1
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
2
|
Wang C, Le MNT, Kawada-Matsuo M, Hisatsune J, Sugawara Y, Arai C, Nakanishi J, Takeda K, Shiba H, Sugai M, Komatsuzawa H. Ursoricin, a bacteriocin of Streptococcus ursoris, has potent activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. Appl Environ Microbiol 2024; 90:e0016224. [PMID: 38775468 PMCID: PMC11218630 DOI: 10.1128/aem.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 06/19/2024] Open
Abstract
The emergence of drug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), has increased the need to discover novel antimicrobial agents that are effective against these species. Here, we describe the identification and purification of the mutacin BHT-B-like gene locus and bacteriocin peptide from Streptococcus ursoris, which is closely related to Streptococcus ratti; hence, we named this bacteriocin ursoricin. Ursoricin is a cationic, chromosome-encoded peptide that has potent antimicrobial effects against Gram-positive pathogens, including MRSA and VRE, with minimum inhibitory concentrations in the micromolar range. Ursoricin also inhibits the biofilm formation of high biofilm-forming S. aureus. Antibacterial activity was retained after treatment at 100°C for 60 min at a pH range of 3-9 and was partially reduced by treatment with proteinase K for 2 h (63% residual activity). The potent anti-MRSA, anti-VRE, and antibiofilm effects of ursoricin suggest that it is a possible candidate for the treatment of MRSA, VRE, and biofilm-associated infections. IMPORTANCE The emergence of multidrug-resistant bacteria worldwide has posed a significant public health threat and economic burdens that make the identification and development of novel antimicrobial agents urgent. Bacteriocins are promising new agents that exhibit antibacterial activity against a wide range of human pathogens. In this study, we report that the bacteriocin produced by Streptococcus ursoris showed good antibacterial activity against a wide range of Staphylococcus aureus and enterococcus strains, particularly methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and high biofilm-forming S. aureus. Interestingly, this bacteriocin had a stronger effect on S. aureus than on Staphylococcus epidermidis, which is a major commensal bacterium in human skin; this result is important when considering the disturbance of bacterial flora, especially on the skin, mediated by the application of antibacterial agents.
Collapse
Affiliation(s)
- Chutian Wang
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chika Arai
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Nakanishi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Motoyuki Sugai
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Charkhian H, Soleimannezhadbari E, Bodaqlouei A, Lotfollahi L, Lotfi H, Yousefi N, Shojadel E, Gholinejad Z. Assessment of bacteriocin production by clinical Pseudomonas aeruginosa isolates and their potential as therapeutic agents. Microb Cell Fact 2024; 23:175. [PMID: 38872163 PMCID: PMC11170890 DOI: 10.1186/s12934-024-02450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Bacterial infections and the rising antimicrobial resistance pose a significant threat to public health. Pseudomonas aeruginosa produces bacteriocins like pyocins, especially S-type pyocins, which are promising for biological applications. This research focuses on clinical P. aeruginosa isolates to assess their bacteriocin production, inhibitory spectrum, chemical structure, antibacterial agents, and preservative potential. METHODS The identification of P. aeruginosa was conducted through both phenotypic and molecular approaches. The inhibitory spectrum and antibacterial potential of the isolates were assessed. The kinetics of antibacterial peptide production were investigated, and the activity of bacteriocin was quantified in arbitrary units (AU ml-1). Physico-chemical characterization of the antibacterial peptides was performed. Molecular weight estimation was carried out using SDS-PAGE. qRT-PCR analysis was employed to validate the expression of the selected candidate gene. RESULT The antibacterial activity of P. aeruginosa was attributed to the secretion of bacteriocin compounds, which belong to the S-type pyocin family. The use of mitomycin C led to a significant 65.74% increase in pyocin production by these isolates. These S-type pyocins exhibited the ability to inhibit the growth of both Gram-negative (P. mirabilis and P. vulgaris) and Gram-positive (S. aureus, S. epidermidis, E. hirae, S. pyogenes, and S. mutans) bacteria. The molecular weight of S-type pyocin was 66 kDa, and its gene expression was confirmed through qRT-PCR. CONCLUSION These findings suggest that S-type pyocin hold significant potential as therapeutic agents against pathogenic strains. The Physico-chemical resistance of S-type pyocin underscores its potential for broad applications in the pharmaceutical, hygiene, and food industries.
Collapse
Affiliation(s)
- Hamed Charkhian
- Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia, Iran
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Soleimannezhadbari
- Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia, Iran
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Bodaqlouei
- Department of Pharmaceutical and Biomolecular Science, Faculty of Pharmaceutical Science, University of Milan, Milan, Italy
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Lida Lotfollahi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nesa Yousefi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Shojadel
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zafar Gholinejad
- Department of Medical Laboratory Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
4
|
Yang L, Jia S, Sun S, Wang L, Zhao B, Zhang M, Yin Y, Yang M, Fulano AM, Shen X, Pan J, Wang Y. A pyocin-like T6SS effector mediates bacterial competition in Yersinia pseudotuberculosis. Microbiol Spectr 2024; 12:e0427823. [PMID: 38712967 PMCID: PMC11237486 DOI: 10.1128/spectrum.04278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Within the realm of Gram-negative bacteria, bacteriocins are secreted almost everywhere, and the most representative are colicin and pyocin, which are secreted by Escherichia coli and Pseudomonas aeruginosa, respectively. Signal peptides at the amino terminus of bacteriocins or ABC transporters can secrete bacteriocins, which then enter bacteria through cell membrane receptors and exert toxicity. In general, the bactericidal spectrum is usually narrow, killing only the kin or closely related species. Our previous research indicates that YPK_0952 is an effector of the third Type VI secretion system (T6SS-3) in Yersinia pseudotuberculosis. Next, we sought to determine its identity and characterize its toxicity. We found that YPK_0952 (a pyocin-like effector) can achieve intra-species and inter-species competitive advantages through both contact-dependent and contact-independent mechanisms mediated by the T6SS-3 while enhancing the intestinal colonization capacity of Y. pseudotuberculosis. We further identified YPK_0952 as a DNase dependent on Mg2+, Ni2+, Mn2+, and Co2+ bivalent metal ions, and the homologous immune protein YPK_0953 can inhibit its activity. In summary, YPK_0952 exerts toxicity by degrading nucleic acids from competing cells, and YPK_0953 prevents self-attack in Y. pseudotuberculosis.IMPORTANCEBacteriocins secreted by Gram-negative bacteria generally enter cells through specific interactions on the cell surface, resulting in a narrow bactericidal spectrum. First, we identified a new pyocin-like effector protein, YPK_0952, in the third Type VI secretion system (T6SS-3) of Yersinia pseudotuberculosis. YPK_0952 is secreted by T6SS-3 and can exert DNase activity through contact-dependent and contact-independent entry into nearby cells of the same and other species (e.g., Escherichia coli) to help Y. pseudotuberculosis to exert a competitive advantage and promote intestinal colonization. This discovery lays the foundation for an in-depth study of the different effector protein types within the T6SS and their complexity in competing interactions. At the same time, this study provides a new development for the toolbox of toxin/immune pairs for studying Gram-negative bacteriocin translocation.
