1
|
Pichler Hefti J, Jean D, Rosier AJ, Derstine M, Hillebrandt D, Horakova L, Keyes LE, Mateikaitė-Pipirienė K, Paal P, Andjelkovic M, Beidlemann BA, Kriemler S. High-Altitude Pulmonary Edema in Women: A Scoping Review-UIAA Medical Commission Recommendations. High Alt Med Biol 2023; 24:268-273. [PMID: 37906126 DOI: 10.1089/ham.2023.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Pichler Hefti, Jacqueline, Dominique Jean, Alison Rosier, Mia Derstine, David Hillebrandt, Lenka Horakova, Linda E. Keyes, Kastė Mateikaitė-Pipirienė, Peter Paal, Marija Andjelkovic, Beth Beidlemann, and Susi Kriemler. High-altitude pulmonary edema in women: a scoping review-UIAA Medical Commission Recommendations. High Alt Med Biol. 24:268-273, 2023. Background: High-altitude pulmonary edema (HAPE) can occur >2,500-3,000 m asl and is a life-threatening medical condition. This scoping review aims to summarize the current data on sex differences in HAPE. Methods: The International Climbing and Mountaineering Federation (UIAA) Medical Commission convened an international author team to review women's health issues at high altitude. Pertinent literature from PubMed and Cochrane was identified by keyword search combinations (including HAPE), with additional publications found by hand search. The primary search focus was for original articles that included minimum one woman and at least a rudimentary subgroup analysis. Results: The literature search yielded 7,165 articles, 416 of which were relevant for HAPE, and 7 of which were ultimately included here. Six were case series, consistently reporting a lower HAPE prevalence in women. The one retrospective case-control study reported male HAPE prevalence at 10/100,000 and female at 0.74/100,000. No studies were identified that directly compared sex differences in the prevalence of HAPE. No published data was found for topics other than epidemiology. Conclusions: Few studies and associated methodological limitations allow few conclusions to be drawn. Incidence of HAPE may be lower in women than in men. We speculate that besides physiological aspects, behavioral differences may contribute to this potential sex difference.
Collapse
Affiliation(s)
| | - Dominique Jean
- Paediatrics, Infectious Diseases and Altitude Medicine, Grenoble, France
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Alison J Rosier
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Mia Derstine
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | - David Hillebrandt
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- General Medical Practitioner, Holsorthy, Devon, United Kingdom
| | - Lenka Horakova
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University Prague, Kladno, Czech Republic
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | - Kastė Mateikaitė-Pipirienė
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Diaverum Clinics, Elektrėnai Division, Lithuania
| | - Peter Paal
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Marija Andjelkovic
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | - Beth A Beidlemann
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Zubieta-Calleja GR, Zubieta-DeUrioste N. High Altitude Pulmonary Edema, High Altitude Cerebral Edema, and Acute Mountain Sickness: an enhanced opinion from the High Andes - La Paz, Bolivia 3,500 m. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:327-338. [PMID: 35487499 DOI: 10.1515/reveh-2021-0172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/21/2022] [Indexed: 06/02/2023]
Abstract
Traveling to high altitudes for entertainment or work is sometimes associated with acute high altitude pathologies. In the past, scientific literature from the lowlander point of view was primarily based on mountain climbing. Sea level scientists developed all guidelines, but they need modifications for medical care in high altitude cities. Acute Mountain Sickness, High Altitude Pulmonary Edema, and High Altitude Cerebral Edema are medical conditions that some travelers can face. We present how to diagnose and treat acute high altitude pathologies, based on 51 years of high altitude physiology research and medical practice in hypobaric hypoxic diseases in La Paz, Bolivia (3,600 m; 11,811 ft), at the High Altitude Pulmonary and Pathology Institute (HAPPI - IPPA). These can occasionally present after flights to high altitude cities, both in lowlanders or high-altitude residents during re-entry. Acute high altitude ascent diseases can be adequately diagnosed and treated in high altitude cities following the presented guidelines. Treating these high-altitude illnesses, we had no loss of life. Traveling to a high altitude with sound medical advice should not be feared as it has many benefits. Nowadays, altitude descent and evacuation are not mandatory in populated highland cities, with adequate medical resources.
