1
|
Caigoy JC, Nariya H, Shimamoto T, Yan Z, Shimamoto T. ArcAB system promotes biofilm formation through direct repression of hapR transcription in Vibrio cholerae. Microbiol Res 2025; 297:128155. [PMID: 40185028 DOI: 10.1016/j.micres.2025.128155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Vibrio cholerae, the causative agent of cholera, can efficiently adapt its metabolic processes, including biofilm formation, in response to varying respiratory conditions- such as aerobic, microaerobic, and anaerobic- through the ArcAB system. In this study, we elucidate the activation mechanism of V. cholerae ArcB and ArcA and identify ArcB residues H292, D577, and H722, along with ArcA residue D54 as key phosphorylation sites. Furthermore, we demonstrate that the ArcAB system plays a crucial role in regulating biofilm formation under both aerobic and anaerobic conditions. Our findings reveal that the positive regulation of biofilm formation by the ArcAB systems involves the high cell density (HCD) quorum sensing (QS) regulator HapR. Specifically, phosphorylated ArcA represses hapR transcription, thereby promoting biofilm formation under anaerobic condition. This study also highlights an epistatic relationship between ArcA and HapR in biofilm regulation. Overall, our results underscore the critical role of the ArcAB system in the biofilm formation of pathogenic V. cholerae under oxygen-limiting conditions.
Collapse
Affiliation(s)
- Jant Cres Caigoy
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Hirofumi Nariya
- Graduate School of Human Life Sciences, Jumonji University, Japan
| | - Toshi Shimamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Zhiqun Yan
- Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Tadashi Shimamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan.
| |
Collapse
|
2
|
Sun Y, Xu M, Wang B, Xia C, He Z, Lu B, Cui J, Liao Q, Xu Q, Gan F. A Robust and Orthogonal Far-Red Light Sensor for Gene Expression Control in Escherichia coli. ACS Synth Biol 2025; 14:1687-1700. [PMID: 40327816 DOI: 10.1021/acssynbio.5c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Optogenetics has emerged as a powerful tool for regulating cellular processes due to its noninvasive nature and precise spatiotemporal control. Far-red light (FRL) has increasingly been used in the optogenetic control of mammalian cells due to its low toxicity and high tissue penetration. However, robust and orthogonal FRL sensors are lacking in bacteria. Here, we established an orthogonal FRL sensor in Escherichia coli with a maximum dynamic range exceeding 230-fold based on the RfpA-RfpC-RfpB (RfpABC) signaling system that regulates the far-red light photoacclimation (FaRLiP) in cyanobacteria. We identified a conserved DNA motif in the promoter sequences of the Chl f synthase gene and other genes in the FaRLiP gene clusters, termed the far-red light-regulatory (FLR) motif, which enables the light-responsive activation of gene expression through its interaction with RfpB. Based on the FLR motif, we simplified the FLR-containing promoters and characterized their activation abilities and dynamic ranges, which can be utilized in different synthetic biology scenarios. Additionally, one or two FLR motifs are present at other loci within the FaRLiP gene cluster, providing further FRL-inducible promoter resources. The FRL sensor exhibits effective activation and suppression under low-intensity FRL and white light, respectively, and remains functional in darkness. In conclusion, this study advances the understanding of the regulatory mechanisms of FaRLiP in cyanobacteria and provides robust and orthogonal FRL sensors for synthetic biology applications.
Collapse
Affiliation(s)
- Yueyang Sun
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Mengran Xu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Baiyang Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Chenyang Xia
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiming He
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Bowen Lu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jiyun Cui
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Qiancheng Liao
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Xu
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Gan
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Zhang X, Zhai Y, Zhu J, Zhu Z, Wen Y, Gao Q, Wang L, Lin J, Qian Y, Chen L, Du H. Regulation of type 3 fimbria expression by RstA affects biofilm formation and virulence in Klebsiella pneumoniae ATCC43816. Microbiol Spectr 2025:e0307624. [PMID: 40372035 DOI: 10.1128/spectrum.03076-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/02/2025] [Indexed: 05/16/2025] Open
Abstract
Klebsiella pneumoniae causes both community-acquired and healthcare-associated infections, presenting a major therapeutic challenge to global public health. RstBA is a common two-component regulatory system that controls downstream gene expression in certain Enterobacteriaceae species. However, the role of RstBA in K. pneumoniae infection remains unknown. To determine its function, a wild-type K. pneumoniae strain (ATCC43816) and rstA mutant and complementation strains were constructed. Phenotypic experiments and in vivo animal infection assays demonstrated that deletion of rstA decreased virulence and biofilm formation. RNA sequencing analysis of ATCC43816 and rstA mutant strains was performed to study the regulatory mechanisms, revealing differential expression of genes involved in arginine and proline metabolism, phenylalanine metabolism, and quorum sensing. In addition, the mrkI and the mrkABCDF gene cluster, which regulates and encodes type 3 fimbriae, exhibited lower expression in the absence of rstA, possibly related to decreased virulence and biofilm formation. Quantitative real-time reverse transcription PCR, promoter activity assays, and electrophoretic mobility shift assays were conducted to identify the transcriptional regulation of mrkI and mrkABCDF by rstA. Our findings show that rstA regulates type 3 fimbriae expression by regulating mrkI indirectly and regulating mrkA directly by binding to its promoter. This study provides new insights into the functional importance of RstA in regulating biofilm formation and virulence in K. pneumoniae.IMPORTANCEKlebsiella pneumoniae is an opportunistic pathogen that has become a significant cause of community-acquired and nosocomial infections. The rise of hypervirulent and multi-drug-resistant K. pneumoniae poses a significant threat to public health. The two-component regulatory system is a typical signal-sensing and stress-response system widely distributed in bacteria, playing a critical regulatory role in bacterial infection. Through in vivo and in vitro experiments, we demonstrate that rstA regulates the expression of type 3 fimbriae by regulating mrkI indirectly and mrkA directly, thereby playing an essential role in the virulence and biofilm formation of K. pneumoniae. Understanding the regulatory mechanism of RstA in K. pneumoniae provides a proof-of-concept for identifying new genetic targets for controlling K. pneumoniae infection, which may aid in the development of therapeutic drugs.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yaxuan Zhai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qizhao Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Liang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiayao Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Hou L, Zhao Z, Steger-Mähnert B, Jiao N, Herndl GJ, Zhang Y. Microbial metabolism in laboratory reared marine snow as revealed by a multi-omics approach. MICROBIOME 2025; 13:114. [PMID: 40329386 PMCID: PMC12054258 DOI: 10.1186/s40168-025-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/19/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Marine snow represents an organic matter-rich habitat and provides substrates for diverse microbial populations in the marine ecosystem. However, the functional diversity and metabolic interactions within the microbial community inhabiting marine snow remain largely underexplored, particularly for specific metabolic pathways involved in marine snow degradation. Here, we used a multi-omics approach to explore the microbial response to laboratory-reared phytoplankton-derived marine snow. RESULTS Our results demonstrated a dramatic shift in both taxonomic and functional profiles of the microbial community after the formation of phytoplankton-derived marine snow using a rolling tank system. The changes in microbial metabolic processes were more pronounced in the metaproteome than in the metagenome in response to marine snow. Fast-growing taxa within the Gammaproteobacteria were the most dominant group at both the metagenomic and metaproteomic level. These Gammaproteobacteria possessed a variety of carbohydrate-active enzymes (CAZymes) and transporters facilitating substrate cleavage and uptake, respectively. Analysis of metagenome-assembled genomes (MAGs) revealed that the response to marine snow amendment was primarily mediated by Alteromonas, Vibrio, and Thalassotalea. Among these, Alteromonas exclusively expressing auxiliary activities 2 (AA2) of the CAZyme subfamily were abundant in both the free-living (FL) and marine snow-attached (MA) microbial communities. Thus, Alteromonas likely played a pivotal role in the degradation of marine snow. The enzymes of AA2 produced by these Alteromonas MAGs are capable of detoxifying peroxide intermediates generated during the breakdown of marine snow into smaller poly- and oligomers, providing available substrates for other microorganisms within the system. In addition, Vibrio and Thalassotalea MAGs exhibited distinct responses to these hydrolysis products of marine snow in different size fractions, suggesting a distinct niche separation. Although chemotaxis proteins were found to be enriched in the proteome of all three MAGs, differences in transporter proteins were identified as the primary factor contributing to the niche separation between these two groups. Vibrio in the FL fraction predominantly utilized ATP-binding cassette transporters (ABCTs), while Thalassotalea MAGs in the MA fraction primarily employed TonB-dependent outer membrane transporters (TBDTs). CONCLUSIONS Our findings shed light on the essential metabolic interactions within marine snow-degrading microbial consortia, which employ complementary physiological mechanisms and survival strategies to effectively scavenge marine snow. This work advances our understanding of the fate of marine snow and the role of microbes in carbon sequestration in the ocean. Video Abstract.
Collapse
Affiliation(s)
- Lei Hou
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zihao Zhao
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Barbara Steger-Mähnert
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands.
