1
|
Ibrahim S, Khan MU, Noreen S, Firdous S, Khurram I, Rehman R, Javed MA, Ali Q. Advancing brain tumor therapy: unveiling the potential of PROTACs for targeted protein degradation. Cytotechnology 2025; 77:54. [PMID: 39897109 PMCID: PMC11785894 DOI: 10.1007/s10616-025-00716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
The long-term treatment of malignancies, particularly brain tumors, is challenged by abnormal protein expression and drug resistance. In terms of potency, selectivity, and overcoming drug resistance, Proteolysis Targeting Chimeras (PROTACs), a cutting-edge method used to selectively degrade target proteins, beats traditional inhibitors. This review summarizes recent research on using PROTACs as a therapeutic strategy for brain tumors, focusing on their mechanism, benefits, limitations, and the need for optimization. The review draws from a comprehensive search of peer-reviewed literature, scientific databases, and clinical trial databases. Articles published up to the knowledge cutoff date up to 14 April 2023 were included. Inclusion criteria covered PROTAC-based brain tumor therapies, including preclinical and early clinical studies, with no restrictions on design or publication type. We included studies using in vitro, in vivo brain tumor models, and human subjects. Eligible treatments involved PROTACs targeting proteins linked to brain tumor progression. We evaluated the selected studies for methodology, including design, sample size, and data analysis techniques. A narrative synthesis summarized key outcomes and trends in PROTAC-based brain tumor therapy. Recent research shows PROTACs selectively degrade brain tumor-related proteins with minimal off-target effects. They offer enhanced potency, selectivity, and the ability to combat resistance compared to traditional inhibitors. PROTACs hold promise for brain tumor treatment offering advantages over traditional inhibitors, but more research is needed to refine their mechanisms, efficacy, and safety. Larger-scale trials and translational studies are essential for assessing their clinical utility.
Collapse
Affiliation(s)
- Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saadia Noreen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Safia Firdous
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Raima Rehman
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Hegde AN, Timm LE, Sivley CJ, Ramiyaramcharankarthic S, Lowrimore OJ, Hendrix BJ, Grozdanov TG, Anderson WJ. Ubiquitin-Proteasome-Mediated Protein Degradation and Disorders of the Central Nervous System. Int J Mol Sci 2025; 26:966. [PMID: 39940735 PMCID: PMC11817509 DOI: 10.3390/ijms26030966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Ubiquitin-proteasome-mediated proteolysis post-translationally regulates the amounts of many proteins that are critical for the normal physiology of the central nervous system. Research carried out over the last several years has revealed a role for components of the ubiquitin-proteasome pathway (UPP) in many neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Studies have also shown a role for the UPP in mental disorders such as schizophrenia and autism. Even though dysregulation of protein degradation by the UPP is a contributory factor to the pathology underlying many nervous system disorders, the association between the components of the UPP and these diseases is far from simple. In this review, we discuss the connections between the UPP and some of the major mental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashok N. Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA; (L.E.T.); (C.J.S.); (S.R.); (O.J.L.); (B.J.H.); (T.G.G.); (W.J.A.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang R, Liu B, Tian Y, Xin M, Li Q, Huang X, Liu Y, Zhao L, Qi F, Wang R, Meng X, Chen J, Zhou J, Gao J. A chromosome-coupled ubiquitin-proteasome pathway is required for meiotic surveillance. Cell Death Differ 2024; 31:1730-1745. [PMID: 39237708 PMCID: PMC11618355 DOI: 10.1038/s41418-024-01375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Defects in meiotic prophase can cause meiotic chromosome missegregation and aneuploid gamete formation. Meiotic checkpoints are activated in germ cells with meiotic defects, and cells with unfixed errors are eliminated by apoptosis. How such a surveillance process is regulated remains elusive. Here, we report that a chromosome-coupled ubiquitin-proteasome pathway (UPP) regulates meiotic checkpoint activation and promotes germ cell apoptosis in C. elegans meiosis-defective mutants. We identified an F-box protein, FBXL-2, that functions as a core component within the pathway. This chromosome-coupled UPP regulates meiotic DSB repair kinetics and chromosome dynamic behaviors in synapsis defective mutants. Disrupted UPP impairs the axial recruitment of the HORMA domain protein HIM-3, which is required for efficient germ cell apoptosis in synapsis defective mutants. Our data suggest that an efficient chromosome-coupled UPP functions as a part of the meiotic surveillance system by enhancing the integrity of the meiotic chromosome axis.
Collapse
Affiliation(s)
- Ruirui Zhang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Bohan Liu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Mingyu Xin
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Qian Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiuhua Huang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Yuanyuan Liu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Li Zhao
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Feifei Qi
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Xiaoqian Meng
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
| | - Jianguo Chen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Jun Zhou
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, 250358, China.
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Satoh T, Yagi-Utsumi M, Ishii N, Mizushima T, Yagi H, Kato R, Tachida Y, Tateno H, Matsuo I, Kato K, Suzuki T, Yoshida Y. Structural basis of sugar recognition by SCF FBS2 ubiquitin ligase involved in NGLY1 deficiency. FEBS Lett 2024; 598:2259-2268. [PMID: 39171510 DOI: 10.1002/1873-3468.15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
The cytosolic peptide:N-glycanase (PNGase) is involved in the quality control of N-glycoproteins via the endoplasmic reticulum-associated degradation (ERAD) pathway. Mutations in the gene encoding cytosolic PNGase (NGLY1 in humans) cause NGLY1 deficiency. Recent findings indicate that the F-box protein FBS2 of the SCFFBS2 ubiquitin ligase complex can be a promising drug target for NGLY1 deficiency. Here, we determined the crystal structure of bovine FBS2 complexed with the adaptor protein SKP1 and a sugar ligand, Man3GlcNAc2, which corresponds to the core pentasaccharide of N-glycan. Our crystallographic data together with NMR data revealed the structural basis of disparate sugar-binding specificities in homologous FBS proteins and identified a potential druggable pocket for in silico docking studies. Our results provide a potential basis for the development of selective inhibitors against FBS2 in NGLY1 deficiency.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Tsunehiro Mizushima
- Department of Life Science, Graduate School of Science, University of Hyogo, Himeji, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Yuriko Tachida
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Yukiko Yoshida
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Japan
| |
Collapse
|
5
|
Ryu S, Nakashima H, Tanaka Y, Mukai R, Ishihara Y, Tominaga T, Ohshima T. Ribosomal Protein S4 X-Linked as a Novel Modulator of MDM2 Stability by Suppressing MDM2 Auto-Ubiquitination and SCF Complex-Mediated Ubiquitination. Biomolecules 2024; 14:885. [PMID: 39199272 PMCID: PMC11351588 DOI: 10.3390/biom14080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Mouse double minute 2 (MDM2) is an oncoprotein that is frequently overexpressed in tumors and enhances cellular transformation. Owing to the important role of MDM2 in modulating p53 function, it is crucial to understand the mechanism underlying the regulation of MDM2 levels. We identified ribosomal protein S4X-linked (RPS4X) as a novel binding partner of MDM2 and showed that RPS4X promotes MDM2 stability. RPS4X suppressed polyubiquitination of MDM2 by suppressing homodimer formation and preventing auto-ubiquitination. Moreover, RPS4X inhibited the interaction between MDM2 and Cullin1, a scaffold protein of the Skp1-Cullin1-F-box protein (SCF) complex and an E3 ubiquitin ligase for MDM2. RPS4X expression in cells enhanced the steady-state level of MDM2 protein. RPS4X was associated not only with MDM2 but also with Cullin1 and then blocked the MDM2/Cullin1 interaction. This is the first report of an interaction between ribosomal proteins (RPs) and Cullin1. Our results contribute to the elucidation of the MDM2 stabilization mechanism in cancer cells, expanding our understanding of the new functions of RPs.
