1
|
Zhang Y, Naaz A, Cheng TYN, Lin JJ, Gao M, Dorajoo R, Alfatah M. Systematic transcriptomics analysis of calorie restriction and rapamycin unveils their synergistic interaction in prolonging cellular lifespan. Commun Biol 2025; 8:753. [PMID: 40369174 PMCID: PMC12078523 DOI: 10.1038/s42003-025-08178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Aging is a multifaceted biological process marked by the decline in both mitotic and postmitotic cellular function, often central to the development of age-related diseases. In the pursuit of slowing or even reversing the aging process, a prominent strategy of significant interest is calorie restriction (CR), also known as dietary restriction, and the potential influence of a drug called rapamycin (RM). Both CR and RM have demonstrated the capacity to extend healthspan and lifespan across a diverse array of species, including yeast, worms, flies, and mice. Nevertheless, their individual and combined effects on mitotic and postmitotic cells, as well as their comparative analysis, remain areas that demand a thorough investigation. In this study, we employ RNA-sequencing methodologies to comprehensively analyze the impact of CR, RM, and their combination (CR + RM) on gene expression in yeast cells. Our analysis uncovers distinctive, overlapping, and even contrasting patterns of gene regulation, illuminating the unique and shared effects of CR and RM. Furthermore, the transcriptional synergistic interaction of CR + RM is validated in extending the lifespan of both yeast and human cells.
Collapse
Affiliation(s)
- Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mingtong Gao
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore.
| |
Collapse
|
2
|
Chadwick AL, Shi C, McMillan M, Miller J, Hu J, Geiger PC. The impact of a heat therapy intervention on pain and fibromyalgia symptoms in patients with fibromyalgia: a pilot study. FRONTIERS IN PAIN RESEARCH 2025; 6:1526491. [PMID: 40182803 PMCID: PMC11966051 DOI: 10.3389/fpain.2025.1526491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction FM is characterized by widespread musculoskeletal pain and associated somatic symptoms including fatigue, cognitive difficulties, and problems with sleeping. Multidisciplinary treatment of fibromyalgia including pharmacologic and non-pharmacologic interventions are recommended to improve symptoms and physical functioning. The goal of the present pilot investigation was to evaluate the effects of heat therapy via hot water immersion on clinical and objective pain measures in addition to blood measurements of heat shock proteins (HSPs) and inflammatory markers in patients with FM. Methods After screening, informed consent, and enrollment into the study, all subjects underwent a baseline pre-intervention evaluation which included a battery of pain phenotyping questionnaires, quantitative sensory testing, and collection of blood for measurements of HSPs and inflammatory markers. Subjects received heat therapy three times a week for four weeks, where they were immersed in hot water for 45 min. After four weeks, participants completed the same battery of testing done at baseline. Results We found that four weeks of heat therapy via hot water immersion in patients with FM showed statistically significant reductions in average and worst pain NRS severity scores when compared to baseline. There was also statistically significant improvement in overall impact of fibromyalgia symptoms, physical function, and sleep-related impairment. Regarding heat shock proteins, there was a statistically significant reduction in HSP90 and induction of HSP40 and HSC70. The number of extracellular vesicles were also statistically significantly increased. There were no statistically significant changes found in depression, anxiety, quantitative sensory testing measures, or pro- or anti-inflammatory markers. Conclusions As a whole, these findings suggest that heat therapy via hot water immersion may be an effective non-pharmaceutical intervention for patients with FM and that its analgesic benefits may be related to decreases in HSP 90 and increases in HSP 40 and 72. Further large-scale, well-powered studies are needed to confirm our preliminary clinical and translational results.
Collapse
Affiliation(s)
- Andrea L. Chadwick
- Department of Anesthesiology, Pain, and Perioperative Medicine, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Chloe Shi
- School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Miranda McMillan
- Department of Anesthesiology, Pain, and Perioperative Medicine, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Josh Miller
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Jinxiang Hu
- Department of Biostatistics and Data Science, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Paige C. Geiger
- Department of Cell Biology and Physiology, University of Kansas School of Medicine, Kansas City, KS, United States
| |
Collapse
|
3
|
Mobaraki M, Deng C, Zheng J, Li H. Yeast aging from a dynamic systems perspective: Analysis of single cell trajectories reveals significant interplay between nuclear size scaling, proteasome dynamics, and mitochondrial morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642143. [PMID: 40161634 PMCID: PMC11952390 DOI: 10.1101/2025.03.11.642143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Yeast replicative aging is cell autonomous and thus a good model for mechanistic study from a dynamic systems perspective. Utilizing an engineered strain of yeast with a switchable genetic program to arrest daughter cells (without affecting mother cell divisions) and a high throughput microfluidic device, we systematically analyze the dynamic trajectories of thousands of single yeast mother cells throughout their lifespan, using fluorescent reporters that cover a range of biological processes, including some major aging hallmarks. We found that the markers of proteostasis stand out as most predictive of the lifespan of individual cells. In particular, nuclear proteasome concentration at middle age is a good predictor. We found that cell size (measured by area) grows linearly with time, and that nuclear size grows in proportion to maintain isometric scaling in young cells. As the cells become older, their nuclear size increases faster than linear and isometric size scaling breaks down. We observed that proteasome concentration in the nucleus exhibits dynamics very different from that in cytoplasm, with much more rapid decrease during aging; such dynamic behavior can be accounted for by the change of nuclear size in a simple mathematical model of transport. We hypothesize that the gradual increase of cell size and the associated nuclear size increase lead to the dilution of important nuclear factors (such as proteasome) that drives aging. We also show that perturbing proteasome changes mitochondria morphology and function, but not vice versa, potentially placing the change of proteosome upstream of the change of mitochondrial phenotypes. Our study produced large scale single cell dynamic data that can serve as a valuable resource for the aging research community to analyze the dynamics of other markers and potential causal relations between them. It is also a useful resource for building and testing physics/AI based models that identify early dynamics events predictive of lifespan and can be targets for longevity interventions.
Collapse
Affiliation(s)
- Michael Mobaraki
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Developmental Stem Cell Biology Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Changhui Deng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Fischbach A, Widlund PO, Hao X, Nyström T. mTOR signaling controls protein aggregation during heat stress and cellular aging in a translation- and Hsf1-independent manner. J Biol Chem 2025; 301:108172. [PMID: 39798875 PMCID: PMC11849620 DOI: 10.1016/j.jbc.2025.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway appears central to the aging process as genetic or pharmacological inhibition of mTOR extends lifespan in most eukaryotes tested. While the regulation of protein synthesis by mTOR has been studied in great detail, its impact on protein misfolding and aggregation during stress and aging is less explored. In this study, we identified the mTOR signaling pathway and the linked Seh1-associated complex as central nodes of protein aggregation during heat stress and cellular aging, using Saccharomyces cerevisiae as a model organism. Based on a synthetic genetic array screen, we found that reduced mTOR activity, achieved through deletion of TCO89, an mTORC1 subunit, almost completely prevents protein aggregation during heat stress and aging without reducing global translation rates and independently of an Hsf1-dependent stress response. Conversely, increased mTOR activity, achieved through deletion of NPR3, a Seh1-associated complex subunit, exacerbates protein aggregation, but not by overactivating translation. In summary, our work demonstrates that mTOR signaling is a central contributor to age-associated and heat shock-induced protein aggregation, and that this is unlinked to quantitatively discernable effects on translation and Hsf1.