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Simon V, Trouillon J, Attrée I, Elsen S. Functional and Pangenomic Exploration of Roc Two-Component Regulatory Systems Identifies Novel Players Across Pseudomonas Species. Mol Microbiol 2025; 123:439-453. [PMID: 40087830 PMCID: PMC12051241 DOI: 10.1111/mmi.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa relies on a large collection of two-component regulatory systems (TCSs) to sense and adapt to changing environments. Among them, the Roc (regulation of cup) system is a one-of-a-kind network of branched TCSs, composed of two histidine kinases (HKs-RocS1 and RocS2) interacting with three response regulators (RRs-RocA1, RocR, and RocA2), which regulate virulence, antibiotic resistance, and biofilm formation. Based on extensive work on the Roc system, previous data suggested the existence of other key regulators yet to be discovered. In this work, we identified PA4080, renamed RocA3, as a fourth RR that is activated by RocS1 and RocS2 and that positively controls the expression of the cupB operon. Comparative genomic analysis of the locus identified a gene-rocR3-adjacent to rocA3 in a subpopulation of strains that encodes a protein with structural and functional similarity to the c-di-GMP phosphodiesterase RocR. Furthermore, we identified a fourth branch of the Roc system consisting of the PA2583 HK, renamed RocS4, and the Hpt protein HptA. Using a bacterial two-hybrid system, we showed that RocS4 interacts with HptA, which in turn interacts with RocA1, RocA2, and RocR3. Finally, we mapped the pangenomic RRs repertoire, establishing a comprehensive view of the plasticity of such regulators among clades of the species. Overall, our work provides a comprehensive inter-species definition of the Roc system, nearly doubling the number of proteins known to be involved in this interconnected network of TCSs controlling pathogenicity in Pseudomonas species.
Collapse
Affiliation(s)
- Victor Simon
- Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular ResponsesUniversity Grenoble AlpesGrenobleFrance
| | - Julian Trouillon
- Institute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - Ina Attrée
- Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular ResponsesUniversity Grenoble AlpesGrenobleFrance
| | - Sylvie Elsen
- Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular ResponsesUniversity Grenoble AlpesGrenobleFrance
| |
Collapse
|
6
|
Wang Q, Liu R, Niu Y, Wang Y, Qin J, Huang Y, Qian J, Zheng X, Wang M, Huang D, Liu Y. Regulatory mechanisms of two-component systems in Vibrio cholerae: Enhancing pathogenicity and environmental adaptation. Microbiol Res 2025; 298:128198. [PMID: 40318575 DOI: 10.1016/j.micres.2025.128198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cholera, which is caused by the bacterium Vibrio cholerae, is a highly dangerous disease characterized by severe symptoms such as watery diarrhea, dehydration, and even death. V. cholerae can both colonize the host intestine and survive in environmental reservoirs. Two-component systems (TCSs) are essential regulatory mechanisms that allow bacteria to adapt to changing environments. This review focuses on the regulatory mechanisms of TCS-mediated gene expression in V. cholerae. We first summarize the composition and classification of TCSs in V. cholerae N16961. We then discuss the roles of TCSs in facilitating adaptation to diverse environmental stimuli and increasing pathogenicity. Furthermore, we analyze the distribution of TCSs in pandemic and nonpandemic-V. cholerae strains, demonstrating their indispensable role in promoting virulence and facilitating the widespread dissemination of pandemic strains. Elucidation of these mechanisms is crucial for devising new strategies to combat cholera and prevent future outbreaks, ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuanyuan Niu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuchen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jingling Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jiamin Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xiaoyu Zheng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Meng Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300457, PR China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Nankai University, Tianjin 300457, PR China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Liu J, Zhou Y, Feng J, Cai C, Zhang S. Comparative metagenomic analysis reveals the adaptive evolutionary traits of siboglinid tubeworm symbionts. Front Microbiol 2025; 16:1533506. [PMID: 40313410 PMCID: PMC12045306 DOI: 10.3389/fmicb.2025.1533506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Tubeworms flourish in marine cold seeps and hydrothermal vents through the establishment of symbiotic relationships with chemosynthetic bacteria. However, the environmental adaptations and evolutionary relationships of tubeworm symbionts across diverse habitats and hosts remain largely unknown. In this study, we characterized the genomes of 26 siboglinid tubeworm symbionts collected from deep-sea hydrothermal vents, cold seeps, and deep-sea mud, including two sequenced in this study and 24 previously published. Phylogenetic analysis classified the 26 symbiont genomes into five distinct clusters at the genus level. The findings highlight the remarkable diversity in symbiont classification, influenced by the habitat and species of tubeworm, with the symbiont genome characteristics of various genera revealing unique evolutionary strategies. Siboglinid symbionts exhibit functional metabolic diversity, encompassing chemical autotrophic capabilities for carbon, nitrogen, and sulfur metabolism, hydrogen oxidation, and a chemoorganotrophic ability to utilize various amino acids, cofactors, and vitamins. Furthermore, the symbiont's homeostatic mechanisms and CRISPR-Cas system are vital adaptations for survival. Overall, this study highlights the metabolic traits of siboglinid symbionts across different genera and enhances our understanding of how different habitats and hosts influence symbiont evolution, offering valuable insights into the strategies that symbionts use to adapt and thrive in extreme environments.
Collapse
Affiliation(s)
- Jinyi Liu
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Yingli Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Jingchun Feng
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Chaofeng Cai
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Si Zhang
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Xu D, Shi J, Jiang S, Meng S, Cheng Z, Wu W, Chang L, Xie Y, Gao Y, Xue Y, Zhang Y. Shotgun and targeted proteomics of Mycolicibacterium smegmatis highlight the role of arginine phosphorylation in the functional adaptation to its environment. J Proteomics 2025; 314:105388. [PMID: 39884554 DOI: 10.1016/j.jprot.2025.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Although the phosphorylation of serine (S), threonine (T), and tyrosine (Y) is well-established, arginine phosphorylation (pR) has recently garnered significant attention due to its crucial role in bacteria pathogenicity and stress response. Mycolicibacterium smegmatis, a nonpathogenic surrogate of Mycobacterium tuberculosis, serves as a model for studying mycobacterial pathogenesis. A recent proteomics study identified six pR proteins in M. smegmatis. To gain a more comprehensive understanding, we performed pR profiling using mass spectrometry in combination with two distinct phosphopeptide enrichment strategies: titanium-immobilized metal ion affinity chromatography (Ti4+-IMAC) and Fe-NTA cartridge purification. This approach led to the identification of 1192 shared pR peptides with 1553 pR sites in M. smegmatis following both competitive and non-competitive scoring assessments for pR and pS/T/Y. Further stringent filtering through manual verification resulted in 58 high-confident pR sites across 57 proteins. These confirmed pR-proteins are functionally related, particularly in DNA binding and ATP binding. Alterations in the modification of three pR sites during the logarithmic and stationary phases at the phosphorylation level, but not at the total cell protein level, further suggest the role of pR in the bacterium's functional adaptation to its environment. SIGNIFICANCE: Our findings reveal that pR proteins are prevalent and play roles in DNA-binding and ATP-binding activities, providing insights into the broader biological functions of pR peptides in other genetically diverse species. The reliable identification of bacterial pR events in M. smegmatis not only propels the study of pR within the realm of proteomics but also paves the way for exploring its detailed function in bacteria.
Collapse
Affiliation(s)
- Danyang Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiahui Shi
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Songhao Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Shuhong Meng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Zhiyuan Cheng
- School of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yuping Xie
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yuan Gao
- Central Laboratory of College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yu Xue
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
9
|
Ren P, Ma Z, Liu Q, Xia X, Zhu G, Tang J, Li R, Lu G. Xanthomonas oryzae Orphan Response Regulator EmvR Is Involved in Virulence, Extracellular Polysaccharide Production and Cell Motility. MOLECULAR PLANT PATHOLOGY 2025; 26:e70083. [PMID: 40189917 PMCID: PMC11973254 DOI: 10.1111/mpp.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Bacteria have evolved a large number of two-component signalling systems (TCSs), which are typically composed of a histidine sensor kinase (HK) and a response regulator (RR), to sense environmental changes and modulate subsequent adaptive responses. Here, we describe the involvement of an orphan single-domain RR named EmvR in the virulence, extracellular polysaccharide (EPS) production and cell motilities of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc), which infects rice leaves mainly via stomata and wounds. Deletion of emvR in Xoc reduced virulence when using spraying inoculation but not when using infiltration inoculation. The emvR deletion mutant displayed weakened spreading and enhanced twitching. Additionally, although deletion of emvR did not significantly affect EPS production, overexpression of emvR significantly increased EPS production. Several standard assays revealed that EmvR physically interacts with PilB and represses its ATPase activity. Combining our data with previous findings that PilB provides the energy for type IV pilus (T4P) biogenesis, we conclude that EmvR plays a vital role in modulating Xoc T4P synthesis and in the early stage of Xoc infection through rice stomata. Moreover, our data reveal that EmvR can also interact with the HK of the TCS ColSXOCgx_4036/ColRXOCgx_4037, which positively and negatively affects Xoc spreading and twitching, respectively. We propose a 'one-to-two' TCS working model for the role of ColSXOCgx_4036, ColRXOCgx_4037, and EmvR in modulating Xoc motility.
Collapse
Affiliation(s)
- Pei‐Dong Ren
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Zeng‐Feng Ma
- Rice Research Institute, Guangxi Academy of Agricultural SciencesNanningChina
| | - Qing‐Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xin‐Qi Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Gui‐Ning Zhu
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Rui‐Fang Li
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
10
|
Li M, Zhang Q, Wang Y, Xie J, Liang T, Liu Z, Xiang X, Zhou Q, Gong Z. From adhesion to invasion: the multifaceted roles of Mycobacterium tuberculosis lipoproteins. J Drug Target 2025:1-10. [PMID: 39993287 DOI: 10.1080/1061186x.2025.2472208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis, which poses a significant threat to human health. Lipoproteins are predominantly found in the M. tuberculosis cell wall during infection of the invading host. The cell wall interacts closely with the host cell in direct contact. The M. tuberculosis genome encodes at least 99 lipoproteins with diverse functions, including ABC transport, cell wall metabolism, adhesion, cell invasion, and signal transduction, among others. Different lipoproteins play important roles in bacterial survival, infection of host cells, vaccine development, and gene regulation for drug targeting. Although only a subset of these lipoproteins has been functionally investigated, most of them require further study. This review summarises the progress of research related to the synthesis of M. tuberculosis lipoproteins and their involvement in the functions of material transport, immune response, virulence mechanism, vaccine development, signalling, enzyme, and drug regulation.
