1
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. Mol Biol Cell 2025; 36:ar28. [PMID: 39841544 PMCID: PMC11974964 DOI: 10.1091/mbc.e24-07-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
The yeast Saccharomyces cerevisiae buds at sites predetermined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a predetermined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
2
|
Sharmeen N, Law C, Wu C. Polarization and cell-fate decision facilitated by the adaptor Ste50p in Saccharomyces cerevisiae. PLoS One 2022; 17:e0278614. [PMID: 36538537 PMCID: PMC9767377 DOI: 10.1371/journal.pone.0278614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
In response to pheromone, many proteins localize on the plasma membrane of yeast cell to reform it into a polarized shmoo structure. The adaptor protein Ste50p, known as a pheromone signal enhancer critical for shmoo polarization, has never been explored systematically for its localization and function in the polarization process. Time-lapse single-cell imaging and quantitation shown here characterizes Ste50p involvement in the establishment of cell polarity. We found that Ste50p patches on the cell cortex mark the point of shmoo initiation, these patches could move, and remain associated with the growing shmoo tip in a pheromone concentration time-dependent manner until shmoo maturation. A Ste50p mutant impaired in patch localization suffers a delay in polarization. By quantitative analysis we show that polarization correlates with the rising levels of Ste50p, enabling rapid cell responses to pheromone that correspond to a critical level of Ste50p at the initial G1 phase. We exploited the quantitative differences in the pattern of Ste50p expression to correlate with the cell-cell phenotypic heterogeneity, showing Ste50p involvement in the cellular differentiation choice. Taken together, these findings present Ste50p to be part of the early shmoo development phase, suggesting that Ste50p may be involved with the polarisome in the initiation of polarization, and plays a role in regulating the polarized growth of shmoo during pheromone response.
Collapse
Affiliation(s)
- Nusrat Sharmeen
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Cunle Wu
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Jacobs KC, Gorman O, Lew DJ. Mechanism of commitment to a mating partner in Saccharomyces cerevisiae. Mol Biol Cell 2022; 33:ar112. [PMID: 35947501 DOI: 10.1091/mbc.e22-02-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many cells detect and follow gradients of chemical signals to perform their functions. Yeast cells use gradients of extracellular pheromones to locate mating partners, providing a tractable model to understand how cells decode the spatial information in gradients. To mate, yeast cells must orient polarity toward the mating partner. Polarity sites are mobile, exploring the cell cortex until they reach the proper position, where they stop moving and "commit" to the partner. A simple model to explain commitment posits that a high concentration of pheromone is only detected upon alignment of partner cells' polarity sites, and causes polarity site movement to stop. Here we explore how yeast cells respond to partners that make different amounts of pheromone. Commitment was surprisingly robust to varying pheromone levels, ruling out the simple model. We also tested whether adaptive pathways were responsible for the robustness of commitment, but our results show that cells lacking those pathways were still able to accommodate changes in pheromone. To explain this robustness, we suggest that the steep pheromone gradients near each mating partner's polarity site trap the polarity site in place.
Collapse
Affiliation(s)
- Katherine C Jacobs
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | - Olivia Gorman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| |
Collapse
|
4
|
Abstract
Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.
Collapse
|
5
|
Morard M, Benavent-Gil Y, Ortiz-Tovar G, Pérez-Través L, Querol A, Toft C, Barrio E. Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity. Microb Genom 2020; 6:e000333. [PMID: 32065577 PMCID: PMC7200066 DOI: 10.1099/mgen.0.000333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 01/03/2023] Open
Abstract
Interspecific hybridization has played an important role in the evolution of eukaryotic organisms by favouring genetic interchange between divergent lineages to generate new phenotypic diversity involved in the adaptation to new environments. This way, hybridization between Saccharomyces species, involving the fusion between their metabolic capabilities, is a recurrent adaptive strategy in industrial environments. In the present study, whole-genome sequences of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii were obtained to unveil the mechanisms involved in the origin and evolution of hybrids, as well as the ecological and geographic contexts in which spontaneous hybridization and hybrid persistence take place. Although Saccharomyces species can mate using different mechanisms, we concluded that rare-mating is the most commonly used, but other mechanisms were also observed in specific hybrids. The preponderance of rare-mating was confirmed by performing artificial hybridization experiments. The mechanism used to mate determines the genomic structure of the hybrid and its final evolutionary outcome. The evolution and adaptability of the hybrids are triggered by genomic instability, resulting in a wide diversity of genomic rearrangements. Some of these rearrangements could be adaptive under the stressful conditions of the industrial environment.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Yaiza Benavent-Gil
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Guadalupe Ortiz-Tovar
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Centro de Estudios Vitivinícolas de Baja California, México, CETYS Universidad, Ensenada, Baja California, Mexico
| | - Laura Pérez-Través
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Institute for Integrative and Systems Biology, Universitat de València and CSIC, Paterna, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| |
Collapse
|
6
|
Snetselaar KM, McCann MP. Using microdensitometry to correlate cell morphology with the nuclear cycle inUstilago maydis. Mycologia 2018. [DOI: 10.1080/00275514.1997.12026834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Karen M. Snetselaar
- Biology Department, St. Joseph's University, 5600 City Avenue, Philadelphia, Pennsylvania 19131
| | - Michael P. McCann
- Biology Department, St. Joseph's University, 5600 City Avenue, Philadelphia, Pennsylvania 19131
| |
Collapse
|
7
|
Abstract
Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida, Aspergillus, Penicillium, and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.
Collapse
MESH Headings
- Cell Cycle/genetics
- Evolution, Molecular
- Fungi/classification
- Fungi/genetics
- Genes, Fungal/genetics
- Genes, Mating Type, Fungal/genetics
- Genes, Mating Type, Fungal/physiology
- Genetics, Population
- Genome, Fungal
- Humans
- Recombination, Genetic
- Reproduction
- Reproduction, Asexual
- Sex
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Paul S Dyer
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
8
|
Tartakoff AM. Cell biology of yeast zygotes, from genesis to budding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1702-14. [PMID: 25862405 DOI: 10.1016/j.bbamcr.2015.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in Saccharomyces cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology and Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Vereshchagina OA, Tereshina VM. Trisporoids and carotenogenesis in Blakeslea trispora. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714050270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Roy Choudhury S, Wang Y, Pandey S. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant. Biochem J 2014; 461:75-85. [PMID: 24694027 DOI: 10.1042/bj20131341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- *Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| | - Yuqi Wang
- †Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, U.S.A
| | - Sona Pandey
- *Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| |
Collapse
|
11
|
Gupta VK, Sigrist SJ. Sperm(idine) answers the next generation. Cell Cycle 2013; 12:542-3. [PMID: 23370387 PMCID: PMC3594251 DOI: 10.4161/cc.23676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Varun K Gupta
- Institute for Biology/Genetics, Freie Universität, Berlin, Germany
| | | |
Collapse
|
12
|
Bauer MA, Carmona-Gutiérrez D, Ruckenstuhl C, Reisenbichler A, Megalou EV, Eisenberg T, Magnes C, Jungwirth H, Sinner FM, Pieber TR, Fröhlich KU, Kroemer G, Tavernarakis N, Madeo F. Spermidine promotes mating and fertilization efficiency in model organisms. Cell Cycle 2013; 12:346-52. [PMID: 23255134 PMCID: PMC3575463 DOI: 10.4161/cc.23199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spermidine is a naturally occurring polyamine involved in multiple biological processes, including DNA metabolism, autophagy and aging. Like other polyamines, spermidine is also indispensable for successful reproduction at several stages. However, a direct influence on the actual fertilization process, i.e., the fusion of an oocyte with a spermatocyte, remains uncertain. To explore this possibility, we established the mating process in the yeast Saccharomyces cerevisiae as a model for fertilization in higher eukaryotes. During human fertilization, the sperm capacitates and the acrosome reaction is necessary for penetration of the oocyte. Similarly, sexually active yeasts form a protrusion called "shmoo" as a prerequisite for mating. In this study, we demonstrate that pheromone-induced shmoo formation requires spermidine. In addition, we show that spermidine is essential for mating in yeast as well as for egg fertilization in the nematode Caenorhabditis elegans. In both cases, this occurs independently from autophagy. In synthesis, we identify spermidine as an important mating component in unicellular and multicellular model organisms, supporting an unprecedented evolutionary conservation of the mechanisms governing fertilization-related cellular fusion.
