1
|
Luo Y, Zhong JJ, Xiao H. Mechanism and engineering of endoplasmic reticulum-localized membrane protein folding in Saccharomyces cerevisiae. Metab Eng 2025; 90:43-56. [PMID: 40064436 DOI: 10.1016/j.ymben.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Correct folding of endoplasmic reticulum (ER)-localized membrane proteins, such as cytochrome P450, endows a synthetic biology host with crucial catalytic functions, which is of vital importance in the field of metabolic engineering and synthetic biology. However, due to complexed interaction with cellular membrane environment and other proteins (e.g., molecular chaperone) regulation, a substantial proportion of heterologous membrane proteins cannot be properly folded in the ER of Saccharomyces cerevisiae, a widely used synthetic biology host. In this review, we first introduce the four steps in membrane protein folding process and the affecting factors including the amino acid sequence of membrane protein, the folding process, molecular chaperones, quality control mechanism, and lipid environment in S. cerevisiae. Then, we summarize the metabolic engineering strategies to enhance the correct folding of ER-localized membrane proteins, such as by engineering and de novel design of membrane protein, regulation of the co-translational folding process, co-expression of molecular chaperones, modulation of ER quality, and lipids engineering. Finally, we discuss the limitations of current strategies and propose future research directions to address the key issues.
Collapse
Affiliation(s)
- Yuhuan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China.
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China.
| |
Collapse
|
2
|
Saffarian Delkhosh A, Hadadianpour E, Islam MM, Georgieva ER. Highly versatile small virus-encoded proteins in cellular membranes: A structural perspective on how proteins' inherent conformational plasticity couples with host membranes' properties to control cellular processes. J Struct Biol X 2025; 11:100117. [PMID: 39802090 PMCID: PMC11714672 DOI: 10.1016/j.yjsbx.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
We investigated several small viral proteins that reside and function in cellular membranes. These proteins belong to the viroporin family because they assemble into ion-conducting oligomers. However, despite forming similar oligomeric structures with analogous functions, these proteins have diverse amino acid sequences. In particular, the amino acid compositions of the proposed channel-forming transmembrane (TM) helices are vastly different-some contain residues (e.g., His, Trp, Asp, Ser) that could facilitate cation transport. Still, other viroporins' TM helices encompass exclusively hydrophobic residues; therefore, it is difficult to explain their channels' activity, unless other mechanisms (e.g., involving a negative lipid headgroups and/or membrane destabilization) take place. For this study, we selected the M2, Vpu, E, p13II, p7, and 2B proteins from the influenza A, HIV-1, human T-cell leukemia, hepatitis C, and picorna viruses, respectively. We provide a brief overview of the current knowledge about these proteins' structures as well as remaining questions about more comprehensive understanding of their structures, conformational dynamics, and function. Finally, we outline strategies to utilize a multi-prong structural and computational approach to overcome current deficiencies in the knowledge about these proteins.
Collapse
Affiliation(s)
| | | | - Md Majharul Islam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Panda MS, Chakraborty H. Importance of the Number and Position of Tryptophan-Aspartate Repeats in Designing Peptide-Based Membrane Fusion Inhibitors. Chem Asian J 2025:e00474. [PMID: 40401731 DOI: 10.1002/asia.202500474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
Enveloped viruses utilize membrane fusion to enter the host cell and cause viral diseases. Most conventional inhibitors are target-specific and ineffective against broad-spectrum viral infections. Therefore, the current scenario demands developing inhibitors to attenuate the membrane properties instead of targeting the viral proteins. In the present work, we have designed a new WD-containing peptide (dmTG-23) by introducing a WD repeat at the center of the peptide sequence using mTG-23 peptide as a template and a 14-amino acid peptide with seven WD repeats (WD-14), and tested their efficacies against the polyethylene glycol (PEG)-induced fusion assay. Our findings show that both dmTG-23 and WD-14 prevent PEG-induced fusion of small unilamellar vesicles (SUVs) with varying cholesterol concentrations, with a higher effect for dmTG-23. Moreover, we have compared our results with our previous observations on TG-23 and mTG-23 to evaluate the importance of the number and position of WD repeats in the peptide sequence to impart the highest inhibitory activity. Our results demonstrate that three WD repeat-containing dmTG-23 shows the highest efficacy against the PEG-induced fusion of SUVs by enhancing the membrane order at the acyl chain region. This result is significantly important in designing peptide-based broad-spectrum fusion inhibitors.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| |
Collapse
|
4
|
Valério M, C Buga C, Mendonça DA, Castanho MARB, Melo MN, Soares CM, Lousa D, Veiga AS. Unravelling the role of key amino acid residues of the parainfluenza fusion peptide in membrane fusion. RSC Chem Biol 2025:d5cb00058k. [PMID: 40406163 PMCID: PMC12093645 DOI: 10.1039/d5cb00058k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/10/2025] [Indexed: 05/26/2025] Open
Abstract
Parainfluenza viruses enter host cells by fusing their envelope with the cell membrane. In this process mediated by the fusion glycoprotein, the fusion peptide plays an essential role in membrane binding and triggering fusion. Previously, we demonstrated that the parainfluenza fusion peptide (PIFP) oligomerizes into porelike structures within the membrane, leading to membrane perturbations, fusion, and leakage. Additionally, we identified two key amino acid residues in the PIFP, F103 and Q120, which are important in inducing lipid tail protrusion and maintaining peptide-peptide interactions, respectively. Here, we seek to elucidate the role of these two residues in the PIFP function by studying the impact of F103A and Q120A substitutions on peptide activity. We compared the substituted peptides with the native peptide using biophysical experiments and molecular dynamics (MD) simulations. Our results show that the F103A substitution significantly impairs PIFP's interaction with the membrane and its ability to induce lipid mixing and membrane leakage in experimental assays. Moreover, a decrease in lipid perturbation and water flux through the membrane was observed in the MD simulations. In contrast, the Q120A substitution appears to have minimal impact on membrane interaction and PIFP-induced membrane leakage. Interestingly, a pronounced change in the interpeptide interactions within the membrane of the substituted peptides was observed in the MD simulations. These findings provide crucial insights into the potential role of F103 and Q120 in PIFP activity: the N-terminal phenylalanine (F103) is pivotal for membrane insertion and fusion, while the Q120 is crucial for regulating peptide oligomerization and pore formation.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Carolina C Buga
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
- Gulbenkian Institute for Molecular Medicine Av. Professor Egas Moniz 1649-028 Lisboa Portugal
- Faculdade de Medicina, Universidade de Lisboa Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Diogo A Mendonça
- Gulbenkian Institute for Molecular Medicine Av. Professor Egas Moniz 1649-028 Lisboa Portugal
- Faculdade de Medicina, Universidade de Lisboa Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Miguel A R B Castanho
- Gulbenkian Institute for Molecular Medicine Av. Professor Egas Moniz 1649-028 Lisboa Portugal
- Faculdade de Medicina, Universidade de Lisboa Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Ana Salomé Veiga
- Gulbenkian Institute for Molecular Medicine Av. Professor Egas Moniz 1649-028 Lisboa Portugal
- Faculdade de Medicina, Universidade de Lisboa Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
5
|
Ferreira MA, Silva PSE, Lacerda AP, Franco PDM, da Silva FFD, de Souza TF, Macedo MLR, Migliolo L, de Oliveira JS. Structural Insights Into Papain-Derived Synthetic Antibacterial Peptides for Targeting Klebsiella pneumoniae. Chem Biol Drug Des 2025; 105:e70130. [PMID: 40405627 PMCID: PMC12099485 DOI: 10.1111/cbdd.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2025] [Revised: 05/04/2025] [Accepted: 05/11/2025] [Indexed: 05/24/2025]
Abstract
Bacterial resistance represents one of the greatest challenges in modern medicine, requiring innovative strategies. This study presents the rational design of two synthetic analogue peptides, WK-MAP1, and WG-MAP2, inspired by the structure of the enzyme papain (PDB 9PAP), emphasizing the novelty of using an enzyme as a model for developing new antimicrobials. Initially, in silico studies, including molecular modeling and docking experiments, revealed a high affinity of the peptides for mimetic bacterial membranes. Subsequently, in vitro assays confirmed their antimicrobial efficacy. WK-MAP1 demonstrated superior activity against carbapenem-resistant Klebsiella pneumoniae (KPC+), with a minimum inhibitory concentration (MIC) of 25 μM, whereas WG-MAP2 exhibited activity against both tested strains (KPC+ and ATCC), with MICs of 50 and 100 μM, respectively. Both peptides effectively inhibited biofilm formation and exhibited low cytotoxicity in murine cells. This research highlights the potential of WK-MAP1 and WG-MAP2 as promising candidates for novel antimicrobial therapies, offering an innovative approach to overcoming the limitations of conventional antibiotics.
