1
|
Mahdi S, Beuning PJ, Korzhnev DM. Functional asymmetry in processivity clamp proteins. Biophys J 2025; 124:1549-1561. [PMID: 40247618 DOI: 10.1016/j.bpj.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
Symmetric homo-oligomeric proteins comprising multiple copies of identical subunits are abundant in all domains of life. To fulfill their biological function, these complexes undergo conformational changes, binding events, or posttranslational modifications, leading to loss of symmetry. Processivity clamp proteins that encircle DNA and play multiple roles in DNA replication and repair are archetypical homo-oligomeric symmetric protein complexes. The symmetrical nature of processivity clamps enables simultaneous interactions with multiple protein binding partners; such interactions result in asymmetric changes that facilitate the transition between clamp loading and DNA replication and between DNA replication and repair. The ring-shaped processivity clamps are opened and loaded onto DNA by clamp-loader complexes via asymmetric intermediates with one of the intermonomer interfaces disrupted, undergo spontaneous opening events, and bind heterogeneous partners. Eukaryotic clamp proteins are subject to ubiquitylation, SUMOylation, and acetylation, affecting their biological functions. There is increasing evidence of the functional asymmetry of the processivity clamp proteins from structural, biophysical, and computational studies. Here, we review the symmetry and asymmetry of processivity clamps and their roles in regulating the various functions of the clamps.
Collapse
Affiliation(s)
- Sam Mahdi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut.
| |
Collapse
|
2
|
Wang L, Xie J, Gong T, Wu H, Tu Y, Peng X, Shang S, Jia X, Ma H, Zou J, Xu S, Zheng X, Zhang D, Liu Y, Zhang C, Luo Y, Huang Z, Shao B, Ying B, Cheng Y, Guo Y, Lai Y, Huang D, Liu J, Wei Y, Sun S, Zhou X, Su Z. Cryo-EM reveals mechanisms of natural RNA multivalency. Science 2025; 388:545-550. [PMID: 40080543 DOI: 10.1126/science.adv3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Homo-oligomerization of biological macromolecules leads to functional assemblies that are critical to understanding various cellular processes. However, RNA quaternary structures have rarely been reported. Comparative genomics analysis has identified RNA families containing hundreds of sequences that adopt conserved secondary structures and likely fold into complex three-dimensional structures. In this study, we used cryo-electron microscopy (cryo-EM) to determine structures from four RNA families, including ARRPOF and OLE forming dimers and ROOL and GOLLD forming hexameric, octameric, and dodecameric nanostructures, at 2.6- to 4.6-angstrom resolutions. These homo-oligomeric assemblies reveal a plethora of structural motifs that contribute to RNA multivalency, including kissing-loop, palindromic base-pairing, A-stacking, metal ion coordination, pseudoknot, and minor-groove interactions. These results provide the molecular basis of intermolecular interactions driving RNA multivalency with potential functional relevance.
Collapse
Affiliation(s)
- Liu Wang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Tao Gong
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Wu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Yifan Tu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Peng
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sitong Shang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyu Jia
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Ma
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sheng Xu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xin Zheng
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dong Zhang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zirui Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Cheng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yingqiang Guo
- Cardiovascular Surgery Research Laboratory, Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lai
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianquan Liu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xuedong Zhou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Asor R, Loewenthal D, van Wee R, Benesch JLP, Kukura P. Mass Photometry. Annu Rev Biophys 2025; 54:379-399. [PMID: 40327438 DOI: 10.1146/annurev-biophys-061824-111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mass photometry (MP) is a technology for the mass measurement of biological macromolecules in solution. Its mass accuracy and resolution have transformed label-free optical detection into a quantitative measurement, enabling the identification of distinct species in a mixture and the characterization of their relative abundances. Its applicability to a variety of biomolecules, including polypeptides, nucleic acids, lipids, and sugars, coupled with the ability to quantify heterogeneity, interaction energies, and kinetics, has driven the rapid and widespread adoption of MP across the life sciences community. These applications have been largely orthogonal to those traditionally associated with microscopy, such as detection, imaging, and tracking, instead focusing on the constituents of biomolecular complexes and their change with time. Here, we present an overview of the origins of MP, its current applications, and future improvements that will further expand its scope.
Collapse
Affiliation(s)
- Roi Asor
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Dan Loewenthal
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Raman van Wee
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Inaba-Inoue S, Sabei A, Molza AE, Prentiss M, Mikawa T, Sekiguchi H, Prévost C, Takahashi M. Plasticity and Co-Factor-Dependent Structural Changes in the RecA Nucleoprotein Filament Studied by Small-Angle X-Ray Scattering (SAXS) Measurements and Molecular Modeling. Molecules 2025; 30:1793. [PMID: 40333744 PMCID: PMC12029565 DOI: 10.3390/molecules30081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Structural analyses of protein filaments formed by self-assembly, such as actin, tubulin, or recombinase filaments, have suffered for decades from technical issues due to difficulties in crystallization, their large size, or the dynamic behavior inherent to their cellular function. The advent of cryo-electron microscopy has finally enabled us to obtain structures at different stages of the existence of these filaments. However, these structures correspond to frozen states, and the possibility of observations in solution is still lacking, especially for filaments characterized by a high plasticity, such as the RecA protein for homologous recombination. Here, we use a combination of SAXS measurements and integrative modeling to generate the solution structure of two known forms of the RecA nucleoprotein filament, previously characterized by electron microscopy and resolved by X-ray crystallography. The two forms differ in the cofactor bound to RecA-RecA interfaces, either ATP or ADP. Cooperative transition from one form to the other has been observed during single-molecule experiments by pulling on the filament but also in solution by modifying solvent conditions. We first compare the SAXS data against known structural information. While the crystal structure of the ATP form matches well with the SAXS data, we deduce from the SAXS profiles of the ADP-form values of the pitch (72.0 Å) and the number of monomers per turn (6.4) that differ with respect to the crystal structure (respectively, 82.7 Å and 6.0). We then monitor the transition between the two states driven by the addition of magnesium, and we show this transition occurs with 0.3 mM Mg 2+ ions with a high cooperativity.
Collapse
Affiliation(s)
- Satomi Inaba-Inoue
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan;
| | - Afra Sabei
- Université Paris-Cité, CNRS UPR9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, F-75005 Paris, France;
| | - Anne-Elisabeth Molza
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne-Ardenne, F-51100 Reims, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Tsutomu Mikawa
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Chantal Prévost
- Université Paris-Cité, CNRS UPR9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, F-75005 Paris, France;
| | - Masayuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
| |
Collapse
|
5
|
Zou LN. Structured Random Binding: a minimal model of protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645477. [PMID: 40196495 PMCID: PMC11974877 DOI: 10.1101/2025.03.26.645477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
We describe Structured Random Binding (SRB), a minimal model of protein-protein interactions rooted in the statistical physics of disordered systems. In this model, nonspecific binding is a generic consequence of the interaction between random proteins, exhibiting a phase transition from a high temperature state where nonspecific complexes are transient and lack well-defined interaction interfaces, to a low temperature state where the complex structure is frozen and a definite interaction interface is present. Numerically, weakly-bound nonspecific complexes can evolve into tightly-bound, highly specific complexes, but only if the structural correlation length along the peptide backbone is short; moreover, evolved tightly-bound homodimers favor the same interface structure that is predominant in real protein homodimers.
Collapse
Affiliation(s)
- Ling-Nan Zou
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16801. USA
| |
Collapse
|
6
|
Taylor L, Holland LA, Witzel MT. Native Capillary Nanogel Electrophoresis Assay of Inhibitors of Neuraminidases Derived from H1N1 and H5N1 Influenza A Pandemics. Anal Chem 2025; 97:5077-5084. [PMID: 40017110 PMCID: PMC11912125 DOI: 10.1021/acs.analchem.4c06127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Tetrameric neuraminidases cleave the end-capping sialylated monomer from oligosaccharide ligands at the surface of a host cell infected by the influenza A virus. This cleavage releases the replicated virions from the host cell, making drugs that inhibit neuraminidase function effective to treat influenza A infections. A capillary electrophoresis separation-based assay is reported that maintains the native structure of tetrameric viral neuraminidases derived from H1N1 or H5N1 influenza A pandemics which convert, in-real time, a substrate that mimics 6'-sialyllated threonine-linked glycans on human cells. The assay integrates the enzyme reaction with the separation and is operated using a background electrolyte containing 100 mM NaCl with a thermally reversible nanogel in a 10 μm inner diameter fused silica capillary. In addition to defining the 0.4 nL reaction zone maintained at 37 °C, the nanogel medium resolves the substrate from contaminants as well as the substrate from the product before and after the enzymatic conversion. The enzyme activity is quantifiable based on the percent conversion observed in the presence of a range of inhibitor concentrations. For 1918 H1N1 (A/Brevig Mission/1/18) neuraminidase, the inhibition constant of the transition state analog 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA) is 3.5 ± 0.8 μM (n = 5). The inhibition constants for oseltamivir acid (inhibiting compound of Tamiflu) and peramivir (Rapivab) are 18.2 ± 0.5 nM (n = 3) and 67 ± 8 nM (n = 3), respectively. For 2004 H5N1 (A/Vietnam/1203/2004) neuraminidase, which contained a foreign tetramerization domain to maintain the structure, the inhibition constant for peramivir is 5.4 nM.