Collapse
Affiliation(s)
- Maria Anna Bauer
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | | | | | - Angela Reisenbichler
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | - Evgenia V. Megalou
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology-Hellas; Heraklion, Greece
| | - Tobias Eisenberg
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | - Christoph Magnes
- Institute of Medical Technologies and Health Management; Joanneum Research; Graz, Austria
- Department of Internal Medicine; Division of Diabetes and Metabolism; Medical University of Graz; Graz, Austria
| | - Helmut Jungwirth
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | - Frank M. Sinner
- Institute of Medical Technologies and Health Management; Joanneum Research; Graz, Austria
- Department of Internal Medicine; Division of Diabetes and Metabolism; Medical University of Graz; Graz, Austria
| | - Thomas R. Pieber
- Institute of Medical Technologies and Health Management; Joanneum Research; Graz, Austria
- Department of Internal Medicine; Division of Diabetes and Metabolism; Medical University of Graz; Graz, Austria
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| | - Guido Kroemer
- INSERM; U848 and Institut Gustave Roussy; Villejuif, France
- Metabolomics Platform; Institut Gustave Roussy; Villejuif, France
- Centre de Recherche des Cordeliers; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique–Hôpitaux de Paris (AP-HP); Paris, France
- Université Paris Descartes/Paris 5; Sorbonne Paris Cité; Paris, France
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology-Hellas; Heraklion, Greece
| | - Frank Madeo
- Institute of Molecular Biosciences; Karl-Franzens University of Graz; Graz, Austria
| |
Collapse
|
13
|
Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A 2013; 110:1476-81. [PMID: 23307807 DOI: 10.1073/pnas.1217943110] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Penicillium chrysogenum is a filamentous fungus of major medical and historical importance, being the original and present-day industrial source of the antibiotic penicillin. The species has been considered asexual for more than 100 y, and despite concerted efforts, it has not been possible to induce sexual reproduction, which has prevented sexual crosses being used for strain improvement. However, using knowledge of mating-type (MAT) gene organization, we now describe conditions under which a sexual cycle can be induced leading to production of meiotic ascospores. Evidence of recombination was obtained using both molecular and phenotypic markers. The identified heterothallic sexual cycle was used for strain development purposes, generating offspring with novel combinations of traits relevant to penicillin production. Furthermore, the MAT1-1-1 mating-type gene, known primarily for a role in governing sexual identity, was also found to control transcription of a wide range of genes with biotechnological relevance including those regulating penicillin production, hyphal morphology, and conidial formation. These discoveries of a sexual cycle and MAT gene function are likely to be of broad relevance for manipulation of other asexual fungi of economic importance.
Collapse
|
14
|
O'Reilly N, Charbin A, Lopez-Serra L, Uhlmann F. Facile synthesis of budding yeast a-factor and its use to synchronize cells of α mating type. Yeast 2012; 29:233-40. [PMID: 22641466 DOI: 10.1002/yea.2906] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/21/2012] [Accepted: 04/23/2012] [Indexed: 11/09/2022] Open
Abstract
The ease with which populations of the budding yeast Saccharomyces cerevisiae can be synchronized using the mating pheromone α-factor has been invaluable for studies of the cell cycle. The α-factor response pathway has also remained an important model to study the molecular mechanism of G-protein coupled receptor signalling. α-Factor is a 13 amino acids long peptide that is readily available by automated peptide synthesis. However, only cells of the a mating type respond to α-factor. Cells of the opposite α mating type respond to a-factor, a farnesylated and C-terminally methylated 12 amino acids peptide. Because of its more difficult chemical synthesis, a-factor is not readily available and consequently the a-factor response is less well understood. Here we describe an improved strategy for producing a-factor, based on solid-phase peptide synthesis, followed by two simple steps in solution that show favourable characteristics and good yield. We demonstrate the successful use of the resulting a-factor to synchronize cell cycle progression of α cells. Notably, the a-factor concentrations required for cell synchronization are an order of magnitude lower than typically used α-factor concentrations. Despite a similar cell cycle response, shmoo formation was less pronounced compared to α-factor-treated a cells. Our protocol makes a-factor widely accessible, extending the ease of cell cycle synchronization to budding yeast cells of both mating types and facilitating the study of a-factor signalling.
Collapse
Affiliation(s)
- Nicola O'Reilly
- Peptide Synthesis Laboratory, Cancer Research UK London Research Institute, UK
| | | | | | | |
Collapse
|
15
|
Roles for receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics 2012; 190:1389-404. [PMID: 22298702 DOI: 10.1534/genetics.111.136358] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Here we characterize the relationship between the PRE-2 pheromone receptor and its ligand, CCG-4, and the general requirements for receptors, pheromones, G proteins, and mating type genes during fusion of opposite mating-type cells and sexual sporulation in the multicellular fungus Neurospora crassa. PRE-2 is highly expressed in mat a cells and is localized in male and female reproductive structures. Δpre-2 mat a females do not respond chemotropically to mat A males (conidia) or form mature fruiting bodies (perithecia) or meiotic progeny (ascospores). Strains with swapped identity due to heterologous expression of pre-2 or ccg-4 behave normally in crosses with opposite mating-type strains. Coexpression of pre-2 and ccg-4 in the mat A background leads to self-attraction and development of barren perithecia without ascospores. Further perithecial development is achieved by inactivation of Sad-1, a gene required for meiotic gene silencing. Findings from studies involving forced heterokaryons of opposite mating-type strains show that presence of one receptor and its compatible pheromone is necessary and sufficient for perithecial development and ascospore production. Taken together, the results demonstrate that although receptors and pheromones control sexual identity, the mating-type genes (mat A and mat a) must be in two different nuclei to allow meiosis and sexual sporulation to occur.
Collapse
|
16
|
Rappaport N, Barkai N. Disentangling signaling gradients generated by equivalent sources. J Biol Phys 2011; 38:267-78. [PMID: 23450187 DOI: 10.1007/s10867-011-9240-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022] Open
Abstract
Yeast cells approach a mating partner by polarizing along a gradient of mating pheromones that are secreted by cells of the opposite mating type. The Bar1 protease is secreted by a-cells and, paradoxically, degrades the α-factor pheromones which are produced by cells of the opposite mating type and trigger mating in a-cells. This degradation may assist in the recovery from pheromone signaling but has also been shown to play a positive role in mating. Previous studies suggested that widely diffusing protease can bias the pheromone gradient towards the closest secreting cell. Here, we show that restricting the Bar1 protease to the secreting cell itself, preventing its wide diffusion, facilitates discrimination between equivalent mating partners. This may be mostly relevant during spore germination, where most mating events occur in nature.