Collapse
Affiliation(s)
- Leilei Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuangkai Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sihuai Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Bobo Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengsi Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanling Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Mingming Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Alex M. Fulano
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
6
|
Chen S, Dai Y, Ke J, Luo Y, Wang C, Hao Y, Zhang A, Han J, Xiang H. Halocin H4 is activated through cleavage by halolysin HlyR4. Appl Environ Microbiol 2024; 90:e0228423. [PMID: 38445904 PMCID: PMC11022586 DOI: 10.1128/aem.02284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Halocins are antimicrobial peptides secreted by haloarchaea capable of inhibiting the growth of other haloarchaea or bacteria. Halocin H4 (HalH4) is secreted by the model halophilic archaeon Haloferax mediterranei ATCC 33500. Despite attempts to express halH4 heterologously in Escherichia coli and subsequent careful renaturation procedures commonly employed for haloarchaeal proteins, no active halocin was obtained. However, it was discovered that the antihaloarchaeal activity of this halocin could be activated through cleavage by halolysin R4 (HlyR4), a serine protease also secreted by Hfx. mediterranei ATCC 33500. Replacement of the cysteine at the number 115 amino acid with glycine and deletion of the internal trans-membrane region (15 aa) markedly abolished HalH4's antihaloarchaeal activity. Compared to the N-terminus, the C-terminal amino acid sequence was found to be more crucial for HalH4 to exert its antihaloarchaeal activity. Mass spectrometry analysis revealed that the biologically active antihaloarchaeal peptide produced after hydrolytic cleavage by HlyR4 was the C-terminus of HalH4, suggesting a potential mechanism of action involving pore formation within competitor species' cell membranes. Taken together, this study offers novel insights into the interplay between halocins and secreted proteases, as well as their contribution to antagonistic interaction within haloarchaea. IMPORTANCE The antihaloarchaeal function of halocin H4 (HalH4) can be activated by extracellular proteases from haloarchaea, as demonstrated in this study. Notably, we report the first instance of halocin activation through proteolytic cleavage, highlighting its significance in the field. The C-terminus of HalH4 (CTH4) has been identified as the antihaloarchaeal peptide present in hydrolysates generated by HlyR4. The CTH4 exhibited inhibitory activity against a range of haloarchaeal species (Haloarchaeobius spp., Haloarcula spp., Haloferax spp., Halorubellus spp., and Halorubrum spp.), as well as selected bacterial species (Aliifodinibius spp. and Salicola spp.), indicating its broad-spectrum inhibitory potential across domains. The encoding gene of halocin HalH4, halH4, from the model halophilic archaeon Haloferax mediterranei ATCC 33500 can be expressed in Escherichia coli without codon optimization.
Collapse
Affiliation(s)
- Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongpei Dai
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chuangming Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, China
| | - Yuling Hao
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Aodi Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Jenull S, Bauer T, Silbermayr K, Dreer M, Stark TD, Ehling-Schulz M. The toxicological spectrum of the Bacillus cereus toxin cereulide points towards niche-specific specialisation. Environ Microbiol 2023; 25:2231-2249. [PMID: 37354053 DOI: 10.1111/1462-2920.16454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Most microbes share their environmental niches with very different forms of life thereby engaging in specialised relationships to enable their persistence. The bacterium Bacillus cereus occurs ubiquitously in the environment with certain strain backgrounds causing foodborne and opportunistic infections in humans. The emetic lineage of B. cereus is capable of producing the toxin cereulide, which evokes emetic illnesses. Although food products favouring the accumulation of cereulide are known, the ecological role of cereulide and the environmental niche of emetic B. cereus remain elusive. To better understand the ecology of cereulide-producing B. cereus, we systematically assayed the toxicological spectrum of cereulide on a variety of organisms belonging to different kingdoms. As cereulide is a potassium ionophore, we further tested the effect of environmental potassium levels on the action of cereulide. We found that adverse effects of cereulide exposure are species-specific, which can be exacerbated with increased environmental potassium. Additionally, we demonstrate that cereulide is produced within an insect cadaver indicating its potential ecological function for a saprophytic lifestyle. Collectively, distinct cereulide susceptibilities of other organisms may reflect its role in enabling competitive niche specialization of emetic B. cereus.
Collapse
Affiliation(s)
- Sabrina Jenull
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Bauer
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katja Silbermayr
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maximilian Dreer
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
8
|
Bosch DE, Abbasian R, Parajuli B, Peterson SB, Mougous JD. Structural disruption of Ntox15 nuclease effector domains by immunity proteins protects against type VI secretion system intoxication in Bacteroidales. mBio 2023; 14:e0103923. [PMID: 37345922 PMCID: PMC10470768 DOI: 10.1128/mbio.01039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Bacteroidales use type VI secretion systems (T6SS) to competitively colonize and persist in the colon. We identify a horizontally transferred T6SS with Ntox15 family nuclease effector (Tde1) that mediates interbacterial antagonism among Bacteroidales, including several derived from a single human donor. Expression of cognate (Tdi1) or orphan immunity proteins in acquired interbacterial defense systems protects against Tde1-dependent attack. We find that immunity protein interaction induces a large effector conformational change in Tde nucleases, disrupting the active site and altering the DNA-binding site. Crystallographic snapshots of isolated Tde1, the Tde1/Tdi1 complex, and homologs from Phocaeicola vulgatus (Tde2/Tdi2) illustrate a conserved mechanism of immunity inserting into the central core of Tde, splitting the nuclease fold into two subdomains. The Tde/Tdi interface and immunity mechanism are distinct from all other polymorphic toxin-immunity interactions of known structure. Bacteroidales abundance has been linked to inflammatory bowel disease activity in prior studies, and we demonstrate that Tde and T6SS structural genes are each enriched in fecal metagenomes from ulcerative colitis subjects. Genetically mobile Tde1-encoding T6SS in Bacteroidales mediate competitive growth and may be involved in inflammatory bowel disease. Broad immunity is conferred by Tdi1 homologs through a fold-disrupting mechanism unique among polymorphic effector-immunity pairs of known structure. IMPORTANCE Bacteroidales are related to inflammatory bowel disease severity and progression. We identify type VI secretion system (T6SS) nuclease effectors (Tde) which are enriched in ulcerative colitis and horizontally transferred on mobile genetic elements. Tde-encoding T6SSs mediate interbacterial competition. Orphan and cognate immunity proteins (Tdi) prevent intoxication by multiple Tde through a new mechanism among polymorphic toxin systems. Tdi inserts into the effector central core, splitting Ntox15 into two subdomains and disrupting the active site. This mechanism may allow for evolutionary diversification of the Tde/Tdi interface as observed in colicin nuclease-immunity interactions, promoting broad neutralization of Tde by orphan Tdi. Tde-dependent T6SS interbacterial antagonism may contribute to Bacteroidales diversity in the context of ulcerative colitis.
Collapse
Affiliation(s)
- Dustin E. Bosch
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Romina Abbasian
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bishal Parajuli
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - S. Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Joseph D. Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
- Microbial Interactions and Microbiome Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
10
|
Nazari M, Yaghoubian I, Smith DL. The stimulatory effect of Thuricin 17, a PGPR-produced bacteriocin, on canola ( Brassica, napus L.) germination and vegetative growth under stressful temperatures. FRONTIERS IN PLANT SCIENCE 2022; 13:1079180. [PMID: 36618613 PMCID: PMC9816380 DOI: 10.3389/fpls.2022.1079180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Exposure to unfavorable conditions is becoming more frequent for plants due to climate change, posing a threat to global food security. Stressful temperature, as a major environmental factor, adversely affects plant growth and development, and consequently agricultural production. Hence, development of sustainable approaches to assist plants in dealing with environmental challenges is of great importance. Compatible plant-microbe interactions and signal molecules produced within these interactions, such as bacteriocins, could be promising approaches to managing the impacts of abiotic stresses on crops. Although the use of bacteriocins in food preservation is widespread, only a small number of studies have examined their potential in agriculture. Therefore, we studied the effect of three concentrations of Thuricin17 (Th17), a plant growth-promoting rhizobacterial signal molecule produced by Bacillus thuringiensis, on germination and vegetative growth of canola (Brassica napus L.) under stressful temperatures. Canola responded positively to treatment with the bacterial signal molecule under stressful temperatures. Treatment with 10 -9 M Th17 (Thu2) was found to significantly enhance germination rate, seed vigor index, radical and shoot length and seedling fresh weight under low temperature, and this treatment reduced germination time which would be an asset for higher latitude, short growing season climates. Likewise, Thu2 was able to alleviate the adverse effects of high temperature on germination and seed vigor. Regarding vegetative growth, interestingly, moderate high temperature with the assistance of the compound caused more growth and development than the control conditions. Conversely, low temperature negatively affected plant growth, and Th17 did not help overcome this effect. Specifically, the application of 10 -9 (Thu2) and 10 -11 M (Thu3) Th17 had a stimulatory effect on height, leaf area and biomass accumulation under above-optimal conditions, which could be attributed to modifications of below-ground structures, including root length, root surface, root volume and root diameter, as well as photosynthetic rate. However, no significant effects were observed under optimal conditions for almost all measured variables. Therefore, the signal compound tends to have a stimulatory impact at stressful temperatures but not under optimal conditions. Hence, supplementation with Th17 would have the potential as a plant growth promoter under stressed circumstances.