Collapse
Affiliation(s)
- Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| | - Per O Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Lucca C, Ferrari E, Shubassi G, Ajazi A, Choudhary R, Bruhn C, Matafora V, Bachi A, Foiani M. Sch9 S6K controls DNA repair and DNA damage response efficiency in aging cells. Cell Rep 2024; 43:114281. [PMID: 38805395 DOI: 10.1016/j.celrep.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.
Collapse
Affiliation(s)
- Chiara Lucca
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Elisa Ferrari
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Ghadeer Shubassi
- AtomVie Global Radiopharma Inc., 1280 Main Street W NRB-A316, Hamilton, ON L8S-4K1, Canada
| | - Arta Ajazi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ramveer Choudhary
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Christopher Bruhn
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, CNR, Pavia, Italy.
| |
Collapse
|
6
|
Ushiyama Y, Nishida I, Tomiyama S, Tanaka H, Kume K, Hirata D. Search for protein kinase(s) related to cell growth or viability maintenance in the presence of ethanol in budding and fission yeasts. Biosci Biotechnol Biochem 2024; 88:804-815. [PMID: 38592956 DOI: 10.1093/bbb/zbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Alcohol fermentation comprises two phases: phase 1, alcohol fermentation occurs while yeast cells proliferate; phase 2, growth stops and alcohol fermentation continues. We categorized genes related to proliferation in low ethanol (phase 1) and viability in high ethanol (phase 2) as Alcohol Growth Ability (AGA) and Alcohol Viability (ALV), respectively. Although genes required for phase 1 are examined in budding yeast, those for phase 2 are unknown. We set conditions for ALV screening, searched for protein kinases (PKs) related to ALV in budding yeast, and expanded two screenings to fission yeast. Bub1 kinase was important for proliferation in low ethanol but not for viability in high ethanol, suggesting that the important PKs differ between the two phases. It was indeed the case. Further, 3 common PKs were identified as AGA in both yeasts, suggesting that the important cellular mechanism in phase 1 is conserved in both yeasts, at least partially.
Collapse
Affiliation(s)
- Yuto Ushiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Ikuhisa Nishida
- Sakeology Center, Niigata University, Ikarashi, Niigata, Japan
| | - Saki Tomiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Hitomi Tanaka
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Kazunori Kume
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
- Sakeology Center, Niigata University, Ikarashi, Niigata, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
7
|
Garadi Suresh H, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, Masinas MPD, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked free polyubiquitin chains affect ribosome biogenesis and direct ribosomal proteins to the intranuclear quality control compartment. Mol Cell 2024; 84:2337-2352.e9. [PMID: 38870935 PMCID: PMC11193623 DOI: 10.1016/j.molcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland; Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
8
|
Rybchuk J, Xiao W. Dual activities of a silencing information regulator complex in yeast transcriptional regulation and DNA-damage response. MLIFE 2024; 3:207-218. [PMID: 38948145 PMCID: PMC11211678 DOI: 10.1002/mlf2.12108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 07/02/2024]
Abstract
The Saccharomyces cerevisiae silencing information regulator (SIR) complex contains up to four proteins, namely Sir1, Sir2, Sir3, and Sir4. While Sir2 encodes a NAD-dependent histone deacetylase, other SIR proteins mainly function as structural and scaffold components through physical interaction with various proteins. The SIR complex displays different conformation and composition, including Sir2 homotrimer, Sir1-4 heterotetramer, Sir2-4 heterotrimer, and their derivatives, which recycle and relocate to different chromosomal regions. Major activities of the SIR complex are transcriptional silencing through chromosomal remodeling and modulation of DNA double-strand-break repair pathways. These activities allow the SIR complex to be involved in mating-type maintenance and switching, telomere and subtelomere gene silencing, promotion of nonhomologous end joining, and inhibition of homologous recombination, as well as control of cell aging. This review explores the potential link between epigenetic regulation and DNA damage response conferred by the SIR complex under various conditions aiming at understanding its roles in balancing cell survival and genomic stability in response to internal and environmental stresses. As core activities of the SIR complex are highly conserved in eukaryotes from yeast to humans, knowledge obtained in the yeast may apply to mammalian Sirtuin homologs and related diseases.
Collapse
Affiliation(s)
- Josephine Rybchuk
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
- Toxicology ProgramUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
9
|
Hong S, Lee HG, Huh WK. ARV1 deficiency induces lipid bilayer stress and enhances rDNA stability by activating the unfolded protein response in Saccharomyces cerevisiae. J Biol Chem 2024; 300:107273. [PMID: 38588806 PMCID: PMC11089378 DOI: 10.1016/j.jbc.2024.107273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
The stability of ribosomal DNA (rDNA) is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2 in Saccharomyces cerevisiae. Alongside proteostasis, rDNA stability is a crucial factor regulating the replicative lifespan of S. cerevisiae. The unfolded protein response (UPR) is induced by misfolding of proteins or an imbalance of membrane lipid composition and is responsible for degrading misfolded proteins and restoring endoplasmic reticulum (ER) membrane homeostasis. Recent investigations have suggested that the UPR can extend the replicative lifespan of yeast by enhancing protein quality control mechanisms, but the relationship between the UPR and rDNA stability remains unknown. In this study, we found that the deletion of ARV1, which encodes an ER protein of unknown molecular function, activates the UPR by inducing lipid bilayer stress. In arv1Δ cells, the UPR and the cell wall integrity pathway are activated independently of each other, and the high osmolarity glycerol (HOG) pathway is activated in a manner dependent on Ire1, which mediates the UPR. Activated Hog1 translocates the stress response transcription factor Msn2 to the nucleus, where it promotes the expression of nicotinamidase Pnc1, a well-known Sir2 activator. Following Sir2 activation, rDNA silencing and rDNA stability are promoted. Furthermore, the loss of other ER proteins, such as Pmt1 or Bst1, and ER stress induced by tunicamycin or inositol depletion also enhance rDNA stability in a Hog1-dependent manner. Collectively, these findings suggest that the induction of the UPR enhances rDNA stability in S. cerevisiae by promoting the Msn2-Pnc1-Sir2 pathway in a Hog1-dependent manner.