Collapse
Affiliation(s)
- Min Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiao Zhang
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Yun Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianping Xie
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Tian Liang
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Zubrova A, Tadrosova M, Semerad J, Cajthaml T, Pajer P, Strejcek M, Suman J, Uhlik O. Differential effect of monoterpenes and flavonoids on the transcription of aromatic ring-hydroxylating dioxygenase genes in Rhodococcus opacus C1 and Rhodococcus sp. WAY2. Microb Genom 2025; 11:001359. [PMID: 40042991 PMCID: PMC11881993 DOI: 10.1099/mgen.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
Aromatic ring-hydroxylating dioxygenases (ARHDs) play a crucial role in the aerobic biodegradation of both natural and anthropogenic aromatic compounds. Although their ability to process contaminants is not entirely understood, it is thought to have evolved from the transformation of structurally similar secondary plant metabolites (SPMs). Hence, to investigate this connection, we tested a variety of SPMs from the monoterpene and flavonoid classes as carbon sources and transcriptional effectors of several phylogenetically distant ARHD genes involved in the degradation of aromatic pollutants. Specifically, we focused on bphA1, nahA1 and phtA1 in Rhodococcus opacus C1, whose genomic analysis is also presented hereinafter, and bphA1a, nahA1-bphA1b and etbA1ab in Rhodococcus sp. WAY2. Whilst induction was only observed with (R)-carvone for bphA1a and nahA1-bphA1b of strain WAY2, and with p-cymene for nahA1 and nahA1-bphA1b of strains C1 and WAY2, respectively, an extensive inhibition by flavonoids was observed for most of the genes in both strains. To the best of our knowledge, our study is the first to report the effect of flavonoids and monoterpenes on the transcription of nahA1, etbA1 and phtA1 genes. In addition, we show that, in contrast to pseudomonads, many flavonoids inhibit the transcription of the ARHD genes in rhodococci. Thus, our work provides a new perspective on flavonoids as the transcriptional effectors of ARHDs, highlighting the significant variability of these enzymes and the divergent responses that they elicit. Moreover, our results contribute to understanding the complex interactions between microorganisms and SPMs and provide insights into the molecular basis of a number of them.
Collapse
Affiliation(s)
- Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Manuela Tadrosova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Raustad N, Dai Y, Iinishi A, Mohapatra A, Soo M, Hay E, Hernandez G, Geisinger E. A phosphorylation signal activates genome-wide transcriptional control by BfmR, the global regulator of Acinetobacter resistance and virulence. Nucleic Acids Res 2025; 53:gkaf063. [PMID: 39921563 PMCID: PMC11806355 DOI: 10.1093/nar/gkaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025] Open
Abstract
The nosocomial pathogen Acinetobacter baumannii is a major threat to human health. The sensor kinase-response regulator system, BfmS-BfmR, is essential to multidrug resistance and virulence in the bacterium and represents a potential antimicrobial target. Important questions remain about how the system controls resistance and pathogenesis. Although BfmR knockout alters expression of >1000 genes, its direct regulon is undefined. Moreover, how phosphorylation controls the regulator is unclear. Here, we address these problems by combining mutagenesis, ChIP-seq, and in vitro phosphorylation to study the functions of phospho-BfmR. We show that phosphorylation is required for BfmR-mediated gene regulation, antibiotic resistance, and sepsis development in vivo. Consistent with activating the protein, phosphorylation induces dimerization and target DNA affinity. Integrated analysis of genome-wide binding and transcriptional profiles of BfmR led to additional key findings: (1) Phosphorylation dramatically expands the number of genomic sites BfmR binds; (2) DNA recognition involves a direct repeat motif widespread across promoters; (3) BfmR directly regulates 303 genes as activator (e.g., capsule, peptidoglycan, and outer membrane biogenesis) or repressor (pilus biogenesis); (4) BfmR controls several non-coding sRNAs. These studies reveal the centrality of a phosphorylation signal in driving A. baumannii disease and disentangle the extensive pathogenic gene-regulatory network under its control.
Collapse
Affiliation(s)
- Nicole Raustad
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Yunfei Dai
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Akira Iinishi
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Arpita Mohapatra
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Mark W Soo
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Everett Hay
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | | | - Edward Geisinger
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
13
|
Ruiz N, Xing J, Zhulin IB, Brautigam CA, Hendrixson DR. The Campylobacter jejuni BumS sensor phosphatase detects the branched short-chain fatty acids isobutyrate and isovalerate as direct cues for signal transduction. mBio 2025; 16:e0327824. [PMID: 39670710 PMCID: PMC11796366 DOI: 10.1128/mbio.03278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Two-component signal transduction systems (TCSs) are nearly ubiquitous across bacterial species and enable bacteria to sense and respond to specific cues for environmental adaptation. The Campylobacter jejuni BumSR TCS is unusual in that the BumS sensor exclusively functions as a phosphatase rather than a kinase to control phosphorylated levels of its cognate BumR response regulator (P-BumR). We previously found that BumSR directs a response to the short-chain fatty acid butyrate generated by resident microbiota so that C. jejuni identifies ideal lower intestinal niches in avian and human hosts for colonization. However, butyrate is an indirect cue for BumS and did not inhibit in vitro BumS phosphatase activity for P-BumR. In this work, we expanded the repertoire of lower intestinal metabolites that are cues sensed by BumS that modulate the expression of genes required for colonization to include the branched short-chain fatty acids isobutyrate and isovalerate. Unlike butyrate, isobutyrate and isovalerate inhibited in vitro BumS phosphatase activity for P-BumR, indicating that these metabolites are direct cues for BumS. Isobutyrate and isovalerate reduced the thermostability of BumS and caused a reorganization of protein structure to suggest how sensing these cues inhibits phosphatase activity. We also identified residues in the BumS sensory domain required to detect isobutyrate, isovalerate, and butyrate and for optimal colonization of hosts to reveal how gut bacteria can recognize these intestinal metabolites. Our work reveals how this unusual bacterial sensor phosphatase senses a repertoire of intestinal metabolites and how cues alter BumSR signal transduction to influence C. jejuni colonization of hosts.IMPORTANCETCSs are prevalent in many bacteria, but the cues sensed by each are not actually known for many of these systems. Microbiota-generated butyrate in human and avian hosts is detected by the Campylobacter jejuni BumS sensor phosphatase so that the bacterium identifies ideal lower intestinal niches for colonization. However, BumS only indirectly senses butyrate to inhibit dephosphorylation of its cognate BumR response regulator. Here, we expanded the repertoire of cues sensed by BumS to the branched-short chain fatty acids isobutyrate and isovalerate that are also abundant in the lower intestines. Both isobutyrate and isovalerate are potent, direct cues for BumS, whereas butyrate is an indirect cue. Leveraging isobutyrate and isovalerate as direct cues, we reveal BumS structure is altered upon cue detection to inhibit its phosphatase activity. We provide an understanding of the mechanics of an unusual mode of signal transduction executed by BumSR and other bacterial sensor phosphatase-driven TCSs.
Collapse
Affiliation(s)
- Nestor Ruiz
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiawei Xing
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Chad A. Brautigam
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Benoist F, Sartori P. High-Speed Combinatorial Polymerization through Kinetic-Trap Encoding. PHYSICAL REVIEW LETTERS 2025; 134:038402. [PMID: 39927970 DOI: 10.1103/physrevlett.134.038402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025]
Abstract
Like the letters in the alphabet forming words, reusing components of a heterogeneous mixture is an efficient strategy for assembling a large number of target structures. Examples range from synthetic DNA origami to proteins self-assembling into complexes. The standard self-assembly paradigm views target structures as free-energy minima of a mixture. While this is an appealing picture, at high speed structures may be kinetically trapped in local minima, reducing self-assembly accuracy. How then can high speed, high accuracy, and combinatorial usage of components coexist? We propose to reconcile these three concepts not by avoiding kinetic traps, but by exploiting them to encode target structures. This can be achieved by sculpting the kinetic pathways of the mixture, instead of its free-energy landscape. We formalize these ideas in a minimal toy model, for which we analytically estimate the encoding capacity and kinetic characteristics, in agreement with simulations. Our results may be generalized to other soft-matter systems capable of computation, such as liquid mixtures or elastic networks, and pave the way for high-dimensional information processing far from equilibrium.
Collapse
Affiliation(s)
- Félix Benoist
- Gulbenkian Institute for Molecular Medicine, Oeiras, Portugal
| | - Pablo Sartori
- Gulbenkian Institute for Molecular Medicine, Oeiras, Portugal
| |
Collapse
|
15
|
Huang CJ, Pauwelyn E, Ongena M, Bleyaert P, Höfte M. Both GacS-regulated lipopeptides and the type three secretion system contribute to Pseudomonas cichorii induced necrosis in lettuce and chicory. Res Microbiol 2025; 176:104249. [PMID: 39448046 DOI: 10.1016/j.resmic.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Pseudomonas cichorii SF1-54, the causal agent of lettuce midrib rot disease, produces lipopeptides cichofactins and cichopeptins which are important virulence factors. The GacS/GacA two-component system is well known to regulate production of lipopeptides in pseudomonads. Additionally, the functions of the type three secretion system (T3SS) in P. cichorii-plant interactions are not clarified. In this study, we investigated the role of the GacS-regulated lipopeptides and the T3SS in pathogenicity of P. cichorii SF1-54 on two host plants, chicory and lettuce, by constructing mutants in hrpL, which encodes the key sigma factor to control T3SS expression, and gacS. Compared with the wildtype, the hrpL mutant produced lipopeptides at a similar level but the gacS mutant was strongly impaired in lipopeptide production. The mutant deficient in hrpL did not significantly differ from the wildtype in virulence on chicory and lettuce. The gacS mutant exhibited significantly less symptoms on both host plants compared to the wildtype and the hrpL mutant. Intriguingly, the gacS hrpL-double mutant no longer produced lipopeptides, lost virulence and showed impaired colonization on chicory, but was still weakly virulent on lettuce. Thus, contribution of both the GacS-regulated lipopeptides and T3SS to virulence of P. cichorii SF1-54 is host plant dependent.