Collapse
Affiliation(s)
- Satsuki Ryu
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Hiroki Nakashima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Yuka Tanaka
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101-1709, USA;
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan;
| | - Takashi Tominaga
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Takayuki Ohshima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| |
Collapse
|
6
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
7
|
Barbosa BMG, Sfyaki A, Rafael S, José-Duran F, Pous J, Sánchez-Zarzalejo C, Perez-Lopez C, Vilanova M, Cigler M, Gay M, Vilaseca M, Winter GE, Riera A, Mayor-Ruiz C. Discovery and Mechanistic Elucidation of NQO1-Bioactivatable Small Molecules That Overcome Resistance to Degraders. Angew Chem Int Ed Engl 2024; 63:e202316730. [PMID: 38153885 DOI: 10.1002/anie.202316730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Degraders hold the promise to efficiently inactivate previously intractable disease-relevant targets. Unlike traditional inhibitors, degraders act substoichiometrically and rely on the hijacked proteolysis machinery, which can also act as an entry point for resistance. To fully harness the potential of targeted protein degradation, it is crucial to comprehend resistance mechanisms and formulate effective strategies to overcome them. We conducted a chemical screening to identify synthetic lethal vulnerabilities of cancer cells that exhibit widespread resistance to degraders. Comparative profiling followed by tailored optimization delivered the small molecule RBS-10, which shows preferential cytotoxicity against cells pan-resistant to degraders. Multiomics deconvolution of the mechanism of action revealed that RBS-10 acts as a prodrug bioactivated by the oxidoreductase enzyme NQO1, which is highly overexpressed in our resistance models. Collectively, our work informs on NQO1 as an actionable vulnerability to overcome resistance to degraders and as a biomarker to selectively exploit bioactivatable prodrugs in cancer.
Collapse
Affiliation(s)
- Bárbara M G Barbosa
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Aikaterini Sfyaki
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Sergi Rafael
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ferran José-Duran
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Joan Pous
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Carolina Sánchez-Zarzalejo
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Carles Perez-Lopez
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Mar Vilanova
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marko Cigler
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), 1090, Vienna, Austria
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Georg E Winter
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), 1090, Vienna, Austria
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Cristina Mayor-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), the, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| |
Collapse
|
8
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. J Virol 2024; 98:e0172623. [PMID: 38226814 PMCID: PMC10878100 DOI: 10.1128/jvi.01726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Reddy VA, Saju JM, Nadimuthu K, Sarojam R. A non-canonical Aux/IAA gene MsIAA32 regulates peltate glandular trichome development in spearmint. FRONTIERS IN PLANT SCIENCE 2024; 15:1284125. [PMID: 38375083 PMCID: PMC10875047 DOI: 10.3389/fpls.2024.1284125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Phytohormone auxin controls various aspects of plant growth and development. The typical auxin signalling involves the degradation of canonical Aux/IAA proteins upon auxin perception releasing the auxin response factors (ARF) to activate auxin-regulated gene expression. Extensive research has been pursued in deciphering the role of canonical Aux/IAAs, however, the function of non-canonical Aux/IAA genes remains elusive. Here we identified a non-canonical Aux/IAA gene, MsIAA32 from spearmint (Mentha spicata), which lacks the TIR1-binding domain and shows its involvement in the development of peltate glandular trichomes (PGT), which are the sites for production and storage of commercially important essential oils. Using yeast two-hybrid studies, two canonical Aux/IAAs, MsIAA3, MsIAA4 and an ARF, MsARF3 were identified as the preferred binding partners of MsIAA32. Expression of a R2R3-MYB gene MsMYB36 and a cyclin gene MsCycB2-4 was altered in MsIAA32 suppressed plants indicating that these genes are possible downstream targets of MsIAA32 mediated signalling. Ectopic expression of MsIAA32 in Arabidopsis affected non-glandular trichome formation along with other auxin related developmental traits. Our findings establish the role of non-canonical Aux/IAA mediated auxin signalling in PGT development and reveal species-specific functionalization of Aux/IAAs.
Collapse
Affiliation(s)
| | | | | | - Rajani Sarojam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
12
|
Wu M, Musazade E, Yang X, Yin L, Zhao Z, Zhang Y, Lu J, Guo L. ATL Protein Family: Novel Regulators in Plant Response to Environmental Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20419-20440. [PMID: 38100516 DOI: 10.1021/acs.jafc.3c05603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plants actively develop intricate regulatory mechanisms to counteract the harmful effects of environmental stresses. The ubiquitin-proteasome pathway, a crucial mechanism, employs E3 ligases (E3s) to facilitate the conjugation of ubiquitin to specific target substrates, effectively marking them for proteolytic degradation. E3s play critical roles in many biological processes, including phytohormonal signaling and adaptation to environmental stresses. Arabidopsis Toxicosa en Levadura (ATL) proteins, belonging to a subfamily of RING-H2 E3s, actively modulate diverse physiological processes and plant responses to environmental stresses. Despite studies on the functions of certain ATL family members in rice and Arabidopsis, most ATLs still need more comprehensive study. This review presents an overview of the ubiquitin-proteasome system (UPS), specifically focusing on the pivotal role of E3s and associated enzymes in plant development and environmental adaptation. Our study seeks to unveil the active modulation of plant responses to environmental stresses by E3s and ATLs, emphasizing the significance of ATLs within this intricate process. By emphasizing the importance of studying the roles of E3s and ATLs, our review contributes to developing more resilient plant varieties and promoting sustainable agricultural practices while establishing a research roadmap for the future.
Collapse
Affiliation(s)
- Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Xiao Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Le Yin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Zizhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Yu Zhang
- Land Requisition Affairs Center of Jilin Province, Changchun 130062, P.R. China
| | - Jingmei Lu
- School of Life Sciences, Northeast Normal University, Changchun 130024, P.R. China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| |
Collapse
|
13
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565564. [PMID: 37961092 PMCID: PMC10635129 DOI: 10.1101/2023.11.03.565564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the E7 protein by degrading the components of the SKP1-CUL1-F-box (SCF) ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Jeong Y, Oh AR, Jung YH, Gi H, Kim YU, Kim K. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Exp Mol Med 2023; 55:2097-2104. [PMID: 37779139 PMCID: PMC10618535 DOI: 10.1038/s12276-023-01087-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Posttranslational modification of proteins via ubiquitination determines their activation, translocation, dysregulation, or degradation. This process targets a large number of cellular proteins, affecting all biological pathways involved in the cell cycle, development, growth, and differentiation. Thus, aberrant regulation of ubiquitination is likely associated with several diseases, including various types of metabolic diseases. Among the ubiquitin enzymes, E3 ubiquitin ligases are regarded as the most influential ubiquitin enzymes due to their ability to selectively bind and recruit target substrates for ubiquitination. Continued research on the regulatory mechanisms of E3 ligases and their adaptors in metabolic diseases will further stimulate the discovery of new targets and accelerate the development of therapeutic options for metabolic diseases. In this review, based on recent discoveries, we summarize new insights into the roles of E3 ubiquitin ligases and their adaptors in the pathogenesis of metabolic diseases by highlighting recent evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
15
|
Gao N, Liu Z, Wang H, Shen C, Dong Z, Cui W, Xiong WC, Mei L. Deficiency of Cullin 3, a Protein Encoded by a Schizophrenia and Autism Risk Gene, Impairs Behaviors by Enhancing the Excitability of Ventral Tegmental Area (VTA) DA Neurons. J Neurosci 2023; 43:6249-6267. [PMID: 37558490 PMCID: PMC10490515 DOI: 10.1523/jneurosci.0247-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