Collapse
Affiliation(s)
- Sujin Hong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeon-Geun Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Gómez-Montalvo J, de Obeso Fernández del Valle A, De la Cruz Gutiérrez LF, Gonzalez-Meljem JM, Scheckhuber CQ. Replicative aging in yeast involves dynamic intron retention patterns associated with mRNA processing/export and protein ubiquitination. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:69-78. [PMID: 38414808 PMCID: PMC10897858 DOI: 10.15698/mic2024.02.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Saccharomyces cerevisiae (baker's yeast) has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Several genes are known to have an impact on the aging process, with corresponding mutants exhibiting short- or long-lived phenotypes. Research dedicated to unraveling the underlying cellular mechanisms can support the identification of conserved mechanisms of aging in other species. One of the hitherto less studied fields in yeast aging is how the organism regulates its gene expression at the transcriptional level. To our knowledge, we present the first investigation into alternative splicing, particularly intron retention, during replicative aging of S. cerevisiae. This was achieved by utilizing the IRFinder algorithm on a previously published RNA-seq data set by Janssens et al. (2015). In the present work, 44 differentially retained introns in 43 genes were identified during replicative aging. We found that genes with altered intron retention do not display significant changes in overall transcript levels. It was possible to functionally assign distinct groups of these genes to the cellular processes of mRNA processing and export (e.g., YRA1) in early and middle-aged yeast, and protein ubiquitination (e.g., UBC5) in older cells. In summary, our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker's yeast.
Collapse
Affiliation(s)
- Jesús Gómez-Montalvo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | | | | - Jose Mario Gonzalez-Meljem
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | |
Collapse
|
11
|
Ölmez TT, Moreno DF, Liu P, Johnson ZM, McGinnis MM, Tu BP, Hochstrasser M, Acar M. Sis2 regulates yeast replicative lifespan in a dose-dependent manner. Nat Commun 2023; 14:7719. [PMID: 38012152 PMCID: PMC10682402 DOI: 10.1038/s41467-023-43233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
Application of microfluidic platforms facilitated high-precision measurements of yeast replicative lifespan (RLS); however, comparative quantification of lifespan across strain libraries has been missing. Here we microfluidically measure the RLS of 307 yeast strains, each deleted for a single gene. Despite previous reports of extended lifespan in these strains, we found that 56% of them did not actually live longer than the wild-type; while the remaining 44% showed extended lifespans, the degree of extension was often different from what was previously reported. Deletion of SIS2 gene led to the largest RLS increase observed. Sis2 regulated yeast lifespan in a dose-dependent manner, implying a role for the coenzyme A biosynthesis pathway in lifespan regulation. Introduction of the human PPCDC gene in the sis2Δ background neutralized the lifespan extension. RNA-seq experiments revealed transcriptional increases in cell-cycle machinery components in sis2Δ background. High-precision lifespan measurement will be essential to elucidate the gene network governing lifespan.
Collapse
Affiliation(s)
- Tolga T Ölmez
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Koç University Research Center for Translational Medicine, Koç University, Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, 67400, France
| | - Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zane M Johnson
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Madeline M McGinnis
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Hochstrasser
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey.
| |
Collapse
|
12
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
14
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
15
|
Zhao W, Kong L, Guan W, Liu J, Cui H, Cai M, Fang B, Liu X. Yeast UPS1 deficiency leads to UVC radiation sensitivity and shortened lifespan. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01847-8. [PMID: 37222845 DOI: 10.1007/s10482-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
UPS1/YLR193C of Saccharomyces cerevisiae (S. cerevisiae) encodes a mitochondrial intermembrane space protein. A previous study found that Ups1p is needed for normal mitochondrial morphology and that UPS1 deficiency disrupts the intramitochondrial transport of phosphatidic acid in yeast cells and leads to an altered unfolded protein response and mTORC1 signaling activation. In this paper, we first provide evidence showing that the UPS1 gene is involved in the UVC-induced DNA damage response and aging. We show that UPS1 deficiency leads to sensitivity to ultraviolet C (UVC) radiation and that this effect is accompanied by elevated DNA damage, increased intracellular ROS levels, abnormal mitochondrial respiratory function, an increased early apoptosis rate, and shortened replicative lifespan and chronological lifespan. Moreover, we show that overexpression of the DNA damage-induced checkpoint gene RAD9 effectively eliminates the senescence-related defects observed in the UPS1-deficient strain. Collectively, these results suggest a novel role for UPS1 in the UVC-induced DNA damage response and aging.
Collapse
Affiliation(s)
- Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Lingyue Kong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenbin Guan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaxin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongjing Cui
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Mianshan Cai
- Precision Medicine Centre, Department of Pediatrics, Puning People's Hospital, Puning, 515300, Guangdong, China
| | - Bingxiong Fang
- Precision Medicine Centre, Department of Pediatrics, Puning People's Hospital, Puning, 515300, Guangdong, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
16
|
Fischbach A, Johns A, Schneider KL, Hao X, Tessarz P, Nyström T. Artificial Hsp104-mediated systems for re-localizing protein aggregates. Nat Commun 2023; 14:2663. [PMID: 37160881 PMCID: PMC10169802 DOI: 10.1038/s41467-023-37706-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Spatial Protein Quality Control (sPQC) sequesters misfolded proteins into specific, organelle-associated inclusions within the cell to control their toxicity. To approach the role of sPQC in cellular fitness, neurodegenerative diseases and aging, we report on the construction of Hsp100-based systems in budding yeast cells, which can artificially target protein aggregates to non-canonical locations. We demonstrate that aggregates of mutant huntingtin (mHtt), the disease-causing agent of Huntington's disease can be artificially targeted to daughter cells as well as to eisosomes and endosomes with this approach. We find that the artificial removal of mHtt inclusions from mother cells protects them from cell death suggesting that even large mHtt inclusions may be cytotoxic, a trait that has been widely debated. In contrast, removing inclusions of endogenous age-associated misfolded proteins does not significantly affect the lifespan of mother cells. We demonstrate also that this approach is able to manipulate mHtt inclusion formation in human cells and has the potential to be useful as an alternative, complementary approach to study the role of sPQC, for example in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Angela Johns
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Peter Tessarz
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
17
|
Suresh HG, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, David Masinas MP, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked unanchored polyubiquitin chains disrupt ribosome biogenesis and direct ribosomal proteins to the Intranuclear Quality control compartment (INQ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539259. [PMID: 37205480 PMCID: PMC10187189 DOI: 10.1101/2023.05.03.539259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with Ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs), Ubp2 and Ubp14, and E3 ligases, Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the Ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the Intranuclear Quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with Ribosomopathies.