Collapse
Affiliation(s)
- Chien-Jui Huang
- Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; Department of Plant Medicine, National Chiayi University, No. 300, Syuefu Rd., 600355, Chiayi, Taiwan, Republic of China.
| | - Ellen Pauwelyn
- Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; Inagro Vzw, Ieperseweg 87, 8800, Rumbeke, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | | | - Monica Höfte
- Department of Plants and Crops, Laboratory of Phytopathology, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
17
|
Borar P, Biswas T, Chaudhuri A, Rao T P, Raychaudhuri S, Huxford T, Chakrabarti S, Ghosh G, Polley S. Dual-specific autophosphorylation of kinase IKK2 enables phosphorylation of substrate IκBα through a phosphoenzyme intermediate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546692. [PMID: 37732175 PMCID: PMC10508718 DOI: 10.1101/2023.06.27.546692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rapid and high-fidelity phosphorylation of two serines (S32 and S36) of IκBα by a prototype Ser/Thr kinase IKK2 is critical for fruitful canonical NF-κB activation. Here, we report that IKK2 is a dual specificity Ser/Thr kinase that autophosphorylates itself at tyrosine residues in addition to its activation loop serines. Mutation of one such tyrosine, Y169, located in proximity to the active site, to phenylalanine, renders IKK2 inactive for phosphorylation of S32 of IκBα. Surprisingly, auto-phosphorylated IKK2 relayed phosphate group(s) to IκBα without ATP when ADP is present. We also observed that mutation of K44, an ATP-binding lysine conserved in all protein kinases, to methionine renders IKK2 inactive towards specific phosphorylation of S32 or S36 of IκBα, but not non-specific substrates. These observations highlight an unusual evolution of IKK2, in which autophosphorylation of tyrosine(s) in the activation loop and the invariant ATP-binding K44 residue define its signal-responsive substrate specificity ensuring the fidelity of NF-κB activation.
Collapse
Affiliation(s)
- Prateeka Borar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Ankur Chaudhuri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pallavi Rao T
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Tom Huxford
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, USA
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Smarajit Polley
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
18
|
Lupo U, Sgarbossa D, Milighetti M, Bitbol AF. DiffPaSS-high-performance differentiable pairing of protein sequences using soft scores. Bioinformatics 2024; 41:btae738. [PMID: 39672677 PMCID: PMC11676329 DOI: 10.1093/bioinformatics/btae738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024] Open
Abstract
MOTIVATION Identifying interacting partners from two sets of protein sequences has important applications in computational biology. Interacting partners share similarities across species due to their common evolutionary history, and feature correlations in amino acid usage due to the need to maintain complementary interaction interfaces. Thus, the problem of finding interacting pairs can be formulated as searching for a pairing of sequences that maximizes a sequence similarity or a coevolution score. Several methods have been developed to address this problem, applying different approximate optimization methods to different scores. RESULTS We introduce Differentiable Pairing using Soft Scores (DiffPaSS), a differentiable framework for flexible, fast, and hyperparameter-free optimization for pairing interacting biological sequences, which can be applied to a wide variety of scores. We apply it to a benchmark prokaryotic dataset, using mutual information and neighbor graph alignment scores. DiffPaSS outperforms existing algorithms for optimizing the same scores. We demonstrate the usefulness of our paired alignments for the prediction of protein complex structure. DiffPaSS does not require sequences to be aligned, and we also apply it to nonaligned sequences from T-cell receptors. AVAILABILITY AND IMPLEMENTATION A PyTorch implementation and installable Python package are available at https://github.com/Bitbol-Lab/DiffPaSS.
Collapse
Affiliation(s)
- Umberto Lupo
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Damiano Sgarbossa
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Martina Milighetti
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
- Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| |
Collapse
|
19
|
Fihn CA, Lembke HK, Gaulin J, Bouchard P, Villarreal AR, Penningroth MR, Crone KK, Vogt GA, Gilbertsen AJ, Ayotte Y, Coutinho de Oliveira L, Serrano-Wu MH, Drouin N, Hung DT, Hunter RC, Carlson EE. Evaluation of expanded 2-aminobenzothiazole library as inhibitors of a model histidine kinase and virulence suppressors in Pseudomonas aeruginosa. Bioorg Chem 2024; 153:107840. [PMID: 39362083 PMCID: PMC11614690 DOI: 10.1016/j.bioorg.2024.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. Histidine kinases play an essential role in the regulation of multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the highly conserved catalytic and adenosine triphosphate-binding (CA) domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted in vitro structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain. We found that these compounds, which inhibit the model histidine kinase, HK853 from Thermotoga maritima, have anti-virulence activities inPseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.
Collapse
Affiliation(s)
- Conrad A Fihn
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, United States
| | - Hannah K Lembke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55454, United States
| | - Jeffrey Gaulin
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Patricia Bouchard
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec H1Y 2R1, Canada
| | - Alex R Villarreal
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Mitchell R Penningroth
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Kathryn K Crone
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, United States
| | - Grace A Vogt
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Adam J Gilbertsen
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Yann Ayotte
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec H1Y 2R1, Canada
| | | | | | - Nathalie Drouin
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec H1Y 2R1, Canada
| | - Deborah T Hung
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave SE Minneapolis, MN 55455, United States
| | - Erin E Carlson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55454, United States; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
20
|
Fernández P, Porrini L, Pereyra JI, Albanesi D, Mansilla MC. Unveiling the Coordinated Action of DesK/DesR and YvfT/YvfU to Control the Expression of an ABC Transporter in Bacillus subtilis. Mol Microbiol 2024; 122:730-742. [PMID: 39344851 DOI: 10.1111/mmi.15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Two-component systems (TCSs) are vital signal transduction pathways ubiquitous among bacteria, facilitating their responses to diverse environmental stimuli. In Bacillus subtilis, the DesK histidine kinase thermosensor, together with the response regulator DesR, constitute a TCS dedicated to membrane lipid homeostasis maintenance. This TCS orchestrates the transcriptional regulation of the des gene, encoding the sole desaturase in these bacteria, Δ5-Des. Additionally, B. subtilis possesses a paralog TCS, YvfT/YvfU, with unknown target gene(s). In this work, we show that YvfT/YvfU controls the expression of the yvfRS operon that codes for an ABC transporter. Interestingly, we found that this regulation also involves the action of DesK/DesR. Notably, opposite to des, yvfRS transcription is induced at 37°C and not at 25°C. Our in vivo and in vitro experiments demonstrate that both YvfU and DesR directly bind to the operon promoter region, with DesR exerting its control over yvfRS expression in its unphosphorylated state. Our study uncovers an intriguing case of cross-regulation where two homologous TCSs interact closely to finely tune gene expression in response to environmental cues. These findings shed light on the complexity of bacterial signal transduction systems and their critical role in bacterial adaptability.
Collapse
Affiliation(s)
- Pilar Fernández
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
- Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lucía Porrini
- Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
- Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Cecilia Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
- Departamento de Microbiología Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
21
|
Claverie C, Coppolino F, Mazzuoli MV, Guyonnet C, Jacquemet E, Legendre R, Sismeiro O, De Gaetano GV, Teti G, Trieu-Cuot P, Tazi A, Beninati C, Firon A. Constitutive activation of two-component systems reveals regulatory network interactions in Streptococcus agalactiae. Nat Commun 2024; 15:9175. [PMID: 39448655 PMCID: PMC11502775 DOI: 10.1038/s41467-024-53439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Bacterial two-component systems (TCSs) are signaling modules that control physiology, adaptation, and host interactions. A typical TCS consists of a histidine kinase (HK) that activates a response regulator via phosphorylation in response to environmental signals. Here, we systematically test the effect of inactivating the conserved phosphatase activity of HKs to activate TCS signaling pathways. Transcriptome analyses of 14 HK mutants in Streptococcus agalactiae, the leading cause of neonatal meningitis, validate the conserved HK phosphatase mechanism and its role in the inhibition of TCS activity in vivo. Constitutive TCS activation, independent of environmental signals, enables high-resolution mapping of the regulons for several TCSs (e.g., SaeRS, BceRS, VncRS, DltRS, HK11030, HK02290) and reveals the functional diversity of TCS signaling pathways, ranging from highly specialized to interconnected global regulatory networks. Targeted analysis shows that the SaeRS-regulated PbsP adhesin acts as a signaling molecule to activate CovRS signaling, thereby linking the major regulators of host-pathogen interactions. Furthermore, constitutive BceRS activation reveals drug-independent activity, suggesting a role in cell envelope homeostasis beyond antimicrobial resistance. This study highlights the versatility of constitutive TCS activation, via phosphatase-deficient HKs, to uncover regulatory networks and biological processes.