Collapse
Affiliation(s)
| | - Patrícia Souza e Silva
- S‐Inova Biotech, Programa de Pós‐Graduação em BiotecnologiaUniversidade Católica Dom BoscoCampo GrandeMSBrazil
| | - Adriel Parahyba Lacerda
- S‐Inova Biotech, Programa de Pós‐Graduação em BiotecnologiaUniversidade Católica Dom BoscoCampo GrandeMSBrazil
| | - Pedro de Mattos Franco
- S‐Inova Biotech, Programa de Pós‐Graduação em BiotecnologiaUniversidade Católica Dom BoscoCampo GrandeMSBrazil
| | | | | | - Maria Ligia R. Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde PúblicaUniversidade Federal de Mato Grosso do SulCampo GrandeMSBrazil
| | - Ludovico Migliolo
- S‐Inova Biotech, Programa de Pós‐Graduação em BiotecnologiaUniversidade Católica Dom BoscoCampo GrandeMSBrazil
| | | |
Collapse
|
6
|
Kim SA, Kim HG, Wijesinghe WCB, Min D, Yoon TY. Emerging Patterns in Membrane Protein Folding Pathways. Annu Rev Biophys 2025; 54:141-162. [PMID: 40327440 DOI: 10.1146/annurev-biophys-070524-100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Studies of membrane protein folding have progressed from simple systems such as bacteriorhodopsin to complex structures such as ATP-binding cassette transporters and voltage-gated ion channels. Advances in techniques such as single-molecule force spectroscopy and in vivo force profiling now allow for the detailed examination of membrane protein folding pathways at amino acid resolutions. These proteins navigate rugged energy landscapes partly shaped by the absence of hydrophobic collapse and the viscous nature of the lipid bilayer, imposing biophysical limitations on folding speeds. Furthermore, many transmembrane (TM) helices display reduced hydrophobicity to support functional requirements, simultaneously increasing the energy barriers for membrane insertion, a manifestation of the evolutionary trade-off between functionality and foldability. These less hydrophobic TM helices typically insert and fold as helical hairpins, following the protein synthesis direction from the N terminus to the C terminus, with assistance from endoplasmic reticulum (ER) chaperones like the Sec61 translocon and the ER membrane protein complex. The folding pathways of multidomain membrane proteins are defined by allosteric networks that extend across various domains, where mutations and folding correctors affect seemingly distant domains. A common evolutionary strategy is likely to be domain specialization, where N-terminal domains enhance foldability and C-terminal domains enhance functionality. Thus, despite inherent biophysical constraints, evolution has finely tuned membrane protein sequences to optimize foldability, stability, and functionality.
Collapse
Affiliation(s)
- Sang Ah Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea;
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
7
|
Hirschler E, Glattard E, Arnaud N, Chicher J, Hammann P, Leize-Wagner E, Bechinger B, Potier N. Cross-Linking Mass Spectrometry of the Antimicrobial Peptides Magainin 2 and PGLa Reveals Heterodimerization in Micellar Medium. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025:e10044. [PMID: 40289253 DOI: 10.1002/rcm.10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
RATIONALE In this study, we applied cross-linking mass spectrometry (XL-MS) to characterize the oligomeric states of a PGLa/magainin 2 mixture and gain insight into the heterodimerization previously suggested in the literature. Both peptides have shown a synergistic enhancement of activity when tested in antimicrobial assays; however, the mechanism of action is still not well understood. METHODS Peptides solutions were prepared in HEPES buffer in the presence of membrane-mimicking DDM detergent micelles or POPE:POPG 3:1 vesicles. Cross-linking experiments were performed using disuccinimidyl suberate (DSS) or disuccinimidyl glutarate (DSG), and MALDI-MS was used to follow the cross-linking performance. Nano liquid chromatography coupled to mass spectrometry was conducted on a Q Exactive Plus orbitrap to achieve linkage sites determination using pLink2 for data interpretation. Trypsin or pepsin digestion was performed for the characterization of intermolecular links. RESULTS XL-MS performed in a DDM micelle environment provided direct evidence of a specific PGLa/magainin 2 heterodimer, but no other oligomeric states were detected. Monitoring the reaction using MALDI-MS allowed unambiguous characterization of the cross-linked stabilized oligomers and facilitated a rapid optimization of conditions to achieve the best balance between stabilizing complex formation and avoiding unspecific aggregation. Comparison of the cross-linked species in detergent micelles and lipidic POPE:POPG bilayers revealed different behaviors suggesting that interaction between the peptides might occur differently in both membrane-mimicking media. CONCLUSIONS This study revealed that XL-MS was relevant at the peptidomic level. However, the cross-linking workflow had to be adjusted compared to its use in large-scale protein-protein interaction mapping in order to avoid technical bias arising from the rapid nature of the cross-linking reaction.
Collapse
Affiliation(s)
- Emilie Hirschler
- Laboratoire de Spectrométrie de Masse des Interactions et des systèmes, CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| | - Elise Glattard
- Laboratoire de RMN et Biophysique des Membranes, Institut de Chimie, CNRS UMR7177, Université de Strasbourg, Strasbourg, France
| | - Nicolas Arnaud
- Laboratoire de Spectrométrie de Masse des Interactions et des systèmes, CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, Université de Strasbourg, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des systèmes, CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| | - Burkhard Bechinger
- Laboratoire de RMN et Biophysique des Membranes, Institut de Chimie, CNRS UMR7177, Université de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| | - Noelle Potier
- Laboratoire de Spectrométrie de Masse des Interactions et des systèmes, CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Trewby W, Tavakol M, Voïtchovsky K. Local mapping of the nanoscale viscoelastic properties of fluid membranes by AFM nanorheology. Nat Commun 2025; 16:3842. [PMID: 40268953 PMCID: PMC12019565 DOI: 10.1038/s41467-025-59260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
Biological membranes are intrinsically dynamic entities that continually adapt their biophysical properties and molecular organisation to support cellular function. Current microscopy techniques can derive high-resolution structural information of labelled molecules but quantifying the associated viscoelastic behaviour with nanometre precision remains challenging. Here, we develop an approach based on atomic force microscopy in conjunction with fast nano-actuators to map the viscoelastic response of unlabelled supported membranes with nanometre spatial resolution. On fluid membranes, we show that the method can quantify local variations in the molecular mobility of the lipids and derive a diffusion coefficient. We confirm our experimental approach with molecular dynamics simulations, also highlighting the role played by the water at the interface with the membrane on the measurement. Probing ternary model bilayers reveals spatial correlations in the local diffusion over distances of ≈20 nm within liquid disordered domains. This lateral correlation is enhanced in native bovine lens membranes, where the inclusion of protein-rich domains induces four-fold variations in the diffusion coefficient across < 100 nm of the fluid regions, consistent with biological function. Our findings suggest that diffusion is highly localised in fluid biomembranes.
Collapse
Affiliation(s)
- William Trewby
- Physics Department, Durham University, South Road, Durham, UK.
- London Centre for Nanotechnology, University College London, London, UK.
| | - Mahdi Tavakol
- Physics Department, Durham University, South Road, Durham, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, UK
| | | |
Collapse
|
9
|
Zorila B, Necula G, Janosi L, Turcu I, Bacalum M, Radu M. Interaction of Arginine and Tryptophan-Rich Short Antimicrobial Peptides with Membrane Models: A Combined Fluorescence, Simulations, and Theoretical Approach. J Chem Inf Model 2025; 65:3723-3736. [PMID: 40178359 DOI: 10.1021/acs.jcim.5c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The augmented increase in bacterial antimicrobial resistance necessitates the discovery of alternative antimicrobial molecules such as short antimicrobial peptides (AMPs) with antimicrobial activity and low cytotoxicity. While many such peptides have been studied, their selective affinity for bacterial versus mammalian membranes remains unclear. Here, we propose a complementary approach using state-of-the-art fluorescence experiments, molecular dynamics simulations, and theoretical techniques. The main goal of this approach is to unravel the energetics and molecular interactions of AMPs with different membrane models at the lipid-water interface. We use short Trp- and Arg-rich AMPs, pure phosphatidylcholine (PC), and an 85:15 mixture of PC with phosphatidylglycerol (PG) lipids for the mammalian and bacterial model membranes, respectively. First, we found that the electrostatic interaction of PG headgroups with Arg enhances the peptide interaction with mixed bilayers by 25-30%, leading to increased hydrogen bonding and stronger membrane adhesion. Second, the obtained Gibbs free energies revealed significantly distinct partitioning of the AMP at the interface for the two bilayers, suggesting a qualitatively different insertion method of cationic AMPs into each of the two membrane models. These results highlight the potential of our approach to unravel the membrane selectivity of an AMP in the context of AMP-based rational design of antibiotics.
Collapse
Affiliation(s)
- Bogdan Zorila
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - George Necula
- Department of Computational Physics and Information Technologies, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Lorant Janosi
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Istotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Ioan Turcu
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Istotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Mihai Radu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| |
Collapse
|
10
|
Nkyaagye E, Olivos HJ, Do TD. Ligand Conformational and Metal Coordination Isomers in Complexes of Metal Ions and Cyclic Depsipeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:873-882. [PMID: 40066759 DOI: 10.1021/jasms.5c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
A critical challenge in the structural characterization of metal complexes in apolar environments is distinguishing transient structural isomers within an ensemble of lower- and higher-order assemblies. These structural variations arise from subtle changes in ligand architecture and metal coordination chemistry, which are often difficult to deconvolute. Here, we utilize ion activation in both drift-tube and cyclic ion mobility spectrometry-mass spectrometry (IMS-MS) to resolve ligand conformational isomerism and metal coordination isomerism in metal sandwich complexes of cyclic depsipeptide ligands known for selective metal ion transport. Our approach reveals that isomerism driven by ligand structural rearrangements exhibits low energy barriers, allowing their interconversion to be captured on the IMS-MS time scale. In contrast, isomers involving distinct metal coordination states are characterized by higher energy barriers, precluding rapid interconversion. These findings establish a direct correlation between isomer distributions and selective metal binding and transport, providing mechanistic insights into the biological functions of cyclic depsipeptides. This work underscores the utility of IMS-MS for disentangling complex structural dynamics in biologically relevant metal-peptide ligand systems.