Collapse
Affiliation(s)
- Noa Rappaport
- Departments of Molecular Genetics and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
17
|
Abstract
The cell cycle in Saccharomyces cerevisiae is controlled by regulation of START in late G1. The CLN1, CLN2 and CLN3 family of cyclin homologues is required for cells to pass START. They probably act by activating the CDC28 protein kinase. Expression of CLN1 or CLN3 under the control of an inducible promoter shows that transcription of either gene is sufficient for cyclin-deficient strains arrested in G1 to traverse START. A model of START regulation involves activation of CDC28 kinase by any CLN protein, leading to activation of CLN1 and CLN2 transcription in a positive feedback loop and passage through START. The cell cycle-dependent transcriptional regulators SWI4 and SWI6 may be components of the feedback loop. Cell cycle commitment entails resistance to the inhibitory action of mating factor, which correlates with peak levels of CLN1 and CLN2 mRNAs. FAR1 encodes an alpha-factor-dependent inhibitor of CLN function whose expression is markedly reduced at the time of START. The interplay of all these factors may sharpen the START transition such that it is close to an all-or-nothing switch event. This may be important for several START-dependent events to be activated at the same time, leading to coordinated cell cycle progression.
Collapse
Affiliation(s)
- F Cross
- Rockefeller University, New York, NY 10021-6399
| | | |
Collapse
|
18
|
Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 2006; 70:37-120. [PMID: 16524918 PMCID: PMC1393252 DOI: 10.1128/mmbr.70.1.37-120.2006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.
Collapse
Affiliation(s)
- Gang Ren
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
19
|
Hu Z, Potthoff B, Hollenberg CP, Ramezani-Rad M. Mdy2, a ubiquitin-like (UBL)-domain protein, is required for efficient mating in Saccharomyces cerevisiae. J Cell Sci 2006; 119:326-38. [PMID: 16390866 DOI: 10.1242/jcs.02754] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MDY2, a gene required for efficient mating of the yeast Saccharomyces cerevisiae, was characterized in this study. The gene encodes a protein of 212 amino acids, which contains a ubiquitin-like (UBL) domain (residues 74-149). Deletion of MDY2 is associated with a five- to sevenfold reduction in mating efficiency, mainly due to defects in nuclear migration and karyogamy at the prezygotic stage. However, prior to mating pair fusion, shmoo formation is reduced by 30%, with a concomitant failure to form mating pairs. Strikingly, migration of the nucleus into the shmoo tip is also delayed or fails to occur. In addition, we show that in mdy2 mutants, microtubule bundles, as well as the microtubule end-binding protein Kar9, fail to localize properly to the shmoo tip, suggesting that the nuclear migration defect could be due to aberrant localization of Kar9. Pheromone signal transduction (as measured by FUS1 induction by α-factor) is not affected in mdy2Δ mutants and mitosis is also normal in these cells. MDY2 is not induced by mating pheromone. In vegetatively growing cells, GFP-Mdy2 is localized in the nucleus, and remains nuclear after exposure of cells to α-factor. His-tagged Mdy2 shows no evidence of the C-terminal processing typical of ubiquitin, and also localizes to the nucleus. Thus MDY2 is a novel gene, whose product plays a role in shmoo formation and in nuclear migration in the pre-zygote, possibly by interacting with other UBL-type proteins that possess ubiquitin association (UBA) domains.
Collapse
Affiliation(s)
- Zheng Hu
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Geb. 26.12, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
20
|
Mayrhofer S, Pöggeler S. Functional characterization of an alpha-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:661-72. [PMID: 15821126 PMCID: PMC1087823 DOI: 10.1128/ec.4.4.661-672.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 02/12/2005] [Indexed: 11/20/2022]
Abstract
The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.
Collapse
Affiliation(s)
- Severine Mayrhofer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | | |
Collapse
|
21
|
Soll DR. Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 2004; 26:10-20. [PMID: 14696036 DOI: 10.1002/bies.10379] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A small proportion of clinical strains of Candida albicans undergo white-opaque switching. Until recently it was not clear why, since most strains carry the genes differentially expressed in the unique opaque phase. The answer to this enigma lies in the mating process. The majority of C. albicans strains are heterozygous for the mating type locus MTL (a/alpha) and cannot undergo white-opaque switching. However, when these cells undergo homozygosis at the mating type locus (i.e., become a/a or alpha/alpha), they can switch, and they must switch in order to mate. Even though the newly identified stages of mating mimic those of Saccharomyces cerevisiae, the process differs in its dependency on switching, and the effects switching has on gene regulation. This unique feature of C. albicans mating appears to be intimately intertwined with its pathogenesis. The unique, newly discovered dependencies of switching on homozygosis at the MTL locus and of mating on switching are, therefore, reviewed within the context of pathogenesis.
Collapse
Affiliation(s)
- David R Soll
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
22
|
Turina M, Prodi A, Alfen NKV. Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol 2004; 40:242-51. [PMID: 14599892 DOI: 10.1016/s1087-1845(03)00084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed recombination was used to obtain a Cryphonectria parasitica strain carrying deletions at the Mf1-1 gene locus. Macroscopic features such as growth rate and conidia production were unaffected by Mf1-1 deletions, but, when a strain containing a complete deletion of Mf1-1 was used as spermatia it was male sterile. The same strain was fully competent as a female parent. Deletion of three of the seven putative pheromone peptide repeats within the gene had no effect on mating. Male fertility of the complete deletion strain was restored when an ectopic copy of the Mf1-1 gene was returned by transformation. Expression of the mating type specific pheromone precursor gene Mf1-1 was stimulated by growth in nutritionally poor liquid media. It was found that age and source of inoculum of liquid cultures influences pheromone precusor gene expression, i.e., conidia did not express Mf1-1 and cultures derived from conidia were significantly delayed in expression of this gene, as were cultures derived from young mycelium. Cultures inoculated with older hyphae, however, expressed Mf1-1 within 1 day after inoculation.
Collapse
Affiliation(s)
- Massimo Turina
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, 95616-5270, Davis, CA, USA
| | | | | |
Collapse
|
23
|
Young JM, Shykind BM, Lane RP, Tonnes-Priddy L, Ross JA, Walker M, Williams EM, Trask BJ. Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression levels. Genome Biol 2003; 4:R71. [PMID: 14611657 PMCID: PMC329117 DOI: 10.1186/gb-2003-4-11-r71] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 08/18/2003] [Accepted: 08/27/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The olfactory receptor gene family is one of the largest in the mammalian genome. Previous computational analyses have identified approximately 1,500 mouse olfactory receptors, but experimental evidence confirming olfactory function is available for very few olfactory receptors. We therefore screened a mouse olfactory epithelium cDNA library to obtain olfactory receptor expressed sequence tags, providing evidence of olfactory function for many additional olfactory receptors, as well as identifying gene structure and putative promoter regions. RESULTS We identified more than 1,200 odorant receptor cDNAs representing more than 400 genes. Using real-time PCR to confirm expression level differences suggested by our screen, we find that transcript levels in the olfactory epithelium can differ between olfactory receptors by up to 300-fold. Differences for one gene pair are apparently due to both unequal numbers of expressing cells and unequal transcript levels per expressing cell. At least two-thirds of olfactory receptors exhibit multiple transcriptional variants, with alternative isoforms of both 5' and 3' untranslated regions. Some transcripts (5%) utilize splice sites within the coding region, contrary to the stereotyped olfactory receptor gene structure. Most atypical transcripts encode nonfunctional olfactory receptors, but can occasionally increase receptor diversity. CONCLUSIONS Our cDNA collection confirms olfactory function of over one-third of the intact mouse olfactory receptors. Most of these genes were previously annotated as olfactory receptors based solely on sequence similarity. Our finding that different olfactory receptors have different expression levels is intriguing given the one-neuron, one-gene expression regime of olfactory receptors. We provide 5' untranslated region sequences and candidate promoter regions for more than 300 olfactory receptors, valuable resources for computational regulatory motif searches and for designing olfactory receptor microarrays and other experimental probes.