Collapse
|
18
|
Mołoń M, Zaciura M, Wojdyła D, Molestak E. Increasing the number of ribosomal uL6 mRNA copies accelerates aging of the budding yeast. Mol Biol Rep 2023; 50:2933-2941. [PMID: 36576675 PMCID: PMC10011313 DOI: 10.1007/s11033-022-08187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Aging is a biological process from which there is no escape. Diverse factors contribute to aging, most notably cell energy metabolism. Ribosome biogenesis and translation are the two main energy-consuming processes that contribute to longevity. It has repeatedly been shown that translation disorders caused by deletion of ribosomal genes delay aging. However, the effect of increasing the amount of ribosomal proteins has remained elusive. METHODS AND RESULTS We determine the relative level of the uL6A and uL6B mRNA derived from the genome and the plasmid. The appearance of additional copies of plasmid-derived uL6 leads to an increase in uL6A and uL6B derived from the BY4741 genome (mainly form B). The relative amount of mRNA of plasmid form B is several times greater than the amount of mRNA in plasmid form A. The level of mRNA derived from the plasmid is increased many times compared to the mRNA of genomic origin. Additionally, the study indicates that excess of uL6A is a limiting or even harmful factor in the reaction to stressful conditions. Therefore, our hypothesis states that uL6A transcription or mRNA uL6A degradation in yeast cells are tightly regulated. our data clearly demonstrate that aging is accelerated when additional copies of uL6 paralogs appear. CONCLUSION Overexpression of both uL6A or uL6B accelerates aging in the budding yeast. The level of uL6A mRNA is tightly controlled by yeast cell. The uL6a protein plays a pivotal role in the response to environmental stress, including oxidative and osmotic stress, and thus may fall into the class of moonlighting ribosomal proteins with extra-ribosomal function.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland.
| | - Monika Zaciura
- Department of Molecular Biology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dominik Wojdyła
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
19
|
Eigenfeld M, Kerpes R, Whitehead I, Becker T. Autofluorescence prediction model for fluorescence unmixing and age determination. Biotechnol J 2022; 17:e2200091. [DOI: 10.1002/biot.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Marco Eigenfeld
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Roland Kerpes
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Iain Whitehead
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Thomas Becker
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| |
Collapse
|
20
|
Bari KA, Berg MD, Genereaux J, Brandl CJ, Lajoie P. Tra1 controls the transcriptional landscape of the aging cell. G3 (BETHESDA, MD.) 2022; 13:6782959. [PMID: 36315064 PMCID: PMC9836359 DOI: 10.1093/g3journal/jkac287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Collapse
Affiliation(s)
- Khaleda Afrin Bari
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Present address for Matthew D Berg: Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada,Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Corresponding author: Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
21
|
Multifarious Translational Regulation during Replicative Aging in Yeast. J Fungi (Basel) 2022; 8:jof8090938. [PMID: 36135663 PMCID: PMC9500732 DOI: 10.3390/jof8090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Protein synthesis is strictly regulated during replicative aging in yeast, but global translational regulation during replicative aging is poorly characterized. To conduct ribosome profiling during replicative aging, we collected a large number of dividing aged cells using a miniature chemostat aging device. Translational efficiency, defined as the number of ribosome footprints normalized to transcript abundance, was compared between young and aged cells for each gene. We identified more than 700 genes with changes greater than twofold during replicative aging. Increased translational efficiency was observed in genes involved in DNA repair and chromosome organization. Decreased translational efficiency was observed in genes encoding ribosome components, transposon Ty1 and Ty2 genes, transcription factor HAC1 gene associated with the unfolded protein response, genes involved in cell wall synthesis and assembly, and ammonium permease genes. Our results provide a global view of translational regulation during replicative aging, in which the pathways involved in various cell functions are translationally regulated and cause diverse phenotypic changes.
Collapse
|
22
|
Schnitzer B, Österberg L, Skopa I, Cvijovic M. Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing. PLoS Comput Biol 2022; 18:e1010261. [PMID: 35797415 PMCID: PMC9295998 DOI: 10.1371/journal.pcbi.1010261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iro Skopa
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Cui Y, Cao J, Wu Z, Du J. The Effects of Harvesting Methods and Crop Numbers of Top-Fermenting Yeasts on the Flavor of Wheat Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2081958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yunqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jing Cao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Zimeng Wu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Junjie Du
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| |
Collapse
|
24
|
Zamzam G, Lee CW, Milne F, Etsell J, Durnford DG. Live long and prosper: Acetate and its effects on longevity in batch culturing of Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Kong Y, Zhao Y, Yu Y, Su W, Liu Z, Fei Y, Ma J, Mi L. Single cell sorting of young yeast based on label-free fluorescence lifetime imaging microscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202100344. [PMID: 34978383 DOI: 10.1002/jbio.202100344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Saccharomyces cerevisiae is an attractive organism used in the fermentation industry and is an important model organism for virus research. The ability to sort yeast cells is important for diverse applications. Replicative aging of Saccharomyces Cerevisiae is accompanied by metabolic changes that are related to an essential coenzyme, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H). Here, a single cell sorting method based on fluorescence lifetime imaging microscopy (FLIM) and laser-induced forward transfer (LIFT) was implemented for the first time. The aging level of yeast was determined based on the FLIM by NAD(P)H, which was a label-free and noninvasive method for studying individual cells. Then, young and active yeast cells were sorted by the LIFT system at the single cell level. During the entire experiment, a sterile and humid environment was maintained to ensure the activity of cells. The high viability of sorted cells was achieved by the LIFT combining with FLIM.
Collapse
Affiliation(s)
- Yawei Kong
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yinping Zhao
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yao Yu
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, Shanghai, China
| | - Wenhua Su
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhijia Liu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai, China
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, Shanghai, China
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai, China
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
27
|
Increased peroxisome proliferation is associated with early yeast replicative ageing. Curr Genet 2022; 68:207-225. [DOI: 10.1007/s00294-022-01233-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022]
|
28
|
Yoon SY, Jang E, Ko N, Kim M, Kim SY, Moon Y, Nam JS, Lee S, Jun Y. A Genome-Wide Screen Reveals That Endocytic Genes Are Important for Pma1p Asymmetry during Cell Division in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23042364. [PMID: 35216480 PMCID: PMC8874555 DOI: 10.3390/ijms23042364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
An asymmetry in cytosolic pH between mother and daughter cells was reported to underlie cellular aging in the budding yeast Saccharomyces cerevisiae; however, the underlying mechanism remains unknown. Preferential accumulation of Pma1p, which pumps cytoplasmic protons out of cells, at the plasma membrane of mother cells, but not of their newly-formed daughter cells, is believed to be responsible for the pH increase in mother cells by reducing the level of cytoplasmic protons. This, in turn, decreases the acidity of vacuoles, which is well correlated with aging of yeast cells. In this study, to identify genes that regulate the preferential accumulation of Pma1p in mother cells, we performed a genome-wide screen using a collection of single gene deletion yeast strains. A subset of genes involved in the endocytic pathway, such as VPS8, VPS9, and VPS21, was important for Pma1p accumulation. Unexpectedly, however, there was little correlation between deletion of each of these genes and the replicative lifespan of yeast, suggesting that Pma1p accumulation in mother cells is not the key determinant that underlies aging of mother cells.