Collapse
Affiliation(s)
- Emmanuel Nkyaagye
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | | | - Thanh D Do
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
11
|
Strandberg E, Horten P, Bentz D, Wadhwani P, Bürck J, Ulrich AS. Trp residues near peptide termini enhance the membranolytic activity of cationic amphipathic α-helices. Biophys Chem 2025; 318:107365. [PMID: 39657392 DOI: 10.1016/j.bpc.2024.107365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
KIA peptides were designed as a series of cationic antimicrobial agents of different lengths, based on the repetitive motif [KIAGKIA]. As amphiphilic helices, they tend to bind initially to the surface of lipid membranes. Depending on the conditions, they are proposed to flip, insert and form toroidal pores, such that the peptides are aligned in a transmembrane orientation. Tryptophan residues are often found near the ends of transmembrane helices, anchoring them to the amphiphilic bilayer interfaces. Hence, we introduced Trp residues near one or both termini of KIA peptides with lengths of 14-24 amino acids. Our hypothesis was that if Trp residues can stabilize the transmembrane orientation, then these KIA peptides will exhibit an increased propensity to form pores, with increased membranolytic activity. Using solid-state 15N NMR, we found that peptides with Trp near the ends are indeed more likely to be flipped into a transmembrane orientation, especially short peptides. Short KIA peptides also exhibited higher antimicrobial activity when modified with Trp, while longer peptides showed similar activities with and without Trp. The hemolytic activity of KIA peptides of all lengths was higher with Trp near the ends. Vesicle leakage was also increased (sometimes more than 10-fold) for the Trp-mutants, especially in thicker membranes. Higher functionality of amphiphilic helices may thus be achieved in general by exploiting the anchoring effect of Trp. These results demonstrate that the incorporation of Trp increases membranolytic activities (vesicle leakage, hemolysis and antimicrobial activity), in a way compatible with a transmembrane pore model of peptide activity.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany.
| | - Patrick Horten
- KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - David Bentz
- KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
12
|
Brassard R, Arutyunova E, Takyi E, Espinoza-Fonseca LM, Young HS, Touret N, Lemieux MJ. Transmembrane Parkinson's disease mutation of PINK1 leads to altered mitochondrial anchoring. J Biol Chem 2025; 301:108253. [PMID: 39909370 PMCID: PMC11910106 DOI: 10.1016/j.jbc.2025.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Parkinson's disease is a devastating neurodegenerative disease resulting from the death of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Familial and sporadic forms of the disease have been linked to mitochondrial dysfunction. Pathology has been identified with mutations in the PARK6 gene encoding PTEN-induced kinase 1 (PINK1), a quality control protein in the mitochondria. Disease-associated mutations at the transmembrane (TM) region of PINK1 protein were predicted to disrupt the cleavage of the TM region by the PARL (presenilin-associated rhomboid-like) protease at the inner mitochondrial membrane. Here, using microscopy, kinetic analysis, and molecular dynamics simulations, we analyzed three Parkinson's disease-associated TM mutations; PINK1-C92F, PINK1-R98W, and PINK1-I111S, and found that mitochondrial localization and cleavage by the PARL protease were not significantly impaired. However, clearance of hydrolyzed PINK1-R98W appears to be compromised because of altered positioning of the protein in the outer mitochondrial membrane, preventing association with translocase of the outer membrane complexes and slowing cleavage by PARL. This single amino acid change slows degradation of proteolyzed PINK1, increasing its accumulation at the outer mitochondrial membrane and resulting in increased mitophagy and decreased mitochondrial content among these cells.
Collapse
Affiliation(s)
- Raelynn Brassard
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuella Takyi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - L Michel Espinoza-Fonseca
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Dollinger C, Potolitsyna E, Martin AG, Anand A, Datar GK, Schmit JD, Riback JA. Nanometer condensate organization in live cells derived from partitioning measurements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640428. [PMID: 40060647 PMCID: PMC11888449 DOI: 10.1101/2025.02.26.640428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Biomolecules associate, forming condensates that house essential biochemical processes, including ribosome biogenesis. Unraveling how condensates shape macromolecular assembly and transport requires cellular measurements of nanoscale structure. Here, we determine the organization around and between specific proteins at nanometer resolution within condensates, deploying thermodynamic principles to interpret partitioning measurements of designed protein probes. When applied to the nucleolus as a proof of principle, the data reveals considerable inhomogeneity, deviating from that expected within a liquid-like phase. The inhomogeneity can be attributed to ribosome biogenesis, with the local meshwork weakening as biogenesis progresses, facilitating transport. Beyond introducing an innovative modality for biophysical interrogation, our results suggest condensates are far from uniform, simple liquids, a property we conjecture enables regulation and proofreading.
Collapse
Affiliation(s)
- Christina Dollinger
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Evdokiia Potolitsyna
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Abigail G. Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Archish Anand
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Gandhar K. Datar
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
- Medical Scientist Training Program, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, United States of America
| | - Joshua A. Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| |
Collapse
|
14
|
Grau B, Kormos R, Bañó-Polo M, Chen K, García-Murria MJ, Hajredini F, Sánchez del Pino MM, Jo H, Martínez-Gil L, von Heijne G, DeGrado WF, Mingarro I. Sequence-dependent scale for translocon-mediated insertion of interfacial helices in membranes. SCIENCE ADVANCES 2025; 11:eads6804. [PMID: 39970206 PMCID: PMC11837994 DOI: 10.1126/sciadv.ads6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Biological membranes consist of a lipid bilayer studded with integral and peripheral membrane proteins. Most α-helical membrane proteins require protein-conducting insertases known as translocons to assist in their membrane insertion and folding. While the sequence-dependent propensities for a helix to either translocate through the translocon or insert into the membrane have been codified into numerical hydrophobicity scales, the corresponding propensity to partition into the membrane interface remains unrevealed. By engineering diagnostic glycosylation sites around test peptide sequences inserted into a host protein, we devised a system that can differentiate between water-soluble, surface-bound, and transmembrane (TM) states of the sequence based on its glycosylation pattern. Using this system, we determined the sequence-dependent propensities for transfer from the translocon to a TM, interfacial, or extramembrane space and compared these propensities with the corresponding probability distributions determined from the sequences and structures of experimentally determined proteins.
Collapse
Affiliation(s)
- Brayan Grau
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Rian Kormos
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manuel Bañó-Polo
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Kehan Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - María J. García-Murria
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Fatlum Hajredini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manuel M. Sánchez del Pino
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luis Martínez-Gil
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Gunnar von Heijne
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - William F. DeGrado
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Ismael Mingarro
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Kraichely KN, Sandall CR, Liang B, Kiessling V, Tamm LK. Functionally distinct SNARE motifs of SNAP25 cooperate in SNARE assembly and membrane fusion. Biophys J 2025; 124:637-650. [PMID: 39982442 PMCID: PMC11900178 DOI: 10.1016/j.bpj.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Intracellular membrane traffic involves controlled membrane fission and fusion and is essential for eukaryotic cell homeostasis. Most intracellular fusion is facilitated by Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins, which catalyze membrane merging by assembly of a coiled helical bundle of four 60- to 70-residue "SNARE motifs." Perhaps no intracellular fusion reaction is as tightly regulated as that at the neuronal synapse, mediated by the synaptic vesicle SNARE Synaptobrevin-2 and the presynaptic plasma membrane SNAREs Syntaxin-1a and SNAP25. SNAP25 is different from its partner SNAREs: it contributes not one but two SNARE motifs to the final complex and instead of transmembrane domains is anchored in the membrane by post-translational palmitoylation of a long flexible linker between the SNARE motifs. Despite reports of structural and functional differences between the two SNARE motifs, many models of SNARE assembly and fusion consider SNAP25 to be a single functional unit and do not address how linking two distinct motifs in a single polypeptide contributes to synaptic SNARE assembly and fusion. To investigate whether SNAP25's two SNARE motifs regulate each other's folding and ability to assemble with other SNAREs, we determined their secondary structures in isolation and in the context of the whole protein by NMR spectroscopy and correlated the ability of the individual membrane-anchored SNARE motifs to interact with Syntaxin-1a and catalyze fusion in FRET-based binding and single-particle fusion assays, respectively. Our results demonstrate that the isolated N-terminal SNARE motif of SNAP25 promotes stronger Syntaxin-1a binding on membranes and more efficient fusion than wild-type SNAP25, while the C-terminal SNARE motif binds only transiently and facilitates kinetically delayed fusion. By comparing the functional properties of the single motifs to those of the full-length protein, we propose a new model of SNAP25 self-regulation in SNARE assembly and membrane fusion.
Collapse
Affiliation(s)
- Katelyn N Kraichely
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Connor R Sandall
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
16
|
Valério M, Buga CC, Melo MN, Soares CM, Lousa D. Viral entry mechanisms: the role of molecular simulation in unlocking a key step in viral infections. FEBS Open Bio 2025; 15:269-284. [PMID: 39402013 PMCID: PMC11788750 DOI: 10.1002/2211-5463.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 02/04/2025] Open
Abstract
Viral infections are a major global health concern, affecting millions of people each year. Viral entry is one of the crucial stages in the infection process, but its details remain elusive. Enveloped viruses are enclosed by a lipid membrane that protects their genetic material and these viruses are linked to various human illnesses, including influenza, and COVID-19. Due to the advancements made in the field of molecular simulation, significant progress has been made in unraveling the dynamic processes involved in viral entry of enveloped viruses. Simulation studies have provided deep insight into the function of the proteins responsible for attaching to the host receptors and promoting membrane fusion (fusion proteins), deciphering interactions between these proteins and receptors, and shedding light on the functional significance of key regions, such as the fusion peptide. These studies have already significantly contributed to our understanding of this critical aspect of viral infection and assisted the development of effective strategies to combat viral diseases and improve global health. This review focuses on the vital role of fusion proteins in facilitating the entry process of enveloped viruses and highlights the contributions of molecular simulation studies to uncover the molecular details underlying their mechanisms of action.