Collapse
|
11
|
Oda AH, Tamura M, Kaneko K, Ohta K, Hatakeyama TS. Autotoxin-mediated latecomer killing in yeast communities. PLoS Biol 2022; 20:e3001844. [PMID: 36342925 PMCID: PMC9639812 DOI: 10.1371/journal.pbio.3001844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Cellular adaptation to stressful environments such as starvation is essential to the survival of microbial communities, but the uniform response of the cell community may lead to entire cell death or severe damage to their fitness. Here, we demonstrate an elaborate response of the yeast community against glucose depletion, in which the first adapted cells kill the latecomer cells. During glucose depletion, yeast cells release autotoxins, such as leucic acid and L-2keto-3methylvalerate, which can even kill the clonal cells of the ones producing them. Although these autotoxins were likely to induce mass suicide, some cells differentiated to adapt to the autotoxins without genetic changes. If nondifferentiated latecomers tried to invade the habitat, autotoxins damaged or killed the latecomers, but the differentiated cells could selectively survive. Phylogenetically distant fission and budding yeast shared this behavior using the same autotoxins, suggesting that latecomer killing may be the universal system of intercellular communication, which may be relevant to the evolutional transition from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Arisa H. Oda
- Department of Basic Science, University of Tokyo, Tokyo, Japan
- * E-mail: (AHO); (TSH)
| | - Miki Tamura
- Department of Basic Science, University of Tokyo, Tokyo, Japan
| | - Kunihiko Kaneko
- Department of Basic Science, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kunihiro Ohta
- Department of Basic Science, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
12
|
Murugan R, Guru A, Haridevamuthu B, Sudhakaran G, Arshad A, Arockiaraj J. Lantibiotics: an antimicrobial asset in combating aquaculture diseases. AQUACULTURE INTERNATIONAL 2022; 30:2365-2387. [DOI: 10.1007/s10499-022-00908-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 10/16/2023]
|
13
|
Bowe BK, Wentz TG, Gregg BM, Tepp WH, Schill KM, Sharma S, Pellett S. Genomic Diversity, Competition, and Toxin Production by Group I and II Clostridium botulinum Strains Used in Food Challenge Studies. Microorganisms 2022; 10:1895. [PMID: 36296172 PMCID: PMC9611418 DOI: 10.3390/microorganisms10101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) produced by the bacteria Clostridium botulinum are the causative agent of human and animal botulism, a rare but serious and potentially deadly intoxication. Foodborne botulism is caused by the consumption of foods containing BoNTs, which results from contamination of foods with C. botulinum spores and toxin production by the bacteria during growth within the food. Validation of the safety of food products is essential in preventing foodborne botulism, however, limited guidance and standards exist for the selection of strains used in C. botulinum food challenge studies. Sequencing and genomics studies have revealed that C. botulinum is a large, diverse, and polyphyletic species, with physiologic and growth characteristics studied only in a few representatives. Little is known about potential growth competition or effects on toxin production between C. botulinum strains. In this study, we investigated an applied cocktail of ten C. botulinum strains, seven Group I and three Group II. Whole genome SNP alignments revealed that this strain cocktail encompasses the major clades of the Group I and II C. botulinum species. While growth competition appears to exist between several of the strains, the cocktail as a whole resulted in high levels of BoNT production.
Collapse
Affiliation(s)
- Brooke Kathryn Bowe
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - Travis Gwynn Wentz
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - Brieana Marie Gregg
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - William Howard Tepp
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - Kristin Marie Schill
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| | - Shashi Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
14
|
Fokt H, Cleto S, Oliveira H, Araújo D, Castro J, Cerca N, Vieira MJ, Almeida C. Bacteriocin Production by Escherichia coli during Biofilm Development. Foods 2022; 11:foods11172652. [PMID: 36076837 PMCID: PMC9455227 DOI: 10.3390/foods11172652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli is a highly versatile bacterium ranging from commensal to intestinal pathogen, and is an important foodborne pathogen. E. coli species are able to prosper in multispecies biofilms and secrete bacteriocins that are only toxic to species/strains closely related to the producer strain. In this study, 20 distinct E. coli strains were characterized for several properties that confer competitive advantages against closer microorganisms by assessing the biofilm-forming capacity, the production of antimicrobial molecules, and the production of siderophores. Furthermore, primer sets for E. coli bacteriocins–colicins were designed and genes were amplified, allowing us to observe that colicins were widely distributed among the pathogenic E. coli strains. Their production in the planktonic phase or single-species biofilms was uncommon. Only two E. coli strains out of nine biofilm-forming were able to inhibit the growth of other E. coli strains. There is evidence of larger amounts of colicin being produced in the late stages of E. coli biofilm growth. The decrease in bacterial biomass after 12 h of incubation indicates active type I colicin production, whose release normally requires E. coli cell lysis. Almost all E. coli strains were siderophore-producing, which may be related to the resistance to colicin as these two molecules may use the same transporter system. Moreover, E. coli CECT 504 was able to coexist with Salmonella enterica in dual-species biofilms, but Shigella dysenteriae was selectively excluded, correlating with high expression levels of colicin (E, B, and M) genes observed by real-time PCR.
Collapse
Affiliation(s)
- Hanna Fokt
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Sara Cleto
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Hugo Oliveira
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Daniela Araújo
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Joana Castro
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria João Vieira
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-252-660-600
| |
Collapse
|
15
|
Sudhakari PA, Ramisetty BCM. Modeling endonuclease colicin-like bacteriocin operons as 'genetic arms' in plasmid-genome conflicts. Mol Genet Genomics 2022; 297:763-777. [PMID: 35320397 DOI: 10.1007/s00438-022-01884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
Plasmids are acellular propagating entities that depend on bacteria, as molecular parasites, for propagation. A 'tussle' between bacteria and plasmid ensues; bacteria for riddance of the plasmid and plasmid for persistence within a live host. Plasmid-maintenance systems such as endonuclease Colicin-Like Bacteriocins (CLBs) ensure plasmid propagation within the population; (i) the plasmid-cured cells are killed by the CLBs; (ii) damaged cells lyse and release the CLBs that eliminate the competitors, and (iii) the released plasmids invade new bacteria. Surprisingly, endonuclease CLB operons occur on bacterial genomes whose significance is unknown. Here, we study genetics, eco-evolutionary drive, and physiological relevance of genomic endonuclease CLB operons. We investigated plasmidic and genomic endonuclease CLB operons using sequence analyses from an eco-evolutionary perspective. We found 1266 genomic and plasmidic endonuclease CLB operons across 30 bacterial genera. Although 51% of the genomes harbor endonuclease CLB operons, the majority of the genomic endonuclease CLB operons lacked a functional lysis gene, suggesting the negative selection of lethal genes. The immunity gene of the endonuclease CLB operon protects the plasmid-cured host, eliminating the metabolic burden. We show mutual exclusivity of endonuclease CLB operons on genomes and plasmids. We propose an anti-addiction hypothesis for genomic endonuclease CLB operons. Using a stochastic hybrid agent-based model, we show that the endonuclease CLB operons on genomes confer an advantage to the host genome in terms of immunity to the toxin and elimination of plasmid burden. The conflict between bacterial genome and plasmids allows the emergence of 'genetic arms' such as CLB operons that regulate the ecological interplay of bacterial genomes and plasmids.
Collapse
Affiliation(s)
- Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, 312@ASK1, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, 312@ASK1, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
16
|
Pei T, Kan Y, Wang Z, Tang M, Li H, Yan S, Cui Y, Zheng H, Luo H, Liang X, Dong T. Delivery of an Rhs-family nuclease effector reveals direct penetration of the gram-positive cell envelope by a type VI secretion system in Acidovorax citrulli. MLIFE 2022; 1:66-78. [PMID: 38818323 PMCID: PMC10989746 DOI: 10.1002/mlf2.12007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2024]
Abstract
The type VI secretion system (T6SS) is a double-tubular nanomachine widely found in gram-negative bacteria. Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery. However, gram-positive bacteria have been considered impenetrable to such T6SS action. Here we report that the T6SS of a plant pathogen, Acidovorax citrulli (AC), could deliver an Rhs-family nuclease effector RhsB to kill not only gram-negative but also gram-positive bacteria. Using bioinformatic, biochemical, and genetic assays, we systematically identified T6SS-secreted effectors and determined that RhsB is a crucial antibacterial effector. RhsB contains an N-terminal PAAR domain, a middle Rhs domain, and an unknown C-terminal domain. RhsB is subject to self-cleavage at both its N- and C-terminal domains and its secretion requires the upstream-encoded chaperone EagT2 and VgrG3. The toxic C-terminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins, RimB1 and RimB2. Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection. We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B. subtilis in planta but also is highly potent in killing other bacterial and fungal species. Collectively, these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.