Collapse
Affiliation(s)
- Cosme Claverie
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Francesco Coppolino
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
- University of Messina, Department of Human Pathology, Messina, Italy
| | - Maria-Vittoria Mazzuoli
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Cécile Guyonnet
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Department of Bacteriology, French National Reference Center for Streptococci, Paris, France
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, Paris, France
| | - Elise Jacquemet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | | | | | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Asmaa Tazi
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Department of Bacteriology, French National Reference Center for Streptococci, Paris, France
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, Paris, France
| | - Concetta Beninati
- University of Messina, Department of Human Pathology, Messina, Italy
| | - Arnaud Firon
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France.
| |
Collapse
|
22
|
Unay J, Kint N, Viollier PH. Evolution of paralogous multicomponent systems for site-specific O-sialylation of flagellin in Gram-negative and Gram-positive bacteria. Curr Biol 2024; 34:2932-2947.e7. [PMID: 38897200 DOI: 10.1016/j.cub.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Many bacteria glycosylate flagellin on serine or threonine residues using pseudaminic acid (Pse) or other sialic acid-like donor sugars. Successful reconstitution of Pse-dependent sialylation by the conserved Maf-type flagellin glycosyltransferase (fGT) may require (a) missing component(s). Here, we characterize both Maf paralogs in the Gram-negative bacterium Shewanella oneidensis MR-1 and reconstitute Pse-dependent glycosylation in heterologous hosts. Remarkably, we uncovered distinct acceptor determinants and target specificities for each Maf. Whereas Maf-1 uses its C-terminal tetratricopeptide repeat (TPR) domain to confer flagellin acceptor and O-glycosylation specificity, Maf-2 requires the newly identified conserved specificity factor, glycosylation factor for Maf (GlfM), to form a ternary complex with flagellin. GlfM orthologs are co-encoded with Maf-2 in Gram-negative and Gram-positive bacteria and require an invariant aspartate in their four-helix bundle to function with Maf-2. Thus, convergent fGT evolution underlies distinct flagellin-binding modes in tripartite versus bipartite systems and, consequently, distinct O-glycosylation preferences of acceptor serine residues with Pse.
Collapse
Affiliation(s)
- Jovelyn Unay
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Kint
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, 75006 Paris, France
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
23
|
Paredes-Martínez F, Eixerés L, Zamora-Caballero S, Casino P. Structural and functional insights underlying recognition of histidine phosphotransfer protein in fungal phosphorelay systems. Commun Biol 2024; 7:814. [PMID: 38965424 PMCID: PMC11224324 DOI: 10.1038/s42003-024-06459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
In human pathogenic fungi, receiver domains from hybrid histidine kinases (hHK) have to recognize one HPt. To understand the recognition mechanism, we have assessed phosphorelay from receiver domains of five hHKs of group III, IV, V, VI, and XI to HPt from Chaetomium thermophilum and obtained the structures of Ct_HPt alone and in complex with the receiver domain of hHK group VI. Our data indicate that receiver domains phosphotransfer to Ct_HPt, show a low affinity for complex formation, and prevent a Leu-Thr switch to stabilize phosphoryl groups, also derived from the structures of the receiver domains of hHK group III and Candida albicans Sln1. Moreover, we have elucidated the envelope structure of C. albicans Ypd1 using small-angle X-ray scattering which reveals an extended flexible conformation of the long loop αD-αE which is not involved in phosphotransfer. Finally, we have analyzed the role of salt bridges in the structure of Ct_HPt alone.
Collapse
Affiliation(s)
- Francisco Paredes-Martínez
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Lluís Eixerés
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Patricia Casino
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain.
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
- CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
24
|
Lupo U, Sgarbossa D, Bitbol AF. Pairing interacting protein sequences using masked language modeling. Proc Natl Acad Sci U S A 2024; 121:e2311887121. [PMID: 38913900 PMCID: PMC11228504 DOI: 10.1073/pnas.2311887121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/18/2023] [Indexed: 06/26/2024] Open
Abstract
Predicting which proteins interact together from amino acid sequences is an important task. We develop a method to pair interacting protein sequences which leverages the power of protein language models trained on multiple sequence alignments (MSAs), such as MSA Transformer and the EvoFormer module of AlphaFold. We formulate the problem of pairing interacting partners among the paralogs of two protein families in a differentiable way. We introduce a method called Differentiable Pairing using Alignment-based Language Models (DiffPALM) that solves it by exploiting the ability of MSA Transformer to fill in masked amino acids in multiple sequence alignments using the surrounding context. MSA Transformer encodes coevolution between functionally or structurally coupled amino acids within protein chains. It also captures inter-chain coevolution, despite being trained on single-chain data. Relying on MSA Transformer without fine-tuning, DiffPALM outperforms existing coevolution-based pairing methods on difficult benchmarks of shallow multiple sequence alignments extracted from ubiquitous prokaryotic protein datasets. It also outperforms an alternative method based on a state-of-the-art protein language model trained on single sequences. Paired alignments of interacting protein sequences are a crucial ingredient of supervised deep learning methods to predict the three-dimensional structure of protein complexes. Starting from sequences paired by DiffPALM substantially improves the structure prediction of some eukaryotic protein complexes by AlphaFold-Multimer. It also achieves competitive performance with using orthology-based pairing.
Collapse
Affiliation(s)
- Umberto Lupo
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Damiano Sgarbossa
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| |
Collapse
|
25
|
Elsen S, Simon V, Attrée I. Cross-regulation and cross-talk of conserved and accessory two-component regulatory systems orchestrate Pseudomonas copper resistance. PLoS Genet 2024; 20:e1011325. [PMID: 38861577 PMCID: PMC11195947 DOI: 10.1371/journal.pgen.1011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Bacteria use diverse strategies and molecular machinery to maintain copper homeostasis and to cope with its toxic effects. Some genetic elements providing copper resistance are acquired by horizontal gene transfer; however, little is known about how they are controlled and integrated into the central regulatory network. Here, we studied two copper-responsive systems in a clinical isolate of Pseudomonas paraeruginosa and deciphered the regulatory and cross-regulation mechanisms. To do so, we combined mutagenesis, transcriptional fusion analyses and copper sensitivity phenotypes. Our results showed that the accessory CusRS two-component system (TCS) responds to copper and activates both its own expression and that of the adjacent nine-gene operon (the pcoA2 operon) to provide resistance to elevated levels of extracellular copper. The same locus was also found to be regulated by two core-genome-encoded TCSs-the copper-responsive CopRS and the zinc-responsive CzcRS. Although the target palindromic sequence-ATTCATnnATGTAAT-is the same for the three response regulators, transcriptional outcomes differ. Thus, depending on the operon/regulator pair, binding can result in different activation levels (from none to high), with the systems demonstrating considerable plasticity. Unexpectedly, although the classical CusRS and the noncanonical CopRS TCSs rely on distinct signaling mechanisms (kinase-based vs. phosphatase-based), we discovered cross-talk in the absence of the cognate sensory kinases. This cross-talk occurred between the proteins of these two otherwise independent systems. The cusRS-pcoA2 locus is part of an Integrative and Conjugative Element and was found in other Pseudomonas strains where its expression could provide copper resistance under appropriate conditions. The results presented here illustrate how acquired genetic elements can become part of endogenous regulatory networks, providing a physiological advantage. They also highlight the potential for broader effects of accessory regulatory proteins through interference with core regulatory proteins.
Collapse
Affiliation(s)
- Sylvie Elsen
- University Grenoble Alpes, Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Victor Simon
- University Grenoble Alpes, Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Ina Attrée
- University Grenoble Alpes, Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| |
Collapse
|
26
|
BELITSKY BORISR. Histidine kinase-mediated cross-regulation of the vancomycin-resistance operon in Clostridioides difficile. Mol Microbiol 2024; 121:1182-1199. [PMID: 38690761 PMCID: PMC11176017 DOI: 10.1111/mmi.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The dipeptide D-Ala-D-Ala is an essential component of peptidoglycan and the target of vancomycin. Most Clostridioides difficile strains possess the vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The C. difficile vanG operon is regulated by a two-component system, VanRS, but is not induced sufficiently by vancomycin to confer resistance to this antibiotic. Surprisingly, in the absence of the VanS histidine kinase (HK), the vanG operon is still induced by vancomycin and also by another antibiotic, ramoplanin, in a VanR-dependent manner. This suggested the cross-regulation of VanR by another HK or kinases that are activated in the presence of certain lipid II-targeting antibiotics. We identified these HKs as CD35990 and CD22880. However, mutations in either or both HKs did not affect the regulation of the vanG operon in wild-type cells suggesting that intact VanS prevents the cross-activation of VanR by non-cognate HKs. Overproduction of VanR in the absence of VanS, CD35990, and CD22880 led to high expression of the vanG operon indicating that VanR can potentially utilize at least one more phosphate donor for its activation. Candidate targets of CD35990- and CD22880-mediated regulation in the presence of vancomycin or ramoplanin were identified by RNA-Seq.
Collapse
Affiliation(s)
- BORIS R. BELITSKY
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
27
|
Pettersen JS, Nielsen FD, Andreassen PR, Møller-Jensen J, Jørgensen M. A comprehensive analysis of pneumococcal two-component system regulatory networks. NAR Genom Bioinform 2024; 6:lqae039. [PMID: 38650915 PMCID: PMC11034029 DOI: 10.1093/nargab/lqae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Two-component systems are key signal-transduction systems that enable bacteria to respond to a wide variety of environmental stimuli. The human pathogen, Streptococcus pneumoniae (pneumococcus) encodes 13 two-component systems and a single orphan response regulator, most of which are significant for pneumococcal pathogenicity. Mapping the regulatory networks governed by these systems is key to understand pneumococcal host adaptation. Here we employ a novel bioinformatic approach to predict the regulons of each two-component system based on publicly available whole-genome sequencing data. By employing pangenome-wide association studies (panGWAS) to predict genotype-genotype associations for each two-component system, we predicted regulon genes of 11 of the pneumococcal two-component systems. Through validation via next-generation RNA-sequencing on response regulator overexpression mutants, several top candidate genes predicted by the panGWAS analysis were confirmed as regulon genes. The present study presents novel details on multiple pneumococcal two-component systems, including an expansion of regulons, identification of candidate response regulator binding motifs, and identification of candidate response regulator-regulated small non-coding RNAs. We also demonstrate a use for panGWAS as a complementary tool in target gene identification via identification of genotype-to-genotype links. Expanding our knowledge on two-component systems in pathogens is crucial to understanding how these bacteria sense and respond to their host environment, which could prove useful in future drug development.