Collapse
Affiliation(s)
- Mariana Valério
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Carolina C. Buga
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisbonPortugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | - Diana Lousa
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
17
|
Lall S, Balaram P, Mathew MK, Gosavi S. Sequence of the SARS-CoV-2 Spike Transmembrane Domain Encodes Conformational Dynamics. J Phys Chem B 2025; 129:194-209. [PMID: 39692154 DOI: 10.1021/acs.jpcb.4c05270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The homotrimeric SARS-CoV-2 spike protein enables viral infection by undergoing a large conformational transition, which facilitates the fusion of the viral envelope with the host cell membrane. The spike protein is anchored to the SARS-CoV-2 envelope by its transmembrane domain (TMD), composed of three TM helices, each contributed by one of the protomers of spike. Although the TMD is known to be important for viral fusion, whether it is a passive anchor of the spike or actively promotes fusion remains unknown. Specifically, it is unclear if the TMD and its dynamics facilitate the prefusion to postfusion conformational transition of the spike. Here, we computationally study the dynamics and self-assembly of the SARS-CoV-2 spike TMD in homogeneous POPC and cholesterol containing membranes. Atomistic simulations of a long TM helix-containing protomer segment show that the membrane-embedded segment bobs, tilts and gains and loses helicity, locally thinning the membrane. Coarse-grained multimerization simulations using representative TM helix structures from the atomistic simulations exhibit diverse trimer populations whose architecture depends on the structure of the TM helix protomer. While a symmetric conformation reflects the symmetry of the resting spike, an asymmetric TMD conformation could promote membrane fusion through the stabilization of a fusion intermediate. Together, our simulations demonstrate that the sequence and length of the SARS-CoV-2 spike TM segment make it inherently dynamic, that trimerization does not abrogate these dynamics and that the various observed TMD conformations may enable viral fusion.
Collapse
Affiliation(s)
- Sahil Lall
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - M K Mathew
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
18
|
Wang H, Hegde RS. Identification of a factor that accelerates substrate release from the signal recognition particle. Science 2024; 386:996-1003. [PMID: 39607913 PMCID: PMC7617331 DOI: 10.1126/science.adp0787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
The eukaryotic signal recognition particle (SRP) cotranslationally recognizes the first hydrophobic segment of nascent secretory and membrane proteins and delivers them to a receptor at the endoplasmic reticulum (ER). How substrates are released from SRP at the ER to subsequently access translocation factors is not well understood. We found that TMEM208 can engage the substrate binding domain of SRP to accelerate release of its bound cargo. Without TMEM208, slow cargo release resulted in excessive synthesis of downstream polypeptide before engaging translocation factors. Delayed access to translocation machinery caused progressive loss of insertion competence, particularly for multipass membrane proteins, resulting in their impaired biogenesis. Thus, TMEM208 facilitates prompt cargo handover from the targeting to translocation machinery to minimize biogenesis errors and maintain protein homeostasis.
Collapse
Affiliation(s)
- Huping Wang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
19
|
Insausti S, Ramos-Caballero A, Wiley B, González-Resines S, Torralba J, Elizaga-Lara A, Shamblin C, Ojida A, Caaveiro JMM, Zwick MB, Rujas E, Domene C, Nieva JL. Generation of a Nonbilayer Lipid Nanoenvironment after Epitope Binding Potentiates Neutralizing HIV-1 MPER Antibody. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59934-59948. [PMID: 39446590 PMCID: PMC11551957 DOI: 10.1021/acsami.4c13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Establishment of interactions with the envelope lipids is a cardinal feature of broadly neutralizing antibodies (bnAbs) that recognize the Env membrane-proximal external region (MPER) of HIV. The lipid envelope constitutes a relevant component of the full "quinary" MPER epitope, and thus antibodies may be optimized through engineering their capacity to interact with lipids. However, the role of the chemically complex lipid nanoenvironment in the mechanism of MPER molecular recognition and viral neutralization remains poorly understood. To approach this issue, we computationally and experimentally investigated lipid interactions of broadly neutralizing antibody 10E8 and optimized versions engineered to enhance their epitope and membrane affinity by grafting bulky aromatic compounds. Our data revealed a correlation between neutralization potency and the establishment of favorable interactions with small headgroup lipids cholesterol and phosphatidylethanolamine, evolving after specific engagement with MPER. Molecular dynamics simulations of chemically modified Fabs in complex with an MPER-Transmembrane Domain helix supported the generation of a nanoenvironment causing localized deformation of the thick, rigid viral membrane and identified sphingomyelin preferentially occupying a phospholipid-binding site of 10E8. Together, these interactions appear to facilitate insertion of the Fabs through their engagement with the MPER epitope. These findings implicate individual lipid molecules in the neutralization function of MPER bnAbs, validate targeted chemical modification as a method to optimize MPER antibodies, and suggest pathways for MPER peptide-liposome vaccine development.
Collapse
Affiliation(s)
- Sara Insausti
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Ander Ramos-Caballero
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Brian Wiley
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Saul González-Resines
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Johana Torralba
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Anne Elizaga-Lara
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| | - Christine Shamblin
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Akio Ojida
- Department
of Chemical Biology, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jose M. M. Caaveiro
- Laboratory
of Protein Drug Discovery, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Michael B. Zwick
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Edurne Rujas
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria 01006, Spain
- Basque
Foundation for Science, Ikerbasque, Bilbao48013, Spain
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - José L. Nieva
- Instituto
Biofisika (CSIC, UPV/EHU), University of
the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country (UPV/EHU), P.O.
Box 644, Bilbao 48080, Spain
| |
Collapse
|
20
|
Desai M, Sun B. Positions of cysteine residues reveal local clusters and hidden relationships to Sequons and Transmembrane domains in Human proteins. Sci Rep 2024; 14:25886. [PMID: 39468182 PMCID: PMC11519667 DOI: 10.1038/s41598-024-77056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Membrane proteins often possess critical structural features, such as transmembrane domains (TMs), N-glycosylation, and disulfide bonds (SS bonds), which are essential to their structure and function. Here, we extend the study of the motifs carrying N-glycosylation, i.e. the sequons, and the Cys residues supporting the SS bonds, to the whole human proteome with a particular focus on the Cys positions in human proteins with respect to those of sequons and TMs. As the least abundant amino acid residue in protein sequences, the positions of Cys residues in proteins are not random but rather selected through evolution. We discovered that the frequency of Cys residues in proteins is length dependent, and the frequency of CC gaps formed between adjacent Cys residues can be used as a classifier to distinguish proteins with special structures and functions, such as keratin-associated proteins (KAPs), extracellular proteins with EGF-like domains, and nuclear proteins with zinc finger C2H2 domains. Most importantly, by comparing the positions of Cys residues to those of sequons and TMs, we discovered that these structural features can form dense clusters in highly repeated and mutually exclusive modalities in protein sequences. The evolutionary advantages of such complementarity among the three structural features are discussed, particularly in light of structural dynamics in proteins that are lacking from computational predictions. The discoveries made here highlight the sequence-structure-function axis in biological organisms that can be utilized in future protein engineering toward synthetic biology.
Collapse
Affiliation(s)
- Manthan Desai
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
21
|
Panda MS, Qazi B, Vishwakarma V, Pattnaik GP, Haldar S, Chakraborty H. Developing peptide-based fusion inhibitors as an antiviral strategy utilizing coronin 1 as a template. RSC Med Chem 2024; 16:d4md00523f. [PMID: 39399312 PMCID: PMC11467784 DOI: 10.1039/d4md00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
Enveloped viruses enter the host cells by endocytosis and subsequently fuse with the endosomal membranes, or fuse with the plasma membrane at the cell surface. The crucial stage of viral infection, regardless of the route taken to enter the host cell, is membrane fusion. The present work aims to develop a peptide-based fusion inhibitor that prevents membrane fusion by modifying the properties of the participating membranes, without targeting a protein. This would allow us to develop a fusion inhibitor that might work against a larger spectrum of enveloped viruses as it does not target any specific viral fusion protein. With this goal in mind, we have designed a novel peptide by modifying a native sequence derived from coronin 1, a phagosomal protein, that helps to avoid lysosomal degradation of mycobacterium-loaded phagosomes. The designed peptide, mTG-23, inhibits ∼30-40% fusion between small unilamellar vesicles containing varying amounts of cholesterol by modulating the biophysical properties of the participating bilayers. As a proof of principle, we have further demonstrated that the mTG-23 inhibits Influenza A virus infection in A549 and MDCK cells (with ∼EC50 of 20.45 μM and 21.55 μM, respectively), where viral envelope and endosomal membrane fusion is a crucial step. Through a gamut of biophysical and biochemical methods, we surmise that mTG-23 inhibits viral infection by inhibiting viral envelope and endosomal membrane fusion. We envisage that the proposed antiviral strategy can be extended to other viruses that employ a similar modus operandi, providing a novel pan-antiviral approach.
