxia Hui Autonomous Prefecture, Linxia, 731100, China
| | - Hong Han
- Academy of Agricultural Sciences of Linxia Hui Autonomous Prefecture, Linxia, 731100, China
| | - Yiping Zou
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Yingyu Xue
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shiwen Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fei Tao
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
18
|
Rachuri S, Nepal B, Shukla A, Ramanathan A, Morrisey JM, Daly T, Mather MW, Bergman LW, Kortagere S, Vaidya AB. Mutational analysis of an antimalarial drug target, PfATP4. Proc Natl Acad Sci U S A 2025; 122:e2403689122. [PMID: 39773028 PMCID: PMC11745376 DOI: 10.1073/pnas.2403689122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target Plasmodium falciparum P-type ATPase (PfATP4). This essential protein is a Na+ pump responsible for the maintenance of Na+ homeostasis. PfATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined. To gain better insight into the structure/function relationship of this validated drug target, we generated a homology model of PfATP4 based on sarco/endoplasmic reticulum Ca2+ ATPase, a P2A-type ATPase, and refined the model using molecular dynamics in its explicit membrane environment. This model predicted several residues in PfATP4 critical for its function, as well as those that impart resistance to various PfATP4 inhibitors. To validate our model, we developed a genetic system involving merodiploid states of PfATP4 in which the endogenous gene was conditionally expressed, and the second allele was mutated to assess its effect on the parasite. Our model predicted residues involved in Na+ coordination as well as the phosphorylation cycle of PfATP4. Phenotypic characterization of these mutants involved assessment of parasite growth, localization of mutated PfATP4, response to treatment with known PfATP4 inhibitors, and evaluation of the downstream consequences of Na+ influx. Our results were consistent with modeled predictions of the essentiality of the critical residues. Additionally, our approach confirmed the phenotypic consequences of resistance-associated mutations as well as a potential structural basis for the fitness cost associated with some mutations. Taken together, our approach provides a means to explore the structure/function relationship of essential genes in haploid organisms.
Collapse
Affiliation(s)
- Swaksha Rachuri
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Binod Nepal
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Anurag Shukla
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Aarti Ramanathan
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Joanne M. Morrisey
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Thomas Daly
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Michael W. Mather
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lawrence W. Bergman
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
19
|
Huang L, Liu X, Wang Q, Chen W, Fu W, Guo Y. RALF proteins-a monitoring hub for regulating salinity tolerance in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1365133. [PMID: 39830941 PMCID: PMC11738622 DOI: 10.3389/fpls.2024.1365133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/31/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wen Chen
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yongjun Guo
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Foshan ZhiBao Ecological Technology Co. Ltd, Foshan, Guangdong, China
| |
Collapse
|
20
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
21
|
Xu J, Wang Y. Generating Multistate Conformations of P-type ATPases with a Conditional Diffusion Model. J Chem Inf Model 2024; 64:9227-9239. [PMID: 39480276 DOI: 10.1021/acs.jcim.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding and predicting the diverse conformational states of membrane proteins is essential for elucidating their biological functions. Despite advancements in computational methods, accurately capturing these complex structural changes remains a significant challenge. Here, we introduce a computational approach to generate diverse and biologically relevant conformations of membrane proteins using a conditional diffusion model. Our approach integrates forward and backward diffusion processes, incorporating state classifiers and additional conditioners to control the generation gradient of conformational states. We specifically targeted the P-type ATPases, a critical family of membrane transporters, and constructed a comprehensive data set through a combination of experimental structures and molecular dynamics simulations. Our model, incorporating a graph neural network with specialized membrane constraints, demonstrates exceptional accuracy in generating a wide range of P-type ATPase conformations associated with different functional states. This approach represents a meaningful step forward in the computational generation of membrane protein conformations using AI and holds promise for studying the dynamics of other membrane proteins.
Collapse
Affiliation(s)
- Jingtian Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Abe K, McDermott J, Valia Madapally H, Marimuthu P, Gopalasingam CC, Gerle C, Shigematsu H, Khandelia H, Blanco G. Molecular Structure of the Na +,K +-ATPase α4β1 Isoform in Its Ouabain-Bound Conformation. Int J Mol Sci 2024; 25:12397. [PMID: 39596464 PMCID: PMC11594824 DOI: 10.3390/ijms252212397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Na+,K+-ATPase is the active ion transport system that maintains the electrochemical gradients for Na+ and K+ across the plasma membrane of most animal cells. Na+,K+-ATPase is constituted by the association of two major subunits, a catalytic α and a glycosylated β subunit, both of which exist as different isoforms (in mammals known as α1, α2, α3, α4, β1, β2 and β3). Na+,K+-ATPase α and β isoforms assemble in different combinations to produce various isozymes with tissue specific expression and distinct biochemical properties. Na+,K+-ATPase α4β1 is only found in male germ cells of the testis and is mainly expressed in the sperm flagellum, where it plays a critical role in sperm motility and male fertility. Here, we report the molecular structure of Na+,K+-ATPase α4β1 at 2.37 Å resolution in the ouabain-bound state and in the presence of beryllium fluoride. Overall, Na+,K+-ATPase α4 structure exhibits the basic major domains of a P-Type ATPase, resembling Na+,K+-ATPase α1, but has differences specific to its distinct sequence. Dissimilarities include the site where the inhibitor ouabain binds. Molecular simulations indicate that glycosphingolipids can bind to a putative glycosphingolipid binding site, which could potentially modulate Na+,K+-ATPase α4 activity. This is the first experimental evidence for the structure of Na+,K+-ATPase α4β1. These data provide a template that will aid in better understanding the function Na+,K+-ATPase α4β1 and will be important for the design and development of compounds that can modulate Na+,K+-ATPase α4 activity for the purpose of improving male fertility or to achieve male contraception.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Department of Chemistry, Faculty of Science, Hokkaido University, Hokkaido 060-0808, Japan
| | - Jeff McDermott
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Hridya Valia Madapally
- PhyLife: Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark; (H.V.M.); (H.K.)
| | - Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL—Pharmacy) and Structural Bioinformatics Laboratory (SBL—Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland;
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | | | - Christoph Gerle
- RIKEN SPring-8 Center, Kouto, Sayo-gun, Hyogo 679-5148, Japan; (C.C.G.); (C.G.)
| | - Hideki Shigematsu
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan;
| | - Himanshu Khandelia
- PhyLife: Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark; (H.V.M.); (H.K.)
| | - Gustavo Blanco
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| |
Collapse
|
23
|
Lin Z, Zhu P, Gao L, Chen X, Li M, Wang Y, He J, Miao Y, Miao R. Recent Advances in Understanding the Regulatory Mechanism of Plasma Membrane H+-ATPase through the Brassinosteroid Signaling Pathway. PLANT & CELL PHYSIOLOGY 2024; 65:1515-1529. [PMID: 38372617 DOI: 10.1093/pcp/pcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The polyhydroxylated steroid phytohormone brassinosteroid (BR) controls many aspects of plant growth, development and responses to environmental changes. Plasma membrane (PM) H+-ATPase, the well-known PM proton pump, is a central regulator in plant physiology, which mediates not only plant growth and development, but also adaptation to stresses. Recent studies highlight that PM H+-ATPase is at least partly regulated via the BR signaling. Firstly, the BR cell surface receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and multiple key components of BR signaling directly or indirectly influence PM H+-ATPase activity. Secondly, the SMALL AUXIN UP RNA (SAUR) gene family physically interacts with BRI1 to enhance organ development of Arabidopsis by activating PM H+-ATPase. Thirdly, RNA-sequencing (RNA-seq) assays showed that the expression of some SAUR genes is upregulated under the light or sucrose conditions, which is related to the phosphorylation state of the penultimate residue of PM H+-ATPase in a time-course manner. In this review, we describe the structural and functional features of PM H+-ATPase and summarize recent progress towards understanding the regulatory mechanism of PM H+-ATPase by BRs, and briefly introduce how PM H+-ATPase activity is modulated by its own biterminal regions and the post-translational modifications.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pan Zhu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuanyi Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijing Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhe Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Steunou AS, Durand A, Liotenberg S, Bourbon ML, Ouchane S. Investigating MerR's Selectivity: The Crosstalk Between Cadmium and Copper Under Elevated Stress Conditions. Biomolecules 2024; 14:1429. [PMID: 39595605 PMCID: PMC11591864 DOI: 10.3390/biom14111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Bacteria respond to metal pollution through sensors that control the uptake and the detoxification machineries. Specificity in metal recognition is therefore a prerequisite for triggering the appropriate response, particularly when facing a mixture of metals. In response to Cu+, the purple bacterium Rubrivivax gelatinosus induces the efflux Cu+-ATPase CopA by the Cu+ regulator CopR. However, genetic analyses have suggested the presence of additional regulators. Here, we show that CadR, the Cd2+ sensor, is involved in Cd2+ and Cu+ tolerance and demonstrate that CopR and CadR share common target genes. Interestingly, expression of the Cu+ detoxification and efflux (CopI/CopA) system was induced by Cd2+ and downregulated in the double mutant copRcadR-. This double mutant was more sensitive to low Cu+ concentration than the single copR- mutant, and accumulation of coproporphyrin III pointed to a significantly decreased expression of CopA. Furthermore, analyses of Cd2+ toxicity in the cadR- mutant suggested that although CopR is Cu+ selective, CopR is involved in Cd2+ response since the addition of Cu+ alleviates Cd2+ toxicity. Based on our current knowledge of metal transport across the inner membrane, Cd2+ and Cu+ do not share common efflux routes nor do they share common regulators. Nevertheless, the crosstalk between Cd2+ and Cu+ tolerance systems is demonstrated in the present study. The modulation of Cu+ detoxification by a Cd2+ regulator in vivo places emphasis on the relaxed selectivity, under elevated metal concentration, in MerR regulators.