Collapse
Affiliation(s)
- Gustavo R Zubieta-Calleja
- High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), La Paz, Bolivia
- Department of Physiology, Shri B.M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur 586103, Karnataka, India
| | | |
Collapse
|
3
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Palmo T, Abbasi BA, Chanana N, Sharma K, Faruq M, Thinlas T, Abdin MZ, Pasha Q. The EDN1 Missense Variant rs5370 G > T Regulates Adaptation and Maladaptation under Hypobaric Hypoxia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11174. [PMID: 36141455 PMCID: PMC9517604 DOI: 10.3390/ijerph191811174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Endothelin 1 (EDN1) encodes a potent endogenous vasoconstrictor, ET1, to maintain vascular homeostasis and redistribution of tissue blood flow during exercise. One of the EDN1 missense polymorphisms, rs5370 G/T, has strongly been associated with cardiopulmonary diseases. This study investigated the impact of rs5370 polymorphism in high-altitude pulmonary oedema (HAPE) disorder or maladaptation and adaptation physiology in a well-characterized case-control study of high-altitude and low-altitude populations comprising 310 samples each of HAPE-patients, HAPE-free controls and native highlanders. The rs5370 polymorphism was genotyped, and the gene expression and plasma level of EDN1 were evaluated. The functional relevance of each allele was investigated in the human embryonic kidney 293 cell line after exposure to hypoxia and computationally. The T allele was significantly more prevalent in HAPE-p compared to HAPE-f and HLs. The EDN1 gene expression and ET1 bio-level were significantly elevated in HAPE-p compared to controls. Compared to the G allele, the T allele was significantly associated with elevated levels of ET-1 in all three study groups and cells exposed to hypoxia. The in silico studies further confirmed the stabilizing effect of the T allele on the structural integrity and function of ET1 protein. The ET1 rs5370 T allele is associated with an increased concentration of ET-1 in vivo and in vitro, establishing it as a potent marker in the adaptation/maladaptation physiology under the high-altitude environment. This could also be pertinent in endurance exercises at high altitudes.
Collapse
Affiliation(s)
- Tsering Palmo
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | - Bilal Ahmed Abbasi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Neha Chanana
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Kavita Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Tashi Thinlas
- Sonam Norboo Memorial Hospital, Leh 194101, Ladakh, India
| | - Malik Z. Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | - Qadar Pasha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Institute of Hypoxia Research, New Delhi 110067, India
| |
Collapse
|
5
|
Savioli G, Ceresa IF, Gori G, Fumoso F, Gri N, Floris V, Varesi A, Martuscelli E, Marchisio S, Longhitano Y, Ricevuti G, Esposito C, Caironi G, Giardini G, Zanza C. Pathophysiology and Therapy of High-Altitude Sickness: Practical Approach in Emergency and Critical Care. J Clin Med 2022; 11:3937. [PMID: 35887706 PMCID: PMC9325098 DOI: 10.3390/jcm11143937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/26/2022] Open
Abstract
High altitude can be a hostile environment and a paradigm of how environmental factors can determine illness when human biological adaptability is exceeded. This paper aims to provide a comprehensive review of high-altitude sickness, including its epidemiology, pathophysiology, and treatments. The first section of our work defines high altitude and considers the mechanisms of adaptation to it and the associated risk factors for low adaptability. The second section discusses the main high-altitude diseases, highlighting how environmental factors can lead to the loss of homeostasis, compromising important vital functions. Early recognition of clinical symptoms is important for the establishment of the correct therapy. The third section focuses on high-altitude pulmonary edema, which is one of the main high-altitude diseases. With a deeper understanding of the pathogenesis of high-altitude diseases, as well as a reasoned approach to environmental or physical factors, we examine the main high-altitude diseases. Such an approach is critical for the effective treatment of patients in a hostile environment, or treatment in the emergency room after exposure to extreme physical or environmental factors.
Collapse
Affiliation(s)
- Gabriele Savioli
- Department of Emergency Medicine and Surgery, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Giulia Gori
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy; (G.G.); (F.F.)
| | - Federica Fumoso
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy; (G.G.); (F.F.)
| | - Nicole Gri
- School of Medicine, University of Pavia, 27100 Pavia, Italy; (N.G.); (V.F.); (A.V.)
| | - Valentina Floris
- School of Medicine, University of Pavia, 27100 Pavia, Italy; (N.G.); (V.F.); (A.V.)
- Department of Emergency Medicine (ASL AL), San Giacomo Hospital, 15067 Novi Ligure, Italy; (E.M.); (S.M.); (Y.L.)
| | - Angelica Varesi
- School of Medicine, University of Pavia, 27100 Pavia, Italy; (N.G.); (V.F.); (A.V.)
| | - Ermelinda Martuscelli
- Department of Emergency Medicine (ASL AL), San Giacomo Hospital, 15067 Novi Ligure, Italy; (E.M.); (S.M.); (Y.L.)
| | - Sara Marchisio
- Department of Emergency Medicine (ASL AL), San Giacomo Hospital, 15067 Novi Ligure, Italy; (E.M.); (S.M.); (Y.L.)
| | - Yaroslava Longhitano
- Department of Emergency Medicine (ASL AL), San Giacomo Hospital, 15067 Novi Ligure, Italy; (E.M.); (S.M.); (Y.L.)
- Foundation “Ospedale Alba-Bra Onlus”, Department of Emergency Medicine, Anesthesia and Critical Care Medicine, Michele and Pietro Ferrero Hospital, 12060 Verduno, Italy
| | - Giovanni Ricevuti
- Department of Drug Science, University of Pavia, 27100 Pavia, Italy;
| | - Ciro Esposito
- Nephrology and Dialysis Unit, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Guido Caironi
- Registered Nurse Supporting Prehospital Emergency Service ASST 118, 22100 Como, Italy;
| | - Guido Giardini
- Neurology and Stroke Unit, Ospedale Regionale “U.Parini”, 11100 Aosta, Italy;
| | - Christian Zanza
- Department of Emergency Medicine (ASL AL), San Giacomo Hospital, 15067 Novi Ligure, Italy; (E.M.); (S.M.); (Y.L.)