The dopaminergic neuromodulator system is fundamental to brain functions. Abnormal dopamine (DA) pathway is implicated in psychiatric disorders, including schizophrenia (SZ) and autism spectrum disorder (ASD). Mutations in Cullin 3 (CUL3), a core component of the Cullin-RING ubiquitin E3 ligase complex, have been associated with SZ and ASD. However, little is known about the function and mechanism of CUL3 in the DA system. Here, we show that CUL3 is critical for the function of DA neurons and DA-relevant behaviors in male mice. CUL3-deficient mice exhibited hyperactive locomotion, deficits in working memory and sensorimotor gating, and increased sensitivity to psychostimulants. In addition, enhanced DA signaling and elevated excitability of the VTA DA neurons were observed in CUL3-deficient animals. Behavioral impairments were attenuated by dopamine D2 receptor antagonist haloperidol and chemogenetic inhibition of DA neurons. Furthermore, we identified HCN2, a hyperpolarization-activated and cyclic nucleotide-gated channel, as a potential target of CUL3 in DA neurons. Our study indicates that CUL3 controls DA neuronal activity by maintaining ion channel homeostasis and provides insight into the role of CUL3 in the pathogenesis of psychiatric disorders.SIGNIFICANCE STATEMENT This study provides evidence that Cullin 3 (CUL3), a core component of the Cullin-RING ubiquitin E3 ligase complex that has been associated with autism spectrum disorder and schizophrenia, controls the excitability of dopamine (DA) neurons in mice. Its DA-specific heterozygous deficiency increased spontaneous locomotion, impaired working memory and sensorimotor gating, and elevated response to psychostimulants. We showed that CUL3 deficiency increased the excitability of VTA DA neurons, and inhibiting D2 receptor or DA neuronal activity attenuated behavioral deficits of CUL3-deficient mice. We found HCN2, a hyperpolarization-activated channel, as a target of CUL3 in DA neurons. Our findings reveal CUL3's role in DA neurons and offer insights into the pathogenic mechanisms of autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zhipeng Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Chinese Institutes for Medical Research, Beijing, China 100069
- Capital Medical University, Beijing, China 100069
| |
Collapse
|
16
|
Wu W, Yang H, Shen J, Xing P, Han X, Dong Y, Wu G, Zheng S, Gao K, Yang N, Zhang L, Wu Y. Identification of Brassica rapa BrEBF1 homologs and their characterization in cold signaling. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154076. [PMID: 37657305 DOI: 10.1016/j.jplph.2023.154076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
EIN3-binding F-box 1 (EBF1) is involved in cold tolerance in Arabidopsis; however, its exact roles in cold signaling in Brassica rapa remain uncertain. Herein, we demonstrated that EBF1 homologs are highly conserved in Brassica species, but their copy numbers are diverse, with some motifs being species specific. Cold treatment activated the expression of EBF1 homologs BrEBF1 and BrEBF2 in B. rapa; however, their expression schemas were diverse in different cold-resistant varieties of the plant. Subcellular localization analysis revealed that BrEBF1 is a nuclear-localized F-box protein, and cold treatment did not alter its localization but induced its degradation. BrEBF1 overexpression enhanced cold tolerance, reduced cold-induced ROS accumulation, and enhanced MPK3 and MPK6 kinase activity in Arabidopsis. Our study revealed that BrEBF1 positively regulates cold tolerance in B. rapa and that BrEBF1-regulated cold tolerance is associated with ROS scavenging and MPK3 and MPK6 kinase activity through the C-repeat binding factor pathway.
Collapse
Affiliation(s)
- Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Haobo Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China; School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Juan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Peng Xing
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xueyan Han
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Yun Dong
- Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou, 730070, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Kun Gao
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lina Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Yujun Wu
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Wu D, Sun Y. The Functional Redundancy of Neddylation E2s and E3s in Modulating the Fitness of Regulatory T Cells. RESEARCH (WASHINGTON, D.C.) 2023; 6:0212. [PMID: 37600496 PMCID: PMC10437198 DOI: 10.34133/research.0212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Neddylation is necessary for activation of Cullin-RING ligases (CRLs), which degrade various immune regulatory proteins. Our recent study showed that while depletion of neddylation E2-E3 pair Ube2f-Sag in regulatory T (Treg) cells had no obvious phenotype, the same depletion of either Ube2m or Rbx1 caused inflammation disorders with different severity. Whether these E2s or E3s compensate each other in functional regulations of Treg cells is, however, previously unknown. In this report, we generated Foxp3Cre;Ube2mfl/fl;Ube2ffl/fl or Foxp3Cre;Rbx1fl/fl;Sagfl/fl double-null mice by simultaneous deletion of both neddylation E2s or E3s in Treg cells, respectively. Remarkably, Ube2m&Ube2f double-null mice developed much severe autoimmune phenotypes than did Ube2m-null mice, indicating that Ube2m markedly compensates Ube2f in Treg cells. The minor worsened autoimmune phenotypes seen at the very early stage in Rbx1&Sag double-null than Rbx1-null mice is likely due to already severe phenotypes of the later, indicating a minor compensation of Rbx1 for Sag. The RNA profiling-based analyses revealed that up- and down-regulations of few signaling pathways in Treg cells are associated with the severity of autoimmune phenotypes. Finally, severer inflammation phenotypes seen in mice with double E3-null than with double E2-null Treg cells indicate a neddylation-independent mechanism of 2 E3s, also known to serve as the RING component of CRLs in regulation of Treg cell fitness.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
18
|
Shao Y, Ren W, Dai H, Yang F, Li X, Zhang S, Liu J, Yao X, Zhao Q, Sun X, Zheng Z, Xu C. SKP2 Contributes to AKT Activation by Ubiquitination Degradation of PHLPP1, Impedes Autophagy, and Facilitates the Survival of Thyroid Carcinoma. Mol Cells 2023; 46:360-373. [PMID: 36694914 PMCID: PMC10258456 DOI: 10.14348/molcells.2022.2242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 01/26/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid carcinoma. Despite a good prognosis, approximately a quarter of PTC patients are likely to relapse. Previous reports suggest an association between S-phase kinase-associated protein 2 (SKP2) and the prognosis of thyroid cancer. SKP1 is related to apoptosis of PTC cells; however, its role in PTC remains largely elusive. This study aimed to understand the expression and molecular mechanism of SKP2 in PTC. SKP2 expression was upregulated in PTC tissues and closely associated with clinical diagnosis. In vitro and in vivo knockdown of SKP2 expression in PTC cells suppressed cell growth and proliferation and induced apoptosis. SKP2 depletion promoted cell autophagy under glucose deprivation. SKP2 interacted with PH domain leucine-rich repeat protein phosphatase-1 (PHLPP1), triggering its degradation by ubiquitination. Furthermore, SKP2 activates the AKT-related pathways via PHLPP1, which leads to the cytoplasmic translocation of SKP2, indicating a reciprocal regulation between SKP2 and AKT. In conclusion, the upregulation of SKP2 leads to PTC proliferation and survival, and the regulatory network among SKP2, PHLPP1, and AKT provides novel insight into the molecular basis of SKP2 in tumor progression.
Collapse
Affiliation(s)
- Yuan Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Wanli Ren
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Hao Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Fangli Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xiang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xiaobao Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Qian Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xin Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Zhiwei Zheng
- The Third Ward of General Surgery Department, Rizhao People’s Hospital, Rizhao, China
| | - Chongwen Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| |
Collapse
|
19
|
Albuquerque-Martins R, Szakonyi D, Rowe J, Jones AM, Duque P. ABA signaling prevents phosphodegradation of the SR45 splicing factor to alleviate inhibition of early seedling development in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100495. [PMID: 36419364 PMCID: PMC10030365 DOI: 10.1016/j.xplc.2022.100495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Serine/arginine-rich (SR) proteins are conserved splicing regulators that play important roles in plant stress responses, namely those mediated by the abscisic acid (ABA) hormone. The Arabidopsis thaliana SR-like protein SR45 is a described negative regulator of the ABA pathway during early seedling development. How the inhibition of growth by ABA signaling is counteracted to maintain plant development under stress conditions remains largely unknown. Here, we show that SR45 overexpression reduces Arabidopsis sensitivity to ABA during early seedling development. Biochemical and confocal microscopy analyses of transgenic plants expressing fluorescently tagged SR45 revealed that exposure to ABA dephosphorylates the protein at multiple amino acid residues and leads to its accumulation, due to SR45 stabilization via reduced ubiquitination and proteasomal degradation. Using phosphomutant and phosphomimetic transgenic Arabidopsis lines, we demonstrate the functional relevance of ABA-mediated dephosphorylation of a single SR45 residue, T264, in antagonizing SR45 ubiquitination and degradation to promote its function as a repressor of seedling ABA sensitivity. Our results reveal a mechanism that negatively autoregulates ABA signaling and allows early plant growth under stress via posttranslational control of the SR45 splicing factor.