Collapse
Affiliation(s)
- Janet M Young
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Benjamin M Shykind
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Howard Hughes Medical Institute, Columbia University, 701 W 168th Street, New York, NY 10032, USA
| | - Robert P Lane
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
- Current address: Molecular Biology & Biochemistry Department, Wesleyan University, 237 High Street, Middletown, CT 06459, USA
| | - Lori Tonnes-Priddy
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
- Current address: Epigenomics Inc., 1000 Seneca Street, Seattle, WA 98101, USA
| | - Joseph A Ross
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Megan Walker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Eleanor M Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Barbara J Trask
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
24
|
Soll DR, Lockhart SR, Zhao R. Relationship between switching and mating in Candida albicans. EUKARYOTIC CELL 2003; 2:390-7. [PMID: 12796284 PMCID: PMC161441 DOI: 10.1128/ec.2.3.390-397.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- David R Soll
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
25
|
Abstract
The agalpha1 mutant MAT alpha cells specifically lack the cell surface alpha-type sexual agglutination substance, which is also called alpha-agglutinin. Because the mutant cells (MATalpha agalpha1) can not form aggregates with MATa cells, MATalpha agalpha1 cells are unable to mate with MATa cells when they are co-inoculated in a liquid medium, and the mating is attenuated on solid medium. The attenuated mating ability shown in the previous studies gave us a vague idea about a physiological function of the sexual agglutinability. In order to solve the question, mating behavior of MATalpha agalpha1 cells was investigated here under conditions where the contact between MATa and MAT alpha cells is assisted by physical methods. A synthetic mutation agalpha1::URA3 was constructed and used as well as agalpha1-1 for this study to ensure the genetic defect. When a mixture of MATa and MAT alpha cells was kept on filter membrane placed on relatively dry agar medium, even agalpha1::URA3 mutant cells mated as efficiently as the wild type (AGalpha1) cells did. On filter membrane placed on moist agar medium, agalpha1 mutants mated 10-fold less efficiently than wild type cells did. The mutant cells mated 10000-time less efficiently than the wild type cells in a pellet formed by brief low speed centrifugation. In contrast, the wild type MATalpha cells mated well under all conditions tested. Under the pellet condition, a mixture of MATa and MATalpha AG alpha1 cells formed an extended and cotton-like pellet while a mixture of MATa and MATalpha agalpha1 cells formed a compact and tight pellet. These results suggest that sexual cell agglutination contributes not only to cell contact between MATa and MAT alpha cells thereby stabilizing a-alpha cell pairs, but also to construction of a uniquely organized ultra structure favorable for zygote formation and subsequent growth of diploid cells. The mating specific extended pellet formation was observed also in 4 pairs of a and alpha strains in ascosporogenous yeast genera Hansenula and Pichia.
Collapse
Affiliation(s)
- Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
26
|
Kalkum M, Lyon GJ, Chait BT. Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc Natl Acad Sci U S A 2003; 100:2795-800. [PMID: 12591958 PMCID: PMC151420 DOI: 10.1073/pnas.0436605100] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Indexed: 01/21/2023] Open
Abstract
A method is presented for the rapid detection and characterization of trace amounts of peptides secreted from microorganisms, including pheromones, virulence factors, and quorum-sensing peptides. The procedure, based on targeted multistage MS, uses a novel matrix-assisted laser desorptionionization-ion trap mass spectrometer to overcome limitations of current MS methods (limited dynamic range, signal suppression effects, and chemical noise) that impair observation of low abundance peptides from complex biological matrixes. Here, secreted peptides that are hypothesized to be present in the supernatant, but that may not be sufficiently abundant to be observed in single-stage mass spectra, are subjected to multistage MS. Highly specific fragmentation signatures enable unambiguous identification of the peptides of interest and differentiation of the signals from the background. As examples, we demonstrate the rapid (<1 min) determination of the mating type of cells in colonies of Saccharomyces cerevisiae and the elucidation of autoinducing peptides (AIPs) from supernatants of pathogenic Staphylococci. We confirm the primary structures of the agrD encoded cyclic AIPs of Staphylococcus aureus for groups I, II, and IV and provide direct evidence that the native group-III AIP is a heptapeptide (INCDFLL). We also show that the homologous peptide from Staphylococcus intermedius is a nonapeptide (RIPTSTGFF) with a lactone ring formed through condensation of the serine side chain with the C terminus of the peptide. This is the first demonstration of cyclization in a staphylococcal AIP that occurs via lactone formation. These examples demonstrate the analytical power of the present procedure for characterizing secreted peptides and its potential utility for identifying microorganisms.
Collapse
Affiliation(s)
- Markus Kalkum
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021 USA
| | | | | |
Collapse
|
27
|
Lockhart SR, Daniels KJ, Zhao R, Wessels D, Soll DR. Cell biology of mating in Candida albicans. EUKARYOTIC CELL 2003; 2:49-61. [PMID: 12582122 PMCID: PMC141171 DOI: 10.1128/ec.2.1.49-61.2003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It was recently demonstrated that strains homozygous for either of the mating type-like loci MTLa and MTLalpha of Candida albicans undergo white-opaque switching and that expression of the opaque-phase phenotype greatly enhances mating between strains. Exploiting the latter property to obtain high-frequency mating, we have characterized the cell biology of the mating process of C. albicans. Employing continuous videomicroscopy, computer-assisted three-dimensional reconstruction of living cells, and fluorescence microscopy, we have monitored the mating-associated processes of conjugation, tube formation, fusion, budding, septum formation, and daughter cell development and the spatial and temporal dynamics of nuclear migration and division. From these observations, a model for the stages in C. albicans mating is formulated. The stages include shmooing, chemotropism of conjugation tubes, fusion of tubes and nuclear association, vacuole expansion and nuclear separation in the conjugation bridge, asynchronous nuclear division in the zygote, bud growth, nuclear migration into the daughter cell, septation, and daughter cell budding. Since there was no cytological indication of karyogamy, genetic experiments were performed to assess marker segregation. Recombination was not observed, suggesting that mating takes place in the absence of karyogamy between naturally occurring, homozygous a and alpha strains. This study provides the first description of the cell biology of the mating process of C. albicans.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
28
|
Radji M, Kim JM, Togan T, Yoshikawa H, Shirahige K. The cloning and characterization of the CDC50 gene family in Saccharomyces cerevisiae. Yeast 2001; 18:195-205. [PMID: 11180453 DOI: 10.1002/1097-0061(200102)18:3<195::aid-yea660>3.0.co;2-l] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We have cloned a gene that complements the cold-sensitive growth of cdc50-1 mutant strain of Saccharomyces cerevisiae at 14 degrees C. The CDC50 gene was found to be identical to YCR094w on chromosome III and contains 1173 nucleotides encoding 391 amino acids. We found a missense mutation at the first initiation codon of cdc50-1. The disruption of the CDC50 gene revealed that it is not essential for growth, but the disruptant caused the same cold-sensitive phenotype as cdc50-1, suggesting that the cdc50-1 is a null mutation resulted from the mutation in the first codon. The cdc50-1 mutant arrests at START in G1 phase at the non-permissive temperature. The CDC50 gene product has strong structural similarity to two other proteins in Saccharomyces cerevisiae encoded by YNR048w and YNL323w. The over-expression of either YNR048w or YNL323w suppressed the cdc50-1 mutant and the double disruption of either CDC50 and YNR048w or CDC50 and YNL323w resulted in a severe slow-growth phenotype. We conclude that these three genes constitute a family with redundant function. We also found that the CDC39 gene was a multicopy suppressor of cdc50-1 mutation, suggesting that the CDC50 family is involved in regulation of transcription via CDC39.