- Foundation “Ospedale Alba-Bra Onlus”, Department of Emergency Medicine, Anesthesia and Critical Care Medicine, Michele and Pietro Ferrero Hospital, 12060 Verduno, Italy
| |
Collapse
|
6
|
Hannemann J, Böger R. Dysregulation of the Nitric Oxide/Dimethylarginine Pathway in Hypoxic Pulmonary Vasoconstriction—Molecular Mechanisms and Clinical Significance. Front Med (Lausanne) 2022; 9:835481. [PMID: 35252268 PMCID: PMC8891573 DOI: 10.3389/fmed.2022.835481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
The pulmonary circulation responds to hypoxia with vasoconstriction, a mechanism that helps to adapt to short-lived hypoxic episodes. When sustained, hypoxic pulmonary vasoconstriction (HPV) may become deleterious, causing right ventricular hypertrophy and failure, and contributing to morbidity and mortality in the late stages of several chronic pulmonary diseases. Nitric oxide (NO) is an important endothelial vasodilator. Its release is regulated, amongst other mechanisms, by the presence of endogenous inhibitors like asymmetric dimethylarginine (ADMA). Evidence has accumulated in recent years that elevated ADMA may be implicated in the pathogenesis of HPV and in its clinical sequelae, like pulmonary arterial hypertension (PAH). PAH is one phenotypic trait in experimental models with disrupted ADMA metabolism. In high altitude, elevation of ADMA occurs during long-term exposure to chronic or chronic intermittent hypobaric hypoxia; ADMA is significantly associated with high altitude pulmonary hypertension. High ADMA concentration was also reported in patients with chronic obstructive lung disease, obstructive sleep apnoea syndrome, and overlap syndrome, suggesting a pathophysiological role for ADMA-mediated impairment of endothelium-dependent, NO-mediated pulmonary vasodilation in these clinically relevant conditions. Improved understanding of the molecular (dys-)regulation of pathways controlling ADMA concentration may help to dissect the pathophysiology and find novel therapeutic options for these diseases.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
- *Correspondence: Rainer Böger
| |
Collapse
|
7
|
Brent MB. A review of the skeletal effects of exposure to high altitude and potential mechanisms for hypobaric hypoxia-induced bone loss. Bone 2022; 154:116258. [PMID: 34781048 DOI: 10.1016/j.bone.2021.116258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Mountaineering and exposure to high altitude result in physiological adaptations to the reduced inspiratory oxygen availability. Acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE) are well-described harmful effects of exposure to high altitude. Common to AMS, HAPE, and HACE are distinct clinical signs and symptoms of impaired function. However, several studies have suggested that high altitude might result in a substantial bone loss, which usually does not produce any apparent symptoms. This review aims to provide a comprehensive overview of, and map current knowledge of the skeletal effects of hypobaric hypoxia and high altitude. PubMed and Embase were searched from inception to September 6, 2021, to identify studies investigating the skeletal effects of exposure to hypobaric hypoxia and high altitude. Three hundred sixty titles and abstracts were screened, and 20 full-text articles were included (16 in vivo studies and four real-world human studies). In rodents, simulated high altitude up to 2900 m did not result in any adverse skeletal effects. In contrast, studies exposing animals to very high altitude (3500-5500 m) reported substantial reductions in BMD, cortical morphology, and bone strength, as well as deteriorated trabecular microstructure. Detrimental microstructural effects were also reported in rats exposed to simulated extreme altitude (6000 m). Finally, real-world human studies in mountaineers suggested high altitude exposure reduced bone mineral density (BMD) and that the harmful skeletal effects of hypobaric hypoxia were not entirely recovered after 12 months. In conclusion, in vivo and real-world studies demonstrated high altitude exposure results in adverse skeletal effects. The underlying mechanism for hypobaric hypoxia-induced bone loss is not elucidated.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Turner REF, Gatterer H, Falla M, Lawley JS. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness? J Appl Physiol (1985) 2021; 131:313-325. [PMID: 33856254 DOI: 10.1152/japplphysiol.00861.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-altitude cerebral edema (HACE) and acute mountain sickness (AMS) are neuropathologies associated with rapid exposure to hypoxia. However, speculation remains regarding the exact etiology of both HACE and AMS and whether they share a common mechanistic pathology. This review outlines the basic principles of HACE development, highlighting how edema could develop from 1) a progression from cytotoxic swelling to ionic edema or 2) permeation of the blood brain barrier (BBB) with or without ionic edema. Thereafter, discussion turns to the available neuroimaging literature in the context of cytotoxic, ionic, or vasogenic edema in both HACE and AMS. Although HACE is clearly caused by an increase in brain water of ionic and/or vasogenic origin, there is very little evidence that this type of edema is present when AMS develops. However, cerebral vasodilation, increased intracranial blood volume, and concomitant intracranial fluid shifts from the extracellular to the intracellular space, as interpreted from changes in diffusion indices within white matter, are observed consistently in persons acutely exposed to hypoxia and with AMS. Therefore, herein we explore the idea that intracellular swelling occurs alongside AMS, and is a critical precursor to extracellular ionic edema formation. We propose that this process produces a subtle modulation of the BBB, which either together with or independent of vasogenic edema provides a transvascular segue from the end-stage of AMS to HACE. Ultimately, this review seeks to shed light on the possible processes underlying HACE pathophysiology, and thus highlights potential avenues for future prevention and treatment.