Collapse
Affiliation(s)
- Rui Albuquerque-Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK.
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
20
|
Liu M, Martyn AP, Quinn RJ. Natural product-based PROteolysis TArgeting Chimeras (PROTACs). Nat Prod Rep 2022; 39:2292-2307. [PMID: 36196977 DOI: 10.1039/d2np00038e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: upto 2022Natural products have an embedded recognition of protein surfaces. They possess this property as they are produced by biosynthetic enzymes and are substrates for one or more enzymes in the biosynthetic pathway. The inherent advantages, compared to synthetic compound libraries, is this ligand-protein binding which is, in many cases, a function of the 3-dimensional properties. Protein degradation is a recent novel therapeutic approach with several compounds now in the clinic. This review highlights the potential of PROteolysis TArgeting Chimeras (PROTACs) in the area of natural products. The approach will complement existing approaches such as the direct use of a bioactive natural product or its analogues, pharmacophore development and drug-antibody conjugates. The chemical synthesis and challenges of using natural product-based PROTACs are summarised. The review also highlights methods to detect the ternary complexes necessary for PROTAC mechanism of action.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| | - Alexander P Martyn
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
21
|
Huang T, OuYang XI, Li J, Shi B, Shan Z, Shi Z, Yang Z. Pan-cancer analysis of FBXW family with potential implications in prognosis and immune infiltration. Front Immunol 2022; 13:1084339. [PMID: 36591289 PMCID: PMC9795248 DOI: 10.3389/fimmu.2022.1084339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background The F-box and WD repeat domain containing (FBXW) family of SCF E3 complexes has 10 members that are responsible for ubiquitination and degradation of substrate proteins involved in cell cycle regulation and tumorigenesis. Among them, FBXW1 (also called b-TrCP1/BTRC) and FBXW7 are the central proteins in this category. However, there is still a lack of elaborate exploration of the contribution of FBXW family members, especially FBXW1 and FBXW7, in various tumor types. Methods In this present study, we preliminarily analyzed the genetic structure characteristics of the FBXW family, and systematically investigated their expression patterns and clinical correlations based on the TCGA pan-cancer data. Survival analysis of FBXWs was also conducted through the Kaplan-Meier method. In addition, we assessed their immune infiltration level through immune-related algorithms like Timer and xCell. Results There were obvious genetic heterogeneity and different clinical traits in FBXW family members. Moreover, we found that FBXW family genes may be useful in predicting prognosis and therapeutic efficacy using survival analysis. In addition, the immune infiltration of FBXW family was also clearly illustrated in this study. The results showed these genes were closely involved in immune components such as immune score, immune subtypes, tumor-infiltrating lymphocytes and immune checkpoints. Notedly, FBXW1 as an oncogene and FBXW7 as a tumor suppressor gene also show opposite relationships on immune cells. Conclusion Our results provided valuable strategies to guide the therapeutic orientation concerning the role of FBXW family genes in cancer.
Collapse
Affiliation(s)
| | - XIaoxiao OuYang
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Jiwei Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Bingbing Shi
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian, China
| | - Zhengda Shan
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Zhiyuan Shi, ; Zhangru Yang,
| | - Zhangru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Zhiyuan Shi, ; Zhangru Yang,
| |
Collapse
|
22
|
Govindarajulu M, Ramesh S, Shankar T, Kora MK, Moore T, Dhanasekaran M. Role of Neddylation in Neurodegenerative Diseases. NEUROSCI 2022; 3:533-545. [PMID: 39483771 PMCID: PMC11523694 DOI: 10.3390/neurosci3040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons in specific regions of the brain. Neuronal death is often associated with the accumulation of misfolded proteins due to genetic mutations or abnormal protein homeostasis. An essential mechanism for regulating the clearance of misfolded proteins is neddylation, a post-translational modification closely related to ubiquitination. Neddylation is brought about by conjugating neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to target substrates through a cascade of cellular events. Neddylation is crucial for many biological processes, and dysfunctional neddylation is implicated in several neurodegenerative diseases. This review discusses the current understanding of the role of neddylation pathways in neurodegenerative disorders and the emergence of neddylation signaling as a potential target for drug discovery and development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Tharanth Shankar
- Department of Internal Medicine, Ramaiah Medical College and Hospital, Bengaluru 560054, Karnataka, India
| | | | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA
| |
Collapse
|
23
|
Neudorf NM, Thompson LL, Lichtensztejn Z, Razi T, McManus KJ. Reduced SKP2 Expression Adversely Impacts Genome Stability and Promotes Cellular Transformation in Colonic Epithelial Cells. Cells 2022; 11:cells11233731. [PMID: 36496990 PMCID: PMC9738323 DOI: 10.3390/cells11233731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the high morbidity and mortality rates associated with colorectal cancer (CRC), the underlying molecular mechanisms driving CRC development remain largely uncharacterized. Chromosome instability (CIN), or ongoing changes in chromosome complements, occurs in ~85% of CRCs and is a proposed driver of cancer development, as the genomic changes imparted by CIN enable the acquisition of karyotypes that are favorable for cellular transformation and the classic hallmarks of cancer. Despite these associations, the aberrant genes and proteins driving CIN remain elusive. SKP2 encodes an F-box protein, a variable subunit of the SKP1-CUL1-F-box (SCF) complex that selectively targets proteins for polyubiquitylation and degradation. Recent data have identified the core SCF complex components (SKP1, CUL1, and RBX1) as CIN genes; however, the impact reduced SKP2 expression has on CIN, cellular transformation, and oncogenesis remains unknown. Using both short- small interfering RNA (siRNA) and long-term (CRISPR/Cas9) approaches, we demonstrate that diminished SKP2 expression induces CIN in both malignant and non-malignant colonic epithelial cell contexts. Moreover, temporal assays reveal that reduced SKP2 expression promotes cellular transformation, as demonstrated by enhanced anchorage-independent growth. Collectively, these data identify SKP2 as a novel CIN gene in clinically relevant models and highlight its potential pathogenic role in CRC development.
Collapse
Affiliation(s)
- Nicole M. Neudorf
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Laura L. Thompson
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Zelda Lichtensztejn
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Tooba Razi
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kirk J. McManus
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
24
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:14480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
25
|
Bakulina O, Sapegin A, Bunev AS, Krasavin M. Synthetic approaches to constructing proteolysis targeting chimeras (PROTACs). MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Domostegui A, Nieto-Barrado L, Perez-Lopez C, Mayor-Ruiz C. Chasing molecular glue degraders: screening approaches. Chem Soc Rev 2022; 51:5498-5517. [PMID: 35723413 DOI: 10.1039/d2cs00197g] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein-protein interactions (PPIs) govern all biological processes. Some small molecules modulate PPIs through induced protein proximity. In particular, molecular glue degraders are monovalent compounds that orchestrate interactions between a target protein and an E3 ubiquitin ligase, prompting the proteasomal degradation of the former. This and other pharmacological strategies of targeted protein degradation (e.g. proteolysis-targeting chimeras - PROTACs) overcome some limitations of traditional occupancy-based therapeutics. Here, we provide an overview of the "molecular glue" concept, with a special focus on natural and synthetic inducers of proximity to E3s. We then briefly highlight the serendipitous discoveries of some clinical and preclinical molecular glue degraders, and discuss the first examples of intentional discoveries. Specifically, we outline the different screening strategies reported in this rapidly evolving arena and our thoughts on future perspectives. By mastering the ability to influence PPIs, molecular glue degraders can induce the degradation of unligandable proteins, thus providing an exciting path forward to broaden the targetable proteome.