Collapse
Affiliation(s)
- Laura
N. Taylor
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Makenzie T. Witzel
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
7
|
Li J, Li X, Wang Y, Zhu J, Chen Y. DNA Tetrahedron Mass-Tagged Probe Set for the Programmed Detection of Protein Trimers by Point-to-Point Recognition and Induced Self-Assembly in Living Cells. Anal Chem 2025; 97:4505-4514. [PMID: 39985435 DOI: 10.1021/acs.analchem.4c05947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Multimeric proteins normally perform different biological functions from their monomer components. Thus, precise recognition and quantitative detection of multimeric proteins can benefit a better understanding of complex biological processes and their roles in disease diagnosis and treatment. The challenge herein is to distinguish the multimeric proteins containing identical monomer components and recognize all the monomers in a multimeric protein on spatial scales. This situation is likely to become more significant for homomultimeric proteins. In this study, a DNA polyhedron mass-tagged probe set strategy was developed for the programmed detection of multimeric proteins in living cells. The probe set comprised recognition and displacement probes, a DNA polyhedron probe, and a mass-tagged probe. After point-to-point recognition of each monomer in the target protein complex by recognition and displacement probes, the DNA polyhedron probe could integrate the information on all the protein monomers by carrying out induced self-assembly via a cascaded toehold-mediated strand-displacement (TMSD) reaction. Afterward, the mass-tagged probe collected the integrated information, and the mass tag in the probe was released by ultraviolet (UV) irradiation and detected by mass spectrometry (MS). Using the tmTNF-α homotrimer as an example, its expression levels in different breast cancer cell lines were ultimately determined using this probe set containing a DNA tetrahedron probe. This study is among the first to quantitatively detect multimeric proteins in living cells. Using a similar strategy, more DNA polyhedron mass-tagged probe sets can be developed for the detection of higher-order multimeric proteins.
Collapse
Affiliation(s)
- Jiapu Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxu Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yunjing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
- Innovation Center of Suzhou, Nanjing Medical University, Suzhou 215000, China
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou 215000, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Innovation Center of Suzhou, Nanjing Medical University, Suzhou 215000, China
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou 215000, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing 211166, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing 211166, China
| |
Collapse
|
8
|
Kshirsagar M, Meller A, Humphreys IR, Sledzieski S, Xu Y, Dodhia R, Horvitz E, Berger B, Bowman GR, Ferres JL, Baker D, Baek M. Rapid and accurate prediction of protein homo-oligomer symmetry using Seq2Symm. Nat Commun 2025; 16:2017. [PMID: 40016259 PMCID: PMC11868566 DOI: 10.1038/s41467-025-57148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
The majority of proteins must form higher-order assemblies to perform their biological functions, yet few machine learning models can accurately and rapidly predict the symmetry of assemblies involving multiple copies of the same protein chain. Here, we address this gap by finetuning several classes of protein foundation models, to predict homo-oligomer symmetry. Our best model named Seq2Symm, which utilizes ESM2, outperforms existing template-based and deep learning methods achieving an average AUC-PR of 0.47, 0.44 and 0.49 across homo-oligomer symmetries on three held-out test sets compared to 0.24, 0.24 and 0.25 with template-based search. Seq2Symm uses a single sequence as input and can predict at the rate of ~80,000 proteins/hour. We apply this method to 5 proteomes and ~3.5 million unlabeled protein sequences, showing its promise to be used in conjunction with downstream computationally intensive all-atom structure generation methods such as RoseTTAFold2 and AlphaFold2-multimer. Code, datasets, model are available at: https://github.com/microsoft/seq2symm .
Collapse
Affiliation(s)
| | - Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samuel Sledzieski
- AI for Good Research Lab, Microsoft Corporation, Redmond, WA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yixi Xu
- AI for Good Research Lab, Microsoft Corporation, Redmond, WA, USA
| | - Rahul Dodhia
- AI for Good Research Lab, Microsoft Corporation, Redmond, WA, USA
| | - Eric Horvitz
- Microsoft Corp, Redmond, WA, USA
- Stanford Institute for Human-Centered Artificial Intelligence, Stanford, California, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory R Bowman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Minkyung Baek
- Department of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Santuz H, Laurent B, Robert CH, Prévost C. Heligeom: A web resource to generate, analyze, and visualize filament architectures based on pairwise association geometries of biological macromolecules. J Mol Biol 2025:169019. [PMID: 40133792 DOI: 10.1016/j.jmb.2025.169019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/27/2025]
Abstract
At the subcellular level, macromolecules self-assemble to form molecular machinery in which the assembly modes play critical roles: the structural integrity of cell walls that allows mechanical growth, the maintenance and repair of the genetic material, membrane flow control, protein chaperoning, and ATP production, to cite just a few examples. As molecular modeling expands its scope to such systems, structural biologists are faced with the difficulty of understanding the structure and dynamics of these supramolecular assemblies. We present Heligeom, a webserver that offers a simple and efficient means for analyzing and constructing oligomeric assemblies based on user-provided structures of two interacting units. The input 3D coordinates may result from structure determination, simulations, docking trials, or deep-learning tools such as AlphaFold. For a given interface, Heligeom outputs the mathematical helical parameters of the corresponding oligomeric form, including axis, pitch, handedness, number of monomers per turn, etc. The server also allows leveraging these parameters to construct oligomers of specified size, visualizing them interactively, and downloading them as PDB files. For subunits (protomers) having multiple interaction geometries, the different interfaces and their global assembly geometry can be visualized and compared. Heligeom thus allows explicitly linking protomer-protomer interfaces to the oligomeric architecture, illuminating possible sources of plasticity in protein filaments such as mutations or thermal, mechanical, or chemical perturbations. Heligeom thus constitutes an intuitive tool to accompany integrative modeling of oligomeric filamentous assemblies. Examples of its application at different structural levels are presented. Heligeom webserver can be accessed at https://heligeom.galaxy.ibpc.fr.
Collapse
Affiliation(s)
- Hubert Santuz
- CNRS and Université Paris-Cité, Laboratoire de Biochimie Théorique (UPR9080), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Benoist Laurent
- CNRS and Université Paris-Cité, Laboratoire de Biochimie Théorique (UPR9080), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Charles H Robert
- CNRS and Université Paris-Cité, Laboratoire de Biochimie Théorique (UPR9080), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France.
| | - Chantal Prévost
- CNRS and Université Paris-Cité, Laboratoire de Biochimie Théorique (UPR9080), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France.
| |
Collapse
|
10
|
Amrita, Chakraborti S, Dey S. Physicochemical features of subunit interfaces and their role in self-assembly across the ferritin superfamily. Structure 2025; 33:401-415.e2. [PMID: 39740669 DOI: 10.1016/j.str.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Ferritins are ubiquitous and play a critical role in iron homeostasis. They are classified into four main subfamilies: classical, bacterial, bacterioferritin, and Dps. These are characterized by subunits with a four-helical bundle domain and interact through three distinct regions-one antiparallel interface (IntA) and two perpendicular interfaces (IntB and IntC), collectively forming a cage-like structure. Here, we attempt to characterize the variability of these interfaces across subfamilies. We found that IntA is essential for the dimeric unit assembly and is likely to assemble first, followed by the smaller interfaces of IntB and IntC (in any order), which are crucial for cage formation. These interfaces are unique in that they are less packed, although chemically stable, and their size lies between that of protein-protein complex and obligate homodimers. This study provides a detailed exploration of the ferritin interfaces, offering insights into their assembly and their importance as carrier proteins.
Collapse
Affiliation(s)
- Amrita
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Jodhpur, Rajasthan, India
| | - Soumyananda Chakraborti
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Dist.-Medchal, 500 078, Hyderabad, Telangana, India.
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342030, Jodhpur, Rajasthan, India.
| |
Collapse
|
11
|
Dowling QM, Park YJ, Fries CN, Gerstenmaier NC, Ols S, Yang EC, Wargacki AJ, Dosey A, Hsia Y, Ravichandran R, Walkey CD, Burrell AL, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanocages. Nature 2025; 638:553-561. [PMID: 39695230 PMCID: PMC11821544 DOI: 10.1038/s41586-024-08360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions1,2. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry3. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540 and 960 subunits. At 49, 71 and 96 nm diameter, these nanocages are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work substantially broadens the variety of self-assembling protein architectures that are accessible through design.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Neil C Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sebastian Ols
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adam J Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Carl D Walkey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Cortez-Romero CR, Lyu J, Pillai AS, Laganowsky A, Thornton JW. Symmetry facilitated the evolution of heterospecificity and high-order stoichiometry in vertebrate hemoglobin. Proc Natl Acad Sci U S A 2025; 122:e2414756122. [PMID: 39847336 PMCID: PMC11789046 DOI: 10.1073/pnas.2414756122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an α2β2 heterotetramer that evolved from a homodimeric ancestor after a gene duplication. We show that the mechanisms for this evolutionary transition were simple. One hydrophobic substitution in subunit β after the gene duplication was sufficient to cause the ancestral dimer to homotetramerize with high affinity across a new interface. During this same interval, a single-residue deletion in subunit α at the older interface conferred specificity for the heterotetrameric form and the trans-orientation of subunits within it. These sudden transitions in stoichiometry and specificity were possible because the interfaces in Hb are isologous, binding via the same surface patch on interacting subunits, but rotated 180° relative to each other. This architecture amplifies the impacts of individual mutations on stoichiometry and specificity, especially in higher-order complexes, and allows single substitutions to differentially affect heteromeric and homomeric interactions. Our findings suggest that elaborate and specific symmetrical molecular complexes may often evolve via simple genetic and physical mechanisms.