Collapse
Affiliation(s)
- Tong‐Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yumin Kan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zeng‐Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming‐Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuangquan Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao‐Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Department of Immunology and MicrobiologySchool of Life Sciences, Southern University of Science and TechnologyGuangdongChina
| |
Collapse
|
17
|
Unraveling the Uncharacterized Domain of Carocin S2: A Ribonuclease Pectobacterium carotovorum subsp. carotovorum Bacteriocin. Microorganisms 2022; 10:microorganisms10020359. [PMID: 35208813 PMCID: PMC8878655 DOI: 10.3390/microorganisms10020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Carocin S2 is a bacteriocin with a low molecular weight generated by Pectobacterium carotovorum subsp. carotovorum 3F3 strain. The caroS2K gene, which is found in the genomic DNA alongside the caroS2I gene, which codes for an immunity protein, encodes this bacteriocin. We explored the residues responsible for Carocin S2’s cytotoxic or RNA-se activity using a structure-based mutagenesis approach. The minimal antibiotic functional region starts at Lys691 and ends at Arg783, according to mutational research. Two residues in the identified region, Phe760 and Ser762, however, are unable to demonstrate this activity, suggesting that these sites may interact with another domain. Small modifications in the secondary structure of mutant caroS2K were revealed by circular dichroism (CD) spectroscopy and intrinsic tryptophan fluorescence (ITF), showing ribosomal RNA cleavage in the active site. A co-immunoprecipitation test indicated that the immunity protein CaroS2I binds to CaroS2K’s C-terminus, while a region under the uncharacterized Domain III inhibits association of N-terminally truncated CaroS2K from interacting with CaroS2I. Carocin S2, a ribosomal ribonuclease bacteriocin, is the first to be identified with a domain III that encodes the cytotoxic residues as well as the binding sites between its immunity and killer proteins.
Collapse
|
18
|
Zheng HY, Yang L, Dong T. More Than Just a Spearhead: Diverse Functions of PAAR for Assembly and Delivery of Toxins of the Contractile Injection Systems. mSystems 2021; 6:e0138621. [PMID: 34874771 PMCID: PMC8651079 DOI: 10.1128/msystems.01386-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) belongs to the evolutionarily related group of contractile injection systems that employ a contractile outer sheath to inject a rigid spear-like inner tube into target bacterial and eukaryotic cells. The tip of the rigid tube is often decorated by a PAAR-repeat protein as a key structural component. Many members of the PAAR protein family can also have additional and diverse functions by serving as toxins for those with extended domains or as carriers for interacting toxins. A plethora of toxin modules or modules of unknown functions have been bioinformatically predicted to be associated with PAAR either as a fused domain or as an interacting partner, and yet only a small number of PAAR proteins have been studied, highlighting the exciting and dire need for future research to better understand the diverse PAAR-mediated functions.
Collapse
Affiliation(s)
- Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
19
|
Abstract
Global demand for renewable and sustainable energy is increasing, and one of the most common biofuels is ethanol. Most ethanol is produced by Saccharomyces cerevisiae (yeast) fermentation of either crops rich in sucrose (e.g., sugar cane and sugar beet) or starch-rich crops (e.g., corn and starchy grains). Ethanol produced from these sources is termed a first-generation biofuel. Yeast fermentation can yield a range of additional valuable co-products that accumulate during primary fermentation (e.g., protein concentrates, water soluble metabolites, fusel alcohols, and industrial enzymes). Distillers’ solubles is a liquid co-product that can be used in animal feed or as a resource for recovery of valuable materials. In some processes it is preferred that this fraction is modified by a second fermentation with another fermentation organism (e.g., lactic acid bacteria). Such two stage fermentations can produce valuable compounds, such as 1,3-propanediol, organic acids, and bacteriocins. The use of lactic acid bacteria can also lead to the aggregation of stillage proteins and enable protein aggregation into concentrates. Once concentrated, the protein has utility as a high-protein feed ingredient. After separation of protein concentrates the remaining solution is a potential source of several known small molecules. The purpose of this review is to provide policy makers, bioethanol producers, and researchers insight into additional added-value products that can be recovered from ethanol beers. Novel products may be isolated during or after distillation. The ability to isolate and purify these compounds can provide substantial additional revenue for biofuel manufacturers through the development of marketable co-products.
Collapse
|
20
|
Jeon S, Kim H, Choi Y, Cho S, Seo M, Kim H. Complete Genome Sequence of the Newly Developed Lactobacillus acidophilus Strain With Improved Thermal Adaptability. Front Microbiol 2021; 12:697351. [PMID: 34630344 PMCID: PMC8498822 DOI: 10.3389/fmicb.2021.697351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/30/2021] [Indexed: 02/04/2023] Open
Abstract
Lactobacillus acidophilus (L. acidophilus) is a representative probiotic and is widely used in many industrial products for its beneficial effects on human and animal health. This bacterium is exposed to harsh environments such as high temperatures for manufacturing industrial products, but cell yield under high temperatures is relatively low. To resolve this issue, we developed a new L. acidophilus strain with improved heat resistance while retaining the existing beneficial properties through the adaptive laboratory evolution (ALE) method. The newly developed strain, L. acidophilus EG008, has improved the existing limit of thermal resistance from 65°C to 75°C. Furthermore, we performed whole-genome sequencing and comparative genome analysis of wild-type and EG008 strains to unravel the molecular mechanism of improved heat resistance. Interestingly, only two single-nucleotide polymorphisms (SNPs) were different compared to the L. acidophilus wild-type. We identified that one of these SNPs is a non-synonymous SNP capable of altering the structure of MurD protein through the 435th amino acid change from serine to threonine. We believe that these results will directly contribute to any industrial field where L. acidophilus is applied. In addition, these results make a step forward in understanding the molecular mechanisms of lactic acid bacteria evolution under extreme conditions.
Collapse
Affiliation(s)
- Soomin Jeon
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyaekang Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Youngseok Choi
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Minseok Seo
- Department of Computer Convergence Software, Korea University, Sejong, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,eGnome, Inc., Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| |
Collapse
|
21
|
Pipatthana M, Harnvoravongchai P, Pongchaikul P, Likhitrattanapisal S, Phanchana M, Chankhamhaengdecha S, Janvilisri T. The repertoire of ABC proteins in Clostridioides difficile. Comput Struct Biotechnol J 2021; 19:2905-2920. [PMID: 34094001 PMCID: PMC8144104 DOI: 10.1016/j.csbj.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 11/07/2022] Open
Abstract
ATP-binding cassette (ABC) transporters belong to one of the largest membrane protein superfamilies, which function in translocating substrates across biological membranes using energy from ATP hydrolysis. Currently, the classification of ABC transporters in Clostridioides difficile is not complete. Therefore, the sequence-function relationship of all ABC proteins encoded within the C. difficile genome was analyzed. Identification of protein domains associated with the ABC system in the C. difficile 630 reference genome revealed 226 domains: 97 nucleotide-binding domains (NBDs), 98 transmembrane domains (TMDs), 30 substrate-binding domains (SBDs), and one domain with features of an adaptor protein. Gene organization and transcriptional unit analyses indicated the presence of 78 ABC systems comprising 28 importers and 50 exporters. Based on NBD sequence similarity, ABC transporters were classified into 12 sub-families according to their substrates. Interestingly, all ABC exporters, accounting for 64% of the total ABC systems, are involved in antibiotic resistance. Based on analysis of ABC proteins from 49 C. difficile strains, the majority of core NBDs are predicted to be involved in multidrug resistance systems, consistent with the ability of this organism to survive exposure to an array of antibiotics. Our findings herein provide another step toward a better understanding of the function and evolutionary relationships of ABC proteins in this pathogen.