Collapse
Affiliation(s)
- So-Young Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Eunhong Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Naho Ko
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Minseok Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Su Yoon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
| | - Yeojin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
- Correspondence: ; Tel.: +82-62-715-2510
| |
Collapse
|
29
|
Kang PJ, Mullner R, Li H, Hansford D, Shen HW, Park HO. Upregulation of the Cdc42 GTPase limits the replicative lifespan of budding yeast. Mol Biol Cell 2022; 33:br5. [PMID: 35044837 PMCID: PMC9250358 DOI: 10.1091/mbc.e21-04-0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown. Here we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact life span likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter life span, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the life span of budding yeast.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel Mullner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Haoyu Li
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Han-Wei Shen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
31
|
Eigenfeld M, Kerpes R, Becker T. Recombinant protein linker production as a basis for non-invasive determination of single-cell yeast age in heterogeneous yeast populations. RSC Adv 2021; 11:31923-31932. [PMID: 35495491 PMCID: PMC9041608 DOI: 10.1039/d1ra05276d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
The physiological and metabolic diversity of a yeast culture is the sum of individual cell phenotypes. As well as environmental conditions, genetics, and numbers of cell divisions, a major factor influencing cell characteristics is cell age. A postcytokinesis bud scar on the mother cell, a benchmark in the replicative life span, is a quantifiable indicator of cell age, characterized by significant amounts of chitin. We developed a binding process for visualizing the bud scars of Saccharomyces pastorianus var. carlsbergensis using a protein linker containing a polyhistidine tag, a superfolder green fluorescent protein (sfGFP), and a chitin-binding domain (His6-SUMO-sfGFP-ChBD). The binding did not affect yeast viability; thus, our method provides the basis for non-invasive cell age determination using flow cytometry. The His6-SUMO-sfGFP-ChBD protein was synthesized in Escherichia coli, purified using two-stage chromatography, and checked for monodispersity and purity. Linker-cell binding and the characteristics of the bound complex were determined using flow cytometry and confocal laser scanning microscopy (CLSM). Flow cytometry showed that protein binding increased to 60 455 ± 2706 fluorescence units per cell. The specific coupling of the linker to yeast cells was additionally verified by CLSM and adsorption isotherms using yeast cells, E. coli cells, and chitin resin. We found a relationship between the median bud scar number, the median of the fluorescence units, and the chitin content of yeast cells. A fast measurement of yeast population dynamics by flow cytometry is possible, using this protein binding technique. Rapid qualitative determination of yeast cell age distribution can therefore be performed.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Technical University of Munich, Chair of Brewing and Beverage Technology, Research Group Beverage and Cereal Biotechnology Weihenstephaner Steig 20 85354 Freising Germany
| | - Roland Kerpes
- Technical University of Munich, Chair of Brewing and Beverage Technology, Research Group Beverage and Cereal Biotechnology Weihenstephaner Steig 20 85354 Freising Germany
| | - Thomas Becker
- Technical University of Munich, Chair of Brewing and Beverage Technology, Research Group Beverage and Cereal Biotechnology Weihenstephaner Steig 20 85354 Freising Germany
| |
Collapse
|
32
|
Jung H, Ling H, Tan YQ, Chua NH, Yew WS, Chang MW. Heterologous expression of cyanobacterial gas vesicle proteins in Saccharomyces cerevisiae. Biotechnol J 2021; 16:e2100059. [PMID: 34499423 DOI: 10.1002/biot.202100059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Given the potential applications of gas vesicles (GVs) in multiple fields including antigen-displaying and imaging, heterologous reconstitution of synthetic GVs is an attractive and interesting study that has translational potential. Here, we attempted to express and assemble GV proteins (GVPs) into GVs using the model eukaryotic organism Saccharomyces cerevisiae. We first selected and expressed two core structural proteins, GvpA and GvpC from cyanobacteria Anabaena flos-aquae and Planktothrix rubescens, respectively. We then optimized the protein production conditions and validated GV assembly in the context of GV shapes. We found that when two copies of anaA were integrated into the genome, the chromosomal expression of AnaA resulted in GV production regardless of GvpC expression. Next, we co-expressed chaperone-RFP with the GFP-AnaA to aid the AnaA aggregation. The co-expression of individual chaperones (Hsp42, Sis1, Hsp104, and GvpN) with AnaA led to the formation of larger inclusions and enhanced the sequestration of AnaA into the perivacuolar site. To our knowledge, this represents the first study on reconstitution of GVs in S. cerevisiae. Our results could provide insights into optimizing conditions for heterologous protein production as well as the reconstitution of other synthetic microcompartments in yeast.
Collapse
Affiliation(s)
- Harin Jung
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Yong Quan Tan
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Nam-Hai Chua
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore.,Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Wilmar-NUS Corporate Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Sun Y, Yu R, Guo HB, Qin H, Dang W. A quantitative yeast aging proteomics analysis reveals novel aging regulators. GeroScience 2021; 43:2573-2593. [PMID: 34241809 DOI: 10.1007/s11357-021-00412-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Calorie restriction (CR) is the most robust longevity intervention, extending lifespan from yeast to mammals. Numerous conserved pathways regulating aging and mediating CR have been identified; however, the overall proteomic changes during these conditions remain largely unexplored. We compared proteomes between young and replicatively aged yeast cells under normal and CR conditions using the Stable-Isotope Labeling by Amino acids in Cell culture (SILAC) quantitative proteomics and discovered distinct signatures in the aging proteome. We found remarkable proteomic similarities between aged and CR cells, including induction of stress response pathways, providing evidence that CR pathways are engaged in aged cells. These observations also uncovered aberrant changes in mitochondria membrane proteins as well as a proteolytic cellular state in old cells. These proteomics analyses help identify potential genes and pathways that have causal effects on longevity.
Collapse
Affiliation(s)
- Yu Sun
- Huffington Center On Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ruofan Yu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hao-Bo Guo
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, The University of Tennessee At Chattanooga, Chattanooga, TN, 37403, USA
| | - Hong Qin
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, The University of Tennessee At Chattanooga, Chattanooga, TN, 37403, USA
| | - Weiwei Dang
- Huffington Center On Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Fuhrmann-Lieker T, Kubetschek N, Ziebarth J, Klassen R, Seiler W. Is the diatom sex clock a clock? J R Soc Interface 2021; 18:20210146. [PMID: 34129790 PMCID: PMC8205531 DOI: 10.1098/rsif.2021.0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The unique life cycle of diatoms with continuous decreasing and restoration of the cell size leads to periodic fluctuations in cell size distribution and has been regarded as a multi-annual clock. To understand the long-term behaviour of a population analytically, generic mathematical models are investigated algebraically and numerically for their capability to describe periodic oscillations. Whereas the generally accepted simple concepts for the proliferation dynamics do not sustain oscillating behaviour owing to broadening of the size distribution, simulations show that a proposed limited lifetime of a newly synthesized cell wall slows down the relaxation towards a time-invariant equilibrium state to the order of a hundred thousand generations. In combination with seasonal perturbation events, the proliferation scheme with limited lifetime is able to explain long-lasting rhythms that are characteristic for diatom population dynamics. The life cycle thus resembles a pendulum clock that has to be wound up from time to time by seasonal perturbations rather than an oscillator represented by a limit cycle.