Collapse
Affiliation(s)
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Arvind S. Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637
- Institute of Protein Design, University of Washington, Seattle, WA98195
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Joseph W. Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637
- Department of Human Genetics, University of Chicago, Chicago, IL60637
| |
Collapse
|
13
|
Li W, Yang H, Stachowski K, Norris AS, Lichtenthal K, Kelly S, Gollnick P, Wysocki VH, Foster MP. Structural basis of nearest-neighbor cooperativity in the ring-shaped gene regulatory protein TRAP from protein engineering and cryo-EM. Proc Natl Acad Sci U S A 2025; 122:e2409030121. [PMID: 39793047 PMCID: PMC11725872 DOI: 10.1073/pnas.2409030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
The homo-dodecameric ring-shaped trp RNA binding attenuation protein (TRAP) from Alkalihalobacillus halodurans (Aha) binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the trp operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity. To establish a solid basis for describing nearest-neighbor cooperativity in TRAP, we engineered variants constructed with two subunits connected by a flexible linker (dTRAP). We mutated the binding sites of alternating protomers such that only every other site was competent for Trp binding (WT-Mut dTRAP). Ligand binding monitored by NMR, calorimetry, and native mass spectrometry revealed strong cooperativity in dTRAP containing adjacent binding-competent sites, but a severe binding defect when the wild-type sites were separated by mutated sites. Cryo-EM experiments of dTRAP in its ligand-free apo state, and both dTRAP and WT-Mut dTRAP in the presence of Trp, revealed progressive stabilization of loops that gate the Trp binding site and participate in RNA binding. These studies provide important insights into the thermodynamic and structural basis for the observed ligand binding cooperativity in TRAP. Such insights can be useful for understanding allosteric control networks and for the development of those with defined ligand sensitivity and regulatory control.
Collapse
Affiliation(s)
- Weicheng Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
| | - Haoyun Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
| | - Kye Stachowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
| | - Andrew S. Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, OH43210
| | | | - Skyler Kelly
- Department of Biology, University at Buffalo, Buffalo, NY14260
| | - Paul Gollnick
- Department of Biology, University at Buffalo, Buffalo, NY14260
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
- Native MS Guided Structural Biology Center, The Ohio State University, Columbus, OH43210
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH43210
- Center for RNA Biology, The Ohio State University, Columbus, OH43210
- Biophysics Graduate Program, The Ohio State University, Columbus, OH43210
| |
Collapse
|
14
|
Kim HU, Jeong MS, An MY, Park YH, Park SH, Chung SJ, Yi YS, Jun S, Kim YK, Jung HS. Comparative Analysis of Symmetry Parameters in the E2 Inner Core of the Pyruvate Dehydrogenase Complex. Int J Mol Sci 2024; 25:13731. [PMID: 39769492 PMCID: PMC11678472 DOI: 10.3390/ijms252413731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have facilitated the high-resolution structural determination of macromolecular complexes in their native states, providing valuable insights into their dynamic behaviors. However, insufficient understanding or experience with the cryo-EM image processing parameters can result in the loss of biological meaning. In this paper, we investigate the dihydrolipoyl acetyltransferase (E2) inner core complex of the pyruvate dehydrogenase complex (PDC) and reconstruct the 3D maps using five different symmetry parameters. The results demonstrate that the reconstructions yield structurally identical 3D models even at a near-atomic structure. This finding underscores a crucial message for researchers engaging in single-particle analysis (SPA) with relatively user-friendly and convenient image processing software. This approach helps reduce the risk of missing critical biological details, such as the dynamic properties of macromolecules.
Collapse
Affiliation(s)
- Han-ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Center for Systems Imaging, Chuncheon 24341, Republic of Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Center for Bio-Imaging Translational Research, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Mi Young An
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yoon Ho Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun Hee Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co., Ltd., Suwon 16648, Republic of Korea
| | - Sang J. Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- AbTis Co., Ltd., Suwon 16648, Republic of Korea
| | - Yoon-sun Yi
- Center for Bio-Imaging Translational Research, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Sangmi Jun
- Center for Bio-Imaging Translational Research, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Young Kwan Kim
- Kangwon Center for Systems Imaging, Chuncheon 24341, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Center for Systems Imaging, Chuncheon 24341, Republic of Korea
| |
Collapse
|
15
|
Cortez-Romero CR, Lyu J, Pillai AS, Laganowsky A, Thornton JW. Symmetry facilitated the evolution of heterospecificity and high-order stoichiometry in vertebrate hemoglobin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604985. [PMID: 39091803 PMCID: PMC11291130 DOI: 10.1101/2024.07.24.604985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Many proteins form paralogous multimers - molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), aα 2 β 2 heterotetramer that evolved from a homodimeric ancestor after a gene duplication. We show that the mechanisms for this evolutionary transition were simple. One hydrophobic substitution in subunit β after the gene duplication was sufficient to cause the ancestral dimer to homotetramerize with high affinity across a new interface. During this same interval, a single-residue deletion in subunit α at the older interface conferred specificity for the heterotetrameric form and the trans-orientation of subunits within it. These sudden transitions in stoichiometry and specificity were possible because the interfaces in Hb are isologous - involving the same surface patch on interacting subunits, rotated 180° relative to each other. This architecture amplifies the impacts of individual mutations on stoichiometry and specificity, especially in higher-order complexes, and allows single substitutions to differentially affect heteromeric vs homomeric interactions. Our findings suggest that elaborate and specific symmetrical molecular complexes may often evolve via simple genetic and physical mechanisms.
Collapse
Affiliation(s)
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Arvind S Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637
- Institute of Protein Design, University of Washington, Seattle, WA, 98195
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637
| |
Collapse
|
16
|
Sendker FL, Schlotthauer T, Mais CN, Lo YK, Girbig M, Bohn S, Heimerl T, Schindler D, Weinstein A, Metzger BPH, Thornton JW, Pillai A, Bange G, Schuller JM, Hochberg GKA. Frequent transitions in self-assembly across the evolution of a central metabolic enzyme. Nat Commun 2024; 15:10515. [PMID: 39627196 PMCID: PMC11615384 DOI: 10.1038/s41467-024-54408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs. This has led to the proposition that self-assembly may instead vary neutrally within protein families. The extent of such variation has been difficult to ascertain because quaternary structure has until recently been difficult to measure on large scales. Here, we employ mass photometry, phylogenetics, and structural biology to interrogate the evolution of homo-oligomeric assembly across the entire phylogeny of prokaryotic citrate synthases - an enzyme with a highly conserved function. We discover a menagerie of different assembly types that come and go over the course of evolution, including cases of parallel evolution and reversions from complex to simple assemblies. Functional experiments in vitro and in vivo indicate that evolutionary transitions between different assemblies do not strongly influence enzyme catalysis. Our work suggests that enzymes can wander relatively freely through a large space of possible assembly states and demonstrates the power of characterizing structure-function relationships across entire phylogenies.
Collapse
Affiliation(s)
- Franziska L Sendker
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Tabea Schlotthauer
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Mathias Girbig
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Stefan Bohn
- Helmholtz Munich Cryo-Electron Microscopy Platform, Helmholtz Munich, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- MaxGENESYS Biofoundry, Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Arielle Weinstein
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Brian P H Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Arvind Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Gert Bange
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany.
| |
Collapse
|
17
|
Dar MA, Louder R, Cortes M, Chen R, Ma Q, Chakrabarti M, Umanah GKE, Dawson TM, Dawson VL. Cryo-EM Structure of AAA + ATPase Thorase Reveals Novel Helical Filament Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624887. [PMID: 39605435 PMCID: PMC11601504 DOI: 10.1101/2024.11.22.624887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The AAA+ ( A TPases a ssociated with a variety of cellular a ctivities) ATPase, Thorase, also known as ATAD1, plays multiple roles in synaptic plasticity, mitochondrial quality control and mTOR signaling through disassembling protein complexes like AMPAR and mTORC1 in an ATP-dependent manner. The Oligomerization of Thorase is crucial for its disassembly and remodeling functions. We show that wild-type Thorase forms long helical filaments in vitro , dependent on ATP binding but not hydrolysis. We report the Cryogenic Electron Microscopy (cryo-EM) structure of the Thorase filament at a resolution of 4 Å, revealing the dimeric arrangement of the basic repeating unit that is formed through a distinct interface compared to the hexameric MSP1/ATAD1E193Q assembly. Structure-guided mutagenesis confirms the role of critical amino acid residues required for filament formation, oligomerization and disassembly of mTORC1 protein complex. Together, our data reveals a novel filament structure of Thorase and provides critical information that elucidates the mechanism underlying Thorase filament formation and Thorase-mediated disassembly of the mTORC1 complex.