Collapse
Affiliation(s)
- Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Flemming Damgaard Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Rimoldi S, Di Rosa AR, Oteri M, Chiofalo B, Hasan I, Saroglia M, Terova G. The impact of diets containing Hermetia illucens meal on the growth, intestinal health, and microbiota of gilthead seabream (Sparus aurata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1003-1024. [PMID: 38386264 PMCID: PMC11213805 DOI: 10.1007/s10695-024-01314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
The present study investigated the effect of replacing fishmeal (FM) with insect meal of Hermetia illucens (HI) in the diet of Sparus aurata farmed inshore on growth, gut health, and microbiota composition. Two isolipidic (18% as fed) and isoproteic (42% as fed) diets were tested at the farm scale: a control diet without HI meal and an experimental diet with 11% HI meal replacing FM. At the end of the 25-week feeding trial, final body weight, specific growth rate, feed conversion rate, and hepatosomatic index were not affected by the diet. Gross morphology of the gastrointestinal tract and the liver was unchanged and showed no obvious signs of inflammation. High-throughput sequencing of 16S rRNA gene amplicons (MiSeq platform, Illumina) used to characterize the gut microbial community profile showed that Proteobacteria, Fusobacteria, and Firmicutes were the dominant phyla of the gut microbiota of gilthead seabream, regardless of diet. Dietary inclusion of HI meal altered the gut microbiota by significantly decreasing the abundance of Cetobacterium and increasing the relative abundance of the Oceanobacillus and Paenibacillus genera. Our results clearly indicate that the inclusion of HI meal as an alternative animal protein source positively affects the gut microbiota of seabream by increasing the abundance of beneficial genera, thereby improving gut health and maintaining growth performance of S. aurata from coastal farms.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Messina, Italy.
| | - Marianna Oteri
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Biagina Chiofalo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Imam Hasan
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Marco Saroglia
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy.
| |
Collapse
|
29
|
Partipilo M, Slotboom DJ. The S-component fold: a link between bacterial transporters and receptors. Commun Biol 2024; 7:610. [PMID: 38773269 PMCID: PMC11109136 DOI: 10.1038/s42003-024-06295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
The processes of nutrient uptake and signal sensing are crucial for microbial survival and adaptation. Membrane-embedded proteins involved in these functions (transporters and receptors) are commonly regarded as unrelated in terms of sequence, structure, mechanism of action and evolutionary history. Here, we analyze the protein structural universe using recently developed artificial intelligence-based structure prediction tools, and find an unexpected link between prominent groups of microbial transporters and receptors. The so-called S-components of Energy-Coupling Factor (ECF) transporters, and the membrane domains of sensor histidine kinases of the 5TMR cluster share a structural fold. The discovery of their relatedness manifests a widespread case of prokaryotic "transceptors" (related proteins with transport or receptor function), showcases how artificial intelligence-based structure predictions reveal unchartered evolutionary connections between proteins, and provides new avenues for engineering transport and signaling functions in bacteria.
Collapse
Affiliation(s)
- Michele Partipilo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
30
|
Robinson DG, Mallatt J, Peer WA, Sourjik V, Taiz L. Cell consciousness: a dissenting opinion : The cellular basis of consciousness theory lacks empirical evidence for its claims that all cells have consciousness. EMBO Rep 2024; 25:2162-2167. [PMID: 38548972 PMCID: PMC11094104 DOI: 10.1038/s44319-024-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024] Open
Abstract
The proponents of CBC claim that all living organisms down to prokaryotes have consciousness. However, their arguments lack empirical evidence or are refuted by established facts.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.
| | - Jon Mallatt
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA
| | - Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| | - Victor Sourjik
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cell, & Developmental Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
31
|
Zarin T, Lehner B. A complete map of specificity encoding for a partially fuzzy protein interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591103. [PMID: 38712134 PMCID: PMC11071492 DOI: 10.1101/2024.04.25.591103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Thousands of human proteins function by binding short linear motifs embedded in intrinsically disordered regions. How affinity and specificity are encoded in these binding domains and the motifs themselves is not well understood. The evolvability of binding specificity - how rapidly and extensively it can change upon mutation - is also largely unexplored, as is the contribution of 'fuzzy' dynamic residues to affinity and specificity in protein-protein interactions. Here we report the first complete map of specificity encoding for a globular protein domain. Quantifying >200,000 energetic interactions between a PDZ domain and its ligand identifies 20 major energetically coupled pairs of sites that control specificity. These are organized into six modules, with most mutations in each module reprogramming specificity for a single position in the ligand. Nine of the major energetic couplings controlling specificity are between structural contacts and 11 have an allosteric mechanism of action. The dynamic tail of the ligand is more robust to mutation than the structured residues but contributes additively to binding affinity and communicates with structured residues to enable changes in specificity. Our results quantify the binding specificities of >1,800 globular proteins to reveal how specificity is encoded and provide a direct comparison of the encoding of affinity and specificity in structured and dynamic molecular recognition.
Collapse
Affiliation(s)
- Taraneh Zarin
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Wellcome Sanger Institute, Cambridge, UK
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
32
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
33
|
Alejandro-Navarreto X, Freitag NE. Revisiting old friends: updates on the role of two-component signaling systems in Listeria monocytogenes survival and pathogenesis. Infect Immun 2024; 92:e0034523. [PMID: 38591895 PMCID: PMC11003226 DOI: 10.1128/iai.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Listeria monocytogenes is well recognized for both its broad resistance to stress conditions and its ability to transition from a soil bacterium to an intracellular pathogen of mammalian hosts. The bacterium's impressive ability to adapt to changing environments and conditions requires the rapid sensing of environmental cues and the coordinated response of gene products that enable bacterial growth and survival. Two-component signaling systems (TCSs) have been long recognized for their ability to detect environmental stimuli and transmit those signals into transcriptional responses; however, often the precise nature of the stimulus triggering TCS responses can be challenging to define. L. monocytogenes has up to 16 TCSs that have been recognized based on homology and included in this list are several whose functions remain poorly described. This review highlights the current understanding of the breadth and scope of L. monocytogenes TCS as relates to stress resistance and pathogenesis. Precise signals still often remain elusive, but the gene networks associated with TCSs are providing clues into possible functions.
Collapse
Affiliation(s)
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
34
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
35
|
Brannon JR, Reasoner SA, Bermudez TA, Comer SL, Wiebe MA, Dunigan TL, Beebout CJ, Ross T, Bamidele A, Hadjifrangiskou M. Mapping niche-specific two-component system requirements in uropathogenic Escherichia coli. Microbiol Spectr 2024; 12:e0223623. [PMID: 38385738 PMCID: PMC10986536 DOI: 10.1128/spectrum.02236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify-for the first time-a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.IMPORTANCEWhile two-component system (TCS) signaling has been investigated at depth in model strains of Escherichia coli, there have been no studies to elucidate-at a systems level-which TCSs are important during infection by pathogenic Escherichia coli. Here, we report the generation of a markerless TCS deletion library in a uropathogenic E. coli (UPEC) isolate that can be leveraged for dissecting the role of TCS signaling in different aspects of pathogenesis. We use this library to demonstrate, for the first time in UPEC, that niche-specific colonization is guided by distinct TCS groups.
Collapse
Affiliation(s)
- John R. Brannon
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth A. Reasoner
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomas A. Bermudez
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah L. Comer
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michelle A. Wiebe
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taryn L. Dunigan
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor J. Beebout
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tamia Ross
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adebisi Bamidele
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Yu T, Jiang X, Xu X, Xu P, Qiu S, Yin J, Hamilton DP, Jiang X. Cross-Phosphorylation between AgrC Histidine Kinase and the Noncognate Response Regulator Lmo1172 in Listeria monocytogenes under Benzalkonium Chloride Stress. Microorganisms 2024; 12:392. [PMID: 38399796 PMCID: PMC10891604 DOI: 10.3390/microorganisms12020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Benzalkonium chloride (BC) is widely used for disinfection in the food industry. However, Listeria monocytogenes strains with resistance to BC have been reported recently. In L. monocytogenes, the Agr communication system consists of a membrane-bound peptidase AgrB, a precursor peptide AgrD, a histidine kinase (HK) AgrC, and a response regulator (RR) AgrA. Our previous study showed that the agr genes are significantly upregulated by BC adaptation. This study aimed to investigate the role of the Agr system in BC resistance in L. monocytogenes. Our results showed that the Agr system was involved in BC resistance. However, a direct interaction between BC and AgrC was not observed, nor between BC and AgrA. These results indicated that BC could induce the Agr system via an indirect action. Both AgrBD and AgrC were required for growth under BC stress. Nevertheless, when exposed to BC, the gene deletion mutant ∆agrA strain exhibited better growth performance than its parental strain. The RR Lmo1172 played a role in BC resistance in the ∆agrA strain, suggesting that Lmo1172 may be an alternative to AgrA in the phosphotransfer pathway. Phosphorylation of Lmo1172 by AgrC was observed in vitro. The cognate HK Lmo1173 of Lmo1172 was not involved in BC stress, regardless of whether it was as the wild-type or the ∆agrA mutant strain. Our evidence suggests that the HK AgrC cross-phosphorylates its noncognate RR Lmo1172 to cope with BC stress when the cognate RR AgrA is absent. In vivo, further studies will be required to detect phosphotransfer of AgrC/AgrA and AgrC/Lmo1172.