Collapse
Affiliation(s)
- Methinee Pipatthana
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Somsak Likhitrattanapisal
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Purification and characterization of bacteriocins-like inhibitory substances from food isolated Enterococcus faecalis OS13 with activity against nosocomial enterococci. Sci Rep 2021; 11:3795. [PMID: 33589735 PMCID: PMC7884432 DOI: 10.1038/s41598-021-83357-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
Nosocomial infections caused by enterococci are an ongoing global threat. Thus, finding therapeutic agents for the treatment of such infections are crucial. Some Enterococcus faecalis strains are able to produce antimicrobial peptides called bacteriocins. We analyzed 65 E. faecalis isolates from 43 food samples and 22 clinical samples in Egypt for 17 common bacteriocin-encoding genes of Enterococcus spp. These genes were absent in 11 isolates that showed antimicrobial activity putatively due to bacteriocins (three from food, including isolate OS13, and eight from clinical isolates). The food-isolated E. faecalis OS13 produced bacteriocin-like inhibitory substances (BLIS) named enterocin OS13, which comprised two peptides (enterocin OS13α OS13β) that inhibited the growth of antibiotic-resistant nosocomial E. faecalis and E. faecium isolates. The molecular weights of enterocin OS13α and OS13β were determined as 8079 Da and 7859 Da, respectively, and both were heat-labile. Enterocin OS13α was sensitive to proteinase K, while enterocin OS13β was resistant. Characterization of E. faecalis OS13 isolate revealed that it belonged to sequence type 116. It was non-hemolytic, bile salt hydrolase-negative, gelatinase-positive, and sensitive to ampicillin, penicillin, vancomycin, erythromycin, kanamycin, and gentamicin. In conclusion, BLIS as enterocin OS13α and OS13β represent antimicrobial agents with activities against antibiotic-resistant enterococcal isolates.
Collapse
|
23
|
Loss of Motility as a Non-Lethal Mechanism for Intercolony Inhibition ("Sibling Rivalry") in Marinobacter. Microorganisms 2021; 9:microorganisms9010103. [PMID: 33466273 PMCID: PMC7824750 DOI: 10.3390/microorganisms9010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteria from the genus Marinobacter are ubiquitous throughout the worlds' oceans as "opportunitrophs" capable of surviving a wide range of conditions, including colonization of surfaces of marine snow and algae. To prevent too many bacteria from occupying this ecological niche simultaneously, some sort of population dependent control must be operative. Here, we show that while Marinobacter do not produce or utilize an acylhomoserine lactone (AHL)-based quorum sensing system, "sibling" colonies of many species of Marinobacter exhibit a form of non-lethal chemical communication that prevents colonies from overrunning each other's niche space. Evidence suggests that this inhibition is the result of a loss in motility for cells at the colony interfaces. Although not the signal itself, we have identified a protein, glycerophosphoryl diester phosphodiesterase, that is enriched in the inhibition zone between the spreading colonies that may be part of the overall response.
Collapse
|
24
|
Thappeta KRV, Ciezki K, Morales-Soto N, Wesener S, Goodrich-Blair H, Stock SP, Forst S. R-type bacteriocins of Xenorhabdus bovienii determine the outcome of interspecies competition in a natural host environment. MICROBIOLOGY-SGM 2020; 166:1074-1087. [PMID: 33064635 DOI: 10.1099/mic.0.000981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace's medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.
Collapse
Affiliation(s)
- Kishore Reddy Venkata Thappeta
- University of Wisconsin, Milwaukee, WI, USA.,Singapore Institute of Food and Biotechnology Innovation (SIFBI), A*STAR, Singapore
| | - Kristin Ciezki
- Aurora Health Care, Milwaukee, WI, USA.,University of Wisconsin, Milwaukee, WI, USA
| | - Nydia Morales-Soto
- Eck Institute for Global Health, University of Notre Dame, IN, USA.,University of Wisconsin, Milwaukee, WI, USA
| | | | - Heidi Goodrich-Blair
- University of Tennessee, Knoxville, TN, USA.,University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
25
|
|
26
|
Bosák J, Hrala M, Micenková L, Šmajs D. Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther 2020; 19:309-322. [PMID: 32856960 DOI: 10.1080/14787210.2020.1816824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The emergence and spread of antibiotic resistance among pathogenic bacteria drives the search for alternative antimicrobial therapies. Bacteriocins represent a potential alternative to antibiotic treatment. In contrast to antibiotics, bacteriocins are peptides or proteins that have relatively narrow spectra of antibacterial activities and are produced by a wide range of bacterial species. Bacteriocins of Escherichia coli are historically classified as microcins and colicins, and, until now, more than 30 different bacteriocin types have been identified and characterized. AREAS COVERED We performed bibliographical searches of online databases to review the literature regarding bacteriocins produced by E. coli with respect to their occurrence, bacteriocin role in bacterial colonization and pathogenicity, and application of their antimicrobial effect. EXPERT OPINION The potential use of bacteriocins for applications in human and animal medicine and the food industry includes (i) the use of bacteriocin-producing probiotic strains, (ii) recombinant production in plants and application in food, and (iii) application of purified bacteriocins.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
27
|
Dai L, Sahin O, Grover M, Zhang Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl Res 2020; 223:76-88. [PMID: 32438073 PMCID: PMC7423705 DOI: 10.1016/j.trsl.2020.04.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
Campylobacter is an enteric pathogen and a leading bacterial cause of diarrhea worldwide. It is widely distributed in food animal species and is transmitted to humans primarily through the foodborne route. While generally causing self-limited diarrhea in humans, Campylobacter may induce severe or systemic infections in immunocompromised or young/elderly patients, which often requires antibiotic therapy with the first-line antibiotics including fluoroquinolones and macrolides. Over the past decades, Campylobacter has acquired resistance to these clinically significant antibiotics, compromising the effectiveness of antibiotic treatments. To address this concern, many studies have been conducted to advance novel and alternative measures to control antibiotic-resistant Campylobacter in animal reservoirs and in the human host. Although some of these undertakings have yielded promising results, efficacious and reliable alternative approaches are yet to be developed. In this review article, we will describe Campylobacter-associated disease spectrums and current treatment options, discuss the state of antibiotic resistance and alternative therapies, and provide an evaluation of various approaches that are being developed to control Campylobacter infections in animal reservoirs and the human host.
Collapse
Affiliation(s)
- Lei Dai
- Departments of Veterinary Microbiology and Preventive Medicine
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States 50011
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota, United States 55902
| | - Qijing Zhang
- Departments of Veterinary Microbiology and Preventive Medicine.
| |
Collapse
|
28
|
Ruhe ZC, Low DA, Hayes CS. Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Annu Rev Microbiol 2020; 74:497-520. [PMID: 32680451 DOI: 10.1146/annurev-micro-020518-115638] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
29
|
Nazari M, Smith DL. A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17 Characteristics and Applications. FRONTIERS IN PLANT SCIENCE 2020; 11:916. [PMID: 32733506 PMCID: PMC7358586 DOI: 10.3389/fpls.2020.00916] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/04/2020] [Indexed: 05/08/2023]
Abstract
A wide range of prokaryotes produce and excrete bacteriocins (proteins with antimicrobial activity) to reduce competition from closely related strains. Application of bacteriocins is of great importance in food industries, while little research has been focused on the agricultural potential of bacteriocins. A number of bacteriocin producing bacteria are members of the phytomicrobiome, and some strains are plant growth promoting rhizobacteria (PGPR). Thuricin 17 is a single small peptide with a molecular weight of 3.162 kDa, a subclass IId bacteriocin produced by Bacillus thuringiensis NEB17, isolated from soybean nodules. It is either cidal or static to a wide range of prokaryotes. In this way, it removes key competition from the niche space of the producer organism. B. thuringiensis NEB17 was isolated from soybean root nodules, and thus is a member of the phytomicrobiome. Interestingly, thuricin 17 is not active against a wide range of rhizobial strains involved in symbiotic nitrogen fixation with legumes or against other PGPR. In addition, it stimulates plant growth, particularly in the presence of abiotic stresses. The stresses it assists with include key ones associated with climate change (drought, high temperature, and soil salinity). Hence, in the presence of stress, it increases the size of the overall niche space, within plant roots, for B. thuringiensis NEB17. Through its anti-microbial activity, it could also enhance plant growth via control of specific plant pathogens. None of the isolated bacteriocins have been examined as broadly as thuricin 17 on plant growth promotion. Thus, this review focuses on the effect of thuricin 17 as a microbe to plant signal that assists crop plants in managing stress and making agricultural systems more climate change resilient.