Collapse
|
18
|
Bhadra-Lobo S, Derevyanko G, Lamoureux G. Dock2D: Synthetic Data for the Molecular Recognition Problem. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2580-2586. [PMID: 38814763 DOI: 10.1109/tcbb.2024.3407477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Predicting the physical interaction of proteins is a cornerstone problem in computational biology. New classes of learning-based algorithms are actively being developed, and are typically trained end-to-end on protein complex structures extracted from the Protein Data Bank. These training datasets tend to be large and difficult to use for prototyping and, unlike image or natural language datasets, they are not easily interpretable by non-experts. We present Dock2D-IP and Dock2D-IF, two "toy" datasets that can be used to select algorithms predicting protein-protein interactions-or any other type of molecular interactions. Using two-dimensional shapes as input, each example from Dock2D-IP ("interaction pose") describes the interaction pose of two shapes known to interact and each example from Dock2D-IF ("interaction fact") describes whether two shapes form a stable complex or not, regardless of how they bind. We propose a number of baseline solutions to the problem and show that the same underlying energy function can be learned either by solving the interaction pose task (formulated as an energy-minimization "docking" problem) or the fact-of-interaction task (formulated as a binding free energy estimation problem).
Collapse
|
19
|
Zhuang Y, Howard RJ, Lindahl E. Symmetry-adapted Markov state models of closing, opening, and desensitizing in α 7 nicotinic acetylcholine receptors. Nat Commun 2024; 15:9022. [PMID: 39424796 PMCID: PMC11489734 DOI: 10.1038/s41467-024-53170-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are homopentameric ligand-gated ion channels with critical roles in the nervous system. Recent studies have resolved and functionally annotated closed, open, and desensitized states of these receptors, providing insight into ion permeation and lipid binding. However, the process by which α7 nAChRs transition between states remains unclear. To understand gating and lipid modulation, we generated two ensembles of molecular dynamics simulations of apo α7 nAChRs, with or without cholesterol. Using symmetry-adapted Markov state modeling, we developed a five-state gating model. Free energies recapitulated functional behavior, with the closed state dominating in absence of agonist. Open-to-nonconducting transition rates corresponded to experimental open durations. Cholesterol relatively stabilized the desensitized state, and reduced open-desensitized barriers. These results establish plausible asymmetric transition pathways between states, define lipid modulation effects on the α7 nAChR conformational cycle, and provide an ensemble of structural models applicable to rational design of lipidic pharmaceuticals.
Collapse
Affiliation(s)
- Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Stockholm, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Stockholm, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Stockholm, Sweden.
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, Stockholm, Sweden.
| |
Collapse
|
20
|
Shi D, Zhu X, Zhang H, Yan J, Bai C. Catalytic mechanism study of ATP-citrate lyase during citryl-CoA synthesis process. iScience 2024; 27:110605. [PMID: 39220258 PMCID: PMC11365397 DOI: 10.1016/j.isci.2024.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
ATP-citrate lyase (ACLY) is a critical metabolic enzyme and promising target for drug development. The structure determinations of ACLY have revealed its homotetramer states with various subunit symmetries, but catalytic mechanism of ACLY tetramer and the importance of subunit symmetry have not been clarified. Here, we constructed the free energy landscape of ACLY tetramer with arbitrary subunit symmetries and investigated energetic and conformational coupling of subunits during citryl-CoA synthesis process. The optimal conformational pathway indicates that ACLY tetramer encounters three critical conformational barriers and undergoes a loss of rigid-D2 symmetry to gain an energetic advantage. Energetic coupling of conformational changes and biochemical reactions suggests that these biological events are not independent but rather coupled with each other, showing a comparable energy barrier to the experimental data for the rate-limiting step. These findings could contribute to further research on catalytic mechanism, functional modulation, and inhibitor design of ACLY.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Xuzhou College of Industrial Technology, Xuzhou 221140, China
| | - Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
| | - Junfang Yan
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- Chenzhu Biotechnology Co., Ltd, Hangzhou 310005, China
| |
Collapse
|
21
|
Pérez-Niño JA, Guerra Y, Díaz-Salazar AJ, Costas M, Rodríguez-Romero A, Fernández-Velasco DA. Stable monomers in the ancestral sequence reconstruction of the last opisthokont common ancestor of dimeric triosephosphate isomerase. Protein Sci 2024; 33:e5134. [PMID: 39145435 PMCID: PMC11325190 DOI: 10.1002/pro.5134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Function and structure are strongly coupled in obligated oligomers such as Triosephosphate isomerase (TIM). In animals and fungi, TIM monomers are inactive and unstable. Previously, we used ancestral sequence reconstruction to study TIM evolution and found that before these lineages diverged, the last opisthokonta common ancestor of TIM (LOCATIM) was an obligated oligomer that resembles those of extant TIMs. Notably, calorimetric evidence indicated that ancestral TIM monomers are more structured than extant ones. To further increase confidence about the function, structure, and stability of the LOCATIM, in this work, we applied two different inference methodologies and the worst plausible case scenario for both of them, to infer four sequences of this ancestor and test the robustness of their physicochemical properties. The extensive biophysical characterization of the four reconstructed sequences of LOCATIM showed very similar hydrodynamic and spectroscopic properties, as well as ligand-binding energetics and catalytic parameters. Their 3D structures were also conserved. Although differences were observed in melting temperature, all LOCATIMs showed reversible urea-induced unfolding transitions, and for those that reached equilibrium, high conformational stability was estimated (ΔGTot = 40.6-46.2 kcal/mol). The stability of the inactive monomeric intermediates was also high (ΔGunf = 12.6-18.4 kcal/mol), resembling some protozoan TIMs rather than the unstable monomer observed in extant opisthokonts. A comparative analysis of the 3D structure of ancestral and extant TIMs shows a correlation between the higher stability of the ancestral monomers with the presence of several hydrogen bonds located in the "bottom" part of the barrel.
Collapse
Affiliation(s)
- Jorge Alejandro Pérez-Niño
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yasel Guerra
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - A Jessica Díaz-Salazar
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
22
|
Inobe T, Sakaguchi R, Obita T, Mukaiyama A, Koike S, Yokoyama T, Mizuguchi M, Akiyama S. Structural insights into rapamycin-induced oligomerization of a FRB-FKBP fusion protein. FEBS Lett 2024; 598:2292-2305. [PMID: 39031920 DOI: 10.1002/1873-3468.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Inducible dimerization systems, such as rapamycin-induced dimerization of FK506 binding protein (FKBP) and FKBP-rapamycin binding (FRB) domain, are widely employed chemical biology tools to manipulate cellular functions. We previously advanced an inducible dimerization system into an inducible oligomerization system by developing a bivalent fusion protein, FRB-FKBP, which forms large oligomers upon rapamycin addition and can be used to manipulate cells. However, the oligomeric structure of FRB-FKBP remains unclear. Here, we report that FRB-FKBP forms a rotationally symmetric trimer in crystals, but a larger oligomer in solution, primarily tetramers and pentamers, which maintain similar inter-subunit contacts as in the crystal trimer. These findings expand the applications of the FRB-FKBP oligomerization system in diverse biological events.
Collapse
Affiliation(s)
- Tomonao Inobe
- Graduate School of Science and Engineering, University of Toyama, Japan
| | - Runa Sakaguchi
- Graduate School of Science and Engineering, University of Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Atushi Mukaiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Seiichi Koike
- Graduate School of Science and Engineering, University of Toyama, Japan
| | | | | | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
23
|
Pillai A, Idris A, Philomin A, Weidle C, Skotheim R, Leung PJY, Broerman A, Demakis C, Borst AJ, Praetorius F, Baker D. De novo design of allosterically switchable protein assemblies. Nature 2024; 632:911-920. [PMID: 39143214 PMCID: PMC11338832 DOI: 10.1038/s41586-024-07813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Allosteric modulation of protein function, wherein the binding of an effector to a protein triggers conformational changes at distant functional sites, plays a central part in the control of metabolism and cell signalling1-3. There has been considerable interest in designing allosteric systems, both to gain insight into the mechanisms underlying such 'action at a distance' modulation and to create synthetic proteins whose functions can be regulated by effectors4-7. However, emulating the subtle conformational changes distributed across many residues, characteristic of natural allosteric proteins, is a significant challenge8,9. Here, inspired by the classic Monod-Wyman-Changeux model of cooperativity10, we investigate the de novo design of allostery through rigid-body coupling of peptide-switchable hinge modules11 to protein interfaces12 that direct the formation of alternative oligomeric states. We find that this approach can be used to generate a wide variety of allosterically switchable systems, including cyclic rings that incorporate or eject subunits in response to peptide binding and dihedral cages that undergo effector-induced disassembly. Size-exclusion chromatography, mass photometry13 and electron microscopy reveal that these designed allosteric protein assemblies closely resemble the design models in both the presence and absence of peptide effectors and can have ligand-binding cooperativity comparable to classic natural systems such as haemoglobin14. Our results indicate that allostery can arise from global coupling of the energetics of protein substructures without optimized side-chain-side-chain allosteric communication pathways and provide a roadmap for generating allosterically triggerable delivery systems, protein nanomachines and cellular feedback control circuitry.