Collapse
Affiliation(s)
- Tao Yu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
- Australian Rivers Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Xiaojie Jiang
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Xiaobo Xu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Ping Xu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Shuxing Qiu
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Medical College, Xinxiang University, Xinxiang 453003, China; (S.Q.); (J.Y.)
| | - Junlei Yin
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Medical College, Xinxiang University, Xinxiang 453003, China; (S.Q.); (J.Y.)
| | - David P. Hamilton
- Australian Rivers Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
37
|
Zhang Q, Zúñiga M, Alcántara C, Wolf D, Mascher T, Revilla-Guarinos A. Cross-regulation of Aps-promoters in Lacticaseibacillus paracasei by the PsdR response regulator in response to lantibiotics. Sci Rep 2024; 14:3319. [PMID: 38336830 PMCID: PMC10858260 DOI: 10.1038/s41598-024-53592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The PsdRSAB and ApsRSAB detoxification modules, together with the antimicrobial peptides (AMPs)-resistance determinants Dlt system and MprF protein, play major roles in the response to AMPs in Lacticaseibacillus paracasei BL23. Sensitivity assays with a collection of mutants showed that the PsdAB ABC transporter and the Dlt system are the main subtilin resistance determinants. Quantification of the transcriptional response to subtilin indicate that this response is exclusively regulated by the two paralogous systems PsdRSAB and ApsRSAB. Remarkably, a cross-regulation of the derAB, mprF and dlt-operon genes-usually under control of ApsR-by PsdR in response to subtilin was unveiled. The high similarity of the predicted structures of both response regulators (RR), and of the RR-binding sites support this possibility, which we experimentally verified by protein-DNA binding studies. ApsR-P shows a preferential binding in the order PderA > Pdlt > PmprF > PpsdA. However, PsdR-P bound with similar apparent affinity constants to the four promoters. This supports the cross-regulation of derAB, mprF and the dlt-operon by PsdR. The possibility of cross-regulation at the level of RR-promoter interaction allows some regulatory overlap with two RRs controlling the expression of systems involved in maintenance of critical cell membrane functions in response to lantibiotics.
Collapse
Affiliation(s)
- Qian Zhang
- Chair of General Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Manuel Zúñiga
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980, Paterna, Valencia, Spain
| | - Cristina Alcántara
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980, Paterna, Valencia, Spain
| | - Diana Wolf
- Chair of General Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Thorsten Mascher
- Chair of General Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
| | - Ainhoa Revilla-Guarinos
- Chair of General Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
- Oral Microbiome Group, Genomics and Health Department, FISABIO Foundation, 46020, Valencia, Spain.
| |
Collapse
|
38
|
Jin T, Zhan X, Pang L, Peng B, Zhang X, Zhu W, Yang B, Xia X. CpxAR two-component system contributes to virulence properties of Cronobacter sakazakii. Food Microbiol 2024; 117:104393. [PMID: 37919015 DOI: 10.1016/j.fm.2023.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen which threaten susceptible hosts including infants. CpxA/CpxR, a regulatory two-component system (TSC), contributes to stress response and virulence in various Gram-negative pathogens, but its role in C. sakazakii has not been thoroughly studied. In this study, we constructed CpxA, CpxR, CpxAR deletion and complementation strains. The mutants showed weakened bacterial adhesion to and invasion of HBMEC and Caco-2, reduced intracellular survival and replication of C. sakazakii within RAW264.7 macrophages, and decreased translocation of HBMEC and Caco-2 monolayers. Mutants demonstrated lower levels of tight junction proteins disruption and reduced apoptosis and cytotoxicity in Caco-2 monolayer compared to wild type strain. CpxAR TCS deletion mutants demonstrate attenuated virulence in newborn mice, which was evidenced by fewer bacterial cells loads in tissues and organs, lower levels of intestinal epithelial barrier dysfuction and milder damages in intestinal tissues. All these phenotypes were recovered in complemented strains. In addition, qRT-PCR results showed that CpxAR TCS of C. sakazakii played roles in regulating the expression of several genes associated with bacterial virulence and cellular invasion. These findings indicate that CpxAR TCS is an important regulatory mechanism for virulence of C. sakazakii, which enrich our understanding of genetic determinants of pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Tong Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liuxin Pang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xinpeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
39
|
Yan Z, Wang J. Evolution shapes interaction patterns for epistasis and specific protein binding in a two-component signaling system. Commun Chem 2024; 7:13. [PMID: 38233668 PMCID: PMC10794238 DOI: 10.1038/s42004-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
The elegant design of protein sequence/structure/function relationships arises from the interaction patterns between amino acid positions. A central question is how evolutionary forces shape the interaction patterns that encode long-range epistasis and binding specificity. Here, we combined family-wide evolutionary analysis of natural homologous sequences and structure-oriented evolution simulation for two-component signaling (TCS) system. The magnitude-frequency relationship of coupling conservation between positions manifests a power-law-like distribution and the positions with highly coupling conservation are sparse but distributed intensely on the binding surfaces and hydrophobic core. The structure-specific interaction pattern involves further optimization of local frustrations at or near the binding surface to adapt the binding partner. The construction of family-wide conserved interaction patterns and structure-specific ones demonstrates that binding specificity is modulated by both direct intermolecular interactions and long-range epistasis across the binding complex. Evolution sculpts the interaction patterns via sequence variations at both family-wide and structure-specific levels for TCS system.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, PR China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11790, USA.
| |
Collapse
|
40
|
Fihn CA, Lembke HK, Gaulin J, Bouchard P, Villarreal AR, Penningroth MR, Crone KK, Vogt GA, Gilbertsen AJ, Ayotte Y, de Oliveira LC, Serrano-Wu MH, Drouin N, Hung DT, Hunter RC, Carlson EE. Evaluation of Expanded 2-Aminobenzothiazole Library for Inhibition of Pseudomonas aeruginosa Virulence Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.02.539119. [PMID: 37205454 PMCID: PMC10187220 DOI: 10.1101/2023.05.02.539119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. The high sequence conservation in the catalytic and adenosine triphosphate-binding (CA) domain of histidine kinases and their essential role in bacterial signal transduction could enable broad-spectrum antibacterial activity. Through this signal transduction, histidine kinases regulate multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the CA domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain of histidine kinases. We found these compounds have anti-virulence activities in Pseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.
Collapse
Affiliation(s)
- Conrad A. Fihn
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Jeffrey Gaulin
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Patricia Bouchard
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | - Alex R. Villarreal
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Mitchell R. Penningroth
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Kathryn K. Crone
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Grace A. Vogt
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Adam J. Gilbertsen
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Yann Ayotte
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | | | | | - Nathalie Drouin
- NMX Research and Solution Inc., 500 Cartier Boulevard W., Suite 6000, Laval, Quebec, Canada, H1Y 2R1
| | - Deborah T. Hung
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Ave Se Minneapolis, Minnesota 55455, United States
| | - Erin E. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
41
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
42
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross-regulation in a three-component cell envelope stress signaling system of Brucella. mBio 2023; 14:e0238723. [PMID: 38032291 PMCID: PMC10746171 DOI: 10.1128/mbio.02387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE As intracellular pathogens, Brucella must contend with a variety of host-derived stressors when infecting a host cell. The inner membrane, cell wall, and outer membrane, i.e. the cell envelope, of Brucella provide a critical barrier to host assault. A conserved regulatory mechanism known as two-component signaling (TCS) commonly controls transcription of genes that determine the structure and biochemical composition of the cell envelope during stress. We report the identification of previously uncharacterized TCS genes that determine Brucella ovis fitness in the presence of cell envelope disruptors and within infected mammalian host cells. Our study reveals a new molecular mechanism of TCS-dependent gene regulation, and thereby advances fundamental understanding of transcriptional regulatory processes in bacteria.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Melene A. Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
43
|
Vinchhi R, Yelpure C, Balachandran M, Matange N. Pervasive gene deregulation underlies adaptation and maladaptation in trimethoprim-resistant E. coli. mBio 2023; 14:e0211923. [PMID: 38032208 PMCID: PMC10746255 DOI: 10.1128/mbio.02119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Bacteria employ a number of mechanisms to adapt to antibiotics. Mutations in transcriptional regulators alter the expression levels of genes that can change the susceptibility of bacteria to antibiotics. Two-component signaling proteins are a major class of signaling molecule used by bacteria to regulate transcription. In previous work, we found that mutations in MgrB, a feedback regulator of the PhoQP two-component system, conferred trimethoprim tolerance to Escherichia coli. Here, we elucidate how mutations in MgrB have a domino-like effect on the gene regulatory network of E. coli. As a result, pervasive perturbation of gene regulation ensues. Depending on the environmental context, this pervasive deregulation is either adaptive or maladaptive. Our study sheds light on how deregulation of gene expression can be beneficial for bacteria when challenged with antibiotics, and why regulators like MgrB may have evolved in the first place.
Collapse
Affiliation(s)
- Rhea Vinchhi
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Chetna Yelpure
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Manasvi Balachandran
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Nishad Matange
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| |
Collapse
|
44
|
Garber ME, Frank V, Kazakov AE, Incha MR, Nava AA, Zhang H, Valencia LE, Keasling JD, Rajeev L, Mukhopadhyay A. REC protein family expansion by the emergence of a new signaling pathway. mBio 2023; 14:e0262223. [PMID: 37991384 PMCID: PMC10746176 DOI: 10.1128/mbio.02622-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE We explore when and why large classes of proteins expand into new sequence space. We used an unsupervised machine learning approach to observe the sequence landscape of REC domains of bacterial response regulator proteins. We find that within-gene recombination can switch effector domains and, consequently, change the regulatory context of the duplicated protein.
Collapse
Affiliation(s)
- Megan E. Garber
- Department of Comparative Biochemistry, University of California, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vered Frank
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alexey E. Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matthew R. Incha
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Alberto A. Nava
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Hanqiao Zhang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Luis E. Valencia
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Jay D. Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Lara Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- Department of Comparative Biochemistry, University of California, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
45
|
Alvarez AF, Georgellis D. Environmental adaptation and diversification of bacterial two-component systems. Curr Opin Microbiol 2023; 76:102399. [PMID: 39399893 DOI: 10.1016/j.mib.2023.102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2024]
Abstract
Bacterial two-component systems (TCS) are versatile signaling mechanisms that govern cellular responses to diverse environmental cues. These systems rely on phosphoryl-group transfers between histidine- and aspartate-containing modules of sensor histidine kinase and response regulator proteins. TCS diversity is shaped by the ecological niche of the bacterium, resulting in significant population-level variations. Consequently, orthologous TCSs can display considerable divergence throughout the signaling process. Here, we venture into the mechanisms governing the emergence of TCS variation, and explore the adaptation of orthologous TCS in bacteria with dissimilar lifestyles. The peculiar features of the bacterial adaptive response A/ultraviolet light repair Y (BarA/UvrY) and anoxic redox control B/anoxic redox control A (ArcB/ArcA) and their ortholog TCSs illustrate the remarkable capacity of TCSs to evolve and finely tune their signaling mechanisms, effectively addressing specific environmental challenges.