Collapse
|
30
|
Dean AD, Horsburgh MJ, Vasiev B. Toxin-mediated competition in weakly motile bacteria. J Theor Biol 2019; 480:205-217. [PMID: 31348925 DOI: 10.1016/j.jtbi.2019.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Many bacterial species produce toxins that inhibit their competitors. We model this phenomenon by extending classic two-species Lotka-Volterra competition in one spatial dimension to incorporate toxin production by one species. Considering solutions comprising two adjacent single-species colonies, we show how the toxin inhibits the susceptible species near the interface between the two colonies. Moreover, a sufficiently effective toxin inhibits the susceptible species to such a degree that an 'inhibition zone' is formed separating the two colonies. In the special case of truly non-motile bacteria, i.e. with zero bacterial diffusivity, we derive analytical expressions describing the bacterial distributions and size of the inhibition zone. In the more general case of weakly motile bacteria, i.e. small bacterial diffusivity, these two-colony solutions become travelling waves. We employ numerical methods to show that the wavespeed is dependent upon both interspecific competition and toxin strength; precisely which colony expands at the expense of the other depends upon the choice of parameter values. In particular, a sufficiently effective toxin allows the producer to expand at the expense of the susceptible, with a wavespeed magnitude that is bounded above as the toxin strength increases. This asymptotic wavespeed is independent of interspecific competition and due to the formation of the inhibition zone; when the colonies are thus separated, there is no longer direct competition between the two species and the producer can invade effectively unimpeded by its competitor. We note that the minimum toxin strength required to produce an inhibition zone increases rapidly with increasing bacterial diffusivity, suggesting that even moderately motile bacteria must produce very strong toxins if they are to benefit in this way.
Collapse
Affiliation(s)
- Andrew D Dean
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Malcolm J Horsburgh
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Bakhti Vasiev
- Department of Mathematical Sciences, Mathematical Sciences Building, University of Liverpool, Liverpool L69 7ZL, UK
| |
Collapse
|
31
|
Partial Characterization of Novel Bacteriocin SF1 Produced by Shigella flexneri and Their Lethal Activity on Members of Gut Microbiota. Int J Microbiol 2019; 2019:6747190. [PMID: 31198422 PMCID: PMC6526549 DOI: 10.1155/2019/6747190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 01/04/2023] Open
Abstract
A strain of Shigella flexneri producing bacteriocin was isolated from a patient with diarrhea. The main objective of this study was to isolate and partially characterize the bacteriocin. The producing microorganism was identified using biochemical, serological, and molecular methods. The lethal activity of the S. flexneri strain was studied using the drop method. This bacterial strain showed activity against different strains of E. coli and B. fragilis. Using immunological techniques, it was determined that S. flexneri belongs to serotype 2a, and by PCR, the presence of the ipaH plasmid was determined. By chromatographic techniques, it was determined that the bacteriocin is a peptide of high purity with a molecular weight of 66294.094 Da. The amino acid composition and sequence were determined by the Edman reaction, and a sequence of 619 amino acid residues was obtained. Only in five positions of this sequence, the amino acid glutamine changed to glutamic acid with respect to colicin U produced by S. boydii. From an ecological point of view, it could be assumed that SF1 bacteriocin contributes to eliminate some members of the normal microbiota of the human intestine, facilitating colonization and then producing the invasion process that characterizes the pathogenicity of Shigella.
Collapse
|
32
|
Fedorec AJH, Ozdemir T, Doshi A, Ho YK, Rosa L, Rutter J, Velazquez O, Pinheiro VB, Danino T, Barnes CP. Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of Synthetic Gene Networks in Escherichia coli. iScience 2019; 14:323-334. [PMID: 30954530 PMCID: PMC6489366 DOI: 10.1016/j.isci.2019.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/29/2018] [Accepted: 03/18/2019] [Indexed: 11/03/2022] Open
Abstract
Plasmids are the workhorse of both industrial biotechnology and synthetic biology, but ensuring they remain in bacterial cells is a challenge. Antibiotic selection cannot be used to stabilize plasmids in most real-world applications, and inserting dynamical gene networks into the genome remains challenging. Plasmids have evolved several mechanisms for stability, one of which, post-segregational killing (PSK), ensures that plasmid-free cells do not survive. Here we demonstrate the plasmid-stabilizing capabilities of the axe/txe toxin-antitoxin system and the microcin-V bacteriocin system in the probiotic bacteria Escherichia coli Nissle 1917 and show that they can outperform the commonly used hok/sok. Using plasmid stability assays, automated flow cytometry analysis, mathematical models, and Bayesian statistics we quantified plasmid stability in vitro. Furthermore, we used an in vivo mouse cancer model to demonstrate plasmid stability in a real-world therapeutic setting. These new PSK systems, plus the developed Bayesian methodology, will have wide applicability in clinical and industrial biotechnology.
Collapse
Affiliation(s)
- Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK.
| | - Tanel Ozdemir
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Anjali Doshi
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA
| | - Yan-Kay Ho
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Luca Rosa
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jack Rutter
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Oscar Velazquez
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA
| | - Vitor B Pinheiro
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; KU Leuven Rega Institute for Medical Research, Herestraat, 49 Box 1030, 3000 Leuven, Belgium
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
33
|
Ciezki K, Wesener S, Jaber D, Mirza S, Forst S. ngrA-dependent natural products are required for interspecies competition and virulence in the insect pathogenic bacterium Xenorhabdus szentirmaii. MICROBIOLOGY-SGM 2019; 165:538-553. [PMID: 30938671 DOI: 10.1099/mic.0.000793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Xenorhabdus species are symbionts of entomopathogenic nematodes and pathogens of susceptible insects. Nematodes enter insect hosts and perforate the midgut to invade the haemocoel where Xenorhabdus bacteria are released transitioning to their pathogenic stage. During nematode invasion microbes from the insect gut translocate into the haemocoel. Different species of nematodes carrying specific strains of Xenorhabdus can also invade the same insect. Xenorhabdus species thereby compete for nutrients and space with both related strains and non-related gut microbes. While Xenorhabdus species produce diverse antimicrobial compounds in complex media, their functions in insect hosts are not well understood. We show that Xenorhabdus szentirmaii produced ngrA-dependent antibiotics that were active against both gut-derived microbes and Xenorhabdus nematophila whereas antibiotics of X. nematophila were not active against X. szentirmaii. X. nematophila growth was inhibited in co-cultures with wild-type X. szentirmaii in medium that mimics insect haemolymph. An antibiotic-deficient strain of X. szentirmaii was created by inactivating the ngrA gene that encodes the enzyme that attaches the 4' phosphopantetheinyl moiety to non-ribosomal peptide synthetases involved in antibiotic biosynthesis. X. nematophila growth was not inhibited in co-cultures with the ngrA strain. The growth of X. nematophila was suppressed in Manduca sexta co-injected with wild-type X. szentirmaii and X. nematophila. In contrast, growth of X. nematophila was not suppressed in M. sexta co-injected with the ngrA strain. Two unique compounds were detected by MALDI-TOF MS analysis in haemolymph infected with the wild-type but not with the ngrA strain. Finally, killing of M. sexta was delayed in insects infected with the ngrA strain. These findings indicate that in the insect host X. szentirmaii produces ngrA-dependent products involved in both interspecies competition and virulence.
Collapse
Affiliation(s)
- Kristin Ciezki
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Shane Wesener
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Danny Jaber
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Shama Mirza
- Shimadzu Laboratory for Advanced and Applied Analytical Chemistry, University of Wisconsin, Milwaukee, WI, USA
| | - Steven Forst
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
34
|
Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S. Characterization and safety evaluation of partially purified bacteriocin produced by Escherichia coli E isolated from fermented pineapple Ananas comosus (L.) Merr. Braz J Microbiol 2019; 50:33-42. [PMID: 30637641 PMCID: PMC6863319 DOI: 10.1007/s42770-018-0014-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 07/30/2018] [Indexed: 11/30/2022] Open
Abstract
Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
Collapse
Affiliation(s)
- Van Thi Le
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand
| | - Montira Leelakriangsak
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand.