Collapse
Affiliation(s)
- Arvind Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Abbas Idris
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Annika Philomin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Philip J Y Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Adam Broerman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cullen Demakis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Hvorecny KL. Identifying nature's smallest fractals. Nat Struct Mol Biol 2024; 31:1147-1149. [PMID: 39079970 DOI: 10.1038/s41594-024-01368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Ghimire N, Kim S, Park HH, Oh TJ. Structure, dimeric conformation, and coenzyme versatility of p-hydroxybenzoate hydroxylase from Arthrobacter sp. PAMC25564. Int J Biol Macromol 2024; 274:133268. [PMID: 38944083 DOI: 10.1016/j.ijbiomac.2024.133268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
p-Hydroxybenzoate hydroxylase (PHBH) catalyzes the ortho-hydroxylation of 4-hydroxybenzoate (4-HB) to protocatechuate (PCA). PHBHs are commonly known as homodimers, and the prediction of pyridine nucleotide binding and specificity remains an ongoing focus in this field. Therefore, our study aimed to determine the dimerization interface in AspPHBH from Arthrobacter sp. PAMC25564 and identify the canonical pyridine nucleotide-binding residues, along with coenzyme specificity, through site-directed mutagenesis. The results confirm a functional dimeric assembly from a tetramer that appeared in the crystallographic asymmetric unit identical to that established in previous studies. Furthermore, AspPHBH exhibits coenzyme versatility, utilizing both NADH and NADPH, with a preference for NADH. Rational engineering experiments demonstrated that targeted mutations in coenzyme surrounding residues profoundly impact NADPH binding, leading to nearly abrogated enzymatic activity compared to that of NADH. R50, R273, and S166 emerged as significant residues for NAD(P)H binding, having a near-fatal impact on NADPH binding compared to NADH. Likewise, the E44 residue plays a critical role in determining coenzyme specificity. Overall, our findings contribute to the fundamental understanding of the determinants of PHBH's active dimeric conformation, coenzyme binding and specificity holding promise for biotechnological advancements.
Collapse
Affiliation(s)
- Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Subin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea.
| |
Collapse
|
26
|
Badonyi M, Marsh JA. Hallmarks and evolutionary drivers of cotranslational protein complex assembly. FEBS J 2024; 291:3557-3567. [PMID: 37202910 DOI: 10.1111/febs.16869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
Recent discoveries have highlighted the prevalence of cotranslational assembly in proteomes, revealing a range of mechanisms that enables the assembly of protein complex subunits on the ribosome. Structural analyses have uncovered emergent properties that may inherently control whether a subunit undergoes cotranslational assembly. However, the evolutionary paths that have yielded such complexes over an extended timescale remain largely unclear. In this review, we reflect on historical experiments that contributed to the field, including breakthroughs that have made possible the proteome-wide detection of cotranslational assembly, and the technical challenges yet to be overcome. We introduce a simple framework that encapsulates the hallmarks of cotranslational assembly and discuss how results from new experiments are shaping our view of the mechanistic, structural and evolutionary factors driving the phenomenon.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| |
Collapse
|
27
|
Lima MP, Hornsby BD, Lim CS, Cheatham TE. Molecular Modeling of Single- and Double-Hydrocarbon-Stapled Coiled-Coil Inhibitors against Bcr-Abl: Toward a Treatment Strategy for CML. J Phys Chem B 2024; 128:6476-6491. [PMID: 38951498 PMCID: PMC11247501 DOI: 10.1021/acs.jpcb.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias and a subset of acute lymphoblastic leukemias. As a result of the so-called Philadelphia chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase, which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown that conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation relative to traditional small-molecule therapeutics. Here, we iterate a new generation of CCmut3 inhibitors against Bcr-CC-mediated Bcr-Abl assembly designed to address these constraints through incorporation of all-hydrocarbon staples spanning i and i + 7 positions in α-helix 2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to evaluate single- and double-stapled CCmut3 candidates in silico for dynamics and binding energetics. We further model a truncated system characterized by the deletion of α-helix 1 and the flexible loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems devoid of the CPP, with a cyclized CPP, and with an open-configuration CPP, for a total of six systems that comprise our library. From this library, we present lead-stapled peptide candidates to be synthesized and evaluated experimentally as our next iteration of inhibitors against Bcr-Abl.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/metabolism
- Models, Molecular
- Molecular Dynamics Simulation
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell-Penetrating Peptides/chemistry
- Cell-Penetrating Peptides/pharmacology
- Cell-Penetrating Peptides/metabolism
Collapse
Affiliation(s)
- Maria
Carolina P. Lima
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Braxten D. Hornsby
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Thomas E. Cheatham
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
28
|
Sendker FL, Schlotthauer T, Mais CN, Lo YK, Girbig M, Bohn S, Heimerl T, Schindler D, Weinstein A, Metzger BP, Thornton JW, Pillai A, Bange G, Schuller JM, Hochberg GK. Frequent transitions in self-assembly across the evolution of a central metabolic enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602260. [PMID: 39005358 PMCID: PMC11245102 DOI: 10.1101/2024.07.05.602260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs. This has led to the proposition that self-assembly may instead vary neutrally within protein families. The extent of such variation has been difficult to ascertain because quaternary structure has until recently been difficult to measure on large scales. Here, we employ mass photometry, phylogenetics, and structural biology to interrogate the evolution of homo-oligomeric assembly across the entire phylogeny of prokaryotic citrate synthases - an enzyme with a highly conserved function. We discover a menagerie of different assembly types that come and go over the course of evolution, including cases of parallel evolution and reversions from complex to simple assemblies. Functional experiments in vitro and in vivo indicate that evolutionary transitions between different assemblies do not strongly influence enzyme catalysis. Our work suggests that enzymes can wander relatively freely through a large space of possible assemblies and demonstrates the power of characterizing structure-function relationships across entire phylogenies.
Collapse
Affiliation(s)
- Franziska L. Sendker
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Tabea Schlotthauer
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Mathias Girbig
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Stefan Bohn
- Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1 Neuherberg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- MaxGENESYS Biofoundry, Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Arielle Weinstein
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Brain P. Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Joseph W. Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Arvind Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Gert Bange
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Jan M. Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Georg K.A. Hochberg
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| |
Collapse
|
29
|
Avila Y, Rebolledo LP, Skelly E, de Freitas Saito R, Wei H, Lilley D, Stanley RE, Hou YM, Yang H, Sztuba-Solinska J, Chen SJ, Dokholyan NV, Tan C, Li SK, He X, Zhang X, Miles W, Franco E, Binzel DW, Guo P, Afonin KA. Cracking the Code: Enhancing Molecular Tools for Progress in Nanobiotechnology. ACS APPLIED BIO MATERIALS 2024; 7:3587-3604. [PMID: 38833534 PMCID: PMC11190997 DOI: 10.1021/acsabm.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.
Collapse
Affiliation(s)
- Yelixza
I. Avila
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Laura P. Rebolledo
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Renata de Freitas Saito
- Comprehensive
Center for Precision Oncology, Centro de Investigação
Translacional em Oncologia (LIM24), Departamento
de Radiologia e Oncologia, Faculdade de Medicina da Universidade de
São Paulo and Instituto do Câncer do Estado de São
Paulo, São Paulo, São Paulo 01246-903, Brazil
| | - Hui Wei
- College
of Engineering and Applied Sciences, Nanjing
University, Nanjing, Jiangsu 210023, P. R. China
| | - David Lilley
- School
of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Robin E. Stanley
- Signal
Transduction Laboratory, National Institute of Environmental Health
Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Ya-Ming Hou
- Thomas
Jefferson
University, Department of Biochemistry
and Molecular Biology, 233 South 10th Street, BLSB 220 Philadelphia, Pennsylvania 19107, United States
| | - Haoyun Yang
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Joanna Sztuba-Solinska
- Vaccine
Research and Development, Early Bioprocess Development, Pfizer Inc., 401 N Middletown Road, Pearl
River, New York 10965, United States
| | - Shi-Jie Chen
- Department
of Physics and Astronomy, Department of Biochemistry, Institute of
Data Sciences and Informatics, University
of Missouri at Columbia, Columbia, Missouri 65211, United States
| | - Nikolay V. Dokholyan
- Departments
of Pharmacology and Biochemistry & Molecular Biology Penn State College of Medicine; Hershey, Pennsylvania 17033, United States
- Departments
of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cheemeng Tan
- University of California, Davis, California 95616, United States
| | - S. Kevin Li
- Division
of Pharmaceutical Sciences, James L Winkle
College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiaoming He
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Xiaoting Zhang
- Department
of Cancer Biology, Breast Cancer Research Program, and University
of Cincinnati Cancer Center, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Wayne Miles
- Department
of Cancer Biology and Genetics, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Elisa Franco
- Department
of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Daniel W. Binzel
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
30
|
Saha S, Gonzalez-Maeso J. Translation-independent association of mRNAs encoding protomers of the 5-HT 2A -mGlu2 receptor complex in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599432. [PMID: 38948858 PMCID: PMC11212926 DOI: 10.1101/2024.06.17.599432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The serotonin 2A receptor (5-HT 2A R) and the metabotropic glutamate 2 receptor (mGluR2) form heteromeric G protein-coupled receptor (GPCR) complexes through a direct physical interaction. Co-translational association of mRNAs encoding subunits of heteromeric ion channels has been reported, but whether complex assembly of GPCRs occurs during translation remains unknown. Our in vitro data reveal evidence of co-translational modulation in 5-HT 2A R and mGluR2 mRNAs following siRNA-mediated knockdown. Interestingly, immunoprecipitation of either 5-HT 2A R or mGluR2, using an antibody targeting epitope tags at their N-terminus, results in detection of both transcripts associated with ribonucleoprotein complexes containing RPS24. Additionally, we demonstrate that the mRNA transcripts of 5-HT 2A R and mGluR2 associate autonomously of their respective encoded proteins. Validation of this translation-independent association is extended ex vivo using mouse frontal cortex samples. Together, these findings provide mechanistic insights into the co-translational assembly of GPCR heteromeric complexes, unraveling regulatory processes governing protein-protein interactions and complex formation.