Collapse
Affiliation(s)
- Ana Domostegui
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Luis Nieto-Barrado
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Carles Perez-Lopez
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Cristina Mayor-Ruiz
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
27
|
Wu D, Li H, Liu M, Qin J, Sun Y. The Ube2m-Rbx1 neddylation-Cullin-RING-Ligase proteins are essential for the maintenance of Regulatory T cell fitness. Nat Commun 2022; 13:3021. [PMID: 35641500 PMCID: PMC9156764 DOI: 10.1038/s41467-022-30707-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/12/2022] [Indexed: 12/16/2022] Open
Abstract
Neddylation-mediated activation of Cullin-RING E3 Ligases (CRLs) are necessary for the degradation of specific immune regulatory proteins. However, little is known about how these processes govern the function of regulatory T (Treg) cells. Here we show that mice with Treg cell-specific deletion of Rbx1, a dual E3 for both neddylation and ubiquitylation by CRLs, develop an early-onset fatal inflammatory disorder, characterized by disrupted Treg cell homeostasis and suppressive functions. Specifically, Rbx1 is essential for the maintenance of an effector Treg cell subpopulation, and regulates several inflammatory pathways. Similar but less severe phenotypes are observed in mice having Ube2m, a neddylation E2 conjugation enzyme, deleted in their Treg cells. Interestingly, Treg-specific deletion of Rbx2/Sag or Ube2f, components of a similar but distinct neddylation-CRL complex, yields no obvious phenotype. Thus, our work demonstrates that the Ube2m-Rbx1 axis is specifically required for intrinsic regulatory processes in Treg cells; and that Rbx1 might also play Ube2m-independent roles in maintaining the fitness of Treg cells, suggesting a layer of complexity in neddylation-dependent activation of CRLs.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China
| | - Haomin Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) and Institute of Lifeomics, Beijing, 102206, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) and Institute of Lifeomics, Beijing, 102206, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
28
|
Neddylation inhibition induces glutamine uptake and metabolism by targeting CRL3 SPOP E3 ligase in cancer cells. Nat Commun 2022; 13:3034. [PMID: 35641493 PMCID: PMC9156729 DOI: 10.1038/s41467-022-30559-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/03/2022] [Indexed: 01/12/2023] Open
Abstract
Abnormal neddylation activation is frequently observed in human cancers and neddylation inhibition has been proposed as a therapy for cancer. Here, we report that MLN4924, a small-molecule inhibitor of neddylation activating enzyme, increases glutamine uptake in breast cancer cells by causing accumulation of glutamine transporter ASCT2/SLC1A5, via inactivation of CRL3-SPOP E3 ligase. We show the E3 ligase SPOP promotes ASCT2 ubiquitylation, whereas SPOP itself is auto-ubiquitylated upon glutamine deprivation. Thus, SPOP and ASCT2 inversely regulate glutamine uptake and metabolism. SPOP knockdown increases ASCT2 levels to promote growth which is rescued by ASCT2 knockdown. Adding ASCT2 inhibitor V-9302 enhances MLN4924 suppression of tumor growth. In human breast cancer specimens, SPOP and ASCT2 levels are inversely correlated, whereas lower SPOP with higher ASCT2 predicts a worse patient survival. Collectively, our study links neddylation to glutamine metabolism via the SPOP-ASCT2 axis and provides a rational drug combination for enhanced cancer therapy. Neddylation inhibition has been reported as a therapy for cancer. Here, the authors show that neddylation inhibition increases glutamine metabolism by stabilizing glutamine transporter ASCT2, therefore targeting ASCT2 improves the anti-cancer effect of neddylation inhibitors.
Collapse
|
29
|
FBXO47 is essential for preventing the synaptonemal complex from premature disassembly in mouse male meiosis. iScience 2022; 25:104008. [PMID: 35310947 PMCID: PMC8931362 DOI: 10.1016/j.isci.2022.104008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Meiotic prophase I is a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase I, homologous chromosomes undergo synapsis to facilitate meiotic recombination yielding crossovers. It remains largely elusive how homolog synapsis is temporally maintained and destabilized during meiotic prophase I. Here we show that FBXO47 is the stabilizer of the synaptonemal complex during male meiotic prophase I. Disruption of FBXO47 shows severe impact on homologous chromosome synapsis, meiotic recombination, and XY body formation, leading to male infertility. Notably, in the absence of FBXO47, although once homologous chromosomes are synapsed, the synaptonemal complex is precociously disassembled before progressing beyond pachytene. Remarkably, Fbxo47 KO spermatocytes remain in an earlier stage of meiotic prophase I and lack crossovers, despite apparently exhibiting diplotene-like chromosome morphology. We propose that FBXO47 plays a crucial role in preventing the synaptonemal complex from premature disassembly during cell cycle progression of meiotic prophase I. FBXO47 is a stabilizer of the synaptonemal complex during male meiotic prophase FBXO47 KO shows precocious disassembly of the synaptonemal complex FBXO47 may function independently of SCF E3 ligase to maintain homolog synapsis
Collapse
|
30
|
Campos Gudiño R, Farrell AC, Neudorf NM, McManus KJ. A Comprehensive Assessment of Genetic and Epigenetic Alterations Identifies Frequent Variations Impacting Six Prototypic SCF Complex Members. Int J Mol Sci 2021; 23:ijms23010084. [PMID: 35008511 PMCID: PMC8744973 DOI: 10.3390/ijms23010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
The SKP1, CUL1, F-box protein (SCF) complex represents a family of 69 E3 ubiquitin ligases that poly-ubiquitinate protein substrates marking them for proteolytic degradation via the 26S proteasome. Established SCF complex targets include transcription factors, oncoproteins and tumor suppressors that modulate cell cycle activity and mitotic fidelity. Accordingly, genetic and epigenetic alterations involving SCF complex member genes are expected to adversely impact target regulation and contribute to disease etiology. To gain novel insight into cancer pathogenesis, we determined the prevalence of genetic and epigenetic alterations in six prototypic SCF complex member genes (SKP1, CUL1, RBX1, SKP2, FBXW7 and FBXO5) from patient datasets extracted from The Cancer Genome Atlas (TCGA). Collectively, ~45% of observed SCF complex member mutations are predicted to impact complex structure and/or function in 10 solid tumor types. In addition, the distribution of encoded alterations suggest SCF complex members may exhibit either tumor suppressor or oncogenic mutational profiles in a cancer type dependent manner. Further bioinformatic analyses reveal the potential functional implications of encoded alterations arising from missense mutations by examining predicted deleterious mutations with available crystal structures. The SCF complex also exhibits frequent copy number alterations in a variety of cancer types that generally correspond with mRNA expression levels. Finally, we note that SCF complex member genes are differentially methylated across cancer types, which may effectively phenocopy gene copy number alterations. Collectively, these data show that SCF complex member genes are frequently altered at the genetic and epigenetic levels in many cancer types, which will adversely impact the normal targeting and timely destruction of protein substrates, which may contribute to the development and progression of an extensive array of cancer types.