Collapse
Affiliation(s)
- Rachel E F Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Marika Falla
- Center for Mind/Brain Sciences and Centre for Neurocognitive Rehabilitation, University of Trento, Rovereto, Italy
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Okada H, Yoshida S, Hara A, Ogura S, Tomita H. Vascular endothelial injury exacerbates coronavirus disease 2019: The role of endothelial glycocalyx protection. Microcirculation 2020; 28:e12654. [PMID: 32791568 PMCID: PMC7435519 DOI: 10.1111/micc.12654] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/29/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
The potential for a rapid increase in severity is among the most frightening aspects of severe acute respiratory syndrome coronavirus 2 infection. Evidence increasingly suggests that the symptoms of coronavirus disease‐2019 (COVID‐19)‐related acute respiratory distress syndrome (ARDS) differ from those of classic ARDS. Recently, the severity of COVID‐19 has been attributed to a systemic, thrombotic, and inflammatory disease that damages not only the lungs but also multiple organs, including the heart, brain, toes, and liver. This systemic form of COVID‐19 may be due to inflammation and vascular endothelial cell injury. The vascular endothelial glycocalyx comprises glycoproteins and plays an important role in systemic capillary homeostasis maintenance. The glycocalyx covers the entire vascular endothelium, and its thickness varies among organs. The endothelial glycocalyx is very thin in the pulmonary capillaries, where it is affected by gaseous exchange with the alveoli and the low intravascular pressure in the pulmonary circulation. Despite the clearly important roles of the glycocalyx in vascular endothelial injury, thrombosis, vasculitis, and inflammation, the link between this structure and vascular endothelial cell dysfunction in COVID‐19 remains unclear. In this prospective review, we summarize the importance of the glycocalyx and its potential as a therapeutic target in cases of systemic COVID‐19.
Collapse
Affiliation(s)
- Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
10
|
Nikinmaa M. Finally, a promising model for high-altitude pulmonary edema (HAPE)-A Mountaineers' Malady. Acta Physiol (Oxf) 2020; 229:e13472. [PMID: 32243073 DOI: 10.1111/apha.13472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
|
11
|
Swenson ER. Early hours in the development of high-altitude pulmonary edema: time course and mechanisms. J Appl Physiol (1985) 2020; 128:1539-1546. [PMID: 32213112 DOI: 10.1152/japplphysiol.00824.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Clinically evident high-altitude pulmonary edema (HAPE) is characterized by severe cyanosis, dyspnea, cough, and difficulty with physical exertion. This usually occurs within 1-2 days of ascent often with the additional stresses of any exercise and hypoventilation of sleep. The earliest events in evolving HAPE progress through clinically silent and then minimally recognized problems. The most important of these events involves an exaggerated elevation of pulmonary artery (PA) pressure in response to the ambient hypoxia. Hypoxic pulmonary vasoconstriction (HPV) is a rapid response with several phases. The first phase in both resistance arterioles and venules occurs within 5-10 min. This is followed by a second phase that further raises PA pressure by another 100% over the next 2-8 h. Combined with vasoconstriction and likely an unevenness in the regional strength of HPV, pressures in some microvascular regions with lesser arterial constriction rise to a level that initiates greater filtration of fluid into the interstitium. As pressures continue to rise local lymphatic clearance rates are exceeded and interstitial fluid begins to accumulate. Beyond elevation of transmural pressure gradients there is a dynamic noninjurious relaxation of microvascular and epithelial cell-cell contacts and an increase in transcellular vesicular transport which accelerate leakage. At some point with further pressure elevation, damage occurs with breaks of the barrier and bleeding into the alveolar space, a late-stage situation termed capillary stress failure. Earlier before there is fluid accumulation, alveolar hypoxia and hyperventilation-induced hypocapnia reduce the capacity of the alveolar epithelium to reabsorb sodium and water back into the interstitial space. More modest ascent which slows the rate of rise in PA pressure and allows for adaptive remodeling of the microvasculature, drugs which lower PA pressure, and those that can enhance fluid reabsorption will all forestall the deleterious early rise of microvascular pressures and diminished active alveolar fluid reabsorption that precede and underlie the development of HAPE.