Collapse
Affiliation(s)
- Thomas Fuhrmann-Lieker
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel, 34109 Kassel, Germany
| | - Nico Kubetschek
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel, 34109 Kassel, Germany
| | - Jonas Ziebarth
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel, 34109 Kassel, Germany
| | - Roland Klassen
- Microbiology, Institute of Biology and Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel, 34109 Kassel, Germany
| | - Werner Seiler
- Algorithmic Algebra and Discrete Mathematics, Institute of Mathematics, Faculty of Mathematics and Natural Sciences, University of Kassel, 34109 Kassel, Germany
| |
Collapse
|
35
|
Mattiazzi Usaj M, Yeung CHL, Friesen H, Boone C, Andrews BJ. Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations. Cell Syst 2021; 12:608-621. [PMID: 34139168 PMCID: PMC9112900 DOI: 10.1016/j.cels.2021.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Single-cell image analysis provides a powerful approach for studying cell-to-cell heterogeneity, which is an important attribute of isogenic cell populations, from microbial cultures to individual cells in multicellular organisms. This phenotypic variability must be explained at a mechanistic level if biologists are to fully understand cellular function and address the genotype-to-phenotype relationship. Variability in single-cell phenotypes is obscured by bulk readouts or averaging of phenotypes from individual cells in a sample; thus, single-cell image analysis enables a higher resolution view of cellular function. Here, we consider examples of both small- and large-scale studies carried out with isogenic cell populations assessed by fluorescence microscopy, and we illustrate the advantages, challenges, and the promise of quantitative single-cell image analysis.
Collapse
Affiliation(s)
- Mojca Mattiazzi Usaj
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Clarence Hue Lok Yeung
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Helena Friesen
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; RIKEN Centre for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Brenda J Andrews
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
36
|
Wauters R, Britton SJ, Verstrepen KJ. Old yeasts, young beer-The industrial relevance of yeast chronological life span. Yeast 2021; 38:339-351. [PMID: 33978982 PMCID: PMC8252602 DOI: 10.1002/yea.3650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022] Open
Abstract
Much like other living organisms, yeast cells have a limited life span, in terms of both the maximal length of time a cell can stay alive (chronological life span) and the maximal number of cell divisions it can undergo (replicative life span). Over the past years, intensive research revealed that the life span of yeast depends on both the genetic background of the cells and environmental factors. Specifically, the presence of stress factors, reactive oxygen species, and the availability of nutrients profoundly impact life span, and signaling cascades involved in the response to these factors, including the target of rapamycin (TOR) and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways, play a central role. Interestingly, yeast life span also has direct implications for its use in industrial processes. In beer brewing, for example, the inoculation of finished beer with live yeast cells, a process called "bottle conditioning" helps improve the product's shelf life by clearing undesirable carbonyl compounds such as furfural and 2-methylpropanal that cause staling. However, this effect depends on the reductive metabolism of living cells and is thus inherently limited by the cells' chronological life span. Here, we review the mechanisms underlying chronological life span in yeast. We also discuss how this insight connects to industrial observations and ultimately opens new routes towards superior industrial yeasts that can help improve a product's shelf life and thus contribute to a more sustainable industry.
Collapse
Affiliation(s)
- Ruben Wauters
- Laboratory for Systems BiologyVIB Center for MicrobiologyLeuvenBelgium
- CMPG Laboratory of Genetics and Genomics, Department M2SKU LeuvenLeuvenBelgium
| | - Scott J. Britton
- Research and DevelopmentDuvel MoortgatPuurs‐Sint‐AmandsBelgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Kevin J. Verstrepen
- Laboratory for Systems BiologyVIB Center for MicrobiologyLeuvenBelgium
- CMPG Laboratory of Genetics and Genomics, Department M2SKU LeuvenLeuvenBelgium
| |
Collapse
|
37
|
Isaksson H, Conlin PL, Kerr B, Ratcliff WC, Libby E. The Consequences of Budding versus Binary Fission on Adaptation and Aging in Primitive Multicellularity. Genes (Basel) 2021; 12:661. [PMID: 33924996 PMCID: PMC8145350 DOI: 10.3390/genes12050661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
Early multicellular organisms must gain adaptations to outcompete their unicellular ancestors, as well as other multicellular lineages. The tempo and mode of multicellular adaptation is influenced by many factors including the traits of individual cells. We consider how a fundamental aspect of cells, whether they reproduce via binary fission or budding, can affect the rate of adaptation in primitive multicellularity. We use mathematical models to study the spread of beneficial, growth rate mutations in unicellular populations and populations of multicellular filaments reproducing via binary fission or budding. Comparing populations once they reach carrying capacity, we find that the spread of mutations in multicellular budding populations is qualitatively distinct from the other populations and in general slower. Since budding and binary fission distribute age-accumulated damage differently, we consider the effects of cellular senescence. When growth rate decreases with cell age, we find that beneficial mutations can spread significantly faster in a multicellular budding population than its corresponding unicellular population or a population reproducing via binary fission. Our results demonstrate that basic aspects of the cell cycle can give rise to different rates of adaptation in multicellular organisms.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden;
- Integrated Science Lab, Umeå University, 90187 Umeå, Sweden
| | - Peter L. Conlin
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (P.L.C.); (W.C.R.)
| | - Ben Kerr
- Department of Biology, BEACON Center for the Study of Evolution in Action, University of Washington, Seattle, WA 98195, USA;
| | - William C. Ratcliff
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (P.L.C.); (W.C.R.)
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden;
- Integrated Science Lab, Umeå University, 90187 Umeå, Sweden
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
38
|
Yu R, Cao X, Sun L, Zhu JY, Wasko BM, Liu W, Crutcher E, Liu H, Jo MC, Qin L, Kaeberlein M, Han Z, Dang W. Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 2021; 12:1981. [PMID: 33790287 PMCID: PMC8012573 DOI: 10.1038/s41467-021-22257-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Histone acetylations are important epigenetic markers for transcriptional activation in response to metabolic changes and various stresses. Using the high-throughput SEquencing-Based Yeast replicative Lifespan screen method and the yeast knockout collection, we demonstrate that the HDA complex, a class-II histone deacetylase (HDAC), regulates aging through its target of acetylated H3K18 at storage carbohydrate genes. We find that, in addition to longer lifespan, disruption of HDA results in resistance to DNA damage and osmotic stresses. We show that these effects are due to increased promoter H3K18 acetylation and transcriptional activation in the trehalose metabolic pathway in the absence of HDA. Furthermore, we determine that the longevity effect of HDA is independent of the Cyc8-Tup1 repressor complex known to interact with HDA and coordinate transcriptional repression. Silencing the HDA homologs in C. elegans and Drosophila increases their lifespan and delays aging-associated physical declines in adult flies. Hence, we demonstrate that this HDAC controls an evolutionarily conserved longevity pathway.
Collapse
Affiliation(s)
- Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Xiaohua Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Luyang Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA, USA
- University of Houston, Clear Lake, TX, USA
| | - Wei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Emeline Crutcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Haiying Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | | | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Kwon YY, Kim SS, Lee HJ, Sheen SH, Kim KH, Lee CK. Long-Living Budding Yeast Cell Subpopulation Induced by Ethanol/Acetate and Respiration. J Gerontol A Biol Sci Med Sci 2021; 75:1448-1456. [PMID: 31541249 DOI: 10.1093/gerona/glz202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 01/14/2023] Open
Abstract
Budding yeast generate heterogeneous cells that can be separated into two distinctive cell types: short-living low-density and long-living high-density (HD) cells by density gradient centrifugation. We found that ethanol and acetate induce formation of HD cells, and mitochondrial respiration is required. From their transcriptomes and metabolomes, we found upregulated differentially expressed genes in HD cells involved in the RGT2/RGT1 glucose sensing pathway and its downstream genes encoding hexose transporters. For HD cells, we determined an abundance of various carbon sources including glucose, lactate, pyruvate, trehalose, mannitol, mannose, and galactose. Other upregulated differentially expressed genes in HD cells were involved in the TORC1-SCH9 signaling pathway and its downstream genes involved in cytoplasmic translation. We also measured an abundance of free amino acids in HD cells including valine, proline, isoleucine, and glutamine. These characteristics of the HD cell transcriptome and metabolome may be important conditions for maintaining a long-living phenotype.