Collapse
Affiliation(s)
- Rubi Campos Gudiño
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ally C. Farrell
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nicole M. Neudorf
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (R.C.G.); (A.C.F.); (N.M.N.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kirk J. McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
31
|
Galimova IA, Dorogova NV, Fedorova SA. Functions of E3 Ubiquitin Ligase Hyd in Drosophila Tissues. Mol Biol 2021. [DOI: 10.1134/s0026893321020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Zhang Y, Ding H, Wang X, Wang X, Wan S, Xu A, Gan R, Ye SD. MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Rep 2021; 37:109949. [PMID: 34731635 DOI: 10.1016/j.celrep.2021.109949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Tfcp2l1 can maintain mouse embryonic stem cell (mESC) self-renewal. However, it remains unknown how Tfcp2l1 protein stability is regulated. Here, we demonstrate that β-transducin repeat-containing protein (β-TrCP) targets Tfcp2l1 for ubiquitination and degradation in a mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2)-dependent manner. Specifically, β-TrCP1 and β-TrCP2 recognize and ubiquitylate Tfcp2l1 through the canonical β-TrCP-binding motif DSGDNS, in which the serine residues have been phosphorylated by MK2. Point mutation of serine-to-alanine residues reduces β-TrCP-mediated ubiquitylation and enhances the ability of Tfcp2l1 to promote mESC self-renewal while repressing the speciation of the endoderm, mesoderm, and trophectoderm. Similarly, inhibition of MK2 reduces the association of Tfcp2l1 with β-TrCP1 and increases the self-renewal-promoting effects of Tfcp2l1, whereas overexpression of MK2 or β-TrCP genes decreases Tfcp2l1 protein levels and induces mESC differentiation. Collectively, our study reveals a posttranslational modification of Tfcp2l1 that will expand our understanding of the regulatory network of stem cell pluripotency.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Huiwen Ding
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoxiao Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xin Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Shengpeng Wan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Anchun Xu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Ruoyi Gan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
33
|
Hu Y, Hu X, Li D, Du Z, Shi K, He C, Zhang Y, Zhang D. The APC/C FZY-1/Cdc20 Complex Coordinates With OMA-1 to Regulate the Oocyte-to-Embryo Transition in Caenorhabditis elegans. Front Cell Dev Biol 2021; 9:749654. [PMID: 34722532 PMCID: PMC8554129 DOI: 10.3389/fcell.2021.749654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
During oocyte maturation and the oocyte-to-embryo transition, key developmental regulators such as RNA-binding proteins coordinate translation of particular messenger RNA (mRNAs) and related developmental processes by binding to their cognate maternal mRNAs. In the nematode Caenorhabditis elegans, these processes are regulated by a set of CCCH zinc finger proteins. Oocyte maturation defective-1 (OMA-1) and OMA-2 are two functionally redundant CCCH zinc finger proteins that turnover rapidly during the first embryonic cell division. These turnovers are required for proper transition from oogenesis to embryogenesis. A gain-of-function mutant of OMA-1, oma-1(zu405), stabilizes and delays degradation of OMA-1, resulting in delayed turnover and mis-segregation of other cell fate determinants, which eventually causes embryonic lethality. We performed a large-scale forward genetic screen to identify suppressors of the oma-1(zu405) mutant. We show here that multiple alleles affecting functions of various anaphase promoting complex/cyclosome (APC/C) subunits, including MAT-1, MAT-2, MAT-3, EMB-30, and FZY-1, suppress the gain-of-function mutant of OMA-1. Transcriptome analysis suggested that overall transcription in early embryos occurred after introducing mutations in APC/C genes into the oma-1(zu405) mutant. Mutations in APC/C genes prevent OMA-1 enrichment in P granules and correct delayed degradation of downstream cell fate determinants including pharynx and intestine in excess-1 (PIE-1), posterior segregation-1 (POS-1), muscle excess-3 (MEX-3), and maternal effect germ-cell defective-1 (MEG-1). We demonstrated that only the activator FZY-1, but not FZR-1, is incorporated in the APC/C complex to regulate the oocyte-to-embryo transition. Our findings suggested a genetic relationship linking the APC/C complex and OMA-1, and support a model in which the APC/C complex promotes P granule accumulation and modifies RNA binding of OMA-1 to regulate the oocyte-to-embryo transition process.
Collapse
Affiliation(s)
- Yabing Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongchen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxia He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donglei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy. Acta Pharm Sin B 2021; 11:3567-3584. [PMID: 34900537 PMCID: PMC8642603 DOI: 10.1016/j.apsb.2021.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022] Open
Abstract
Protein neddylation is catalyzed by a three-enzyme cascade, namely an E1 NEDD8-activating enzyme (NAE), one of two E2 NEDD8 conjugation enzymes and one of several E3 NEDD8 ligases. The physiological substrates of neddylation are the family members of cullin, the scaffold component of cullin RING ligases (CRLs). Currently, a potent E1 inhibitor, MLN4924, also known as pevonedistat, is in several clinical trials for anti-cancer therapy. Here we report the discovery, through virtual screening and structural modifications, of a small molecule compound HA-1141 that directly binds to NAE in both in vitro and in vivo assays and effectively inhibits neddylation of cullins 1–5. Surprisingly, unlike MLN4924, HA-1141 also triggers non-canonical endoplasmic reticulum (ER) stress and PKR-mediated terminal integrated stress response (ISR) to activate ATF4 at an early stage, and to inhibit protein synthesis and mTORC1 activity at a later stage, eventually leading to autophagy induction. Biologically, HA-1141 suppresses growth and survival of cultured lung cancer cells and tumor growth in in vivo xenograft lung cancer models at a well-tolerated dose. Taken together, our study has identified a small molecule compound with the dual activities of blocking neddylation and triggering ER stress, leading to growth suppression of cancer cells.
Collapse
|
35
|
Müllender M, Varrelmann M, Savenkov EI, Liebe S. Manipulation of auxin signalling by plant viruses. MOLECULAR PLANT PATHOLOGY 2021; 22:1449-1458. [PMID: 34420252 PMCID: PMC8518663 DOI: 10.1111/mpp.13122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Compatible plant-virus interactions result in dramatic changes of the plant transcriptome and morphogenesis, and are often associated with rapid alterations in plant hormone homeostasis and signalling. Auxin controls many aspects of plant organogenesis, development, and growth; therefore, plants can rapidly perceive and respond to changes in the cellular auxin levels. Auxin signalling is a tightly controlled process and, hence, is highly vulnerable to changes in the mRNA and protein levels of its components. There are several core nuclear components of auxin signalling. In the nucleus, the interaction of auxin response factors (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins is essential for the control of auxin-regulated pathways. Aux/IAA proteins are negative regulators, whereas ARFs are positive regulators of the auxin response. The interplay between both is essential for the transcriptional regulation of auxin-responsive genes, which primarily regulate developmental processes but also modulate the plant immune system. Recent studies suggest that plant viruses belonging to different families have developed various strategies to disrupt auxin signalling, namely by (a) changing the subcellular localization of Aux/IAAs, (b) preventing degradation of Aux/IAAs by stabilization, or (c) inhibiting the transcriptional activity of ARFs. These interactions perturb auxin signalling and experimental evidence from various studies highlights their importance for virus replication, systemic movement, interaction with vectors for efficient transmission, and symptom development. In this microreview, we summarize and discuss the current knowledge on the interaction of plant viruses with auxin signalling components of their hosts.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| | - Eugene I. Savenkov
- Department of Plant BiologyUppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsalaSweden
| | - Sebastian Liebe
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| |
Collapse
|
36
|
Xing D, Li T, Ma G, Ruan H, Gao L, Xia T. Transcriptome-Wide Analysis and Functional Verification of RING-Type Ubiquitin Ligase Involved in Tea Plant Stress Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:733287. [PMID: 34745167 PMCID: PMC8568054 DOI: 10.3389/fpls.2021.733287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitin/26S proteasome pathway is a critical protein-degradation pathway in plant growth and development as well as in nearly all biological and abiotic stress processes. Although as a member of the ubiquitin/26S proteasome pathway, the E3 ubiquitin ligase family has been shown to be essential for the selective degradation of downstream target proteins, it has been rarely reported in tea plants (Camellia sinensis). In this study, through database searches and extensive manual deduplication, 335 RING finger family proteins were selected from the Tea Plant Information Archive. These proteins were divided into six categories by the difference of RING finger domain: RING-H2, RING-HCa, RING-HCb, RING-C2, RING-v, and RING-G. Stress-induced differential gene expression analysis showed that 53 proteins in RING finger family can respond to selected exogenous stress. In vitro ubiquitination assays indicated that TEA031033, which was named CsMIEL1, exhibited the activity of E3 ubiquitin ligases. CsMIEL1-overexpressing transgenic Arabidopsis thaliana seedlings were resistant to some exogenous abiotic stresses, such as salt and drought stress but sensitive to exogenous methyl jasmonate treatment. Furthermore, CsMIEL1 reduced the accumulation of anthocyanin in transgenic plants in response to low temperature treatment. The results of this article provide basic date for studying the role of ubiquitin/26S proteasome pathway in tea plants response to stresses.