Collapse
Affiliation(s)
- M Radji
- Section of Animal Molecular Genetics, Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma City, Nara, Japan, 630-0101
| | | | | | | | | |
Collapse
|
29
|
Guo B, Styles CA, Feng Q, Fink GR. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 2000; 97:12158-63. [PMID: 11027318 PMCID: PMC17311 DOI: 10.1073/pnas.220420397] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell wall of bakers' yeast contains a family of glycosyl-phosphatidylinositol (GPI)-linked glycoproteins of domain structure similar to the adhesins of pathogenic fungi. In wild-type cells each of these proteins has a unique function in different developmental processes (mating, invasive growth, cell-cell adhesion, or filamentation). What unifies these developmental events is adhesion, either to an inert substrate or to a cell. Although they differ in their specificities, many of these proteins can substitute for each other when overexpressed. For example, Flo11p is required during vegetative growth for haploid invasion and diploid filamentation, whereas Fig2p is required for mating. When overexpressed, Flo11p and Fig2p can function in mating, invasion, filamentation, and flocculation. The ability of Flo11p to supply Fig2p function in mating depends on its intracellular localization to the mating projection, where Fig2p normally functions in the adhesion of mating cells. Our data show that even distant family members retain the ability to carry out disparate functions if localized and expressed appropriately.
Collapse
Affiliation(s)
- B Guo
- Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
30
|
Coppin E, Debuchy R. Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina. Genetics 2000; 155:657-69. [PMID: 10835389 PMCID: PMC1461101 DOI: 10.1093/genetics/155.2.657] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the heterothallic filamentous fungus Podospora anserina, four mating-type genes encoding transcriptional factors have been characterized: FPR1 in the mat+ sequence and FMR1, SMR1, and SMR2 in the alternative mat- sequence. Fertilization is controlled by FPR1 and FMR1. After fertilization, male and female nuclei, which have divided in the same cell, form mat+/mat- pairs during migration into the ascogenous hyphae. Previous data indicate that the formation of mat+/mat- pairs is controlled by FPR1, FMR1, and SMR2. SMR1 was postulated to be necessary for initial development of ascogenous hyphae. In this study, we investigated the transcriptional control of the mat genes by seeking mat transcripts during the vegetative and sexual phase and fusing their promoter to a reporter gene. The data indicate that FMR1 and FPR1 are expressed in both mycelia and perithecia, whereas SMR1 and SMR2 are transcribed in perithecia. Increased or induced vegetative expression of the four mat genes has no effect when the recombined gene is solely in the wild-type strain. However, the combination of resident FPR1 with deregulated SMR2 and overexpressed FMR1 in the same nucleus is lethal. This lethality is suppressed by the expression of SMR1, confirming that SMR1 operates downstream of the other mat genes.
Collapse
Affiliation(s)
- E Coppin
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris Sud, F-91405 Orsay, France.
| | | |
Collapse
|
31
|
Fujimura H. Cell-cell recognition and pheromone response of the yeast Saccharomyces globosus. FEMS Microbiol Lett 1999; 173:63-8. [PMID: 10220882 DOI: 10.1111/j.1574-6968.1999.tb13485.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Sexual agglutination and pheromone interaction between cells of two mating types, a and alpha, in the yeast Saccharomyces globosus were studied. S. globosus was shown to produce mating-type-specific factors analogs to a- and alpha-mating pheromones of Saccharomyces cerevisiae and to undergo the sexual agglutination reaction between cells of two mating types. While the sexual agglutination of cells of different species was not observed, mating type a cells of each species were shown to respond to alpha-factors produced by the other species. Thus, the mating response of S. globosus was shown to be identical to what has been observed in two other species of the same genera: S. cerevisiae and Saccharomyces kluyveri.
Collapse
|
32
|
Abstract
Eukaryotic cells respond to intracellular and extracellular cues to direct asymmetric cell growth and division. The yeast Saccharomyces cerevisiae undergoes polarized growth at several times during budding and mating and is a useful model organism for studying asymmetric growth and division. In recent years, many regulatory and cytoskeletal components important for directing and executing growth have been identified, and molecular mechanisms have been elucidated in yeast. Key signaling pathways that regulate polarization during the cell cycle and mating response have been described. Since many of the components important for polarized cell growth are conserved in other organisms, the basic mechanisms mediating polarized cell growth are likely to be universal among eukaryotes.
Collapse
Affiliation(s)
- K Madden
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
33
|
Raudaskoski M. The relationship between B-mating-type genes and nuclear migration in schizophyllum commune. Fungal Genet Biol 1998; 24:207-27. [PMID: 9742202 DOI: 10.1006/fgbi.1998.1069] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raudaskoski, M. 1998. The relationship between B-mating-type genes and nuclear migration in Schizophyllum commune. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- M Raudaskoski
- Division of Plant Physiology, University of Helsinki, Viikinkaari 9, FIN-00014, Finland
| |
Collapse
|
34
|
Brachat A, Kilmartin JV, Wach A, Philippsen P. Saccharomyces cerevisiae cells with defective spindle pole body outer plaques accomplish nuclear migration via half-bridge-organized microtubules. Mol Biol Cell 1998; 9:977-91. [PMID: 9571234 PMCID: PMC25323 DOI: 10.1091/mbc.9.5.977] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Delta1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Delta1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.
Collapse
Affiliation(s)
- A Brachat
- Lehrstuhl für Angewandte Mikrobiologie, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
35
|
Fujimura HA. Identification of the mgc1 mutation which affects mating-pheromone-induced morphogenesis in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 1998; 161:359-64. [PMID: 9570127 DOI: 10.1111/j.1574-6968.1998.tb12969.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cells of the yeast Saccharomyces cerevisiae undergo morphogenesis in response to the mating pheromones a- and alpha-factors. The 'shmoo' morphology involves localized cell surface projection formation and cytoskeleton protein synthesis. This polarization is presumed to be a prelude to mating between mating partners with opposite mating types, a and alpha. To identify genes involved in pheromone-induced morphogenesis, a system in which a gpa1 fus3 double mutant was used as a parent strain was developed, and mutants which showed altered morphogenesis in response to mating pheromone were identified. The mutation was designated mgc1 for morphogenesis control by mating pheromones. The mgc1 mutant arrested cell division in response to alpha-factor and mated with cells of the opposite mating type, but did not form a typical projection in response to pheromones.