Collapse
Affiliation(s)
- Young-Yon Kwon
- Institute of Animal Molecular Biotechnology and Korea University, Seoul, Republic of Korea
| | - Seung-Soo Kim
- Institute of Animal Molecular Biotechnology and Korea University, Seoul, Republic of Korea
| | - Han-Jun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seo-Hyeong Sheen
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Cheol-Koo Lee
- Institute of Animal Molecular Biotechnology and Korea University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Xu X, Zhu Z, Wang Y, Geng Y, Xu F, Marchisio MA, Wang Z, Pan D. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps. Anal Bioanal Chem 2021; 413:2181-2193. [PMID: 33517467 DOI: 10.1007/s00216-021-03186-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
Microfluidic methodologies allow for automatic and high-throughput replicative lifespan (RLS) determination of single budding yeast cells. However, the resulted RLS is highly impacted by the robustness of experimental conditions, especially the microfluidic yeast-trapping structures, which are designed for cell retention, growth, budding, and daughter cell dissection. In this work, four microfluidic yeast-trapping structures, which were commonly used to immobilize mother cells and remove daughter cells for entire lifespan of budding yeast, were systematically investigated by means of finite element modeling (FEM). The results from this analysis led us to propose an optimized design, the yeast rotation (YRot) trap, which is a "leaky bowl"-shaped structure composed of two mirrored microcolumns facing each other. The YRot trap enables stable retention of mother cells in its "bowl" and hydrodynamic rotation of buds into its "leaky orifice" such that matured progenies can be dissected in a coincident direction. We validated the functions of the YRot trap in terms of cell rotation and daughter dissection by both FEM simulations and experiments. With the integration of denser YRot traps in microchannels, the microfluidic platform with stable single-yeast immobilization, long-term cell culturing, and coincident daughter dissection could potentially improve the robustness of experimental conditions for precise RLS determination in yeast aging studies.
Collapse
Affiliation(s)
- Xingyu Xu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China.
| | - Yingying Wang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Yangye Geng
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Feng Xu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China.
| | - Mario A Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, Guangdong, China
| | - Dejing Pan
- CAM-SU Genomic Resource Center, Soochow University, Ren-ai Road 199, Suzhou, 215213, Jiangsu, China
| |
Collapse
|
41
|
Auboiron M, Vasseur P, Tonazzini S, Fall A, Castro FR, Sučec I, El Koulali K, Urbach S, Radman-Livaja M. TrIPP-a method for tracking the inheritance patterns of proteins in living cells-reveals retention of Tup1p, Fpr4p, and Rpd3L in the mother cell. iScience 2021; 24:102075. [PMID: 33644711 PMCID: PMC7889982 DOI: 10.1016/j.isci.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/27/2020] [Accepted: 01/15/2021] [Indexed: 01/16/2023] Open
Abstract
Inheritance of chromatin-bound proteins theoretically plays a role in the epigenetic transmission of cellular phenotypes. Protein segregation during cell division is however poorly understood. We now describe TrIPP (Tracking the Inheritance Patterns of Proteins): a live cell imaging method for tracking maternal proteins during asymmetric cell divisions of budding yeast. Our analysis of the partitioning pattern of a test set of 18 chromatin-associated proteins reveals that abundant and moderately abundant maternal proteins segregate stochastically and symmetrically between the two cells with the exception of Rxt3p, Fpr4p, and Tup1p, which are preferentially retained in the mother. Low abundance proteins also tend to be retained in the mother cell with the exception of Sir2p and the linker histone H1. Our analysis of chromatin protein behavior in single cells reveals potentially general trends such as coupled protein synthesis and decay and a correlation between protein half-lives and cell-cycle duration.
Collapse
Affiliation(s)
- Morgane Auboiron
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Pauline Vasseur
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Saphia Tonazzini
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Arame Fall
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Francesc Rubert Castro
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Iva Sučec
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Khadija El Koulali
- Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.,Functional Proteomics Platform, IGF _ CNRS INSERM, Université de Montpellier, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | - Serge Urbach
- Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.,Functional Proteomics Platform, IGF _ CNRS INSERM, Université de Montpellier, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | - Marta Radman-Livaja
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
42
|
Hong S, Huh WK. Loss of Smi1, a protein involved in cell wall synthesis, extends replicative life span by enhancing rDNA stability in Saccharomyces cerevisiae. J Biol Chem 2021; 296:100258. [PMID: 33837734 PMCID: PMC7948926 DOI: 10.1016/j.jbc.2021.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
In Saccharomyces cerevisiae, replicative life span (RLS) is primarily affected by the stability of ribosomal DNA (rDNA). The stability of the highly repetitive rDNA array is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2. Recently, the loss of Smi1, a protein of unknown molecular function that has been proposed to be involved in cell wall synthesis, has been demonstrated to extend RLS in S. cerevisiae, but the mechanism by which Smi1 regulates RLS has not been elucidated. In this study, we determined that the loss of Smi1 extends RLS in a Sir2-dependent manner. We observed that the smi1Δ mutation enhances transcriptional silencing at the rDNA locus and promotes rDNA stability. In the absence of Smi1, the stress-responsive transcription factor Msn2 translocates from the cytoplasm to the nucleus, and nuclear-accumulated Msn2 stimulates the expression of nicotinamidase Pnc1, which serves as an activator of Sir2. In addition, we observed that the MAP kinase Hog1 is activated in smi1Δ cells and that the activation of Hog1 induces the translocation of Msn2 into the nucleus. Taken together, our findings suggest that the loss of Smi1 leads to the nuclear accumulation of Msn2 and stimulates the expression of Pnc1, thereby enhancing Sir2-mediated rDNA stability and extending RLS in S. cerevisiae.