| | - Seong Wei Lee
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan Campus Jeli, Jeli, Kelantan, 17600, Malaysia
| | - Somrak Panphon
- Biology Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand
| | | | | |
Collapse
|
35
|
Santos JC, Sousa RC, Otoni CG, Moraes AR, Souza VG, Medeiros EA, Espitia PJ, Pires AC, Coimbra JS, Soares NF. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.06.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Mills S, Ross RP, Hill C. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiol Rev 2018; 41:S129-S153. [PMID: 28830091 DOI: 10.1093/femsre/fux022] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Bacteriocins and bacteriophage (phage) are biological tools which exhibit targeted microbial killing, a phenomenon which until recently was seen as a major drawback for their use as antimicrobial agents. However, in an age when the deleterious consequences of broad-spectrum antibiotics on human health have become apparent, there is an urgent need to develop narrow-spectrum substitutes. Indeed, disruption of the microbial communities which exist on and in our bodies can generate immediate and long-term negative effects and this is particularly borne out in the gut microbiota community whose disruption has been linked to a number of disorders reaching as far as the brain. Moreover, the antibiotic resistance crisis has resulted in our inability to treat many bacterial infections and has triggered the search for damage-limiting alternatives. As bacteriocins and phage are natural entities they are relatively easy to isolate and characterise and are also ideal candidates for improving food safety and quality, forfeiting the need for largely unpopular chemical preservatives. This review highlights the efficacy of both antimicrobial agents in terms of gut health and food safety and explores the body of scientific evidence supporting their effectiveness in both environments.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Institute and School of Microbiology, University College Cork, Western Road, Cork T12 YN60, Ireland
| | - R Paul Ross
- APC Microbiome Institute and School of Microbiology, University College Cork, Western Road, Cork T12 YN60, Ireland
| | - Colin Hill
- APC Microbiome Institute and School of Microbiology, University College Cork, Western Road, Cork T12 YN60, Ireland
| |
Collapse
|
37
|
Wittmann MJ, Fukami T. Eco-Evolutionary Buffering: Rapid Evolution Facilitates Regional Species Coexistence despite Local Priority Effects. Am Nat 2018; 191:E171-E184. [PMID: 29750553 DOI: 10.1086/697187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Inhibitory priority effects, in which early-arriving species exclude competing species from local communities, are thought to enhance regional species diversity via community divergence. Theory suggests, however, that these same priority effects make it difficult for species to coexist in the region unless individuals are continuously supplied from an external species pool, often an unrealistic assumption. Here we develop an eco-evolutionary hypothesis to solve this conundrum. We build a metacommunity model in which local priority effects occur between two species via interspecific interference. Within each species there are two genotypes: one is more resistant to interspecific interference than the other but pays a fitness cost for its resistance. Because of this trade-off, species evolve to become less resistant as they become regionally more common. Rare species can then invade some local patches and consequently recover in regional frequency. This "eco-evolutionary buffering" enables the regional coexistence of species despite local priority effects, even in the absence of immigration from an external species pool. Our model predicts that eco-evolutionary buffering is particularly effective when local communities are small and connected by infrequent dispersal.
Collapse
|
38
|
Livingstone PG, Millard AD, Swain MT, Whitworth DE. Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding. Microb Genom 2018; 4:e000152. [PMID: 29345219 PMCID: PMC5857379 DOI: 10.1099/mgen.0.000152] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Predation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. Exposure to pre-killed prey significantly altered expression of 1319 predator genes. However, the transcriptional response to living prey was minimal, with only 12 genes being significantly up-regulated. The genes most induced by prey presence (kdpA and kdpB, members of the kdp regulon) were confirmed by reverse transcriptase quantitative PCR to be regulated by osmotic shock in M. xanthus, suggesting indirect sensing of prey. However, the prey showed extensive transcriptome changes when co-cultured with predator, with 40 % of its genes (1534) showing significant changes in expression. Bacteriolytic M. xanthus culture supernatant and secreted outer membrane vesicles (OMVs) also induced changes in expression of large numbers of prey genes (598 and 461, respectively). Five metabolic pathways were significantly enriched in prey genes up-regulated on exposure to OMVs, supernatant and/or predatory cells, including those for ribosome and lipopolysaccharide production, suggesting that the prey cell wall and protein production are primary targets of the predator's attack. Our data suggest a model of the myxobacterial predatome (genes and proteins associated with predation) in which the predator constitutively produces secretions which disable its prey whilst simultaneously generating a signal that prey is present. That signal then triggers a regulated feeding response in the predator.
Collapse
Affiliation(s)
- Paul G. Livingstone
- IBERS, Aberystwyth University, Cledwyn Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3DD, UK
| | | | - Martin T. Swain
- IBERS, Aberystwyth University, Cledwyn Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3DD, UK
| | - David E. Whitworth
- IBERS, Aberystwyth University, Cledwyn Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3DD, UK
| |
Collapse
|
39
|
Phumisantiphong U, Siripanichgon K, Reamtong O, Diraphat P. A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS One 2017; 12:e0186415. [PMID: 29023515 PMCID: PMC5638566 DOI: 10.1371/journal.pone.0186415] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/29/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of multidrug-resistant enterococci (MDRE) and particularly vancomycin-resistant enterococci (VRE) is considered a serious health problem worldwide, causing the need for new antimicrobials. The aim of this study was to discover and characterize bacteriocin against clinical isolates of MDRE and VRE. Over 10,000 bacterial isolates from water, environment and clinical samples were screened. E. faecalis strain 478 isolated from human feces produced the highest antibacterial activity against several MDRE and VRE strains. The optimum condition for bacteriocin production was cultivation in MRS broth at 37°C, pH 5-6 for 16 hours. The bacteriocin-like substance produced from E. faecalis strain EF478 was stable at 60°C for at least 1 hour and retained its antimicrobial activity after storage at -20°C for 1 year, at 4°C for 6 months, and at 25°C for 2 months. A nano-HPLC electrospray ionization multi-stage tandem mass spectrometry (nLC-ESI-MS/MS) analysis showed that the amino acid sequences of the bacteriocin-like substance was similar to serine protease of E. faecalis, gi|488296663 (NCBI database), which has never been reported as a bacteriocin. This study reported a novel bacteriocin with high antibacterial activity against VRE and MDRE.
Collapse
Affiliation(s)
| | - Kanokrat Siripanichgon
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
|
41
|
Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives: Challenges and emerging horizons. Crit Rev Food Sci Nutr 2017; 58:2743-2767. [PMID: 28880573 DOI: 10.1080/10408398.2017.1340870] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The increasing demand for fresh-like food products and the potential health hazards of chemically preserved and processed food products have led to the advent of alternative technologies for the preservation and maintenance of the freshness of the food products. One such preservation strategy is the usage of bacteriocins or bacteriocins producing starter cultures for the preservation of the intended food matrixes. Bacteriocins are ribosomally synthesized smaller polypeptide molecules that exert antagonistic activity against closely related and unrelated group of bacteria. This review is aimed at bringing to lime light the various class of bacteriocins mainly from gram positive bacteria. The desirable characteristics of the bacteriocins which earn them a place in food preservation technology, the success story of the same in various food systems, the various challenges and the strategies employed to put them to work efficiently in various food systems has been discussed in this review. From the industrial point of view various aspects like the improvement of the producer strains, downstream processing and purification of the bacteriocins and recent trends in engineered bacteriocins has also been briefly discussed in this review.