Collapse
Affiliation(s)
- Adrián F Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México City, Mexico
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| |
Collapse
|
46
|
Singh PR, Goar H, Paul P, Mehta K, Bamniya B, Vijjamarri AK, Bansal R, Khan H, Karthikeyan S, Sarkar D. Dual functioning by the PhoR sensor is a key determinant to Mycobacterium tuberculosis virulence. PLoS Genet 2023; 19:e1011070. [PMID: 38100394 PMCID: PMC10723718 DOI: 10.1371/journal.pgen.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
PhoP-PhoR, one of the 12 two-component systems (TCSs) that empower M. tuberculosis to sense and adapt to diverse environmental conditions, remains essential for virulence, and therefore, represents a major target to develop novel anti-TB therapies. Although both PhoP and PhoR have been structurally characterized, the signal(s) that this TCS responds to remains unknown. Here, we show that PhoR is a sensor of acidic pH/high salt conditions, which subsequently activate PhoP via phosphorylation. In keeping with this, transcriptomic data uncover that acidic pH- inducible expression of PhoP regulon is significantly inhibited in a PhoR-deleted M. tuberculosis. Strikingly, a set of PhoP regulon genes displayed a low pH-dependent activation even in the absence of PhoR, suggesting the presence of non-canonical mechanism(s) of PhoP activation. Using genome-wide interaction-based screening coupled with phosphorylation assays, we identify a non-canonical mechanism of PhoP phosphorylation by the sensor kinase PrrB. To investigate how level of P~PhoP is regulated, we discovered that in addition to its kinase activity PhoR functions as a phosphatase of P~PhoP. Our subsequent results identify the motif/residues responsible for kinase/phosphatase dual functioning of PhoR. Collectively, these results uncover that contrasting kinase and phosphatase functions of PhoR determine the homeostatic mechanism of regulation of intra-mycobacterial P~PhoP which controls the final output of the PhoP regulon. Together, these results connect PhoR to pH-dependent activation of PhoP with downstream functioning of the regulator. Thus, PhoR plays a central role in mycobacterial adaptation to low pH conditions within the host macrophage phagosome, and a PhoR-deleted M. tuberculosis remains significantly attenuated in macrophages and animal models.
Collapse
Affiliation(s)
| | - Harsh Goar
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Partha Paul
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Khushboo Mehta
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhanwar Bamniya
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Roohi Bansal
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Hina Khan
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dibyendu Sarkar
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
47
|
Sanders JG, Akl H, Hagen SJ, Xue B. Crosstalk enables mutual activation of coupled quorum sensing pathways through "jump-start" and "push-start" mechanisms. Sci Rep 2023; 13:19230. [PMID: 37932382 PMCID: PMC10628186 DOI: 10.1038/s41598-023-46399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Many quorum sensing microbes produce more than one chemical signal and detect them using interconnected pathways that crosstalk with each other. While there are many hypotheses for the advantages of sensing multiple signals, the prevalence and functional significance of crosstalk between pathways are much less understood. We explore the effect of intracellular signal crosstalk using a simple model that captures key features of typical quorum sensing pathways: multiple pathways in a hierarchical configuration, operating with positive feedback, with crosstalk at the receptor and promoter levels. We find that crosstalk enables activation or inhibition of one output by the non-cognate signal, broadens the dynamic range of the outputs, and allows one pathway to modulate the feedback circuit of the other. Our findings show how crosstalk between quorum sensing pathways can be viewed not as a detriment to the processing of information, but as a mechanism that enhances the functional range of the full regulatory system. When positive feedback systems are coupled through crosstalk, several new modes of activation or deactivation become possible.
Collapse
Affiliation(s)
| | - Hoda Akl
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - Stephen J Hagen
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - BingKan Xue
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
48
|
Habteyes TG, Westphal ER, Plackowski KM, Kotula PG, Meyerson ML, White SL, Corbin WC, Ghosh K, Grey JK. Hierarchical Self-Assembly of Carbon Dots into High-Aspect-Ratio Nanowires. NANO LETTERS 2023; 23:9474-9481. [PMID: 37831934 DOI: 10.1021/acs.nanolett.3c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We report a spontaneous and hierarchical self-assembly mechanism of carbon dots prepared from citric acid and urea into nanowire structures with large aspect ratios (>50). Scattering-type scanning near-field optical microscopy (s-SNOM) with broadly tunable mid-IR excitation was used to interrogate details of the self-assembly process by generating nanoscopic chemical maps of local wire morphology and composition. s-SNOM images capture the evolution of wire formation and the complex interplay between different chemical constituents directing assembly over the nano- to microscopic length scales. We propose that residual citrate promotes tautomerization of melamine surface functionalities to produce supramolecular shape synthons comprised of melamine-cyanurate adducts capable of forming long-range and highly directional hydrogen-bonding networks. This intrinsic, heterogeneity-driven self-assembly mechanism reflects synergistic combinations of high chemical specificity and long-range cooperativity that may be harnessed to reproducibly fabricate functional structures on arbitrary surfaces.
Collapse
Affiliation(s)
- Terefe G Habteyes
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric R Westphal
- Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87185, United States
| | - Kenneth M Plackowski
- Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87185, United States
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Paul G Kotula
- Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87185, United States
| | - Melissa L Meyerson
- Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87185, United States
| | - Stephanie L White
- Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87185, United States
| | - W Cody Corbin
- Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87185, United States
| | - Koushik Ghosh
- Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87185, United States
| | - John K Grey
- Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
49
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross regulation in a three-component cell envelope stress signaling system of Brucella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536747. [PMID: 37873345 PMCID: PMC10592609 DOI: 10.1101/2023.04.15.536747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A multi-layered structure known as the cell envelope separates the controlled interior of bacterial cells from a fluctuating physical and chemical environment. The transcription of genes that determine cell envelope structure and function is commonly regulated by two-component signaling systems (TCS), comprising a sensor histidine kinase and a cognate response regulator. To identify TCS genes that contribute to cell envelope function in the intracellular mammalian pathogen, Brucella ovis, we subjected a collection of non-essential TCS deletion mutants to compounds that disrupt cell membranes and the peptidoglycan cell wall. Our screen led to the discovery of three TCS proteins that coordinately function to confer resistance to cell envelope stressors and to support B. ovis replication in the intracellular niche. This tripartite regulatory system includes the known cell envelope regulator, CenR, and a previously uncharacterized TCS, EssR-EssS, which is widely conserved in Alphaproteobacteria. The CenR and EssR response regulators bind a shared set of sites on the B. ovis chromosomes to control transcription of an overlapping set of genes with cell envelope functions. CenR directly interacts with EssR and functions to stimulate phosphoryl transfer from the EssS kinase to EssR, while CenR and EssR control the cellular levels of each other via a post-transcriptional mechanism. Our data provide evidence for a new mode of TCS cross-regulation in which a non-cognate response regulator affects both the activity and protein levels of a cognate TCS protein pair.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
50
|
Shelud'ko A, Volokhina I, Mokeev D, Telesheva E, Yevstigneeva S, Burov A, Tugarova A, Shirokov A, Burigin G, Matora L, Petrova L. Chromosomal gene of hybrid multisensor histidine kinase is involved in motility regulation in the rhizobacterium Azospirillum baldaniorum Sp245 under mechanical and water stress. World J Microbiol Biotechnol 2023; 39:336. [PMID: 37814195 DOI: 10.1007/s11274-023-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Azospirillum alphaproteobacteria, which live in the rhizosphere of many crops, are used widely as biofertilizers. Two-component signal transduction systems (TCSs) mediate the bacterial perception of signals and the corresponding adjustment of behavior facilitating the adaptation of bacteria to their habitats. In this study, we obtained the A. baldaniorum Sp245 mutant for the AZOBR_150176 gene, which encodes the TCS of the hybrid histidine kinase/response sensory regulator (HSHK-RR). Inactivation of this gene affected bacterial morphology and motility. In mutant Sp245-HSHKΔRR-Km, the cells were still able to synthesize a functioning polar flagellum (Fla), were shorter than those of strain Sp245, and were impaired in aerotaxis, elaboration of inducible lateral flagella (Laf), and motility in semiliquid media. The mutant showed decreased transcription of the genes encoding the proteins of the secretion apparatus, which ensures the assembly of Laf, Laf flagellin, and the repressor protein of translation of the Laf flagellin's mRNA. The study examined the effects of polyethylene glycol 6000 (PEG 6000), an agent used to simulate osmotic stress and drought conditions. Under osmotic stress, the mutant was no longer able to use collective motility in semiliquid media but formed more biofilm biomass than did strain Sp245. Introduction into mutant cells of the AZOBR_150176 gene as part of an expression vector led to recovery of the lost traits, including those mediating bacterial motility under mechanical stress induced by increased medium density. The results suggest that the HSHK-RR under study modulates the response of A. baldaniorum Sp245 to mechanical and osmotic/water stress.
Collapse
Affiliation(s)
- Andrei Shelud'ko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia.
| | - Irina Volokhina
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Dmitry Mokeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Elizaveta Telesheva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Stella Yevstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Andrei Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Anna Tugarova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Gennady Burigin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Larisa Matora
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Lilia Petrova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia
| |
Collapse
|