Collapse
Affiliation(s)
- Manbit Subhadarsi Panda
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Bushra Qazi
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Vaishali Vishwakarma
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
| | - Gourab Prasad Pattnaik
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| |
Collapse
|
22
|
Gao J, Zhang YW. The Pathway of a Transmembrane Helix Insertion into the Membrane Assisted by Sec61α Channel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16454-16462. [PMID: 39046853 DOI: 10.1021/acs.langmuir.4c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The significant inconsistency between the experimental and simulation results of the free energy for the translocon-assisted insertion of the transmembrane helix (TMH) has not been reasonably explained. Understanding the mechanism of TMH insertion through the translocon is the key to solving this problem. In this study, we performed a series of coarse-grained molecular dynamics simulations and calculated the potential mean forces (PMFs) for three insertion processes of a hydrophobic TMH. The simulations reveal the pathway of the TMH insertion assisted by a translocon. The results indicate that the TMH contacts the top of the lateral gate first and then inserts down the lateral gate, which agrees with the sliding model. The TMH begins to transfer laterally to the bilayer when it is blocked by the plug and reaches the exit of the lateral gate, where there is a free energy minimum point. We also found that the connecting section between TM2 and TM3 of Sec61α prevented TMH from leaving the lateral gate and directly transitioning to the surface-bound state. These findings provide insight into the mechanism of the insertion of TMH through the translocon.
Collapse
Affiliation(s)
- Jian Gao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
23
|
Mondal A, Teimouri H, Kolomeisky AB. Elucidating Physicochemical Features of Holin Proteins Responsible for Bacterial Cell Lysis. J Phys Chem B 2024; 128:7129-7140. [PMID: 38985954 DOI: 10.1021/acs.jpcb.4c03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Bacterial resistance to conventional antibiotics stimulated the development of so-called "phage therapies" that rely on cell lysis, which is a process of destroying bacterial cells due to their infections by bacterial viruses. For λ bacteriophages, it is known that the critical role in this process is played by holin proteins that aggregate in cellular membranes before breaking them apart. While multiple experimental studies probed various aspects of cell lysis, the underlying molecular mechanisms remain not well understood. Here we investigate what physicochemical properties of holin proteins are the most relevant for these processes by employing statistical correlation analysis of cell lysis dynamics for different experimentally observed mutant species. Our findings reveal significant correlations between various physicochemical features and cell lysis dynamics. Notably, we uncover a strong inverse correlation between local hydrophobicity and cell lysis times, underscoring the crucial role of hydrophobic interactions in membrane disruption. Stimulated by these observations, a predictive model capable of explicitly estimating cell lysis times for any holin protein mutants based on their mean hydrophobicity values is developed. Our study not only provides important microscopic insights into cell lysis phenomena but also proposes specific routes to optimize medical and biotechnological applications of bacteriophages.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hamid Teimouri
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
24
|
Hegde RS, Keenan RJ. A unifying model for membrane protein biogenesis. Nat Struct Mol Biol 2024; 31:1009-1017. [PMID: 38811793 PMCID: PMC7616256 DOI: 10.1038/s41594-024-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/31/2024]
Abstract
α-Helical integral membrane proteins comprise approximately 25% of the proteome in all organisms. The membrane proteome is highly diverse, varying in the number, topology, spacing and properties of transmembrane domains. This diversity imposes different constraints on the insertion of different regions of a membrane protein into the lipid bilayer. Here, we present a cohesive framework to explain membrane protein biogenesis, in which different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion. In this model, Oxa1 family proteins insert transmembrane domains flanked by short translocated segments, whereas the SecY channel is required for insertion of transmembrane domains flanked by long translocated segments. Our unifying model rationalizes evolutionary, genetic, biochemical and structural data across organisms and provides a foundation for future mechanistic studies of membrane protein biogenesis.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Duart G, Graña-Montes R, Pastor-Cantizano N, Mingarro I. Experimental and computational approaches for membrane protein insertion and topology determination. Methods 2024; 226:102-119. [PMID: 38604415 DOI: 10.1016/j.ymeth.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Membrane proteins play pivotal roles in a wide array of cellular processes and constitute approximately a quarter of the protein-coding genes across all organisms. Despite their ubiquity and biological significance, our understanding of these proteins remains notably less comprehensive compared to their soluble counterparts. This disparity in knowledge can be attributed, in part, to the inherent challenges associated with employing specialized techniques for the investigation of membrane protein insertion and topology. This review will center on a discussion of molecular biology methodologies and computational prediction tools designed to elucidate the insertion and topology of helical membrane proteins.
Collapse
Affiliation(s)
- Gerard Duart
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Ricardo Graña-Montes
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Noelia Pastor-Cantizano
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain.
| |
Collapse
|
26
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
27
|
Chang YC, Cao Z, Chen WT, Huang WC. Effects of stand-alone polar residue on membrane protein stability and structure. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184325. [PMID: 38653423 DOI: 10.1016/j.bbamem.2024.184325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Helical membrane proteins generally have a hydrophobic nature, with apolar side chains comprising the majority of the transmembrane (TM) helices. However, whenever polar side chains are present in the TM domain, they often exert a crucial role in structural interactions with other polar residues, such as TM helix associations and oligomerization. Moreover, polar residues in the TM region also often participate in protein functions, such as the Schiff base bonding between Lys residues and retinal in rhodopsin-like membrane proteins. Although many studies have focused on these functional polar residues, our understanding of stand-alone polar residues that are energetically unfavored in TM helixes is limited. Here, we adopted bacteriorhodopsin (bR) as a model system and systematically mutated 17 of its apolar Leu or Phe residues to polar Asn. Stability measurements of the resulting mutants revealed that all of these polar substitutions reduced bR stability to various extents, and the extent of destabilization of each mutant bR is also correlated to different structural factors, such as the relative accessible surface area and membrane depth of the mutation site. Structural analyses of these Asn residues revealed that they form sidechain-to-backbone hydrogen bonds that alleviate the unfavorable energetics in hydrophobic and apolar surroundings. Our results indicate that membrane proteins are able to accommodate certain stand-alone polar residues in the TM region without disrupting overall structures.
Collapse
Affiliation(s)
- Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Zheng Cao
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095, United States of America
| | - Wai-Ting Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Pandia S, Mahapatra A, Chakraborty H. A Coronin 1-Derived Peptide Inhibits Membrane Fusion by Modulating Membrane Organization and Dynamics. J Phys Chem B 2024; 128:4986-4995. [PMID: 38739415 DOI: 10.1021/acs.jpcb.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Membrane fusion is considered the first step in the entry of enveloped viruses into the host cell. Several targeted strategies have been implemented to block viral entry by limiting the fusion protein to form a six-helix bundle, which is a prerequisite for fusion. Nonetheless, the development of broad-spectrum fusion inhibitors is essential to combat emerging and re-emerging viral infections. TG-23, a coronin 1, a tryptophan-aspartate-rich phagosomal protein-derived peptide, demonstrated inhibition of fusion between small unilamellar vesicles (SUVs) by modulating the membrane's physical properties. However, its inhibitory efficacy reduces with an increasing concentration of membrane cholesterol. The present work aims to develop a fusion inhibitor whose efficacy would be unaltered in the presence of membrane cholesterol. A stretch of the tryptophan-aspartic acid-containing peptide with a similar secondary structure and hydrophobicity profile of TG-23 from coronin 1 was synthesized, and its ability to inhibit SUV-SUV fusion with varying concentrations of membrane cholesterol was evaluated. Our results demonstrate that the GG-21 peptide inhibits fusion irrespective of the cholesterol content of the membrane. We have further evaluated the peptide-induced change in the membrane organization and dynamics utilizing arrays of steady-state and time-resolved fluorescence measurements and correlated these results with their effect on fusion. Interestingly, GG-21 displays inhibitory efficacy in a wide variety of lipid compositions despite having a secondary structure and physical properties similar to those of TG-23. Overall, our results advocate that the secondary structure and physical properties of the peptide may not be sufficient to predict its inhibitory efficacy.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| |
Collapse
|
29
|
Falanga A, Bellavita R, Braccia S, Galdiero S. Hydrophobicity: The door to drug delivery. J Pept Sci 2024; 30:e3558. [PMID: 38115215 DOI: 10.1002/psc.3558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The engineering of intracellular delivery systems with the goal of achieving personalized medicine has been encouraged by advances in nanomaterial science as well as a greater understanding of diseases and of the biochemical pathways implicated in many disorders. The development of vectors able to transport the drug to a target location and release it only on demand is undoubtedly the primary issue. From a molecular perspective, the topography of drug carrier surfaces is directly related to the design of an effective drug carrier because it provides a physical hint to modifying its interactions with biological systems. For instance, the initial ratio of hydrophilic to hydrophobic surfaces and the changes brought about by external factors enable the release or encapsulation of a therapeutic molecule and the ability of the nanosystem to cross biological barriers and reach its target without causing systemic toxicity. The first step in creating new materials with enhanced functionality is to comprehend and characterize the interplay between hydrophilic and hydrophobic molecules at the molecular level. Therefore, the focus of this review is on the function of hydrophobicity, which is essential for matching the complexity of biological environments with the intended functionality.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
- CiRPEB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Rosa Bellavita
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Stefania Galdiero
- CiRPEB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
30
|
La Corte C, Catania V, Dara M, Parrinello D, Staropoli M, Trapani MR, Cammarata M, Parisi MG. Equinins as Novel Broad-Spectrum Antimicrobial Peptides Isolated from the Cnidarian Actinia equina (Linnaeus, 1758). Mar Drugs 2024; 22:172. [PMID: 38667789 PMCID: PMC11051070 DOI: 10.3390/md22040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sea anemones are valuable for therapeutic research as a diversified source of bioactive molecules, due to their diverse bioactive molecules linked to predation and defence mechanisms involving toxins and antimicrobial peptides. Acid extracts from Actinia equina tentacles and body were examined for antibacterial activity against Gram-positive, Gram-negative bacteria, and fungi. The peptide fractions showed interesting minimum inhibitory concentration (MIC) values (up to 0.125 µg/mL) against the tested pathogens. Further investigation and characterization of tentacle acid extracts with significant antimicrobial activity led to the purification of peptides through reverse phase chromatography on solid phase and HPLC. Broad-spectrum antimicrobial peptide activity was found in 40% acetonitrile fractions. The resulting peptides had a molecular mass of 2612.91 and 3934.827 Da and MIC ranging from 0.06 to 0.20 mg/mL. Sequencing revealed similarities to AMPs found in amphibians, fish, and Cnidaria, with anti-Gram+, Gram-, antifungal, candidacidal, anti-methicillin-resistant Staphylococcus aureus, carbapenemase-producing, vancomycin-resistant bacteria, and multi-drug resistant activity. Peptides 6.2 and 7.3, named Equinin A and B, respectively, were synthesized and evaluated in vitro towards the above-mentioned bacterial pathogens. Equinin B exerted interesting antibacterial activity (MIC and bactericidal concentrations of 1 mg/mL and 0.25 mg/mL, respectively) and gene organization supporting its potential in applied research.