Collapse
Affiliation(s)
- Erik R Swenson
- Pulmonary, Critical Care and Sleep Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| |
Collapse
|
12
|
Eichstaedt CA, Mairbäurl H, Song J, Benjamin N, Fischer C, Dehnert C, Schommer K, Berger MM, Bärtsch P, Grünig E, Hinderhofer K. Genetic Predisposition to High-Altitude Pulmonary Edema. High Alt Med Biol 2020; 21:28-36. [PMID: 31976756 DOI: 10.1089/ham.2019.0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Exaggerated pulmonary arterial hypertension (PAH) is a hallmark of high-altitude pulmonary edema (HAPE). The objective of this study was therefore to investigate genetic predisposition to HAPE by analyzing PAH candidate genes in a HAPE-susceptible (HAPE-S) family and in unrelated HAPE-S mountaineers. Materials and Methods: Eight family members and 64 mountaineers were clinically and genetically assessed using a PAH-specific gene panel for 42 genes by next-generation sequencing. Results: Two otherwise healthy family members, who developed re-entry HAPE at 3640 m during childhood, carried a likely pathogenic missense mutation (c.1198T>G p.Cys400Gly) in the Janus Kinase 2 (JAK2) gene. One of them progressed to a mild form of PAH at the age of 23 years. In two of the 64 HAPE-S mountaineers likely pathogenic variants have been detected, one missense mutation in the Cytochrome P1B1 gene, and a deletion in the Histidine-Rich Glycoprotein (HRG) gene. Conclusions: This is the first study identifying an inherited missense mutation of a gene related to PAH in a family with re-entry HAPE showing a progression to borderline PAH in the index patient. Likely pathogenic variants in 3.1% of HAPE-S mountaineers suggest a genetic predisposition in some individuals that might be linked to PAH signaling pathways.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jie Song
- Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Nicola Benjamin
- Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christine Fischer
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Kai Schommer
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc M Berger
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bärtsch
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Katrin Hinderhofer
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Young JM, Williams DR, Thompson AAR. Thin Air, Thick Vessels: Historical and Current Perspectives on Hypoxic Pulmonary Hypertension. Front Med (Lausanne) 2019; 6:93. [PMID: 31119132 PMCID: PMC6504829 DOI: 10.3389/fmed.2019.00093] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
The association between pulmonary hypertension (PH) and hypoxia is well-established, with two key mechanistic processes, hypoxic pulmonary vasoconstriction and hypoxia-induced vascular remodeling, driving changes in pulmonary arterial pressure. In contrast to other forms of pulmonary hypertension, the vascular changes induced by hypoxia are reversible, both in humans returning to sea-level from high altitude and in animal models. This raises the intriguing possibility that the molecular drivers of these hypoxic processes could be targeted to modify pulmonary vascular remodeling in other contexts. In this review, we outline the history of research into PH and hypoxia, before discussing recent advances in our understanding of this relationship at the molecular level, focussing on the role of the oxygen-sensing transcription factors, hypoxia inducible factors (HIFs). Emerging links between HIF and vascular remodeling highlight the potential utility in inhibiting this pathway in pulmonary hypertension and raise possible risks of activating this pathway using HIF-stabilizing medications.
Collapse
Affiliation(s)
- Jason M. Young
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Apex (Altitude Physiology Expeditions), Edinburgh, United Kingdom
| | | | - A. A. Roger Thompson
- Apex (Altitude Physiology Expeditions), Edinburgh, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Dunham-Snary KJ, Wu D, Potus F, Sykes EA, Mewburn JD, Charles RL, Eaton P, Sultanian RA, Archer SL. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circ Res 2019; 124:1727-1746. [PMID: 30922174 DOI: 10.1161/circresaha.118.314284] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Hypoxic pulmonary vasoconstriction (HPV) optimizes systemic oxygen delivery by matching ventilation to perfusion. HPV is intrinsic to pulmonary artery smooth muscle cells (PASMCs). Hypoxia dilates systemic arteries, including renal arteries. Hypoxia is sensed by changes in mitochondrial-derived reactive oxygen species, notably hydrogen peroxide (H2O2) ([H2O2]mito). Decreases in [H2O2]mito elevate pulmonary vascular tone by increasing intracellular calcium ([Ca2+]i) through reduction-oxidation regulation of ion channels. Although HPV is mimicked by the Complex I inhibitor, rotenone, the molecular identity of the O2 sensor is unknown. OBJECTIVE To determine the role of Ndufs2 (NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 2), Complex I's rotenone binding site, in pulmonary vascular oxygen-sensing. METHODS AND RESULTS Mitochondria-conditioned media from pulmonary and renal mitochondria isolated from normoxic and chronically hypoxic rats were infused into an isolated lung bioassay. Mitochondria-conditioned media from normoxic lungs contained more H2O2 than mitochondria-conditioned media from chronic hypoxic lungs or kidneys and uniquely attenuated HPV via a catalase-dependent mechanism. In PASMC, acute hypoxia decreased H2O2 within 112±7 seconds, followed, within 205±34 seconds, by increased intracellular calcium concentration, [Ca2+]i. Hypoxia had no effects on [Ca2+]i in renal artery SMC. Hypoxia decreases both cytosolic and mitochondrial H2O2 in PASMC while increasing cytosolic H2O2 in renal artery SMC. Ndufs2 expression was greater in PASMC versus renal artery SMC. Lung Ndufs2 cysteine residues became reduced during acute hypoxia and both hypoxia and reducing agents caused functional inhibition of Complex I. In PASMC, siNdufs2 (cells/tissue treated with Ndufs2 siRNA) decreased normoxic H2O2, prevented hypoxic increases in [Ca2+]i, and mimicked aspects of chronic hypoxia, including decreasing Complex I activity, elevating the nicotinamide adenine dinucleotide (NADH/NAD+) ratio and decreasing expression of the O2-sensitive ion channel, Kv1.5. Knocking down another Fe-S center within Complex I (Ndufs1, NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 1) or other mitochondrial subunits proposed as putative oxygen sensors (Complex III's Rieske Fe-S center and COX4i2 [cytochrome c oxidase subunit 4 isoform 2] in Complex IV) had no effect on hypoxic increases in [Ca2+]i. In vivo, siNdufs2 significantly decreased hypoxia- and rotenone-induced constriction while enhancing phenylephrine-induced constriction. CONCLUSIONS Ndufs2 is essential for oxygen-sensing and HPV.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Danchen Wu
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - François Potus
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Edward A Sykes
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Jeffrey D Mewburn
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Rebecca L Charles
- British Heart Foundation Centre of Excellence, King´s College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom (R.L.C., P.E.)