Collapse
Affiliation(s)
- Anne Soisig Steunou
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | - Soufian Ouchane
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Li P, Bågenholm V, Hägglund P, Lindkvist-Petersson K, Wang K, Gourdon P. The structure and function of P5A-ATPases. Nat Commun 2024; 15:9605. [PMID: 39505844 PMCID: PMC11541931 DOI: 10.1038/s41467-024-53757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Endoplasmic reticulum (ER) membrane resident P5A-ATPases broadly affect protein biogenesis and quality control, and yet their molecular function remains debated. Here, we report cryo-EM structures of a P5A-ATPase, CtSpf1, covering multiple transport intermediates of the E1 → E1-ATP → E1P-ADP → E1P → E2P → E2.Pi → E2 → E1 cycle. In the E2P and E2.Pi states a cleft spans the entire membrane, holding a polypeptide cargo molecule. The cargo includes an ER luminal extension, pinpointed as the C-terminus in the E2.Pi state, which reenters the membrane in E2P. The E1 structure harbors a cytosol-facing cavity that is blocked by an insertion we refer to as the Plug-domain. The Plug-domain is nestled to key ATPase features and is displaced in the E1P-ADP and E1P states. Collectively, our findings are compatible with a broad range of proteins as cargo, with the P5A-ATPases serving a role in membrane removal of helices, although insertion/secretion cannot be excluded, as well as with a mechanistic role of the Plug-domain.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
| | - Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | | | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
26
|
Cao L, Liu L, Zhang C, Ren W, Zheng J, Tao C, Zhu W, Xiang M, Wang L, Liu Y, Cao S, Zheng P. The MYC2 and MYB43 transcription factors cooperate to repress HMA2 and HMA4 expression, altering cadmium tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135703. [PMID: 39226685 DOI: 10.1016/j.jhazmat.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Cadmium (Cd) represents a hazardous heavy metal, prevalent in agricultural soil due to industrial and agricultural expansion. Its propensity for being absorbed by edible plants, even at minimal concentrations, and subsequently transferred along the food chain poses significant risks to human health. Accordingly, it is imperative to investigate novel genes and mechanisms that govern Cd tolerance and detoxification in plants. Here, we discovered that the transcription factor MYC2 directly binds to the promoters of HMA2 and HMA4 to repress their expression, thereby altering the distribution of Cd in plant tissues and negatively regulating Cd stress tolerance. Additionally, molecular, biochemical, and genetic analyses revealed that MYC2 interacts and cooperates with MYB43 to negatively regulate the expression of HMA2 and HMA4 and Cd stress tolerance. Notably, under Cd stress conditions, MYC2 undergoes degradation, thereby alleviating its inhibitory effect on HMA2 and HMA4 expression and plant tolerance to Cd stress. Thus, our study highlights the dynamic regulatory role of MYC2, in concert with MYB43, in regulating the expression of HMA2 and HMA4 under both normal and Cd stress conditions. These findings present MYC2 as a promising target for directed breeding efforts aimed at mitigating Cd accumulation in edible plant roots.
Collapse
Affiliation(s)
- Lei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Linyao Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Zhang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wangmei Ren
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Xiang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Pengpeng Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
27
|
Ahmad MZ, Chen S, Qi X, Feng J, Chen H, Liu X, Sun M, Deng Y. Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109182. [PMID: 39405998 DOI: 10.1016/j.plaphy.2024.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Aluminum toxicity poses a significant threat to plant growth, especially in acidic soils. Heavy metal ATPases (HMAs) are crucial for transporting heavy metal ions across plant cell membranes, yet their role in Al3+ transport remains unexplored. This study identified eight HmHMA genes in the genome of Hydrangea macrophylla, categorizing them into two major clades based on phylogenetic relationships. These genes were found unevenly distributed across six chromosomes. Detailed analysis of their physicochemical properties, collinearity, and gene structure was conducted. RNA-seq and qRT-PCR analyses revealed that specific HmHMA genes, notably HmHMA2, were predominantly expressed in roots and flowers under Al3+ stress, indicating their potential role in Al3+ tolerance. HmHMA2 showed significant expression in roots, especially under Al3+ stress conditions, and when expressed in yeast cells, it conferred resistance to aluminum and zinc but increased sensitivity to cadmium. Overexpression of HmHMA2 in hydrangea leaf discs significantly improved Al3+ tolerance, reduced oxidative stress markers like hydrogen peroxide and malondialdehyde, and enhanced antioxidant enzyme activity such as SOD, POD and CAT compared to controls. These findings shed lights on the potential role of HmHMAs in Al transport and tolerance in H. macrophylla.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xintong Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
28
|