Collapse
Affiliation(s)
- Claudia La Corte
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.S.); (M.R.T.); (M.G.P.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
| | - Valentina Catania
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Mariano Dara
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.S.); (M.R.T.); (M.G.P.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
| | - Daniela Parrinello
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.S.); (M.R.T.); (M.G.P.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
| | - Mariele Staropoli
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.S.); (M.R.T.); (M.G.P.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
| | - Maria Rosa Trapani
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.S.); (M.R.T.); (M.G.P.)
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.S.); (M.R.T.); (M.G.P.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
| | - Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.S.); (M.R.T.); (M.G.P.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy;
| |
Collapse
|
31
|
Straus SK. Tryptophan- and arginine-rich antimicrobial peptides: Anti-infectives with great potential. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184260. [PMID: 38113954 DOI: 10.1016/j.bbamem.2023.184260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
With the increasing prevalence of multidrug resistant (MDR) bacteria, there is a need to design synthetic antimicrobial peptides (AMPs) that are effective and selective for bacteria, i.e. non-toxic to mammalian cells. One design strategy, namely the use of tryptophan- and arginine-rich AMPs, is rooted in the study of natural AMPs that are composed mainly of these amino acids, such as lactoferricin, tritrpticin, and puroindoline. A number of important studies on these AMPs by the Vogel group are reviewed here. More recent work on W-/R-rich peptides is also presented. The examples show that these peptides represent anti-infectives with great potential.
Collapse
Affiliation(s)
- Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
32
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
33
|
He S, Deber CM. Interaction of designed cationic antimicrobial peptides with the outer membrane of gram-negative bacteria. Sci Rep 2024; 14:1894. [PMID: 38253659 PMCID: PMC10803810 DOI: 10.1038/s41598-024-51716-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The outer membrane (OM) is a hallmark feature of gram-negative bacteria that provides the species with heightened resistance against antibiotic threats while cationic antimicrobial peptides (CAPs) are natural antibiotics broadly recognized for their ability to disrupt bacterial membranes. It has been well-established that lipopolysaccharides present on the OM are among major targets of CAP activity against gram-negative species. Here we investigate how the relative distribution of charged residues along the primary peptide sequence, in conjunction with its overall hydrophobicity, affects such peptide-OM interactions in the natural CAP Ponericin W1. Using a designed peptide library derived from Ponericin W1, we determined that the consecutive placement of Lys residues at the peptide N- or C-terminus (ex. "PonN": KKKKKKWLGSALIGALLPSVVGLFQ) enhances peptide binding affinity to OM lipopolysaccharides compared to constructs where Lys residues are interspersed throughout the primary sequence (ex. "PonAmp": WLKKALKIGAKLLPSVVKLFKGSGQ). Antimicrobial activity against multidrug resistant strains of Pseudomonas aeruginosa was similarly found to be highest among Lys-clustered sequences. Our findings suggest that while native Ponericin W1 exerts its initial activity at the OM, Lys-clustering may be a promising means to enhance potency towards this interface, thereby augmenting peptide entry and activity at the IM, with apparent advantage against multidrug-resistant species.
Collapse
Affiliation(s)
- Shelley He
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
34
|
Baumann C, Zerbe O. The role of leucine and isoleucine in tuning the hydropathy of class A GPCRs. Proteins 2024; 92:15-23. [PMID: 37497770 DOI: 10.1002/prot.26559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Leucine and Isoleucine are two amino acids that differ only by the positioning of one methyl group. This small difference can have important consequences in α-helices, as the β-branching of Ile results in helix destabilization. We set out to investigate whether there are general trends for the occurrences of Leu and Ile residues in the structures and sequences of class A GPCRs (G protein-coupled receptors). GPCRs are integral membrane proteins in which α-helices span the plasma membrane seven times and which play a crucial role in signal transmission. We found that Leu side chains are generally more exposed at the protein surface than Ile side chains. We explored whether this difference might be attributed to different functions of the two amino acids and tested if Leu tunes the hydrophobicity of the transmembrane domain based on the Wimley-White whole-residue hydrophobicity scales. Leu content decreases the variation in hydropathy between receptors and correlates with the non-Leu receptor hydropathy. Both measures indicate that hydropathy is tuned by Leu. To test this idea further, we generated protein sequences with random amino acid compositions using a simple numerical model, in which hydropathy was tuned by adjusting the number of Leu residues. The model was able to replicate the observations made with class A GPCR sequences. We speculate that the hydropathy of transmembrane domains of class A GPCRs is tuned by Leu (and to some lesser degree by Lys and Val) to facilitate correct insertion into membranes and/or to stably anchor the receptors within membranes.
Collapse
Affiliation(s)
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Wu H, Smalinskaitė L, Hegde RS. EMC rectifies the topology of multipass membrane proteins. Nat Struct Mol Biol 2024; 31:32-41. [PMID: 37957425 PMCID: PMC10803268 DOI: 10.1038/s41594-023-01120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 11/15/2023]
Abstract
Most eukaryotic multipass membrane proteins are inserted into the membrane of the endoplasmic reticulum. Their transmembrane domains (TMDs) are thought to be inserted co-translationally as they emerge from a membrane-bound ribosome. Here we find that TMDs near the carboxyl terminus of mammalian multipass proteins are inserted post-translationally by the endoplasmic reticulum membrane protein complex (EMC). Site-specific crosslinking shows that the EMC's cytosol-facing hydrophilic vestibule is adjacent to a pre-translocated C-terminal tail. EMC-mediated insertion is mostly agnostic to TMD hydrophobicity, favored for short uncharged C-tails and stimulated by a preceding unassembled TMD bundle. Thus, multipass membrane proteins can be released by the ribosome-translocon complex in an incompletely inserted state, requiring a separate EMC-mediated post-translational insertion step to rectify their topology, complete biogenesis and evade quality control. This sequential co-translational and post-translational mechanism may apply to ~250 diverse multipass proteins, including subunits of the pentameric ion channel family that are crucial for neurotransmission.
Collapse
Affiliation(s)
- Haoxi Wu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
36
|
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membr Biol 2023; 256:343-372. [PMID: 37650909 DOI: 10.1007/s00232-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, GSFC University, Vadodara, 391750, Gujarat, India.
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, 678623, Kerala, India
| |
Collapse
|
37
|
Pierce M, Ji J, Novak SX, Sieburg MA, Nangia S, Nangia S, Hougland JL. Combined Computational-Biochemical Approach Offers an Accelerated Path to Membrane Protein Solubilization. J Chem Inf Model 2023; 63:7159-7170. [PMID: 37939203 PMCID: PMC10685452 DOI: 10.1021/acs.jcim.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Membrane proteins are difficult to isolate and purify due to their dependence on the surrounding lipid membrane for structural stability. Detergents are often used to solubilize these proteins, with this approach requiring a careful balance between protein solubilization and denaturation. Determining which detergent is most appropriate for a given protein has largely been done empirically through screening, which requires large amounts of membrane protein and associated resources. Here, we describe an alternative to conventional detergent screening using a computational modeling approach to identify the most likely candidate detergents for solubilizing a protein of interest. We demonstrate our approach using ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase family of integral membrane enzymes that has not been solubilized or purified in active form. A computationally derived GOAT structural model provides the only structural information required for this approach. Using computational analysis of detergent ability to penetrate phospholipid bilayers and stabilize the GOAT structure, a panel of common detergents were rank-ordered for their proposed ability to solubilize GOAT. The simulations were performed at all-atom resolution for a combined simulation time of 24 μs. Independently, we biologically screened these detergents for their solubilization of fluorescently tagged GOAT constructs. We found computational prediction of protein structural stabilization was the better predictor of detergent solubilization ability, but neither approach was effective for predicting detergents that would support GOAT enzymatic function. The current rapid expansion of membrane protein computational models lacking experimental structural information and our computational detergent screening approach can greatly improve the efficiency of membrane protein detergent solubilization, supporting downstream functional and structural studies.