Collapse
Affiliation(s)
- Dawei Xing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tongtong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Guoliang Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Haixiang Ruan
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Liping Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
37
|
Paré P, Reales G, Paixão-Côrtes VR, Vargas-Pinilla P, Viscardi LH, Fam B, Pissinatti A, Santos FR, Bortolini MC. Molecular evolutionary insights from PRLR in mammals. Gen Comp Endocrinol 2021; 309:113791. [PMID: 33872604 DOI: 10.1016/j.ygcen.2021.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Prolactin (PRL) is a pleiotropic neurohormone secreted by the mammalian pituitary gland into the blood, thus reaching many tissues and organs beyond the brain. PRL binds to its receptor, PRLR, eliciting a molecular signaling cascade. This system modulates essential mammalian behaviors and promotes notable modifications in the reproductive female tissues and organs. Here, we explore how the intracellular domain of PRLR (PRLR-ICD) modulates the expression of the PRLR gene. Despite differences in the reproductive strategies between eutherian and metatherian mammals, there is no clear distinction between PRLR-ICD functional motifs. However, we found selection signatures that showed differences between groups, with many conserved functional elements strongly maintained through purifying selection across the class Mammalia. We observed a few residues under relaxed selection, the levels of which were more pronounced in Eutheria and particularly striking in primates (Simiiformes), which could represent a pre-adaptive genetic element protected from purifying selection. Alternative, new motifs, such as YLDP (318-321) and others with residues Y283 and Y290, may already be functional. These motifs would have been co-opted in primates as part of a complex genetic repertoire related to some derived adaptive phenotypes, but these changes would have no impact on the primordial functions that characterize the mammals as a whole and that are related to the PRL-PRLR system.
Collapse
Affiliation(s)
- Pamela Paré
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Vanessa R Paixão-Côrtes
- Laboratório de Biologia Evolutiva e Genômica (LABEG), Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| | - Pedro Vargas-Pinilla
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Henriques Viscardi
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bibiana Fam
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Fabrício R Santos
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução da Universidade Federal de Minas Gerais (UFMG), Belo-Horizonte, MG, Brazil.
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
38
|
Scholes NS, Mayor-Ruiz C, Winter GE. Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chem Biol 2021; 28:1048-1060. [PMID: 33811812 DOI: 10.1016/j.chembiol.2021.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The therapeutic modality of targeted protein degradation promises to overcome limitations of traditional pharmacology. Small-molecule degraders recruit disease-causing proteins to E3 ubiquitin ligases, prompting their ubiquitination and degradation by the proteasome. The discovery, mechanistic elucidation, and selectivity profiling of novel degraders are often conducted in cellular systems. This highlights the need for unbiased multi-omics strategies that inform on the functionally involved components. Here, we review how proteomics and functional genomics can be integrated to identify and mechanistically understand degraders, their target selectivity as well as putative resistance mechanisms.
Collapse
Affiliation(s)
- Natalie S Scholes
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; IRB Barcelona - Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - Georg E Winter
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
39
|
Koliopoulos MG, Alfieri C. Cell cycle regulation by complex nanomachines. FEBS J 2021; 289:5100-5120. [PMID: 34143558 DOI: 10.1111/febs.16082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The cell cycle is the essential biological process where one cell replicates its genome and segregates the resulting two copies into the daughter cells during mitosis. Several aspects of this process have fascinated humans since the nineteenth century. Today, the cell cycle is exhaustively investigated because of its profound connections with human diseases and cancer. At the heart of the molecular network controlling the cell cycle, we find the cyclin-dependent kinases (CDKs) acting as an oscillator to impose an orderly and highly regulated progression through the different cell cycle phases. This oscillator integrates both internal and external signals via a multitude of signalling pathways involving posttranslational modifications including phosphorylation, protein ubiquitination and mechanisms of transcriptional regulation. These tasks are specifically performed by multi-subunit complexes, which are intensively studied both biochemically and structurally with the aim to unveil mechanistic insights into their molecular function. The scope of this review is to summarise the structural biology of the cell cycle machinery, with specific focus on the core cell cycle machinery involving the CDK-cyclin oscillator. We highlight the contribution of cryo-electron microscopy, which has started to revolutionise our understanding of the molecular function and dynamics of the key players of the cell cycle.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| |
Collapse
|
40
|
Zhang S, Shen Y, Li H, Bi C, Sun Y, Xiong X, Wei W, Sun Y. The Negative Cross-Talk between SAG/RBX2/ROC2 and APC/C E3 Ligases in Regulation of Cell Cycle Progression and Drug Resistance. Cell Rep 2021; 32:108102. [PMID: 32905768 PMCID: PMC7505520 DOI: 10.1016/j.celrep.2020.108102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a well-characterized E3 ligase that couples with UBE2C and UBE2S E2s for substrate ubiquitylation by the K11 linkage. Our recent data show that SAG/RBX2/ROC2, a RING component of Cullin-RING E3 ligase, also complexes with these E2s for K11-linked substrate polyubiquitylation. Whether these two E3s cross-talk with each other was previously unknown. Here, we report that SAG competes with APC2 for UBE2C/UBE2S binding to act as a potential endogenous inhibitor of APC/C, thereby regulating the G2-to-M progression. As such, SAG knockdown triggers premature activation of APC/C, leading to mitotic slippage and resistance to anti-microtubule drugs. On the other hand, SAG itself is a substrate of APC/CCDH1 for targeted degradation at the G1 phase. The degradation-resistant mutant of SAG-R98A/L101A accelerates the G1-to-S progression. Our study reveals that the negative cross-talk between SAG and APC/C is likely a mechanism to ensure the fidelity of cell cycle progression. Zhang et al. provide a mechanistic insight of how negative cross-talk between E3 ligases SAG and APC/C ensures proper cell cycle progression. SAG knockdown prematurely activates APC/C to promote mitotic progression and trigger anti-microtubule drugs resistance, whereas SAG degradation by APC/CCDH1 mainly occurs in G1 phase for proper G1-to-S transition.
Collapse
Affiliation(s)
- Shizhen Zhang
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yanwen Shen
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Chao Bi
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yilun Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Xiufang Xiong
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.
| |
Collapse
|
41
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
42
|
Masle-Farquhar E, Russell A, Li Y, Zhu F, Rui L, Brink R, Goodnow CC. Loss-of-function of Fbxo10, encoding a post-translational regulator of BCL2 in lymphomas, has no discernible effect on BCL2 or B lymphocyte accumulation in mice. PLoS One 2021; 16:e0237830. [PMID: 33914737 PMCID: PMC8084200 DOI: 10.1371/journal.pone.0237830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/25/2021] [Indexed: 11/28/2022] Open
Abstract
Regulation of the anti-apoptotic BCL2 protein determines cell survival and is frequently abnormal in B cell lymphomas. An evolutionarily conserved post-translational mechanism for over-expression of BCL2 in human B cell lymphomas and the BCL2 paralogue CED-9 in Caenorhabditis elegans results from loss-of-function mutations in human FBXO10 and its C.elegans paralogue DRE-1, a BCL2/CED-9-binding subunit of the SKP-CULLIN-FBOX (SCF) ubiquitin ligase. Here, we tested the role of FBXO10 in BCL2 regulation by producing mice with two different CRISPR/Cas9-engineered Fbxo10 mutations: an Asp54Lys (E54K) missense mutation in the FBOX domain and a Cys55SerfsTer55 frameshift (fs) truncating mutation. Mice homozygous for either mutant allele were born at the expected Mendelian frequency and appeared normal in body weight and appearance as adults. Spleen B cells from homozygous mutant mice did not have increased BCL2 protein, nor were the numbers of mature B cells or germinal centre B cells increased as would be expected if BCL2 was increased. Other lymphocyte subsets that are also regulated by BCL2 levels also displayed no difference in frequency in homozygous Fbxo10 mutant mice. These results support one of two conclusions: either FBXO10 does not regulate BCL2 in mice, or it does so redundantly with other ubiquitin ligase complexes. Possible candidates for the latter include FBXO11 or ARTS-XIAP. The difference between the role of FBXO10 in regulating BCL2 protein levels in C. elegans and in human DLBCL, relative to single-gene deficient mouse leukocytes, should be further investigated.