Dhalla NS, Elimban V, Adameova AD. Role of Na +-K + ATPase Alterations in the Development of Heart Failure. Int J Mol Sci 2024; 25:10807. [PMID: 39409137 PMCID: PMC11476929 DOI: 10.3390/ijms251910807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Na+-K+ ATPase is an integral component of cardiac sarcolemma and consists of three major subunits, namely the α-subunit with three isoforms (α1, α2, and α3), β-subunit with two isoforms (β1 and β2) and γ-subunit (phospholemman). This enzyme has been demonstrated to transport three Na and two K ions to generate a trans-membrane gradient, maintain cation homeostasis in cardiomyocytes and participate in regulating contractile force development. Na+-K+ ATPase serves as a receptor for both exogenous and endogenous cardiotonic glycosides and steroids, and a signal transducer for modifying myocardial metabolism as well as cellular survival and death. In addition, Na+-K+ ATPase is regulated by different hormones through the phosphorylation/dephosphorylation of phospholemman, which is tightly bound to this enzyme. The activity of Na+-K+ ATPase has been reported to be increased, unaltered and depressed in failing hearts depending upon the type and stage of heart failure as well as the association/disassociation of phospholemman and binding with endogenous cardiotonic steroids, namely endogenous ouabain and marinobufagenin. Increased Na+-K+ ATPase activity in association with a depressed level of intracellular Na+ in failing hearts is considered to decrease intracellular Ca2+ and serve as an adaptive mechanism for maintaining cardiac function. The slight to moderate depression of Na+-K+ ATPase by cardiac glycosides in association with an increased level of Na+ in cardiomyocytes is known to produce beneficial effects in failing hearts. On the other hand, markedly reduced Na+-K+ ATPase activity associated with an increased level of intracellular Na+ in failing hearts has been demonstrated to result in an intracellular Ca2+ overload, the occurrence of cardiac arrhythmias and depression in cardiac function during the development of heart failure. Furthermore, the status of Na+-K+ ATPase activity in heart failure is determined by changes in isoform subunits of the enzyme, the development of oxidative stress, intracellular Ca2+-overload, protease activation, the activity of inflammatory cytokines and sarcolemmal lipid composition. Evidence has been presented to show that marked alterations in myocardial cations cannot be explained exclusively on the basis of sarcolemma alterations, as other Ca2+ channels, cation transporters and exchangers may be involved in this event. A marked reduction in Na+-K+ ATPase activity due to a shift in its isoform subunits in association with intracellular Ca2+-overload, cardiac energy depletion, increased membrane permeability, Ca2+-handling abnormalities and damage to myocardial ultrastructure appear to be involved in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Adriana Duris Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| |
Collapse
|
29
|
Moraes CM, Fabri LM, Garçon DP, Augusto A, Faria SC, McNamara JC, Leone FA. Kinetic properties of gill (Na +, K +)-ATPase in the Pacific whiteleg shrimp Penaeus vannamei (Decapoda, Penaeidae). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111038. [PMID: 39374865 DOI: 10.1016/j.cbpb.2024.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The whiteleg marine shrimp Penaeus vannamei, originally from the Eastern Pacific Ocean, now inhabits tropical waters across Asia and Central and Southern America. This benthic species exhibits rapid growth, wide salinity and temperature tolerance, and disease resistance. These physiological traits have led to extensive research on its osmoregulatory mechanisms, including next-generation sequencing, transcriptomic analyses, and lipidomic responses. In crustaceans, osmotic and ionic homeostasis is primarily maintained by the membrane-bound metalloenzyme (Na+, K+)-ATPase. However, little is known about how various ligands modulate this enzyme in P. vannamei. Here, we examined the kinetic characteristics of the gill (Na+, K+)-ATPase to get biochemical insights into its modulation. A prominent immunoreactive band of ~120 kDa, corresponding to the (Na+, K+)-ATPase alpha-subunit, was identified. The enzyme exhibited two ATP hydrolyzing sites with K0.5 = 0.0003 ± 0.00002 and 0.05 ± 0.003 mmol L-1 and was stimulated by low sodium ion concentrations. Potassium and ammonium ions also stimulated enzyme activity with similar K0.5 values of 0.08 ± 0.004 and 0.06 ± 0.003 mmol L-1, respectively. Ouabain inhibition profile suggested a single enzyme isoform with a KI value of 2.10 ± 0.16 mmol L-1. Our findings showed significant kinetic differences in the (Na+, K+)-ATPase in Penaeus vannamei compared to marine and freshwater crustaceans. We expect our results to enhance understanding of the modulation of gill (Na+, K+)-ATPase in Penaeus vannamei and to provide a valuable tool for studying the shrimp's biochemical acclimation to varying salinity conditions.
Collapse
Affiliation(s)
- Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | | | - Alessandra Augusto
- lnstituto de Biociências, Universidade Estadual Paulista, Campus Experimental do Litoral Paulista, São Vicente, Brazil
| | - Samuel C Faria
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
30
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. Neurogenetics 2024; 25:425-433. [PMID: 39066872 PMCID: PMC11534842 DOI: 10.1007/s10048-024-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, Riyadh, 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Mustafa A Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - M Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
31
|
Sai KV, Lee JYE. Crossing the membrane-What does it take to flip a phospholipid? Structural and biochemical advances on P4-ATPase flippases. J Biol Chem 2024; 300:107738. [PMID: 39233230 PMCID: PMC11460456 DOI: 10.1016/j.jbc.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Membrane asymmetry is critical for maintenance of several different processes such as cell signaling, apoptosis, and vesicular transport in various eukaryotic systems. Flippases of the P4-ATPase family are associated with flipping phospholipids from the luminal or exoplasmic leaflet to the cytosolic leaflet. P4-ATPases belong to the P-type ATPase family, which are activated by phosphorylation and couple ATPase activity to substrate translocation. These proteins possess a transmembrane domain responsible for substrate transport, while the cytosolic machinery performs the necessary ATP hydrolysis for this process. Several high-resolution structures of human or yeast P4-ATPases have recently been resolved, but a comprehensive overview of the changes for reaction cycle in different members was crucial for future research. In this review, we have compiled available data reflecting the reaction cycle-associated changes in conformation of P4-ATPases. Together, this will provide an improved understanding of the similarities and differences between these members, which will drive further structural, functional, and computational studies to understand the mechanisms of these flippases.