Collapse
Affiliation(s)
- Mariah
R. Pierce
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Sadie X. Novak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Michelle A. Sieburg
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
38
|
Sadi M, Carvalho N, Léger C, Vitorge B, Ladant D, Guijarro JI, Chenal A. B2LiVe, a label-free 1D-NMR method to quantify the binding of amphitropic peptides or proteins to membrane vesicles. CELL REPORTS METHODS 2023; 3:100624. [PMID: 37909050 PMCID: PMC10694493 DOI: 10.1016/j.crmeth.2023.100624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Amphitropic proteins and peptides reversibly partition from solution to membrane, a key process that regulates their functions. Experimental approaches classically used to measure protein partitioning into lipid bilayers, such as fluorescence and circular dichroism, are hardly usable when the peptides or proteins do not exhibit significant polarity and/or conformational changes upon membrane binding. Here, we describe binding to lipid vesicles (B2LiVe), a simple, robust, and widely applicable nuclear magnetic resonance (NMR) method to determine the solution-to-membrane partitioning of unlabeled proteins or peptides. B2LiVe relies on previously described proton 1D-NMR fast-pulsing techniques. Membrane partitioning induces a large line broadening, leading to a loss of protein signals; therefore, the decrease of the NMR signal directly measures the fraction of membrane-bound protein. The method uses low polypeptide concentrations and has been validated on several membrane-interacting polypeptides, ranging from 3 to 54 kDa, with membrane vesicles of different sizes and various lipid compositions.
Collapse
Affiliation(s)
- Mirko Sadi
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Nicolas Carvalho
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Corentin Léger
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Bruno Vitorge
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Daniel Ladant
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France.
| | - Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France.
| |
Collapse
|
39
|
Desai M, Singh A, Pham D, Chowdhury SR, Sun B. Discovery and Visualization of the Hidden Relationships among N-Glycosylation, Disulfide Bonds, and Membrane Topology. Int J Mol Sci 2023; 24:16182. [PMID: 38003370 PMCID: PMC10671238 DOI: 10.3390/ijms242216182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Membrane proteins (MPs) are functionally important but structurally complex. In particular, MPs often carry three structural features, i.e., transmembrane domains (TMs), disulfide bonds (SSs), and N-glycosylation (N-GLYCO). All three features have been intensively studied; however, how the three features potentially correlate has been less addressed in the literature. With the growing accuracy from computational prediction, we used publicly available information on SSs and N-GLYCO and analyzed the potential relationships among post-translational modifications (PTMs) and the predicted membrane topology in the human proteome. Our results suggested a very close relationship between SSs and N-GLYCO that behaved similarly, whereas a complementary relation between the TMs and the two PTMs was also revealed, in which the high SS and/or N-GLYCO presence is often accompanied by a low TM occurrence in a protein. Furthermore, the occurrence of SSs and N-GLYCO in a protein heavily relies on the protein length; however, TMs seem not to possess such length dependence. Finally, SSs exhibits larger potential dynamics than N-GLYCO, which is confined by the presence of sequons. The special classes of proteins possessing extreme or unique patterns of the three structural features are comprehensively identified, and their structural features and potential dynamics help to identify their susceptibility to different physiological and pathophysiological insults, which could help drug development and protein engineering.
Collapse
Affiliation(s)
- Manthan Desai
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (A.S.); (D.P.); (S.R.C.)
| | - Amritpal Singh
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (A.S.); (D.P.); (S.R.C.)
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (A.S.); (D.P.); (S.R.C.)
| | - Syed Rafid Chowdhury
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (A.S.); (D.P.); (S.R.C.)
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
40
|
Blaimschein N, Parameswaran H, Nagler G, Manioglu S, Helenius J, Ardelean C, Kuhn A, Guan L, Müller DJ. The insertase YidC chaperones the polytopic membrane protein MelB inserting and folding simultaneously from both termini. Structure 2023; 31:1419-1430.e5. [PMID: 37708891 PMCID: PMC10840855 DOI: 10.1016/j.str.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
The insertion and folding of proteins into membranes is crucial for cell viability. Yet, the detailed contributions of insertases remain elusive. Here, we monitor how the insertase YidC guides the folding of the polytopic melibiose permease MelB into membranes. In vivo experiments using conditionally depleted E. coli strains show that MelB can insert in the absence of SecYEG if YidC resides in the cytoplasmic membrane. In vitro single-molecule force spectroscopy reveals that the MelB substrate itself forms two folding cores from which structural segments insert stepwise into the membrane. However, misfolding dominates, particularly in structural regions that interface the pseudo-symmetric α-helical domains of MelB. Here, YidC takes an important role in accelerating and chaperoning the stepwise insertion and folding process of both MelB folding cores. Our findings reveal a great flexibility of the chaperoning and insertase activity of YidC in the multifaceted folding processes of complex polytopic membrane proteins.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Hariharan Parameswaran
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gisela Nagler
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | | | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland.
| |
Collapse
|
41
|
Kleizen B, de Mattos E, Papaioannou O, Monti M, Tartaglia GG, van der Sluijs P, Braakman I. Transmembrane Helices 7 and 8 Confer Aggregation Sensitivity to the Cystic Fibrosis Transmembrane Conductance Regulator. Int J Mol Sci 2023; 24:15741. [PMID: 37958724 PMCID: PMC10648718 DOI: 10.3390/ijms242115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Olga Papaioannou
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Michele Monti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| |
Collapse
|
42
|
Ramakrishna Reddy P, Kulandaisamy A, Michael Gromiha M. TMH Stab-pred: Predicting the stability of α-helical membrane proteins using sequence and structural features. Methods 2023; 218:118-124. [PMID: 37572768 DOI: 10.1016/j.ymeth.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
The folding and stability of transmembrane proteins (TMPs) are governed by the insertion of secondary structural elements into the cell membrane followed by their assembly. Understanding the important features that dictate the stability of TMPs is important for elucidating their functions. In this work, we related sequence and structure-based parameters with free energy (ΔG0) of α-helical membrane proteins. Our results showed that the free energy transfer of hydrophobic peptides, relative contact order, total interaction energy, number of hydrogen bonds and lipid accessibility of transmembrane regions are important for stability. Further, we have developed multiple-regression models to predict the stability of α-helical membrane proteins using these features and our method can predict the stability with a correlation and mean absolute error (MAE) of 0.89 and 1.21 kcal/mol, respectively, on jack-knife test. The method was validated with a blind test set of three recently reported experimental ΔG0, which could predict the stability within an average MAE of 0.51 kcal/mol. Further, we developed a webserver for predicting the stability and it is freely available at (https://web.iitm.ac.in/bioinfo2/TMHS/). The importance of selected parameters and limitations are discussed.
Collapse
Affiliation(s)
- P Ramakrishna Reddy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - A Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan; Department of Computer Science, National University of Singapore, Singapore.
| |
Collapse
|
43
|
Pleiner T, Hazu M, Pinton Tomaleri G, Nguyen VN, Januszyk K, Voorhees RM. A selectivity filter in the ER membrane protein complex limits protein misinsertion at the ER. J Cell Biol 2023; 222:e202212007. [PMID: 37199759 PMCID: PMC10200711 DOI: 10.1083/jcb.202212007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Tail-anchored (TA) proteins play essential roles in mammalian cells, and their accurate localization is critical for proteostasis. Biophysical similarities lead to mistargeting of mitochondrial TA proteins to the ER, where they are delivered to the insertase, the ER membrane protein complex (EMC). Leveraging an improved structural model of the human EMC, we used mutagenesis and site-specific crosslinking to map the path of a TA protein from its cytosolic capture by methionine-rich loops to its membrane insertion through a hydrophilic vestibule. Positively charged residues at the entrance to the vestibule function as a selectivity filter that uses charge-repulsion to reject mitochondrial TA proteins. Similarly, this selectivity filter retains the positively charged soluble domains of multipass substrates in the cytosol, thereby ensuring they adopt the correct topology and enforcing the "positive-inside" rule. Substrate discrimination by the EMC provides a biochemical explanation for one role of charge in TA protein sorting and protects compartment integrity by limiting protein misinsertion.
Collapse
Affiliation(s)
- Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vy N. Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt Januszyk
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
44
|
Almeida PF. In Search of a Molecular View of Peptide-Lipid Interactions in Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37478368 DOI: 10.1021/acs.langmuir.3c00538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Lipid bilayer membranes are often represented as a continuous nonpolar slab with a certain thickness bounded by two more polar interfaces. Phenomena such as peptide binding to the membrane surface, folding, insertion, translocation, and diffusion are typically interpreted on the basis of this view. In this Perspective, I argue that this membrane representation as a hydrophobic continuum solvent is not adequate to understand peptide-lipid interactions. Lipids are not small compared to membrane-active peptides: their sizes are similar. Therefore, peptide diffusion needs to be understood in terms of free volume, not classical continuum mechanics; peptide solubility or partitioning in membranes cannot be interpreted in terms of hydrophobic mismatch between membrane thickness and peptide length; peptide folding and translocation, often involving cationic peptides, can only be understood if realizing that lipids adapt to the presence of peptides and the membrane may undergo considerable lipid redistribution in the process. In all of those instances, the detailed molecular interactions between the peptide residues and the lipid components are essential to understand the mechanisms involved.