| | - Philip Eaton
- British Heart Foundation Centre of Excellence, King´s College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom (R.L.C., P.E.)
| | - Richard A Sultanian
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (R.A.S.)
| | - Stephen L Archer
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.).,Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.)
| |
Collapse
|
15
|
Boulet LP, Turmel J. Cough in exercise and athletes. Pulm Pharmacol Ther 2019; 55:67-74. [PMID: 30771475 DOI: 10.1016/j.pupt.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
In the general population, particularly in individuals with asthma, cough is a common symptom, often reported after exertion, although regular exercise may be associated with a reduction in the prevalence of cough. In athletes, exercise-induced cough is also a particularly frequent symptom. The main etiologies of cough in athletes are somewhat similar to non-athletes, including asthma/airway hyperresponsiveness, upper airways disorders such as allergic or non-allergic rhinitis, and exercise-induced laryngeal obstruction, although these conditions are more frequently observed in athletes. In these last, this symptom can also be related to the high ventilation and heat exchange experienced during exercise, particularly during exposure to cold/dry air or pollutants. However, gastroesophageal reflux, a common cause of cough in the general population, despite being highly prevalent in athletes, has not been reported as a main cause of cough in athletes. Cough may impair quality of life, sleep and exercise performance in the general population and probably also in athletes, although there are few data on this. The causes of cough should be documented through a systematic evaluation, the treatment adapted according to identified or most probable cough etiology and pattern of presentation, while respecting sports anti-doping regulations. More research is needed on exercise-induced persistent cough in the athlete to determine its pathophysiology, optimal management and consequences.
Collapse
Affiliation(s)
- Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Canada.
| | - Julie Turmel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Canada
| |
Collapse
|
16
|
Humphries CP. Lower Respiratory Tract Infection: An Unrecognised Risk Factor for High Altitude Pulmonary Oedema? Eur J Case Rep Intern Med 2017; 4:000539. [PMID: 30755928 PMCID: PMC6346869 DOI: 10.12890/2017_000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
The case of a 25-year-old expedition doctor who developed high altitude pulmonary oedema (HAPE) while climbing in the Swiss Alps is presented, with reference to the literature. The patient’s symptoms of HAPE were typical. Less typical was the fact that the doctor had previously been to similar altitudes uneventfully. The only differentiator is that on this expedition he developed a mild lower respiratory tract infection (LRTI) 2 days prior to travel. There has been limited, conflicting evidence regarding LRTI as a risk factor for HAPE and high quality research has not focused on this area. LRTI is not commonly recognised as being a risk in high altitude environments, which may be resulting in lethal consequences. This report aims to inform, provide a clinical question for future high altitude research expeditions, and encourage consideration by expedition and high altitude doctors.
Collapse
|
17
|
Boulet LP, Turmel J, Irwin RS. Cough in the Athlete: CHEST Guideline and Expert Panel Report. Chest 2017; 151:441-454. [PMID: 27865877 PMCID: PMC6026250 DOI: 10.1016/j.chest.2016.10.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cough is a common symptom experienced by athletes, particularly after exercise. We performed a systematic review to assess the following in this population: (1) the main causes of acute and recurrent cough, either exercise-induced or not, (2) how cough is assessed, and (3) how cough is treated in this population. From the systematic review, suggestions for management were developed. METHODS This review was performed according to the CHEST methodological guidelines and Grading of Recommendations Assessment, Development and Evaluation framework until April 2015. To be included, studies had to meet the following criteria: participants had to be athletes and adults and adolescents aged ≥ 12 years and had to complain of cough, regardless of its duration or relationship to exercise. The Expert Cough Panel based their suggestions on the data extracted from the review and final grading by consensus according to a Delphi process. RESULTS Only 60 reports fulfilled the inclusion criteria, and the results of our analysis revealed only low-quality evidence on the causes of cough and how to assess and treat cough specifically in athletes. Although there was no formal evaluation of causes of cough in the athletic population, the most common causes reported were asthma, exercise-induced bronchoconstriction, respiratory tract infection (RTI), upper airway cough syndrome (UACS) (mostly from rhinitis), and environmental exposures. Cough was also reported to be related to exercise-induced vocal cord dysfunction among a variety of less common causes. Although gastroesophageal reflux disease (GERD) is frequent in athletes, we found no publication on cough and GERD in this population. Assessment of the causes of cough was performed mainly with bronchoprovocation tests and suspected disease-specific investigations. The evidence to guide treatment of cough in the athlete was weak or nonexistent, depending on the cause. As data on cough in athletes were hidden in a set of other data (respiratory symptoms), evidence tables were difficult to produce and were done only for cough treatment in athletes. CONCLUSIONS The causes of cough in the athlete appear to differ slightly from those in the general population. It is often associated with environmental exposures related to the sport training environment and occurs predominantly following intense exercise. Clinical history and specific investigations should allow identification of the cause of cough as well as targeting of the treatment. Until management studies have been performed in the athlete, current guidelines that exist for the general population should be applied for the evaluation and treatment of cough in the athlete, taking into account specific training context and anti-doping regulations.