Collapse
Affiliation(s)
- Kadambari Vijay Sai
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jyh-Yeuan Eric Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
32
|
Ramírez-Alonso JI, Sampedro JG. Effect of Cations on ATP Binding to the N-domain of Na +, K +-ATPase. J Fluoresc 2024:10.1007/s10895-024-03922-3. [PMID: 39298054 DOI: 10.1007/s10895-024-03922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
The nucleotide-binding domain (N-domain) of the Na+, K+-ATPase (NKA) is physicochemically characterized by a high content of Glu and Asp residues, resulting in a low isoelectric point (pI = 5.0). Acidic proteins are known to interact with cations. The analysis in silico revealed potential cation interaction sites in the NKA N-domain structure. The interaction with cations was tested in vitro by using a recombinant NKA N-domain. The N-domain contains two Trp residues at the protein surface, as determined by acrylamide-mediated fluorescence quenching, that are useful for structural studies through fluorescence changes. Intrinsic fluorescence of the N-domain was decreased by the presence of cations (Na+, K+, Ca2+) indicating an effect on the protein structure. ATP binding also decreased the N-domain intrinsic fluorescence, which allowed nucleotide affinity determination. In the presence of cations, the N-domain affinity for ATP was increased. Molecular docking of fluorescein isothiocyanate (FITC) with the N-domain showed two binding modes with the isothiocyanate group located 5-6 Å close to Lys485 and Lys506 in the nucleotide-binding site. The presence of ATP prevented the FITC covalent labeling of the N-domain demonstrating the competitive behavior for the binding site. It is proposed that cations interact with the N-domain structure and thereby modulate nucleotide (ATP) affinity and possibly affecting NKA catalysis.
Collapse
Affiliation(s)
- Jocelin I Ramírez-Alonso
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, SLP, C.P. 78295, México
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, SLP, C.P. 78295, México.
| |
Collapse
|
33
|
Tanveer M, Xing Z, Huang L, Wang L, Shabala S. Effects of superoxide radical on photosynthesis and K + and redox homeostasis in quinoa and spinach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108886. [PMID: 38950461 DOI: 10.1016/j.plaphy.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Methyl viologen (MV), also known as paraquat, is a widely used herbicide but has also been reported as highly toxic to different life forms. The mode of its operation is related to superoxide radical (O2.-) production and consequent oxidative damage. However, besides the damage to key macromolecules, reactive oxygen species (ROS; to which O2.- belongs) are also known as regulators of numerous ion transport systems located at cellular membranes. In this study, we used MV as a tool to probe the role of O2.- in regulating membrane-transport activity and systemic acquired tolerance in halophytic Chenopodium quinoa and glycophytic spinach plants. Both plant species showed growth reduction in terms of reduced shoot length, lower shoot fresh and dry weight, photosynthesis rate, and chlorophyll contents; however, quinoa showed less reduction in growth compared with spinach. This whole plant response was further examined by measuring the ion concentration, gene expression of ion transporters, activation of antioxidants, and osmolyte accumulation. We observed that at the mechanistic level, the differences in growth in response to MV were conferred by at least four complementary physiological mechanisms: (1) higher K+ loss from spinach leaves resulted from higher expression of MV-induced plasma membrane-based depolarization-activated K+ efflux GORK channel, (2) higher activation of high-affinity K+ uptake transporter HAK5 in quinoa, (3) higher antioxidant production and osmolyte accumulation in quinoa as compared with spinach, and (4) maintaining a higher rate of photosynthesis due to higher chlorophyll contents, and efficiency of photosystem II and reduced ROS and MDA contents. Obtained results also showed that MV induced O2.- significantly reduced N contents in both species but with more pronounced effects in glycophytic spinach. Taken together this study has shown the role of O2.- in regulating membrane ion transport and N metabolism in the leaves of halophyte vs. glycophyte in the context of oxidative stress tolerance.
Collapse
Affiliation(s)
- Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Zeming Xing
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Liping Huang
- International Research Centre for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China; School of Biological Sciences, University of Western Australia, Perth, 6009, Australia.
| |
Collapse
|
34
|
Li X, Li S, Zhang W, Wang Q, Zou W. Impacts of P4-ATPase Deletion on Membrane Asymmetry and Disease Development. Cell Biochem Funct 2024; 42:e70004. [PMID: 39425455 DOI: 10.1002/cbf.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Phospholipids exhibit an asymmetrical distribution on the cell membrane. P4-ATPases, type IV lipid flippases, are responsible for establishing and maintaining this phospholipid compositional asymmetry. The essential β subunit CDC50 (also known as TMEM30) assists in the transport and proper functioning of P4-ATPases. Deletion of P4-ATPases and its β subunit disrupts the membrane asymmetry, impacting the growth and development and leading to various diseases affecting the nervous, skeletal muscle, digestive, and hematopoietic systems. This review discusses the crucial roles of P4-ATPases and their β subunit in Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, and mammals, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xinyu Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuzhen Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weipu Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qi Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
35
|
Zhang D, Li Y, Pan J, Zheng Y, Xu X. Copper homeostasis and cuproptosis in radiation-induced injury. Biomed Pharmacother 2024; 178:117150. [PMID: 39047417 DOI: 10.1016/j.biopha.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Radiation therapy for cancer treatment brings about a series of radiation injuries to normal tissues. In recent years, the discovery of copper-regulated cell death, cuproptosis, a novel form of programmed cell death, has attracted widespread attention and exploration in various biological functions and pathological mechanisms of copper metabolism and cuproptosis. Understanding its role in the process of radiation injury may open up new avenues and directions for exploration in radiation biology and radiation oncology, thereby improving tumor response and mitigating adverse reactions to radiotherapy. This review provides an overview of copper metabolism, the characteristics of cuproptosis, and their potential regulatory mechanisms in radiation injury.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinghui Pan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
36