Collapse
|
31
|
Chim HY, Elofsson A. MoLPC2: improved prediction of large protein complex structures and stoichiometry using Monte Carlo Tree Search and AlphaFold2. Bioinformatics 2024; 40:btae329. [PMID: 38781500 PMCID: PMC11194477 DOI: 10.1093/bioinformatics/btae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
MOTIVATION Today, the prediction of structures of large protein complexes solely from their sequence information requires prior knowledge of the stoichiometry of the complex. To address this challenge, we have enhanced the Monte Carlo Tree Search algorithms in MoLPC to enable the assembly of protein complexes while simultaneously predicting their stoichiometry. RESULTS In MoLPC2, we have improved the predictions by allowing sampling alternative AlphaFold predictions. Using MoLPC2, we accurately predicted the structures of 50 out of 175 nonredundant protein complexes (TM-score ≥ 0.8) without knowing the stoichiometry. MoLPC2 provides new opportunities for predicting protein complex structures without stoichiometry information. AVAILABILITY AND IMPLEMENTATION MoLPC2 is freely available at https://github.com/hychim/molpc2. A notebook is also available from the repository for easy use.
Collapse
Affiliation(s)
- Ho Yeung Chim
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
32
|
Zhao N, Wu T, Wang W, Zhang L, Gong X. Review and Comparative Analysis of Methods and Advancements in Predicting Protein Complex Structure. Interdiscip Sci 2024; 16:261-288. [PMID: 38955920 DOI: 10.1007/s12539-024-00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 07/04/2024]
Abstract
Protein complexes perform diverse biological functions, and obtaining their three-dimensional structure is critical to understanding and grasping their functions. In many cases, it's not just two proteins interacting to form a dimer; instead, multiple proteins interact to form a multimer. Experimentally resolving protein complex structures can be quite challenging. Recently, there have been efforts and methods that build upon prior predictions of dimer structures to attempt to predict multimer structures. However, in comparison to monomeric protein structure prediction, the accuracy of protein complex structure prediction remains relatively low. This paper provides an overview of recent advancements in efficient computational models for predicting protein complex structures. We introduce protein-protein docking methods in detail and summarize their main ideas, applicable modes, and related information. To enhance prediction accuracy, other critical protein-related information is also integrated, such as predicting interchain residue contact, utilizing experimental data like cryo-EM experiments, and considering protein interactions and non-interactions. In addition, we comprehensively review computational approaches for end-to-end prediction of protein complex structures based on artificial intelligence (AI) technology and describe commonly used datasets and representative evaluation metrics in protein complexes. Finally, we analyze the formidable challenges faced in current protein complex structure prediction tasks, including the structure prediction of heteromeric complex, disordered regions in complex, antibody-antigen complex, and RNA-related complex, as well as the evaluation metrics for complex assessment. We hope that this work will provide comprehensive knowledge of complex structure predictions to contribute to future advanced predictions.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Tong Wu
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Wenda Wang
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China
- School of Mathematics, Renmin University of China, Beijing, 100872, China
| | - Lunchuan Zhang
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
| | - Xinqi Gong
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China.
- School of Mathematics, Renmin University of China, Beijing, 100872, China.
- Beijing Academy of Artificial Intelligence, Beijing, 100084, China.
| |
Collapse
|
33
|
Clayton AHA. Photobleaching FRET-FLIM-ICS for quaternary structure quantification on cells. Theory and simulations. Biochim Biophys Acta Gen Subj 2024; 1868:130618. [PMID: 38621595 DOI: 10.1016/j.bbagen.2024.130618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The oligomerization of proteins is an important biological control mechanism and has several functions in activity and stability of enzymes, structural proteins, ion channels and transcription factors. The determination of the relevant oligomeric states in terms of geometry (spatial extent), oligomer size (monomer or dimer or oligomer) and affinity (amounts of monomer, dimer and oligomer) is a challenging biophysical problem. Förster resonance energy transfer and fluorescence fluctuation spectroscopy are powerful tools that are sensitive to proximity and oligomerization respectively. Here it is proposed to combine image-based lifetime-detected Forster resonance energy transfer with image correlation spectroscopy and photobleaching to determine distances, oligomer sizes and oligomer distributions. Simulations for simple oligomeric forms illustrate the potential to improve the discrimination between different quaternary states in the cellular milieu.
Collapse
Affiliation(s)
- Andrew H A Clayton
- Cell Biophysics Laboratory, Optical Sciences Centre, Department of Physics and Astronomy, School of Science, Computer, and Engineering Sciences, Swinburne University of Technology, Melbourne, Australia.
| |
Collapse
|
34
|
Nekulová M, Wyszkowska M, Friedlová N, Uhrík L, Zavadil Kokáš F, Hrabal V, Hernychová L, Vojtěšek B, Hupp TR, Szymański MR. Biochemical evidence for conformational variants in the anti-viral and pro-metastatic protein IFITM1. Biol Chem 2024; 405:311-324. [PMID: 38379409 DOI: 10.1515/hsz-2023-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Interferon induced transmembrane proteins (IFITMs) play a dual role in the restriction of RNA viruses and in cancer progression, yet the mechanism of their action remains unknown. Currently, there is no data about the basic biochemical features or biophysical properties of the IFITM1 protein. In this work, we report on description and biochemical characterization of three conformational variants/oligomeric species of recombinant IFITM1 protein derived from an Escherichia coli expression system. The protein was extracted from the membrane fraction, affinity purified, and separated by size exclusion chromatography where two distinct oligomeric species were observed in addition to the expected monomer. These species remained stable upon re-chromatography and were designated as "dimer" and "oligomer" according to their estimated molecular weight. The dimer was found to be less stable compared to the oligomer using circular dichroism thermal denaturation and incubation with a reducing agent. A two-site ELISA and HDX mass spectrometry suggested the existence of structural motif within the N-terminal part of IFITM1 which might be significant in oligomer formation. Together, these data show the unusual propensity of recombinant IFITM1 to naturally assemble into very stable oligomeric species whose study might shed light on IFITM1 anti-viral and pro-oncogenic functions in cells.
Collapse
Affiliation(s)
- Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Marta Wyszkowska
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, 80-307 Gdansk, Poland
| | - Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Uhrík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Václav Hrabal
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lenka Hernychová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Ted R Hupp
- Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, UK
| | - Michał R Szymański
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, 80-307 Gdansk, Poland
| |
Collapse
|
35
|
Sánchez-Arroyo A, Plaza-Vinuesa L, de Las Rivas B, Mancheño JM, Muñoz R. Structural and functional analysis of the key enzyme responsible for the degradation of ochratoxin A in the Alcaligenes genus. Int J Biol Macromol 2024; 267:131342. [PMID: 38574921 DOI: 10.1016/j.ijbiomac.2024.131342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The potential to degrade ochratoxin A (OTA), a highly poisonous mycotoxin, was investigated in cultures from Alcaligenes-type strains. Genome sequence analyses from different Alcaligenes species have permitted us to demonstrate a direct, causal link between the gene coding a known N-acyl-L-amino acid amidohydrolase from A. faecalis (AfOTH) and the OTA-degrading activity of this bacterium. In agreement with this finding, we found the gene coding AfOTH in two additional species included in the Alcaligenes genus, namely, A. pakistanensis, and A. aquatilis, which also degraded OTA. Notably, A. faecalis subsp. faecalis DSM 30030T was able to transform OTα, the product of OTA hydrolysis. AfOTH from A. faecalis subsp. phenolicus DSM 16503T was recombinantly over-produced and enzymatically characterized. AfOTH is a Zn2+-containing metalloenzyme that possesses structural features and conserved residues identified in the M20D family of enzymes. AfOTH is a tetramer in solution that shows both aminoacylase and carboxypeptidase activities. Using diverse potential substrates, namely, N-acetyl-L-amino acids and carbobenzyloxy-L-amino acids, a marked preference towards C-terminal Phe and Tyr residues could be deduced. The structural basis for this specificity has been determined by in silico molecular docking analyses. The amidase activity of AfOTH on C-terminal Phe residues structurally supports its OTA and OTB degradation activity.