Collapse
Affiliation(s)
| | - Amanda Russell
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Yangguang Li
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Fen Zhu
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Lixin Rui
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Robert Brink
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Christopher C. Goodnow
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
43
|
Gai W, Peng Z, Liu CH, Zhang L, Jiang H. Advances in Cancer Treatment by Targeting the Neddylation Pathway. Front Cell Dev Biol 2021; 9:653882. [PMID: 33898451 PMCID: PMC8060460 DOI: 10.3389/fcell.2021.653882] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Developmental down-regulation protein 8 (NEDD8), expressed by neural progenitors, is a ubiquitin-like protein that conjugates to and regulates the biological function of its substrates. The main target of NEDD8 is cullin-RING E3 ligases. Upregulation of the neddylation pathway is closely associated with the progression of various tumors, and MLN4924, which inhibits NEDD8-activating enzyme (NAE), is a promising new antitumor compound for combination therapy. Here, we summarize the latest progress in anticancer strategies targeting the neddylation pathway and their combined applications, providing a theoretical reference for developing antitumor drugs and combination therapies.
Collapse
Affiliation(s)
- Wenbin Gai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Peixian People's Hospital, Xuzhou, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, Prasher P, Chellappan DK, Gupta G, Kumar Singh S, Paudel KR, Hansbro PM, Kumar Singh S, Ruokolainen J, Kesari KK, Dua K, Jha NK. The FBXW7-NOTCH interactome: A ubiquitin proteasomal system-induced crosstalk modulating oncogenic transformation in human tissues. Cancer Rep (Hoboken) 2021; 4:e1369. [PMID: 33822486 PMCID: PMC8388169 DOI: 10.1002/cnr2.1369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ubiquitin ligases or E3 ligases are well programmed to regulate molecular interactions that operate at a post-translational level. Skp, Cullin, F-box containing complex (or SCF complex) is a multidomain E3 ligase known to mediate the degradation of a wide range of proteins through the proteasomal pathway. The three-dimensional domain architecture of SCF family proteins suggests that it operates through a novel and adaptable "super-enzymatic" process that might respond to targeted therapeutic modalities in cancer. RECENT FINDINGS Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis. CONCLUSION The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.
Collapse
Affiliation(s)
- Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Ahmedabad, Gujarat, 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates
| | - Ankur Sharma
- Department of Life sciences, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sunny Dholpuria
- Department of Life sciences, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Venkata Sita Rama Raju
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, 2308, Australia
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, Uttar Pradesh, 226002, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | | | - Kamal Dua
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, 2308, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
45
|
Zhou Q, Zheng Y, Sun Y. Neddylation regulation of mitochondrial structure and functions. Cell Biosci 2021; 11:55. [PMID: 33731189 PMCID: PMC7968265 DOI: 10.1186/s13578-021-00569-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are the powerhouse of a cell. The structure and function of mitochondria are precisely regulated by multiple signaling pathways. Neddylation, a post-translational modification, plays a crucial role in various cellular processes including cellular metabolism via modulating the activity, function and subcellular localization of its substrates. Recently, accumulated data demonstrated that neddylation is involved in regulation of morphology, trafficking and function of mitochondria. Mechanistic elucidation of how mitochondria is modulated by neddylation would further our understanding of mitochondrial regulation to a new level. In this review, we first briefly introduce mitochondria, then neddylation cascade, and known protein substrates subjected to neddylation modification. Next, we summarize current available data of how neddylation enzymes, its substrates (including cullins/Cullin-RING E3 ligases and non-cullins) and its inhibitor MLN4924 regulate the structure and function of mitochondria. Finally, we propose the future perspectives on this emerging and exciting field of mitochondrial research.
Collapse
Affiliation(s)
- Qiyin Zhou
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Yawen Zheng
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
46
|
Hu X, Wang J, Chu M, Liu Y, Wang ZW, Zhu X. Emerging Role of Ubiquitination in the Regulation of PD-1/PD-L1 in Cancer Immunotherapy. Mol Ther 2021; 29:908-919. [PMID: 33388422 PMCID: PMC7934629 DOI: 10.1016/j.ymthe.2020.12.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
A growing amount of evidence suggests that ubiquitination and deubiquitination of programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) play crucial roles in the regulation of PD-1 and PD-L1 protein stabilization and dynamics. PD-1/PD-L1 is a major coinhibitory checkpoint pathway that modulates immune escape in cancer patients, and its engagement and inhibition has significantly reshaped the landscape of tumor clearance. The abnormal ubiquitination and deubiquitination of PD-1/PD-L1 influence PD-1/PD-L1-mediated immunosuppression. In this review, we describe the ubiquitination- and deubiquitination-mediated modulation of PD-1/PD-L1 signaling through a variety of E3 ligases and deubiquitinating enzymes (DUBs). Moreover, we briefly expound on the anticancer potential of some agents that target related E3 ligases, which further modulate the ubiquitination of PD-1/PD-L1 in cancers. Therefore, this review reveals the development of a highly promising therapeutic approach for cancer immunotherapy by targeting PD-1/PD-L1 ubiquitination.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
47
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
48
|
Zhang L, Chen WS, Lv ZY, Sun WJ, Jiang R, Chen JF, Ying X. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_20_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
49
|
Barbosa P, Zhaunova L, Debilio S, Steccanella V, Kelly V, Ly T, Ohkura H. SCF-Fbxo42 promotes synaptonemal complex assembly by downregulating PP2A-B56. J Cell Biol 2020; 220:211645. [PMID: 33382409 PMCID: PMC7780726 DOI: 10.1083/jcb.202009167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Meiosis creates genetic diversity by recombination and segregation of chromosomes. The synaptonemal complex assembles during meiotic prophase I and assists faithful exchanges between homologous chromosomes, but how its assembly/disassembly is regulated remains to be understood. Here, we report how two major posttranslational modifications, phosphorylation and ubiquitination, cooperate to promote synaptonemal complex assembly. We found that the ubiquitin ligase complex SCF is important for assembly and maintenance of the synaptonemal complex in Drosophila female meiosis. This function of SCF is mediated by two substrate-recognizing F-box proteins, Slmb/βTrcp and Fbxo42. SCF-Fbxo42 down-regulates the phosphatase subunit PP2A-B56, which is important for synaptonemal complex assembly and maintenance.
Collapse
Affiliation(s)
- Pedro Barbosa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Liudmila Zhaunova
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Simona Debilio
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Verdiana Steccanella
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Van Kelly
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK,Correspondence to Hiroyuki Ohkura:
| |
Collapse
|
50
|
Liang Y, Nandakumar KS, Cheng K. Design and pharmaceutical applications of proteolysis-targeting chimeric molecules. Biochem Pharmacol 2020; 182:114211. [DOI: 10.1016/j.bcp.2020.114211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|