|
Zhou S, Wang W, Wang P, Ma H, Li W. The role of reactive oxygen species in regulation of the plasma membrane H+-ATPase activity in Masson pine (Pinus massoniana Lamb.) roots responding to acid stress. TREE PHYSIOLOGY 2024; 44:tpae083. [PMID: 38982738 DOI: 10.1093/treephys/tpae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
- Cooperative College, Jiangsu Vocational College of Business, Nantong 226011, P.R. China
| | - Wenxin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Ping Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Huiyan Ma
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Wenhui Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| |
Collapse
|
37
|
Jain R, Srivastava H, Kumar K, Sharma S, Singh A, Gaikwad K. Understanding the role of P-type ATPases in regulating pollen fertility and development in pigeonpea. Mol Genet Genomics 2024; 299:68. [PMID: 38980531 DOI: 10.1007/s00438-024-02155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
The P-type ATPase superfamily genes are the cation and phospholipid pumps that transport ions across the membranes by hydrolyzing ATP. They are involved in a diverse range of functions, including fundamental cellular events that occur during the growth of plants, especially in the reproductive organs. The present work has been undertaken to understand and characterize the P-type ATPases in the pigeonpea genome and their potential role in anther development and pollen fertility. A total of 59 P-type ATPases were predicted in the pigeonpea genome. The phylogenetic analysis classified the ATPases into five subfamilies: eleven P1B, eighteen P2A/B, fourteen P3A, fifteen P4, and one P5. Twenty-three pairs of P-type ATPases were tandemly duplicated, resulting in their expansion in the pigeonpea genome during evolution. The orthologs of the reported anther development-related genes were searched in the pigeonpea genome, and the expression profiling studies of specific genes via qRT-PCR in the pre- and post-meiotic anther stages of AKCMS11A (male sterile), AKCMS11B (maintainer) and AKPR303 (fertility restorer) lines of pigeonpea was done. Compared to the restorer and maintainer lines, the down-regulation of CcP-typeATPase22 in the post-meiotic anthers of the male sterile line might have played a role in pollen sterility. Furthermore, the strong expression of CcP-typeATPase2 in the post-meiotic anthers of restorer line and CcP-typeATPase46, CcP-typeATPase51, and CcP-typeATPase52 in the maintainer lines, respectively, compared to the male sterile line, clearly indicates their potential role in developing male reproductive organs in pigeonpea.
Collapse
Affiliation(s)
- Rishu Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Harsha Srivastava
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
38
|
Huang XY, Shen JY, Huang K, Wang L, Sethi G, Ma Z. Cuproptosis in cancers: Function and implications from bench to bedside. Biomed Pharmacother 2024; 176:116874. [PMID: 38850661 DOI: 10.1016/j.biopha.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Copper, an indispensable micronutrient, is implicated in numerous vital biological processes and is essential for all physiological activities. Recently, the discovery of a novel type of copper-dependent cell death, known as cuproptosis, has shed light on its role in cancer development. Extensive research is currently underway to unravel the mechanisms underlying cuproptosis and its correlation with various cancer types. In this review, we summarize the findings regarding the roles and mechanisms of cuproptosis in various cancer types, including colorectal cancer, lung cancer, gastric cancer, breast cancer, liver cancer and cutaneous melanoma. Furthermore, the effects of copper-related agents such as copper chelators and copper ionophores on cell proliferation, apoptosis, angiogenesis, tumor immunity, and chemotherapy resistance have been explored in cancer preclinical and clinical trials. These insights provide promising avenues for the development of prospective anticancer drugs aimed at inducing cuproptosis.
Collapse
Affiliation(s)
- Xin-Yi Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Jia-Yang Shen
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Ke Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.
| |
Collapse
|
39
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
40
|
Zhang F, Yuan A, Nie Z, Chu M, An Y. Identification of the potato ( Solanum tuberosum L.) P-type ATPase gene family and investigating the role of PHA2 in response to Pep13. FRONTIERS IN PLANT SCIENCE 2024; 15:1353024. [PMID: 38903445 PMCID: PMC11187005 DOI: 10.3389/fpls.2024.1353024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
P-type ATPase family members play important roles in plant growth and development and are involved in plant resistance to various biotic and abiotic factors. Extensive studies have been conducted on the P-type ATPase gene families in Arabidopsis thaliana and rice but our understanding in potato remains relatively limited. Therefore, this study aimed to screen and analyze 48 P-type ATPase genes from the potato (Solanum tuberosum L.) genome database at the genome-wide level. Potato P-type ATPase genes were categorized into five subgroups based on the phylogenetic classification of the reported species. Additionally, several bioinformatic analyses, including gene structure analysis, chromosomal position analysis, and identification of conserved motifs and promoter cis-acting elements, were performed. Interestingly, the plasma membrane H+-ATPase (PM H+-ATPase) genes of one of the P3 subgroups showed differential expression in different tissues of potato. Specifically, PHA2, PHA3, and PHA7 were highly expressed in the roots, whereas PHA8 was expressed in potatoes only under stress. Furthermore, the small peptide Pep13 inhibited the expression of PHA1, PHA2, PHA3, and PHA7 in potato roots. Transgenic plants heterologously overexpressing PHA2 displayed a growth phenotype sensitive to Pep13 compared with wild-type plants. Further analysis revealed that reducing potato PM H+-ATPase enzyme activity enhanced resistance to Pep13, indicating the involvement of PM H+-ATPase in the physiological process of potato late blight and the enhancement of plant disease resistance. This study confirms the critical role of potato PHA2 in resistance to Pep13.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
- Agriculture Science Institute of Bijie, Bijie, Guizhou, China
| | - Anping Yuan
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Zongyue Nie
- Agriculture Science Institute of Bijie, Bijie, Guizhou, China
| | - Moli Chu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources/College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, Guizhou, China
| |
Collapse
|
41
|
Liu L, Liu X, Bai Z, Tanveer M, Zhang Y, Chen W, Shabala S, Huang L. Small but powerful: RALF peptides in plant adaptive and developmental responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112085. [PMID: 38588983 DOI: 10.1016/j.plantsci.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.