Collapse
Affiliation(s)
- H A Fujimura
- Laboratory for Advanced Technology, Nippon Hoechst Marion Roussel, Kawagoe, Japan
| |
Collapse
|
36
|
Li E, Meldrum E, Stratton HF, Stone DE. Substitutions in the pheromone-responsive Gbeta protein of Saccharomyces cerevisiae confer a defect in recovery from pheromone treatment. Genetics 1998; 148:947-61. [PMID: 9539416 PMCID: PMC1460049 DOI: 10.1093/genetics/148.3.947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pheromone-responsive Galpha protein of Saccharomyces cerevisiae, Gpa1p, stimulates an adaptive mechanism that downregulates the mating signal. In a genetic screen designed to identify signaling elements required for Gpa1p-mediated adaptation, a large collection of adaptive-defective (Adp-) mutants were recovered. Of the 49 mutants characterized thus far, approximately three-quarters exhibit a dominant defect in the negative regulation of the pheromone response. Eight of the dominant Adp- mutations showed tight linkage to the gene encoding the pheromone-responsive Gbeta, STE4. Sequence analysis of the STE4 locus in the relevant mutant strains revealed seven novel STE4 alleles, each of which was shown to disrupt proper regulation of the pheromone response. Although the STE4 mutations had only minor effects on basal mating pathway activity, the mutant forms of Gbeta dramatically affected the ability of the cell to turn off the mating response after exposure to pheromone. Moreover, the signaling activity of the aberrant Gbetagamma subunits was suppressed by G322E, a mutant form of Gpa1p that blocks the pheromone response by sequestering Gbetagamma, but not by E364K, a hyperadaptive form of Gpa1p. On the basis of these observations, we propose that Gpa1p-mediated adaptation involves the binding of an unknown negative regulator to Gbetagamma.
Collapse
Affiliation(s)
- E Li
- Laboratory for Molecular Biology, University of Illinois at Chicago, 60607, USA
| | | | | | | |
Collapse
|
37
|
Erdman S, Lin L, Malczynski M, Snyder M. Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 1998; 140:461-83. [PMID: 9456310 PMCID: PMC2140177 DOI: 10.1083/jcb.140.3.461] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1997] [Revised: 11/14/1997] [Indexed: 02/06/2023] Open
Abstract
Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for beta-galactosidase (beta-gal) expression in the presence and absence of alpha factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell-cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: beta-gal and Fig2::beta-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.
Collapse
Affiliation(s)
- S Erdman
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|
38
|
Fischer M, Schnell N, Chattaway J, Davies P, Dixon G, Sanders D. The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett 1997; 419:259-62. [PMID: 9428646 DOI: 10.1016/s0014-5793(97)01466-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The yeast Saccharomyces cerevisiae gene CCH1 (ORF YGR217w) shows high homology with animal calcium channel alpha1-subunit genes. Knock-out mutants were constructed of Cch1 and of Mid1 which is known to mediate Ca2+ influx in response to the alpha-mating pheromone. Cch1 is involved in calcium influx and the late stage of the mating process. The cch1 mutant sensitivity against the alpha-mating pheromone can be reduced by the addition of extra calcium. The product of this gene is likely to interact with the MID1 gene product in Ca influx or its control.
Collapse
Affiliation(s)
- M Fischer
- Biology Department, University of York, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Buehrer BM, Errede B. Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:6517-25. [PMID: 9343415 PMCID: PMC232505 DOI: 10.1128/mcb.17.11.6517] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mating pheromone stimulates a mitogen-activated protein (MAP) kinase activation pathway in Saccharomyces cerevisiae that induces cells to differentiate and form projections oriented toward the gradient of pheromone secreted by a mating partner. The polarized growth of mating projections involves new cell wall synthesis, a process that relies on activation of the cell integrity MAP kinase, Mpk1. In this report, we show that Mpk1 activation during pheromone induction requires the transcriptional output of the mating pathway and protein synthesis. Consequently, Mpk1 activation occurs subsequent to the activation of the mating pathway MAP kinase cascade. Additionally, Spa2 and Bni1, a formin family member, are two coil-coil-related proteins that are involved in the timing and other aspects of mating projection formation. Both proteins also affect the timing and extent of Mpk1 activation. This correlation suggests that projection formation comprises part of the pheromone-induced signal that coordinates Mpk1 activation with mating differentiation. Stimulation of Mpk1 activity occurs through the cell integrity phosphorylation cascade and depends on Pkc1 and the redundant MAP/Erk kinases (MEKs), Mkk1 and Mkk2. Surprisingly, Mpk1 activation by pheromone was only partially impaired in cells lacking the MEK kinase Bck1. This Bck1-independent mechanism reveals the existence of an alternative activator of Mkk1/Mkk2 in some strain backgrounds that at least functions under pheromone-induced conditions.
Collapse
Affiliation(s)
- B M Buehrer
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 27599-7260, USA
| | | |
Collapse
|
40
|
Baur M, Esch RK, Errede B. Cooperative binding interactions required for function of the Ty1 sterile responsive element. Mol Cell Biol 1997; 17:4330-7. [PMID: 9234690 PMCID: PMC232286 DOI: 10.1128/mcb.17.8.4330] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Ste12p transcription factor controls the expression of Ty1 transposable element insertion mutations and genes whose products are required for mating in Saccharomyces cerevisiae. The binding site for Ste12p is a consensus DNA sequence known as a pheromone response element (PRE). Upstream activating sequences (UASs) derived from known Ste12p-dependent genes have previously been characterized to require either multiple PREs or a single PRE coupled to a binding site for a second protein. The Ste12p-dependent UAS from Ty1, called a sterile response element (SRE), is of the second type and is comprised of a PRE and an adjacent TEA (TEF-1, Tec1, and AbaA motif) DNA consensus sequence (TCS). In this report, we show by UV cross-linking analysis that two proteins, Ste12p and a protein with an apparent size of 72 kDa, directly contact the Ty1 SRE. Other experiments show that Tec1p is required for formation of the Ty1 SRE protein-DNA complex and is physically present in the complex. These results establish a direct role for Tec1p in the Ty1 SRE and yet another set of combinatorial interactions that achieve a qualitatively distinct mode of transcriptional regulation with Ste12p.
Collapse
Affiliation(s)
- M Baur
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7260, USA
| | | | | |
Collapse
|
41
|
Mulholland J, Wesp A, Riezman H, Botstein D. Yeast actin cytoskeleton mutants accumulate a new class of Golgi-derived secretary vesicle. Mol Biol Cell 1997; 8:1481-99. [PMID: 9285820 PMCID: PMC276171 DOI: 10.1091/mbc.8.8.1481] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many yeast actin cytoskeleton mutants accumulate large secretory vesicles and exhibit phenotypes consistent with defects in polarized growth. This, together with actin's polarized organization, has suggested a role for the actin cytoskeleton in the vectorial transport of late secretory vesicles to the plasma membrane. By using ultrastructural and biochemical analysis, we have characterized defects manifested by mutations in the SLA2 gene (also known as the END4 gene), previously found to affect both the organization of the actin cytoskeleton and endocytosis in yeast. Defects in cell wall morphology, accumulated vesicles, and protein secretion kinetics were found in sla2 mutants similar to defects found in act1 mutants. Vesicles that accumulate in the sla2 and act1 mutants are immunoreactive with antibodies directed against the small GTPase Ypt1p but not with antibodies directed against the homologous Sec4p found on classical "late" secretory vesicles. In contrast, the late-acting secretory mutants sec1-1 and sec6-4 are shown to accumulate anti-Sec4p-positive secretory vesicles as well as vesicles that are immunoreactive with antibodies directed against Ypt1p. The late sec mutant sec4-8 is also shown to accumulate Ypt1p-containing vesicles and to exhibit defects in actin cytoskeleton organization. These results indicate the existence of at least two classes of morphologically similar, late secretory vesicles (associated with Ypt1p+ and Sec4p+, respectively), one of which appears to accumulate when the actin cytoskeleton is disorganized.