Collapse
Affiliation(s)
- Ana Sánchez-Arroyo
- Bacterial Biotechnology Laboratory, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - Laura Plaza-Vinuesa
- Bacterial Biotechnology Laboratory, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - Blanca de Las Rivas
- Bacterial Biotechnology Laboratory, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain
| | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera (IQF), CSIC, Serrano 119, 28006 Madrid, Spain.
| | - Rosario Muñoz
- Bacterial Biotechnology Laboratory, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040 Madrid, Spain.
| |
Collapse
|
36
|
Brodmerkel MN, Thiede L, De Santis E, Uetrecht C, Caleman C, Marklund EG. Collision induced unfolding and molecular dynamics simulations of norovirus capsid dimers reveal strain-specific stability profiles. Phys Chem Chem Phys 2024; 26:13094-13105. [PMID: 38628116 DOI: 10.1039/d3cp06344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Collision induced unfolding (CIU) is a method used with ion mobility mass spectrometry to examine protein structures and their stability. Such experiments yield information about higher order protein structures, yet are unable to provide details about the underlying processes. That information can however be provided using molecular dynamics simulations. Here, we investigate the gas-phase unfolding of norovirus capsid dimers from the Norwalk and Kawasaki strains by employing molecular dynamics simulations over a range of temperatures, representing different levels of activation, together with CIU experiments. The dimers have highly similar structures, but their CIU reveals different stability that can be explained by the different dynamics that arises in response to the activation seen in the simulations, including a part of the sequence with previously observed strain-specific dynamics in solution. Our findings show how similar protein variants can be examined using mass spectrometric techniques in conjunction with atomistic molecular dynamics simulations to reveal differences in stability as well as differences in how and where unfolding takes place upon activation.
Collapse
Affiliation(s)
- Maxim N Brodmerkel
- Department of Chemistry - BMC, Uppsala University, 75123 Uppsala, Sweden.
| | - Lars Thiede
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Leibniz Institute of Virology (LIV), Notkestrasse 85, 22607 Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Emiliano De Santis
- Department of Chemistry - BMC, Uppsala University, 75123 Uppsala, Sweden.
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Charlotte Uetrecht
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Leibniz Institute of Virology (LIV), Notkestrasse 85, 22607 Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
37
|
Kshirsagar M, Meller A, Humphreys I, Sledzieski S, Xu Y, Dodhia R, Horvitz E, Berger B, Bowman G, Ferres JL, Baker D, Baek M. Rapid and accurate prediction of protein homo-oligomer symmetry with Seq2Symm. RESEARCH SQUARE 2024:rs.3.rs-4215086. [PMID: 38746169 PMCID: PMC11092833 DOI: 10.21203/rs.3.rs-4215086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The majority of proteins must form higher-order assemblies to perform their biological functions. Despite the importance of protein quaternary structure, there are few machine learning models that can accurately and rapidly predict the symmetry of assemblies involving multiple copies of the same protein chain. Here, we address this gap by training several classes of protein foundation models, including ESM-MSA, ESM2, and RoseTTAFold2, to predict homo-oligomer symmetry. Our best model named Seq2Symm, which utilizes ESM2, outperforms existing template-based and deep learning methods. It achieves an average PR-AUC of 0.48 and 0.44 across homo-oligomer symmetries on two different held-out test sets compared to 0.32 and 0.23 for the template-based method. Because Seq2Symm can rapidly predict homo-oligomer symmetries using a single sequence as input (~ 80,000 proteins/hour), we have applied it to 5 entire proteomes and ~ 3.5 million unlabeled protein sequences to identify patterns in protein assembly complexity across biological kingdoms and species.
Collapse
Affiliation(s)
| | | | | | | | - Yixi Xu
- Microsoft AI for Good research lab
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Aleksandrova AA, Sarti E, Forrest LR. EncoMPASS: An encyclopedia of membrane proteins analyzed by structure and symmetry. Structure 2024; 32:492-504.e4. [PMID: 38367624 PMCID: PMC11251422 DOI: 10.1016/j.str.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Protein structure determination and prediction, active site detection, and protein sequence alignment techniques all exploit information about protein structure and structural relationships. For membrane proteins, however, there is limited agreement among available online tools for highlighting and mapping such structural similarities. Moreover, no available resource provides a systematic overview of quaternary and internal symmetries, and their orientation relative to the membrane, despite the fact that these properties can provide key insights into membrane protein function and evolution. Here, we describe the Encyclopedia of Membrane Proteins Analyzed by Structure and Symmetry (EncoMPASS), a database for relating integral membrane proteins of known structure from the points of view of sequence, structure, and symmetry. EncoMPASS is accessible through a web interface, and its contents can be easily downloaded. This allows the user not only to focus on specific proteins, but also to study general properties of the structure and evolution of membrane proteins.
Collapse
Affiliation(s)
- Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edoardo Sarti
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Si Y, Yan C. Protein language model-embedded geometric graphs power inter-protein contact prediction. eLife 2024; 12:RP92184. [PMID: 38564241 PMCID: PMC10987090 DOI: 10.7554/elife.92184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Accurate prediction of contacting residue pairs between interacting proteins is very useful for structural characterization of protein-protein interactions. Although significant improvement has been made in inter-protein contact prediction recently, there is still a large room for improving the prediction accuracy. Here we present a new deep learning method referred to as PLMGraph-Inter for inter-protein contact prediction. Specifically, we employ rotationally and translationally invariant geometric graphs obtained from structures of interacting proteins to integrate multiple protein language models, which are successively transformed by graph encoders formed by geometric vector perceptrons and residual networks formed by dimensional hybrid residual blocks to predict inter-protein contacts. Extensive evaluation on multiple test sets illustrates that PLMGraph-Inter outperforms five top inter-protein contact prediction methods, including DeepHomo, GLINTER, CDPred, DeepHomo2, and DRN-1D2D_Inter, by large margins. In addition, we also show that the prediction of PLMGraph-Inter can complement the result of AlphaFold-Multimer. Finally, we show leveraging the contacts predicted by PLMGraph-Inter as constraints for protein-protein docking can dramatically improve its performance for protein complex structure prediction.
Collapse
Affiliation(s)
- Yunda Si
- School of Physics, Huazhong University of Science and TechnologyWuhanChina
| | - Chengfei Yan
- School of Physics, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
40
|
Sendker FL, Lo YK, Heimerl T, Bohn S, Persson LJ, Mais CN, Sadowska W, Paczia N, Nußbaum E, Del Carmen Sánchez Olmos M, Forchhammer K, Schindler D, Erb TJ, Benesch JLP, Marklund EG, Bange G, Schuller JM, Hochberg GKA. Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024; 628:894-900. [PMID: 38600380 PMCID: PMC11041685 DOI: 10.1038/s41586-024-07287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2-4; however, so far, molecular assembly into fractals is restricted to synthetic systems5-12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpiński triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.
Collapse
Affiliation(s)
- Franziska L Sendker
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Stefan Bohn
- Cryo-EM Platform and Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany
| | - Louise J Persson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | - Wiktoria Sadowska
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Nicole Paczia
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eva Nußbaum
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Tübingen, Germany
| | | | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Tübingen, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- MaxGENESYS Biofoundry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Fellow Group Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
41
|
Xu X, Luo S, Zhao X, Tang B, Zhang E, Liu J, Duan L. Computational analysis of PD-L1 dimerization mechanism induced by small molecules and potential dynamical properties. Int J Biol Macromol 2024; 265:130921. [PMID: 38492688 DOI: 10.1016/j.ijbiomac.2024.130921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The design of small molecule inhibitors that target the programmed death ligand-1 (PD-L1) is a forefront issue in immune checkpoint blocking therapy. Small-molecule inhibitors have been shown to exert therapeutic effects by inducing dimerization of the PD-L1 protein, however, the specific mechanisms underlying this dimerization process remain largely unexplored. Furthermore, there is a notable lack of comparative studies examining the binding modes of structurally diverse inhibitors. In view of the research gaps, this work employed molecular dynamics simulations to meticulously examine the interactions between two distinct types of inhibitors and PD-L1 in both monomeric and dimeric forms, and predicted the dimerization mechanism. The results revealed that inhibitors initially bind to a PD-L1 monomer, subsequently attracting another monomer to form a dimer. Notably, symmetric inhibitors observed superior binding efficiency compared to other inhibitors. Key residues, including Ile54, Tyr56, Met115 and Tyr123 played a leading role in binding. Structurally, symmetric inhibitors were capable of thoroughly engaging the binding pocket, promoting a more symmetrical formation of PD-L1 dimers. Furthermore, symmetric inhibitors formed more extensive hydrophobic interactions with protein residues. The insights garnered from this research are expected to significantly contribute to the rational design and optimization of small molecule inhibitors targeting PD-L1.
Collapse
Affiliation(s)
- Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
42
|
Pasupureddy R, Verma S, Goyal B, Pant A, Sharma R, Bhatt S, Vashisht K, Singh S, Saxena AK, Dixit R, Chakraborti S, Pandey KC. Understanding the complex formation of falstatin; an endogenous macromolecular inhibitor of falcipains. Int J Biol Macromol 2024; 265:130420. [PMID: 38460641 DOI: 10.1016/j.ijbiomac.2024.130420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India.
| | - Sonia Verma
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Department of Biotechnology, Noida Institute of Engineering & Technology, UP, India
| | - Bharti Goyal
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Akansha Pant
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Ruby Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.
| | - Kapil Vashisht
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Ajay K Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Rajnikant Dixit
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| | - Soumyananda Chakraborti
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| | - Kailash C Pandey
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India.
| |
Collapse
|
43
|
Agha MM, Aziziyan F, Uversky VN. Each big journey starts with a first step: Importance of oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:111-141. [PMID: 38811079 DOI: 10.1016/bs.pmbts.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United Staes.
| |
Collapse
|
44
|
Lan PD, Nissley DA, Sitarik I, Vu QV, Jiang Y, To P, Xia Y, Fried SD, Li MS, O'Brien EP. Synonymous Mutations Can Alter Protein Dimerization Through Localized Interface Misfolding Involving Self-entanglements. J Mol Biol 2024; 436:168487. [PMID: 38341172 PMCID: PMC11260358 DOI: 10.1016/j.jmb.2024.168487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.