Collapse
Affiliation(s)
- Lining Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhenkun Bai
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Wenjie Chen
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Perth, Australia.
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
42
|
Gaschignard G, Millet M, Bruley A, Benzerara K, Dezi M, Skouri-Panet F, Duprat E, Callebaut I. AlphaFold2-guided description of CoBaHMA, a novel family of bacterial domains within the heavy-metal-associated superfamily. Proteins 2024; 92:776-794. [PMID: 38258321 DOI: 10.1002/prot.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
Three-dimensional (3D) structure information, now available at the proteome scale, may facilitate the detection of remote evolutionary relationships in protein superfamilies. Here, we illustrate this with the identification of a novel family of protein domains related to the ferredoxin-like superfold, by combining (i) transitive sequence similarity searches, (ii) clustering approaches, and (iii) the use of AlphaFold2 3D structure models. Domains of this family were initially identified in relation with the intracellular biomineralization of calcium carbonates by Cyanobacteria. They are part of the large heavy-metal-associated (HMA) superfamily, departing from the latter by specific sequence and structural features. In particular, most of them share conserved basic amino acids (hence their name CoBaHMA for Conserved Basic residues HMA), forming a positively charged surface, which is likely to interact with anionic partners. CoBaHMA domains are found in diverse modular organizations in bacteria, existing in the form of monodomain proteins or as part of larger proteins, some of which are membrane proteins involved in transport or lipid metabolism. This suggests that the CoBaHMA domains may exert a regulatory function, involving interactions with anionic lipids. This hypothesis might have a particular resonance in the context of the compartmentalization observed for cyanobacterial intracellular calcium carbonates.
Collapse
Affiliation(s)
- Geoffroy Gaschignard
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Maxime Millet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Apolline Bruley
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Manuela Dezi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Feriel Skouri-Panet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
43
|
Contreras RG, Torres-Carrillo A, Flores-Maldonado C, Shoshani L, Ponce A. Na +/K +-ATPase: More than an Electrogenic Pump. Int J Mol Sci 2024; 25:6122. [PMID: 38892309 PMCID: PMC11172918 DOI: 10.3390/ijms25116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium pump, or Na+/K+-ATPase (NKA), is an essential enzyme found in the plasma membrane of all animal cells. Its primary role is to transport sodium (Na+) and potassium (K+) ions across the cell membrane, using energy from ATP hydrolysis. This transport creates and maintains an electrochemical gradient, which is crucial for various cellular processes, including cell volume regulation, electrical excitability, and secondary active transport. Although the role of NKA as a pump was discovered and demonstrated several decades ago, it remains the subject of intense research. Current studies aim to delve deeper into several aspects of this molecular entity, such as describing its structure and mode of operation in atomic detail, understanding its molecular and functional diversity, and examining the consequences of its malfunction due to structural alterations. Additionally, researchers are investigating the effects of various substances that amplify or decrease its pumping activity. Beyond its role as a pump, growing evidence indicates that in various cell types, NKA also functions as a receptor for cardiac glycosides like ouabain. This receptor activity triggers the activation of various signaling pathways, producing significant morphological and physiological effects. In this report, we present the results of a comprehensive review of the most outstanding studies of the past five years. We highlight the progress made regarding this new concept of NKA and the various cardiac glycosides that influence it. Furthermore, we emphasize NKA's role in epithelial physiology, particularly its function as a receptor for cardiac glycosides that trigger intracellular signals regulating cell-cell contacts, proliferation, differentiation, and adhesion. We also analyze the role of NKA β-subunits as cell adhesion molecules in glia and epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (R.G.C.); (A.T.-C.); (C.F.-M.); (L.S.)
| |
Collapse
|
44
|
Duan HD, Li H. Consensus, controversies, and conundrums of P4-ATPases: The emerging face of eukaryotic lipid flippases. J Biol Chem 2024; 300:107387. [PMID: 38763336 PMCID: PMC11225554 DOI: 10.1016/j.jbc.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
45
|
Khan NM, Ali A, Wan Y, Zhou G. Genome-wide identification of heavy-metal ATPases genes in Areca catechu: investigating their functionality under heavy metal exposure. BMC PLANT BIOLOGY 2024; 24:484. [PMID: 38822228 PMCID: PMC11141028 DOI: 10.1186/s12870-024-05201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Heavy-metal ATPases (HMAs) play a vital role in plants, helping to transport heavy metal ions across cell membranes.However, insufficient data exists concerning HMAs genes within the Arecaceae family.In this study, 12 AcHMA genes were identified within the genome of Areca catechu, grouped into two main clusters based on their phylogenetic relationships.Genomic distribution analysis reveals that the AcHMA genes were unevenly distributed across six chromosomes. We further analyzed their physicochemical properties, collinearity, and gene structure.Furthermore, RNA-seq data analysis exhibited varied expressions in different tissues of A. catechu and found that AcHMA1, AcHMA2, and AcHMA7 were highly expressed in roots, leaves, pericarp, and male/female flowers. A total of six AcHMA candidate genes were selected based on gene expression patterns, and their expression in the roots and leaves was determined using RT-qPCR under heavy metal stress. Results showed that the expression levels of AcHMA1 and AcHMA3 genes were significantly up-regulated under Cd2 + and Zn2 + stress. Similarly, in response to Cu2+, the AcHMA5 and AcHMA8 revealed the highest expression in roots and leaves, respectively. In conclusion, this study will offer a foundation for exploring the role of the HMAs gene family in dealing with heavy metal stress conditions in A. catechu.