Collapse
Affiliation(s)
- J Mulholland
- Department of Genetics, Stanford University Medical School, California 94305, USA
| | | | | | | |
Collapse
|
42
|
Abstract
In flowering plants, pollen grains germinate on the pistil and send pollen tubes down the transmitting tract toward ovules. Previous genetic studies suggested that the ovule is responsible for long-range pollen tube guidance during the last phase of a pollen tube's journey to the female gametes. It was not possible, however, to unambiguously identify the signaling cells within an ovule: the haploid female gametophyte or the diploid sporophytic cells. In an effort to distinguish genetically between these two possibilities, we have used a reciprocal chromosomal translocation to generate flowers wherein approximately half the ovules do not contain a functional female gametophyte but all ovules contain genotypically normal sporophytic cells. In these flowers, pollen tubes are guided to the normal but not to the abnormal female gametophytes. These results strongly suggest that the female gametophyte is responsible for pollen tube guidance, but leave open the possibility that the gametophyte may accomplish this indirectly through its influence on some sporophytic cells.
Collapse
Affiliation(s)
- S M Ray
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | |
Collapse
|
43
|
Wassmann K, Ammerer G. Overexpression of the G1-cyclin gene CLN2 represses the mating pathway in Saccharomyces cerevisiae at the level of the MEKK Ste11. J Biol Chem 1997; 272:13180-8. [PMID: 9148934 DOI: 10.1074/jbc.272.20.13180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Basal and induced transcription of pheromone-dependent genes is regulated in a cell cycle-dependent way. FUS1, a gene strongly induced after pheromone treatment, shows high mRNA levels in mitosis and early G1 phase of the cell cycle, a decrease in G1 after START and again an increase in S phase. Overexpression of CLN2 was shown to repress the transcript number of pheromone-dependent genes (1). We asked whether the activities of components of the mating pathway fluctuate during the cell cycle. We were also interested in determining at what level Cln2 represses the signal transduction machinery. Here we show that the activity of the mitogen-activated protein kinase Fus3 indeed fluctuates during the cell cycle, reflecting the oscillations of the gene transcripts. CLN2 overexpression represses Fus3 kinase activity, independently of the phosphatase Msg5. Additionally, we show that the activity of the MEK Ste7 also fluctuates during the cell cycle. Increased Cln2 levels repress the ability of hyperactive STE11 alleles to induce the pathway. G protein-independent activation of Ste11 caused by an rga1 pbs2 mutation is resistant to high levels of Cln2 kinase. Therefore our results suggest that Cln2-dependent repression of the mating pathway occurs at the level of Ste11.
Collapse
Affiliation(s)
- K Wassmann
- Institute for Biochemistry and Molecular Cell Biology, Ludwig Boltzmann Forschungsstelle, University of Vienna, Dr. Bohr, Gasse 9, 1030 Vienna, Austria
| | | |
Collapse
|
44
|
Brizzio V, Gammie AE, Nijbroek G, Michaelis S, Rose MD. Cell fusion during yeast mating requires high levels of a-factor mating pheromone. J Cell Biol 1996; 135:1727-39. [PMID: 8991086 PMCID: PMC2133945 DOI: 10.1083/jcb.135.6.1727] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During conjugation, two yeast cells fuse to form a single zygote. Cell fusion requires extensive remodeling of the cell wall, both to form a seal between the two cells and to remove the intervening material. The two plasma membranes then fuse to produce a continuous cytoplasm. We report the characterization of two cell fusion defective (Fus-) mutants, fus5 and fus8, isolated previously in our laboratory. Fluorescence and electron microscopy demonstrated that the fus5 and fus8 mutant zygotes were defective for cell wall remodeling/removal but not plasma membrane fusion. Strikingly, fus5 and fus8 were a specific; both mutations caused the mutant phenotype when present in the MATa parent but not in the MAT alpha parent. Consistent with an a-specific defect, the fus5 and fus8 mutants produced less a-factor than the isogenic wild-type strain. FUS5 and FUS8 were determined to be allelic to AXL1 and RAM1, respectively, two genes known to be required for biogenesis of a-factor. Several experiments demonstrated that the partial defect in a-factor production resulted in the Fus- phenotype. First, overexpression of a-factor in the fus mutants suppressed the Fus- defect. Second, matings to an MAT alpha partner supersensitive to mating pheromone (sst2 delta) suppressed the Fus- defect in trans. Finally, the gene encoding a-factor, MFA1, was placed under the control of a repressible promoter; reduced levels of wild-type a-factor caused an identical cell fusion defect during mating. We conclude that high levels of pheromone are required as one component of the signal for prezygotes to initiate cell fusion.
Collapse
Affiliation(s)
- V Brizzio
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | | | | | |
Collapse
|
45
|
Valtz N, Herskowitz I. Pea2 protein of yeast is localized to sites of polarized growth and is required for efficient mating and bipolar budding. J Cell Biol 1996; 135:725-39. [PMID: 8909546 PMCID: PMC2121064 DOI: 10.1083/jcb.135.3.725] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces cerevisiae exhibits polarized growth during two phases of its life cycle, budding and mating. The site for polarization during vegetative growth is determined genetically: a and alpha haploid cells exhibit an axial budding pattern, and a/alpha diploid cells exhibit a bipolar pattern. During mating, each cell polarizes towards its partner to ensure efficient mating. SPA2 is required for the bipolar budding pattern (Snyder. M 1989. J. Cell Biol. 108:1419-1429; Zahner, J.A., H.A. Harkins, and J.R. Pringle. 1996. Mol. Cell. Biol. 16:1857-1870) and polarization during mating (Snyder, M., S. Gehrung, and B.D. Page. 1991. J. Cell Biol. 114: 515-532). We previously identified mutants defective in PEA2 and SPA2 which alter cell polarization in the presence of mating pheromone in a similar manner (Chenevert, J., N. Valtz, and I. Herskowitz. 1994. Genetics, 136:1287-1297). Here we report the further characterization of these mutants. We have found that PEA2 is also required for the bipolar budding pattern and that it encodes a novel protein with a predicted coiled-coil domain. Pea2p is expressed in all cell types and is localized to sites of polarized growth in budding and mating cells in a pattern similar to Spa2p, Pea2p and Spa2p exhibit interdependent localization: Spa2p is produced in pea2 mutants but fails to localize properly; Pea2p is not stably produced in spa2 mutants. These results suggest that Pea2p and Spa2p function together as a complex to generate the bipolar budding pattern and to guarantee proper polarization during mating.
Collapse
Affiliation(s)
- N Valtz
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | |
Collapse
|
46
|
Abstract
The sexual hormone of S. cerevisiae, alpha-mating factor (alpha-MF, WHWLQLKPGQPMY) has structural homology with mammalian luteinizing hormone releasing hormone (LHRH, pEHWSYGLRPG-NH2) and has been shown to exhibit LHRH activity [Loumaye et al. (1982) Science 218, 1323-1325]. We have tested whether LHRH has alpha-MF activity in yeast and found that it does not. We therefore synthesized a series of hybrid peptides of alpha-MF and LHRH to study the structural features which determine alpha-MF and LHRH activities. A hybrid peptide consisting of the LHRH sequence with the C-terminal tetrapeptide (QPMY) of alpha-MF did not exhibit alpha-MF activity. Thus, the lack of alpha-MF activity of LHRH is not due solely to the absence of the C-terminal residues. Substitution of Lys7 in alpha-MF with Arg, as is found in LHRH, did not affect the alpha-MF activity, nor did an additional substitution of Trp1 with pGlu. However, the C-terminal four amino acids of alpha-MF were necessary for alpha-MF activity. Our results indicate that insertion of a Ser residue in position 4 as found in LHRH abolishes alpha-MF activity. These results suggest that, in addition to an intact C-terminus, correct spacing of the N-terminal His2 and the C-terminus is required for alpha-MF activity. The hybrid peptides all exhibited less LHRH activity than either LHRH or alpha-MF. These structure-function studies indicate that the structural homology between these two reproductive hormones may not reflect an evolutionary relationship between them.