Collapse
Affiliation(s)
- Pham Dang Lan
- Institute for Computational Sciences and Technology, Ho Chi Minh City, Viet Nam; Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam
| | - Daniel Allen Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA; Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mai Suan Li
- Institute for Computational Sciences and Technology, Ho Chi Minh City, Viet Nam; Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
45
|
Liu W, Zhang C, Zhang H, Ma S, Deng J, Wang D, Chang Z, Yang J. Molecular basis for curvature formation in SepF polymerization. Proc Natl Acad Sci U S A 2024; 121:e2316922121. [PMID: 38381790 PMCID: PMC10907229 DOI: 10.1073/pnas.2316922121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 02/23/2024] Open
Abstract
The self-assembly of proteins into curved structures plays an important role in many cellular processes. One good example of this phenomenon is observed in the septum-forming protein (SepF), which forms polymerized structures with uniform curvatures. SepF is essential for regulating the thickness of the septum during bacteria cell division. In Bacillus subtilis, SepF polymerization involves two distinct interfaces, the β-β and α-α interfaces, which define the assembly unit and contact interfaces, respectively. However, the mechanism of curvature formation in this step is not yet fully understood. In this study, we employed solid-state NMR (SSNMR) to compare the structures of cyclic wild-type SepF assemblies with linear assemblies resulting from a mutation of G137 on the β-β interface. Our results demonstrate that while the sequence differences arise from the internal assembly unit, the dramatic changes in the shape of the assemblies depend on the α-α interface between the units. We further provide atomic-level insights into how the angular variation of the α2 helix on the α-α interface affects the curvature of the assemblies, using a combination of SSNMR, cryo-electron microscopy, and simulation methods. Our findings shed light on the shape control of protein assemblies and emphasize the importance of interhelical contacts in retaining curvature.
Collapse
Affiliation(s)
- Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Chang Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Huawei Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, People’s Republic of China
- Southern University of Science and Technology, Shenzhen518055, People’s Republic of China
| | - Shaojie Ma
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Daping Wang
- Southern University of Science and Technology, Shenzhen518055, People’s Republic of China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan430081, People’s Republic of China
| |
Collapse
|
46
|
Mumford TR, Rae D, Brackhahn E, Idris A, Gonzalez-Martinez D, Pal AA, Chung MC, Guan J, Rhoades E, Bugaj LJ. Simple visualization of submicroscopic protein clusters with a phase-separation-based fluorescent reporter. Cell Syst 2024; 15:166-179.e7. [PMID: 38335954 PMCID: PMC10947474 DOI: 10.1016/j.cels.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Protein clustering plays numerous roles in cell physiology and disease. However, protein oligomers can be difficult to detect because they are often too small to appear as puncta in conventional fluorescence microscopy. Here, we describe a fluorescent reporter strategy that detects protein clusters with high sensitivity called CluMPS (clusters magnified by phase separation). A CluMPS reporter detects and visually amplifies even small clusters of a binding partner, generating large, quantifiable fluorescence condensates. We use computational modeling and optogenetic clustering to demonstrate that CluMPS can detect small oligomers and behaves rationally according to key system parameters. CluMPS detected small aggregates of pathological proteins where the corresponding GFP fusions appeared diffuse. CluMPS also detected and tracked clusters of unmodified and tagged endogenous proteins, and orthogonal CluMPS probes could be multiplexed in cells. CluMPS provides a powerful yet straightforward approach to observe higher-order protein assembly in its native cellular context. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diarmid Rae
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Brackhahn
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abbas Idris
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ayush Aditya Pal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Chung
- Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Juan Guan
- Department of Physics, University of Florida, Gainesville, FL 32611, USA; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Schweke H, Pacesa M, Levin T, Goverde CA, Kumar P, Duhoo Y, Dornfeld LJ, Dubreuil B, Georgeon S, Ovchinnikov S, Woolfson DN, Correia BE, Dey S, Levy ED. An atlas of protein homo-oligomerization across domains of life. Cell 2024; 187:999-1010.e15. [PMID: 38325366 DOI: 10.1016/j.cell.2024.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.
Collapse
Affiliation(s)
- Hugo Schweke
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Prasun Kumar
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Yoan Duhoo
- Protein Production and Structure Characterization Core Facility (PTPSP), School of Life Sciences, École polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benjamin Dubreuil
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan, India.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
48
|
Lang L, Böhler H, Wagler H, Beck T. Assembly Requirements for the Construction of Large-Scale Binary Protein Structures. Biomacromolecules 2024; 25:177-187. [PMID: 38059469 DOI: 10.1021/acs.biomac.3c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The precise assembly of multiple biomacromolecules into well-defined structures and materials is of great importance for various biomedical and nanobiotechnological applications. In this study, we investigate the assembly requirements for two-component materials using charged protein nanocages as building blocks. To achieve this, we designed several variants of ferritin nanocages to determine the surface characteristics necessary for the formation of large-scale binary three-dimensional (3D) assemblies. These nanocage variants were employed in protein crystallization experiments and macromolecular crystallography analyses, complemented by computational methods. Through the screening of nanocage variant combinations at various ionic strengths, we identified three essential features for successful assembly: (1) the presence of a favored crystal contact region, (2) the presence of a charged patch not involved in crystal contacts, and (3) sufficient distinctiveness between the nanocages. Surprisingly, the absence of noncrystal contact mediating patches had a detrimental effect on the assemblies, highlighting their unexpected importance. Intriguingly, we observed the formation of not only binary structures but also both negatively and positively charged unitary structures under previously exclusively binary conditions. Overall, our findings will inform future design strategies by providing some design rules, showcasing the utility of supercharging symmetric building blocks in facilitating the assembly of biomacromolecules into large-scale binary 3D assemblies.
Collapse
Affiliation(s)
- Laurin Lang
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hendrik Böhler
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Henrike Wagler
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Tobias Beck
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
49
|
Vasquez S, Marquez MD, Brignole EJ, Vo A, Kong S, Park C, Perlstein DL, Drennan CL. Structural and biochemical investigations of a HEAT-repeat protein involved in the cytosolic iron-sulfur cluster assembly pathway. Commun Biol 2023; 6:1276. [PMID: 38110506 PMCID: PMC10728100 DOI: 10.1038/s42003-023-05579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Iron-sulfur clusters are essential for life and defects in their biosynthesis lead to human diseases. The mechanism of cluster assembly and delivery to cytosolic and nuclear client proteins via the cytosolic iron-sulfur cluster assembly (CIA) pathway is not well understood. Here we report cryo-EM structures of the HEAT-repeat protein Met18 from Saccharomyces cerevisiae, a key component of the CIA targeting complex (CTC) that identifies cytosolic and nuclear client proteins and delivers a mature iron-sulfur cluster. We find that in the absence of other CTC proteins, Met18 adopts tetrameric and hexameric states. Using mass photometry and negative stain EM, we show that upon the addition of Cia2, these higher order oligomeric states of Met18 disassemble. We also use pulldown assays to identify residues of critical importance for Cia2 binding and recognition of the Leu1 client, many of which are buried when Met18 oligomerizes. Our structures show conformations of Met18 that have not been previously observed in any Met18 homolog, lending support to the idea that a highly flexible Met18 may be key to how the CTC is able to deliver iron-sulfur clusters to client proteins of various sizes and shapes, i.e. Met18 conforms to the dimensions needed.
Collapse
Affiliation(s)
- Sheena Vasquez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Edward J Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- MIT.nano, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Amanda Vo
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Sunnie Kong
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Christopher Park
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | | | - Catherine L Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
50
|
Jeppesen M, André I. Accurate prediction of protein assembly structure by combining AlphaFold and symmetrical docking. Nat Commun 2023; 14:8283. [PMID: 38092742 PMCID: PMC10719378 DOI: 10.1038/s41467-023-43681-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
AlphaFold can predict the structures of monomeric and multimeric proteins with high accuracy but has a limit on the number of chains and residues it can fold. Here we show that a combination of AlphaFold and all-atom symmetric docking simulations enables highly accurate prediction of the structure of complex symmetrical assemblies. We present a method to predict the structure of complexes with cubic - tetrahedral, octahedral and icosahedral - symmetry from sequence. Focusing on proteins where AlphaFold can make confident predictions on the subunit structure, 27 cubic systems were assembled with a median TM-score of 0.99 and a DockQ score of 0.72. 21 had TM-scores of above 0.9 and were categorized as acceptable- to high-quality according to DockQ. The resulting models are energetically optimized and can be used for detailed studies of intermolecular interactions in higher-order symmetrical assemblies. The results demonstrate how explicit treatment of structural symmetry can significantly expand the size and complexity of AlphaFold predictions.
Collapse
Affiliation(s)
- Mads Jeppesen
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|