Collapse
Affiliation(s)
- Sujin Hong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Richardson A. You Have Come A Long Way Baby: Five Decades of Research on the Biology of Aging From the Perspective of a Researcher Studying Aging. J Gerontol A Biol Sci Med Sci 2021; 76:57-63. [PMID: 32840294 DOI: 10.1093/gerona/glaa208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 01/21/2023] Open
Affiliation(s)
- Arlan Richardson
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center and the Oklahoma City VA Medical Center
| |
Collapse
|
44
|
Grajeda Y, Arias N, Barrios A, Pervin S, Singh R. Aging-induced stem cell dysfunction: Molecular mechanisms and potential therapeutic avenues. STEM CELLS AND AGING 2021:203-222. [DOI: 10.1016/b978-0-12-820071-1.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
45
|
Barlit H, Rai MK, Shoushtari S, Beaupere C, Labunskyy VM. Genome-Wide Analysis of Translation in Replicatively Aged Yeast. Methods Mol Biol 2021; 2252:151-173. [PMID: 33765274 PMCID: PMC8565997 DOI: 10.1007/978-1-0716-1150-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein synthesis is an essential process that affects major cellular functions including growth, energy production, cell signaling, and enzymatic reactions. However, how it is impacted by aging and how the translation of specific proteins is changed during the aging process remain understudied. Although yeast is a widely used model for studying eukaryotic aging, analysis of age-related translational changes using ribosome profiling in this organism has been challenging due to the need for isolating large quantities of old cells. Here, we provide a detailed protocol for genome-wide analysis of protein synthesis using ribosome profiling in replicatively aged yeast. By combining genetic enrichment of old cells with the biotin affinity purification step, this method allows large-scale isolation of aged cells sufficient for generating ribosome profiling libraries. We also describe a strategy for normalization of samples using a spike-in with worm lysates that permits quantitative comparison of absolute translation levels between young and old cells.
Collapse
Affiliation(s)
| | | | | | | | - Vyacheslav M. Labunskyy
- Corresponding author: Vyacheslav M. Labunskyy, Department of Dermatology, Boston University School of Medicine, 609 Albany St, Rm J-501, Boston, MA, 02118,
| |
Collapse
|
46
|
Durán DC, Hernández CA, Suesca E, Acevedo R, Acosta IM, Forero DA, Rozo FE, Pedraza JM. Slipstreaming Mother Machine: A Microfluidic Device for Single-Cell Dynamic Imaging of Yeast. MICROMACHINES 2020; 12:mi12010004. [PMID: 33374994 PMCID: PMC7822021 DOI: 10.3390/mi12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The yeast Saccharomyces cerevisiae is one of the most basic model organisms for studies of aging and other phenomena such as division strategies. These organisms have been typically studied with the use of microfluidic devices to keep cells trapped while under a flow of fresh media. However, all of the existing devices trap cells mechanically, subjecting them to pressures that may affect cell physiology. There is evidence mechanical pressure affects growth rate and the movement of intracellular components, so it is quite possible that it affects other physiological aspects such as aging. To allow studies with the lowest influence of mechanical pressure, we designed and fabricated a device that takes advantage of the slipstreaming effect. In slipstreaming, moving fluids that encounter a barrier flow around it forming a pressure gradient behind it. We trap mother cells in this region and force daughter cells to be in the negative pressure gradient region so that they are taken away by the flow. Additionally, this device can be fabricated using low resolution lithography techniques, which makes it less expensive than devices that require photolithography masks with resolution under 5 µm. With this device, it is possible to measure some of the most interesting aspects of yeast dynamics such as growth rates and Replicative Life Span. This device should allow future studies to eliminate pressure bias as well as extending the range of labs that can do these types of measurements.
Collapse
Affiliation(s)
- David C. Durán
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Correspondence: (D.C.D.); (J.M.P.); Tel.: +57-1-3394949 (ext. 5179 (COL)) (J.M.P.)
| | - César A. Hernández
- Centro de Microelectrónica, Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes CMUA, Bogotá 111711, Colombia;
| | - Elizabeth Suesca
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
| | - Rubén Acevedo
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
| | - Ivón M. Acosta
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Diana A. Forero
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Francisco E. Rozo
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Juan M. Pedraza
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Correspondence: (D.C.D.); (J.M.P.); Tel.: +57-1-3394949 (ext. 5179 (COL)) (J.M.P.)
| |
Collapse
|
47
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
48
|
Carolina de Souza-Guerreiro T, Meng X, Dacheux E, Firczuk H, McCarthy J. Translational control of gene expression noise and its relationship to ageing in yeast. FEBS J 2020; 288:2278-2293. [PMID: 33090724 DOI: 10.1111/febs.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S preinitiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidic device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.
Collapse
Affiliation(s)
| | - Xiang Meng
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Estelle Dacheux
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - John McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
49
|
Schnitzer B, Borgqvist J, Cvijovic M. The synergy of damage repair and retention promotes rejuvenation and prolongs healthy lifespans in cell lineages. PLoS Comput Biol 2020; 16:e1008314. [PMID: 33044956 PMCID: PMC7598927 DOI: 10.1371/journal.pcbi.1008314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023] Open
Abstract
Damaged proteins are inherited asymmetrically during cell division in the yeast Saccharomyces cerevisiae, such that most damage is retained within the mother cell. The consequence is an ageing mother and a rejuvenated daughter cell with full replicative potential. Daughters of old and damaged mothers are however born with increasing levels of damage resulting in lowered replicative lifespans. Remarkably, these prematurely old daughters can give rise to rejuvenated cells with low damage levels and recovered lifespans, called second-degree rejuvenation. We aimed to investigate how damage repair and retention together can promote rejuvenation and at the same time ensure low damage levels in mother cells, reflected in longer health spans. We developed a dynamic model for damage accumulation over successive divisions in individual cells as part of a dynamically growing cell lineage. With detailed knowledge about single-cell dynamics and relationships between all cells in the lineage, we can infer how individual damage repair and retention strategies affect the propagation of damage in the population. We show that damage retention lowers damage levels in the population by reducing the variability across the lineage, and results in larger population sizes. Repairing damage efficiently in early life, as opposed to investing in repair when damage has already accumulated, counteracts accelerated ageing caused by damage retention. It prolongs the health span of individual cells which are moreover less prone to stress. In combination, damage retention and early investment in repair are beneficial for healthy ageing in yeast cell populations.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Johannes Borgqvist
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Young TZ, Liu P, Urbonaite G, Acar M. Quantitative Insights into Age-Associated DNA-Repair Inefficiency in Single Cells. Cell Rep 2020; 28:2220-2230.e7. [PMID: 31433994 PMCID: PMC6744837 DOI: 10.1016/j.celrep.2019.07.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/02/2019] [Accepted: 07/23/2019] [Indexed: 01/03/2023] Open
Abstract
Although double-strand break (DSB) repair is essential for a cell's survival, little is known about how DSB repair mechanisms are affected by age. Here we characterize the impact of cellular aging on the efficiency of single-strand annealing (SSA), a DSB repair mechanism. We measure SSA repair efficiency in young and old yeast cells and report a 23.4% decline in repair efficiency. This decline is not due to increased use of non-homologous end joining. Instead, we identify increased G1 phase duration in old cells as a factor responsible for the decreased SSA repair efficiency. Expression of 3xCLN2 leads to higher SSA repair efficiency in old cells compared with expression of 1xCLN2, confirming the involvement of cell-cycle regulation in age-associated repair inefficiency. Examining how SSA repair efficiency is affected by sequence heterology, we find that heteroduplex rejection remains high in old cells. Our work provides insights into the links between single-cell aging and DSB repair efficiency.
Collapse
Affiliation(s)
- Thomas Z Young
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Guste Urbonaite
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|