Collapse
Affiliation(s)
- Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada.
| | - Julie Turmel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Richard S Irwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
18
|
Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, Parlow JL, Archer SL. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest 2017; 151:181-192. [PMID: 27645688 PMCID: PMC5310129 DOI: 10.1016/j.chest.2016.09.001] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a homeostatic mechanism that is intrinsic to the pulmonary vasculature. Intrapulmonary arteries constrict in response to alveolar hypoxia, diverting blood to better-oxygenated lung segments, thereby optimizing ventilation/perfusion matching and systemic oxygen delivery. In response to alveolar hypoxia, a mitochondrial sensor dynamically changes reactive oxygen species and redox couples in pulmonary artery smooth muscle cells (PASMC). This inhibits potassium channels, depolarizes PASMC, activates voltage-gated calcium channels, and increases cytosolic calcium, causing vasoconstriction. Sustained hypoxia activates rho kinase, reinforcing vasoconstriction, and hypoxia-inducible factor (HIF)-1α, leading to adverse pulmonary vascular remodeling and pulmonary hypertension (PH). In the nonventilated fetal lung, HPV diverts blood to the systemic vasculature. After birth, HPV commonly occurs as a localized homeostatic response to focal pneumonia or atelectasis, which optimizes systemic Po2 without altering pulmonary artery pressure (PAP). In single-lung anesthesia, HPV reduces blood flow to the nonventilated lung, thereby facilitating thoracic surgery. At altitude, global hypoxia causes diffuse HPV, increases PAP, and initiates PH. Exaggerated or heterogeneous HPV contributes to high-altitude pulmonary edema. Conversely, impaired HPV, whether due to disease (eg, COPD, sepsis) or vasodilator drugs, promotes systemic hypoxemia. Genetic and epigenetic abnormalities of this oxygen-sensing pathway can trigger normoxic activation of HIF-1α and can promote abnormal metabolism and cell proliferation. The resulting pseudohypoxic state underlies the Warburg metabolic shift and contributes to the neoplasia-like phenotype of PH. HPV and oxygen sensing are important in human health and disease.
Collapse
Affiliation(s)
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Edward A Sykes
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Amar Thakrar
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Leah R G Parlow
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Joel L Parlow
- Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, ON, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
19
|
Abstract
Approximately, 140 million people worldwide live permanently at high altitudes (HAs) and approximately another 40 million people travel to HA area (HAA) every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV) light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc.), cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc.) nail changes (koilonychias), airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma) are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.
Collapse
Affiliation(s)
- Lt Col G K Singh
- Department of Dermatology, Military Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
20
|
Mills L, Harper C, Rozwadowski S, Imray C. High Altitude Pulmonary Edema Without Appropriate Action Progresses to Right Ventricular Strain: A Case Study. High Alt Med Biol 2016; 17:228-232. [PMID: 27575244 DOI: 10.1089/ham.2016.0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mills, Logan, Chris Harper, Sophie Rozwadowski, and Chris Imray. High altitude pulmonary edema without appropriate action progresses to right ventricular strain: A case study. High Alt Med Biol. 17:228-232, 2016.-A 24-year-old male developed high altitude pulmonary edema (HAPE) after three ascents to 4061 m over 3 days, sleeping each night at 2735 m. He complained of exertional dyspnea, dry cough, chest pain, fever, nausea, vertigo, and a severe frontal headache. Inappropriate continuation of ascent despite symptoms led to functional impairment and forced a return to the valley, but dyspnea persisted in addition to new orthopnea. Hospital admission showed hypoxemia, resting tachycardia, and systemic hypertension. ECG revealed right ventricular strain and a chest X-ray revealed right lower zone infiltrates. This case demonstrates that HAPE can develop in previously unaffected individuals given certain precipitating factors, and that in the presence of HAPE, prolonged exposure to altitude with exercise (or exertion) does not confer acclimatization with protective adaptations and that rest and descent are the appropriate actions. The case additionally demonstrates well-characterized right ventricular involvement.