Collapse
Affiliation(s)
- Eldin Maliyakkal Johnson
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Yong-Gyun Jung
- c Interdisciplinary Program of Biomodulation , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Ying-Yu Jin
- d Myongji University Bioefficiency Research Centre , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Rasu Jayabalan
- b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Seung Hwan Yang
- e Department of Biotechnology , Chonnam National University-Yeosu Campus , Yeosu , Korea
| | - Joo Won Suh
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,f Division of Bioscience and Bioinformatics , College of Natural Science, Myongji University , Yongin , Korea
| |
Collapse
|
42
|
Kumar V, Tiwari SK. Activity-guided separation and characterization of new halocin HA3 from fermented broth of Haloferax larsenii HA3. Extremophiles 2017; 21:609-621. [PMID: 28378299 DOI: 10.1007/s00792-017-0930-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
Haloferax larsenii HA3 was able to grow optimally in HS medium containing 15% NaCl, at pH 7.2 and 42 °C in aerobic conditions. Strain HA3 was found to be round shape, Gram-negative, catalase-positive, sensitive to bile acid, and resistant to chloramphenicol, and could not utilize arginine. The lipid profile revealed the presence of glycerol diether moiety (GDEM) suggesting Haloarchaea characteristics. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that it was closely related to H. larsenii ZJ206. Interestingly, strain HA3 was found to produce halocin HA3 which was purified using ultrafiltration and chromatography. It was found to be stable up to 80 °C, pH 2.0-10.0, organic solvents, surfactants, and detergents tested. However, the activity of halocin HA3 was completely reduced in the presence of proteinase K and trypsin. It was found to be halocidal against H. larsenii HA10, rupturing cell boundary and leading to cell death. The molecular weight of halocin HA3 was found to be ~13 kDa and MALDI-TOF MS/MS analysis suggested no homology with known halocins. The N-terminal ten amino-acid residues, NH2MNLGIILETN-COOH, suggested a new/novel halocin. These properties of halocin HA3 may be applicable for control of Haloarchaea in environments and salted foods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
43
|
Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 2017; 7:45133. [PMID: 28327641 PMCID: PMC5361080 DOI: 10.1038/srep45133] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
Type VI secretion systems (T6SS) enable bacteria to engage neighboring cells in contact-dependent competition. In Vibrio cholerae, three chromosomal clusters each encode a pair of effector and immunity genes downstream of those encoding the T6SS structural machinery for effector delivery. Different combinations of effector-immunity proteins lead to competition between strains of V. cholerae, which are thought to be protected only from the toxicity of their own effectors. Screening of all publically available V. cholerae genomes showed that numerous strains possess long arrays of orphan immunity genes encoded in the 3' region of their T6SS clusters. Phylogenetic analysis reveals that these genes are highly similar to those found in the effector-immunity pairs of other strains, indicating acquisition by horizontal gene transfer. Extensive genomic comparisons also suggest that successive addition of effector-immunity gene pairs replaces ancestral effectors, yet retains the cognate immunity genes. The retention of old immunity genes perhaps provides protection against nearby kin bacteria in which the old effector was not replaced. This mechanism, combined with frequent homologous recombination, is likely responsible for the high diversity of T6SS effector-immunity gene profiles observed for V. cholerae and closely related species.
Collapse
|
44
|
A New Member of the Growing Family of Contact-Dependent Growth Inhibition Systems in Xenorhabdus doucetiae. PLoS One 2016; 11:e0167443. [PMID: 27907104 PMCID: PMC5131962 DOI: 10.1371/journal.pone.0167443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
Xenorhabdus is a bacterial symbiont of entomopathogenic Steinernema nematodes and is pathogenic for insects. Its life cycle involves a stage inside the insect cadaver, in which it competes for environmental resources with microorganisms from soil and the insect gut. Xenorhabdus is, thus, a useful model for identifying new interbacterial competition systems. For the first time, in an entomopathogenic bacterium, Xenorhabdus doucetiae strain FRM16, we identified a cdi-like locus. The cdi loci encode contact-dependent inhibition (CDI) systems composed of proteins from the two-partner secretion (TPS) family. CdiB is the outer membrane protein and CdiA is the toxic exoprotein. An immunity protein, CdiI, protects bacteria against inhibition. We describe here the growth inhibition effect of the toxic C-terminus of CdiA from X. doucetiae FRM16, CdiA-CTFRM16, following its production in closely and distantly related enterobacterial species. CdiA-CTFRM16 displayed Mg2+-dependent DNase activity, in vitro. CdiA-CTFRM16-mediated growth inhibition was specifically neutralized by CdiIFRM16. Moreover, the cdi FRM16 locus encodes an ortholog of toxin-activating proteins C that we named CdiCFRM16. In addition to E. coli, the cdiBCAI-type locus was found to be widespread in environmental bacteria interacting with insects, plants, rhizospheres and soils. Phylogenetic tree comparisons for CdiB, CdiA and CdiC suggested that the genes encoding these proteins had co-evolved. By contrast, the considerable variability of CdiI protein sequences suggests that the cdiI gene is an independent evolutionary unit. These findings further characterize the sparsely described cdiBCAI-type locus.
Collapse
|
45
|
Naz SA, Jabeen N, Sohail M, Rasool SA. Biophysicochemical characterization of Pyocin SA189 produced by Pseudomonas aeruginosa SA189. Braz J Microbiol 2016; 46:1147-54. [PMID: 26691474 PMCID: PMC4704615 DOI: 10.1590/s1517-838246420140737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/02/2015] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa, in spite of being a ubiquitous organism (as it is found in soil, water, and humans), is also an opportunistic pathogen. In order to maintain its diversity in the community, it produces various toxic proteins, known as, bacteriocins. In the present study, pyocin SA189, which is a bacteriocin produced by P. aeruginosa SA189 (isolated from a clinical sample) was characterized. P. aeruginosa SA189, as identified by the conventional and 16S rRNA gene amplification, produced pyocin SA189 of molecular weight of 66 k Da. The pyocin showed antimicrobial activity against several clinically relevant Gram-positive and Gram-negative bacteria and was substantially stable for wide ranges of temperature and pH. Furthermore, the pyocin also retained its biological activity upon treatment with metal ions, organic solvents, and various proteolytic and lipolytic enzymes. The data from the growth kinetics indicated that the maximum bacteriocin production occurred in the late log phase. Overall, our results signify the potential of pyocin SA189 as a bio-control agent.
Collapse
Affiliation(s)
- Sehar Afshan Naz
- Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Nusrat Jabeen
- Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | | | | |
Collapse
|
46
|
|
47
|
Kazemi-Zaromi S, Baghaee-Ravari S, Khodaygan P, Falahati-Rastegar M. Screening bactericidal effect ofPectobacterium carotovorumsubsp.carotovorumstrains against causal agent of potato soft rot. J Basic Microbiol 2015; 56:196-205. [DOI: 10.1002/jobm.201500482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/06/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Samaneh Kazemi-Zaromi
- Department of Crop Protection, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - Sareh Baghaee-Ravari
- Department of Crop Protection, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture; Vali-E-Asr University; Rafsanjan Iran
| | | |
Collapse
|
48
|
Abstract
Microbes produce an extraordinary array of microbial defense systems. These include broad-spectrum classical antibiotics critical to human health concerns; metabolic by-products, such as the lactic acids produced by lactobacilli; lytic agents, such as lysozymes found in many foods; and numerous types of protein exotoxins and bacteriocins. The abundance and diversity of this biological arsenal are clear. Lactic acid production is a defining trait of lactic acid bacteria. Bacteriocins are found in almost every bacterial species examined to date, and within a species, tens or even hundreds of different kinds of bacteriocins are produced. Halobacteria universally produce their own version of bacteriocins, the halocins. Streptomycetes commonly produce broad-spectrum antibiotics. It is clear that microbes invest considerable energy in the production and elaboration of antimicrobial mechanisms. What is less clear is how such diversity arose and what roles these biological weapons play in microbial communities. One family of microbial defense systems, the bacteriocins, has served as a model for exploring evolutionary and ecological questions. In this review, current knowledge of how the extraordinary range of bacteriocin diversity arose and is maintained in one species of bacteria, Escherichia coli, is assessed and the role these toxins play in mediating microbial dynamics is discussed.
Collapse
|
49
|
Walsh CJ, Guinane CM, Hill C, Ross RP, O'Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project's reference genome database. BMC Microbiol 2015; 15:183. [PMID: 26377179 PMCID: PMC4573289 DOI: 10.1186/s12866-015-0515-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/08/2015] [Indexed: 01/12/2023] Open
Abstract
Background The human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project’s reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated. Results We identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10 kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides. Conclusions Multiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0515-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Calum J Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Paul W O'Toole
- APC Microbiome Institute, University College Cork, Cork, Ireland. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland. .,APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
50
|
Joshi A, Grinter R, Josts I, Chen S, Wojdyla JA, Lowe ED, Kaminska R, Sharp C, McCaughey L, Roszak AW, Cogdell RJ, Byron O, Walker D, Kleanthous C. Structures of the Ultra-High-Affinity Protein-Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa. J Mol Biol 2015; 427:2852-66. [PMID: 26215615 PMCID: PMC4548480 DOI: 10.1016/j.jmb.2015.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/25/2022]
Abstract
How ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase-Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase-ImS2 and pyocin AP41 DNase-ImAP41. These structures represent divergent DNase-Im subfamilies and are important in extending our understanding of protein-protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase-Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase-Immunity pairs that appear to underpin the split of this family into two distinct groups.
Collapse
Affiliation(s)
- Amar Joshi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rhys Grinter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Inokentijs Josts
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sabrina Chen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Justyna A Wojdyla
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Connor Sharp
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura McCaughey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aleksander W Roszak
- WestCHEM, School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|