Collapse
Affiliation(s)
- Noor Muhammad Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Akhtar Ali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yinglang Wan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Guangzhen Zhou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
46
|
Ji J, Cui MK, Zou R, Wu MZ, Ge MX, Li J, Zhang ZR. An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins. Mol Cell 2024; 84:1917-1931.e15. [PMID: 38723633 DOI: 10.1016/j.molcel.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.
Collapse
Affiliation(s)
- Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Meng-Ke Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Rong Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Ming-Zhi Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China.
| |
Collapse
|
47
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24306843. [PMID: 38798571 PMCID: PMC11118633 DOI: 10.1101/2024.05.15.24306843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ATPase, class 1, type 8A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, mental retardation, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P. Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | | | | | - Maha A. Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers – Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Mustafa A. Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women’s and Children’s Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Solna, Sweden
| | - M. Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
48
|
Zhao CR, You ZL, Bai L. Fungal Plasma Membrane H +-ATPase: Structure, Mechanism, and Drug Discovery. J Fungi (Basel) 2024; 10:273. [PMID: 38667944 PMCID: PMC11051447 DOI: 10.3390/jof10040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The fungal plasma membrane H+-ATPase (Pma1) pumps protons out of the cell to maintain the transmembrane electrochemical gradient and membrane potential. As an essential P-type ATPase uniquely found in fungi and plants, Pma1 is an attractive antifungal drug target. Two recent Cryo-EM studies on Pma1 have revealed its hexameric architecture, autoinhibitory and activation mechanisms, and proton transport mechanism. These structures provide new perspectives for the development of antifungal drugs targeting Pma1. In this article, we review the history of Pma1 structure determination, the latest structural insights into Pma1, and drug discoveries targeting Pma1.
Collapse
Affiliation(s)
- Chao-Ran Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Zi-Long You
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Lin Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
49
|
Vishnu N, Venkatesan M, Madaris TR, Venkateswaran MK, Stanley K, Ramachandran K, Chidambaram A, Madesh AK, Yang W, Nair J, Narkunan M, Muthukumar T, Karanam V, Joseph LC, Le A, Osidele A, Aslam MI, Morrow JP, Malicdan MC, Stathopulos PB, Madesh M. ERMA (TMEM94) is a P-type ATPase transporter for Mg 2+ uptake in the endoplasmic reticulum. Mol Cell 2024; 84:1321-1337.e11. [PMID: 38513662 PMCID: PMC10997467 DOI: 10.1016/j.molcel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.
Collapse
Affiliation(s)
- Neelanjan Vishnu
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Manigandan Venkatesan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mridula K Venkateswaran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kristen Stanley
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Adhishree Chidambaram
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Abitha K Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jyotsna Nair
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Melanie Narkunan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Tharani Muthukumar
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Varsha Karanam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Amy Le
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ayodeji Osidele
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - M Imran Aslam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - May C Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; NIH Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research Institute, and the Common Fund, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
50
|
Chatterjee D, Panda AP, Daya Manasi AR, Ghosh AS. P-type ATPase zinc transporter Rv3270 of Mycobacterium tuberculosis enhances multi-drug efflux activity. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001441. [PMID: 38373028 PMCID: PMC10924464 DOI: 10.1099/mic.0.001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Metal homeostasis is maintained by the uptake, storage and efflux of metal ions that are necessary for the survival of the bacterium. Homeostasis is mostly regulated by a group of transporters categorized as ABC transporters and P-type ATPases. On the other hand, efflux pumps often play a role in drug-metal cross-resistance. Here, with the help of antibiotic sensitivity, antibiotic/dye accumulation and semi-quantitative biofilm formation assessments we report the ability of Rv3270, a P-type ATPase known for its role in combating Mn2+ and Zn2+ metal ion toxicity in Mycobacterium tuberculosis, in influencing the extrusion of multiple structurally unrelated drugs and enhancing the biofilm formation of Escherichia coli and Mycobacterium smegmatis. Overexpression of Rv3270 increased the tolerance of host cells to norfloxacin, ofloxacin, sparfloxacin, ampicillin, oxacillin, amikacin and isoniazid. A significantly lower accumulation of norfloxacin, ethidium bromide, bocillin FL and levofloxacin in cells harbouring Rv3270 as compared to host cells indicated its role in enhancing efflux activity. Although over-expression of Rv3270 did not alter the susceptibility levels of levofloxacin, rifampicin and apramycin, the presence of a sub-inhibitory concentration of Zn2+ resulted in low-level tolerance towards these drugs. Of note, the expression of Rv3270 enhanced the biofilm-forming ability of the host cells strengthening its role in antimicrobial resistance. Therefore, the study indicated that the over-expression of Rv3270 enhances the drug efflux activity of the micro-organism where zinc might facilitate drug-metal cross-resistance for some antibiotics.
Collapse
Affiliation(s)
- Debasmita Chatterjee
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aditya Prasad Panda
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - A. R. Daya Manasi
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anindya S. Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|