Collapse
Affiliation(s)
- Paulo F Almeida
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| |
Collapse
|
45
|
White SH. Fifty Years of Biophysics at the Membrane Frontier. Annu Rev Biophys 2023; 52:21-67. [PMID: 36791747 DOI: 10.1146/annurev-biophys-051622-112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The author first describes his childhood in the South and the ways in which it fostered the values he has espoused throughout his life, his development of a keen fascination with science, and the influences that supported his progress toward higher education. His experiences in ROTC as a student, followed by two years in the US Army during the Vietnam War, honed his leadership skills. The bulk of the autobiography is a chronological journey through his scientific career, beginning with arrival at the University of California, Irvine in 1972, with an emphasis on the postdoctoral students and colleagues who have contributed substantially to each phase of his lab's progress. White's fundamental findings played a key role in the development of membrane biophysics, helping establish it as fertile ground for research. A story gradually unfolds that reveals the deeply collaborative and painstakingly executed work necessary for a successful career in science.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
46
|
Ghimire J, Hart RJ, Soldano A, Chen CH, Guha S, Hoffmann JP, Hall KM, Sun L, Nelson BJ, Lu TK, Kolls JK, Rivera M, Morici LA, Wimley WC. Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria. ACS Infect Dis 2023; 9:952-965. [PMID: 36961222 PMCID: PMC10111420 DOI: 10.1021/acsinfecdis.2c00640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 03/25/2023]
Abstract
Here, we describe the continued synthetic molecular evolution of a lineage of host-compatible antimicrobial peptides (AMP) intended for the treatment of wounds infected with drug-resistant, biofilm-forming bacteria. The peptides tested are variants of an evolved AMP called d-amino acid CONsensus with Glycine Absent (d-CONGA), which has excellent antimicrobial activities in vitro and in vivo. In this newest generation of rational d-CONGA variants, we tested multiple sequence-structure-function hypotheses that had not been tested in previous generations. Many of the peptide variants have lower antibacterial activity against Gram-positive or Gram-negative pathogens, especially variants that have altered hydrophobicity, secondary structure potential, or spatial distribution of charged and hydrophobic residues. Thus, d-CONGA is generally well tuned for antimicrobial activity. However, we identified a variant, d-CONGA-Q7, with a polar glutamine inserted into the middle of the sequence, that has higher activity against both planktonic and biofilm-forming bacteria as well as lower cytotoxicity against human fibroblasts. Against clinical isolates of Klebsiella pneumoniae, innate resistance to d-CONGA was surprisingly common despite a lack of inducible resistance in Pseudomonas aeruginosa reported previously. Yet, these same isolates were susceptible to d-CONGA-Q7. d-CONGA-Q7 is much less vulnerable to AMP resistance in Gram-negative bacteria than its predecessor. Consistent with the spirit of synthetic molecular evolution, d-CONGA-Q7 achieved a critical gain-of-function and has a significantly better activity profile.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Robert J. Hart
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Anabel Soldano
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Charles H. Chen
- Synthetic
Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Shantanu Guha
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Joseph P. Hoffmann
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalen M. Hall
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Leisheng Sun
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Benjamin J. Nelson
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Timothy K. Lu
- Synthetic
Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jay K. Kolls
- Department
of Medicine, Tulane University School of
Medicine, New Orleans, Louisiana 70112, United States
| | - Mario Rivera
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lisa A. Morici
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - William C. Wimley
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
47
|
Chen L, Zhang Q, Meng Y, Zhao T, Mu C, Fu C, Deng C, Feng J, Du S, Liu W, Geng G, Ma K, Cheng H, Liu Q, Luo Q, Zhang J, Du Z, Cao L, Wang H, Liu Y, Lin J, Chen G, Liu L, Lam SM, Shui G, Zhu Y, Chen Q. Saturated fatty acids increase LPI to reduce FUNDC1 dimerization and stability and mitochondrial function. EMBO Rep 2023; 24:e54731. [PMID: 36847607 PMCID: PMC10074135 DOI: 10.15252/embr.202254731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Ectopic lipid deposition and mitochondrial dysfunction are common etiologies of obesity and metabolic disorders. Excessive dietary uptake of saturated fatty acids (SFAs) causes mitochondrial dysfunction and metabolic disorders, while unsaturated fatty acids (UFAs) counterbalance these detrimental effects. It remains elusive how SFAs and UFAs differentially signal toward mitochondria for mitochondrial performance. We report here that saturated dietary fatty acids such as palmitic acid (PA), but not unsaturated oleic acid (OA), increase lysophosphatidylinositol (LPI) production to impact on the stability of the mitophagy receptor FUNDC1 and on mitochondrial quality. Mechanistically, PA shifts FUNDC1 from dimer to monomer via enhanced production of LPI. Monomeric FUNDC1 shows increased acetylation at K104 due to dissociation of HDAC3 and increased interaction with Tip60. Acetylated FUNDC1 can be further ubiquitinated by MARCH5 for proteasomal degradation. Conversely, OA antagonizes PA-induced accumulation of LPI, and FUNDC1 monomerization and degradation. A fructose-, palmitate-, and cholesterol-enriched (FPC) diet also affects FUNDC1 dimerization and promotes its degradation in a non-alcoholic steatohepatitis (NASH) mouse model. We thus uncover a signaling pathway that orchestrates lipid metabolism with mitochondrial quality.
Collapse
Affiliation(s)
- Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qianping Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yuanyuan Meng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Changying Fu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Caijuan Deng
- College of Pharmacy, Frontiers Science Center for Cell ResponsesNankai UniversityTianjinChina
| | - Jianyu Feng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Siling Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Kaili Ma
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hui Wang
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Yong Liu
- Cancer InstituteXuzhou Medical UniversityXuzhouChina
| | - Jianping Lin
- College of Pharmacy, Frontiers Science Center for Cell ResponsesNankai UniversityTianjinChina
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- LipidAll Technologies Company LimitedChangzhouChina
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
48
|
Abstract
Multipass membrane proteins contain two or more α-helical transmembrane domains (TMDs) that span the lipid bilayer. They are inserted cotranslationally into the prokaryotic plasma membrane or eukaryotic endoplasmic reticulum membrane. The Sec61 complex (SecY complex in prokaryotes) provides a ribosome docking site, houses a channel across the membrane, and contains a lateral gate that opens toward the lipid bilayer. Model multipass proteins can be stitched into the membrane by iteratively using Sec61's lateral gate for TMD insertion and its central pore for translocation of flanking domains. Native multipass proteins, with their diverse TMDs and complex topologies, often also rely on members of the Oxa1 family of translocation factors, the PAT complex chaperone, and other poorly understood factors. Here, we discuss the mechanisms of TMD insertion, highlight the limitations of an iterative insertion model, and propose a new hypothesis for multipass membrane protein biogenesis based on recent findings.
Collapse
Affiliation(s)
- Luka Smalinskaitė
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
49
|
Wu H, Hegde RS. Mechanism of signal-anchor triage during early steps of membrane protein insertion. Mol Cell 2023; 83:961-973.e7. [PMID: 36764302 PMCID: PMC10155758 DOI: 10.1016/j.molcel.2023.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Most membrane proteins use their first transmembrane domain, known as a signal anchor (SA), for co-translational targeting to the endoplasmic reticulum (ER) via the signal recognition particle (SRP). The SA then inserts into the membrane using either the Sec61 translocation channel or the ER membrane protein complex (EMC) insertase. How EMC and Sec61 collaborate to ensure SA insertion in the correct topology is not understood. Using site-specific crosslinking, we detect a pre-insertion SA intermediate adjacent to EMC. This intermediate forms after SA release from SRP but before ribosome transfer to Sec61. The polypeptide's N-terminal tail samples a cytosolic vestibule bordered by EMC3, from where it can translocate across the membrane concomitant with SA insertion. The ribosome then docks on Sec61, which has an opportunity to insert those SAs skipped by EMC. These results suggest that EMC acts between SRP and Sec61 to triage SAs for insertion during membrane protein biogenesis.
Collapse
Affiliation(s)
- Haoxi Wu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
50
|
Boone K, Cloyd AK, Derakovic E, Spencer P, Tamerler C. Designing Collagen-Binding Peptide with Enhanced Properties Using Hydropathic Free Energy Predictions. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:3342. [PMID: 38037603 PMCID: PMC10686322 DOI: 10.3390/app13053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Collagen is fundamental to a vast diversity of health functions and potential therapeutics. Short peptides targeting collagen are attractive for designing modular systems for site-specific delivery of bioactive agents. Characterization of peptide-protein binding involves a larger number of potential interactions that require screening methods to target physiological conditions. We build a hydropathy-based free energy estimation tool which allows quick evaluation of peptides binding to collagen. Previous studies showed that pH plays a significant role in collagen structure and stability. Our design tool enables probing peptides for their collagen-binding property across multiple pH conditions. We explored binding features of currently known collagen-binding peptides, collagen type I alpha chain 2 sense peptide (TKKTLRT) and decorin LRR-10 (LRELHLNNN). Based on these analyzes, we engineered a collagen-binding peptide with enhanced properties across a large pH range in contrast to LRR-10 pH dependence. To validate our predictions, we used a quantum-dots-based binding assay to compare the coverage of the peptides on type I collagen. The predicted peptide resulted in improved collagen binding. Hydropathy of the peptide-protein pair is a promising approach to finding compatible pairings with minimal use of computational resources, and our method allows for quick evaluation of peptides for binding to other proteins. Overall, the free-energy-based tool provides an alternative computational screening approach that impacts protein interaction search methods.
Collapse
Affiliation(s)
- Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
| | - Aya Kirahm Cloyd
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| | - Emina Derakovic
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| |
Collapse
|