Collapse
Affiliation(s)
- G Houen
- Department of Autoimmunology, Statens Seruminstitut, Copenhagen, Denmark
| | | | | |
Collapse
|
47
|
Lyons DM, Mahanty SK, Choi KY, Manandhar M, Elion EA. The SH3-domain protein Bem1 coordinates mitogen-activated protein kinase cascade activation with cell cycle control in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:4095-106. [PMID: 8754808 PMCID: PMC231406 DOI: 10.1128/mcb.16.8.4095] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mating mitogen-activated protein kinase (MAPK) cascade has three major outputs prior to fusion: transcriptional activation of many genes, cell cycle arrest in the G1 phase, and polarized growth. Bem1 localizes near the cortical actin cytoskeleton and is essential for polarized growth during mating. Here we show that Bem1 is required for efficient signal transduction and coordinates MAPK cascade activation with G1 arrest and mating. bem1delta null mutants are defective in G1 arrest and transcriptional activation in response to mating pheromone. Bem1 protein stimulates Fus3 (MAPK) activity and associates with Ste5, the tethering protein essential for activation of the MAPK kinase kinase Ste11. Bem1-Ste5 complexes also contain Ste11, Ste7 (MAPK kinase), and Fus3, suggesting that Ste5 localizes the MAPK cascade to Bem1. Strikingly, Bem1 also copurifies with Far1, a Fus3 substrate required for G1 arrest and proper polarized growth during mating. These and other results suggest that Bem1 may cross-link the Ste5-MAPK cascade complex to upstream activators and specific downstream substrates at the shmoo tip, thus enabling efficient circuitry for G1 arrest and mating.
Collapse
Affiliation(s)
- D M Lyons
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Pryciak PM, Hartwell LH. AKR1 encodes a candidate effector of the G beta gamma complex in the Saccharomyces cerevisiae pheromone response pathway and contributes to control of both cell shape and signal transduction. Mol Cell Biol 1996; 16:2614-26. [PMID: 8649369 PMCID: PMC231252 DOI: 10.1128/mcb.16.6.2614] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mating pheromones of Saccharomyces cerevisiae control both signal transduction events and changes in cell shape. The G beta gamma complex of the pheromone receptor-coupled G protein activates the signal transduction pathway, leading to transcriptional induction and cell cycle arrest, but how pheromone-dependent signalling leads to cell shape changes is unclear. We used a two-hybrid system to search for proteins that interact with the G beta gamma complex and that might be involved in cell shape changes. We identified the ankyrin repeat-containing protein Akr1p and show here that it interacts with the free G beta gamma complex. This interaction may be regulated by pheromone, since Akr1p is excluded from the G alpha beta gamma heterotrimer. Both haploid and diploid cells lacking Akr1p grow slowly and develop deformed buds or projections, suggesting that this protein participates in the control of cell shape. In addition, Akr1p has a negative influence on the pheromone response pathway. Epistasis analysis demonstrates that this negative effect does not act on the G beta gamma complex but instead affects the kinase cascade downstream of G beta gamma, so that the kinase Ste20p and components downstream of Ste20p (e.g., Ste11p and Ste7p) are partially activated in cells lacking Akr1p. Although the elevated signalling is eliminated by deletion of Ste20p (or components downstream of Ste20p), the growth and morphological abnormalities of cells lacking Akr1p are not rescued by deletion of any of the known pheromone response pathway components. We therefore propose that Akr1p negatively affects the activity of a protein that both controls cell shape and contributes to the pheromone response pathway upstream of Ste20p but downstream of G beta gamma. Specifically, because recent evidence suggests that Bem1p, Cdc24p, and Cdc42p can act in the pheromone response pathway, we suggest that Akr1p affects the functions of these proteins, by preventing them from activating mating-specific targets including the pheromone-responsive kinase cascade, until G beta gamma is activated by pheromone.
Collapse
Affiliation(s)
- P M Pryciak
- Department of Genetics, University of Washington, Seattle 98195-7360, USA.
| | | |
Collapse
|
49
|
Errede B, Cade RM, Yashar BM, Kamada Y, Levin DE, Irie K, Matsumoto K. Dynamics and organization of MAP kinase signal pathways. Mol Reprod Dev 1995; 42:477-85. [PMID: 8607979 DOI: 10.1002/mrd.1080420416] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the budding yeast, Saccharomyces cerevisiae, four separate but structurally related mitogen-activated protein kinase (MAPK) activation pathways are known. The best understood of these regulates mating. Pheromone binding to receptor informs cells of the proximity of a mating partner and induces differentiation to a mating competent state. The MAPK activation cascade mediating this signal is made up of Ste11 (a MEK kinase [MEKK]), Ste7 (a MAPK/ERK kinase [MEK]), and the redundant MAPK-related Fus3 and Kss1 enzymes. Another MAPK activation pathway is important for cell integrity and regulates cell wall construction. This cascade consists of Bck1 (a MEKK), the redundant Mkk1 and Mkk2 enzymes (MEKs), and Mpk1 (a MAPK). We exploited these two pathways to learn about the coordination and signal transmission fidelity of MAPK activation cascades. Two lines of evidence suggest that the activities of the mating and cell integrity pathways are coordinated during mating differentiation. First, cells deficient in Mpk1 are susceptible to lysis when they make a mating projection in response to pheromone. Second, Mpk1 activation during pheromone induction coincides with projection formation. The mechanism underlying this coordination is still unknown to us. Our working model is that projection formation generates a mobile second messenger for activation of the cell integrity pathway. Analysis of a STE7 mutation gave us some unanticipated but important insights into parameters important for fidelity of signal transmission. The Ste7 variant has a serine to proline substitution at position 368. Ste7-P368 has higher basal activity than the wild-type enzyme but still requires Ste11 for its function. Additionally, the proline substitution enables the variant to transmit the signal from mammalian Raf expressed in yeast. This novel activity suggests that Ste7-P368 is inherently more permissive than Ste7 in its interactions with MEKKs. Yet, Ste7-P368 cross function in the cell integrity pathway occurs only when it is highly overproduced or when Ste5 is missing. This behavior suggests that Ste5, which has been proposed to be a tether for the kinases in the mating pathway, contributes to Ste7 specificity and fidelity of signal transmission.
Collapse
Affiliation(s)
- B Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The mating process between two protoplasts or between a protoplast and a cell in the yeast Saccharomyces cerevisiae was manifested by a specific morphological response of only the cell partner. The cells produced projections, up to 5 micrometers long, to meet their protoplast partners. The protoplasts responded, after a period of nonspecific hernia-like growth, by ceasing to grow and assuming oval or spherical shapes. They never formed mating projections, apparently due to the absence of complete cell walls. Similarly to the cells, nuclear division in protoplasts was arrested and the nucleus migrated towards the plasma membrane at the site of protoplast-cell contact. Cytoplasmic microtubules were directed to this site, indicating the position of the spindle pole body (SPB) on the nucleus adjacent to the plasma membrane. Actin patches accumulated also in this region. These cytological features of the protoplasts were reminiscent of the reorganization of the cytoskeleton and nucleus characteristic of mating cells. This implies that the ability of protoplasts to produce and receive mating signals was unaffected by protoplasting. Fusion, however, was not initiated due to the absence of the complete cell wall in one of the partners. Thus, the cell wall appeared to be necessary for the expression of polarized growth during mating and for cell fusion.
Collapse
Affiliation(s)
- I Pokorná
- Department of Biology, Faculty of Medicine, Masaryk University, Czech Republic
| | | |
Collapse
|