Collapse
Affiliation(s)
- Logan Mills
- 1 Medical Teaching Centre, Warwick Medical School , Coventry, United Kingdom
| | - Chris Harper
- 1 Medical Teaching Centre, Warwick Medical School , Coventry, United Kingdom
| | - Sophie Rozwadowski
- 1 Medical Teaching Centre, Warwick Medical School , Coventry, United Kingdom
| | - Chris Imray
- 1 Medical Teaching Centre, Warwick Medical School , Coventry, United Kingdom .,2 Department of Vascular and Endovascular Surgery, University Hospitals Coventry and Warwickshire , Coventry, United Kingdom .,3 Department of Vascular and Endovascular Surgery , Coventry University, Coventry, United Kingdom
| |
Collapse
|
21
|
Nehra S, Bhardwaj V, Bansal A, Saraswat D. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats. J Physiol Biochem 2016; 72:763-779. [PMID: 27534650 DOI: 10.1007/s13105-016-0515-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Decline in oxygen availability experienced under hypobaric hypoxia (HH) mediates imbalance in lung fluid clearance and is a causative agent of acute lung injury. Here, we investigate the pathological events behind acute HH mediated lung injury and assess the therapeutic efficacy of nanocurcumin in its amelioration. We assess the protective efficacy of nanotized curcumin (nanocurcumin) in ameliorating HH induced lung injury and compare to curcumin. Rats exposed to acute HH (6, 12, 24, 48 and 72 h) were subjected to histopathology, blood-gas analysis and clinical biochemistry, cytokine response and redox damage. HH induced lung injury was analysed using markers of lung injury due to pulmonary vasoconstriction (ET-1/2/3 and endothelin receptors A and B) and trans-vascular fluid balance mediator (Na+/K+ ATPase). The protective efficacy of nanocurcumin was analysed by examination of Akt/Erk signalling cascade by western blot. HH induced lung injury was associated with discrete changes in blood analytes, differential circulatory cytokine response and severe pulmonary redox damages. Up-regulation of ET-1/2/3 and its receptors along with down-regulation of Na+/K+ ATPase confirmed defective pulmonary fluid clearance which promoted edema formation. Nanocurcumin treatment prevented lung edema formation and restored expression levels of ET-1/2/3 and its receptors while restoring the blood analytes, circulatory cytokines and pulmonary redox status better than curcumin. Modulation in Akt/Erk signalling pathway in rat lungs under HH confirmed the protective efficacy of nanocurcumin.
Collapse
Affiliation(s)
- Sarita Nehra
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi-54, India
| | - Varun Bhardwaj
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi-54, India
| | - Anju Bansal
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi-54, India
| | - Deepika Saraswat
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi-54, India.
| |
Collapse
|
22
|
Abstract
Altitude-related illness is a frequent cause of morbidity and occasional mortality among recreational sports travelers in the United States and throughout the world. High-altitude illness describes the cerebral and pulmonary syndromes (acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema) that can occur in unacclimatized persons ascending too rapidly to high altitude. The pathogenesis of these syndromes is primarily hypobaric hypoxia that causes compensatory changes in the brain and lungs, resulting in hyperperfusion of microvascular beds, increased capillary pressure, and a microvascular leak with resulting edema and a characteristic constellation of symptoms. Prevention and treatment involve education about rate of ascent; diet; alcohol intake; physical activity; oxygen; hyperbaric chambers; and pharmacotherapy, including acetazolamide, dexamethasone, nifedipine, and salmeterol in selected circumstances.
Collapse
Affiliation(s)
- Allan Ellsworth
- Department of Family Medicine, University of Washington, Box 354775, 4245 Roosevelt Way NE, Seattle, WA 98105,
| |
Collapse
|
23
|
Barker KR, Conroy AL, Hawkes M, Murphy H, Pandey P, Kain KC. Biomarkers of hypoxia, endothelial and circulatory dysfunction among climbers in Nepal with AMS and HAPE: a prospective case-control study. J Travel Med 2016; 23:taw005. [PMID: 26984355 PMCID: PMC5731443 DOI: 10.1093/jtm/taw005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanisms underlying acute mountain sickness (AMS) and high-altitude pulmonary edema (HAPE) are not fully understood. We hypothesized that regulators of endothelial function, circulatory homeostasis, hypoxia and cell stress contribute to the pathobiology of AMS and HAPE. METHODS We conducted a prospective case-control study of climbers developing altitude illness who were evacuated to the CIWEC clinic in Kathmandu, compared to healthy acclimatized climbers. ELISA was used to measure plasma biomarkers of the above pathways. RESULTS Of the 175 participants, there were 71 cases of HAPE, 54 cases of AMS and 50 acclimatized controls (ACs). Markers of endothelial function were associated with HAPE: circulating levels of endothelin-1 (ET-1) were significantly elevated and levels of sKDR (soluble kinase domain receptor) were significantly decreased in cases of HAPE compared to AC or AMS. ET-1 levels were associated with disease severity as indicated by oxygen saturation. Angiopoietin-like 4 (Angptl4) and resistin, a marker of cell stress, were associated with AMS and HAPE irrespective of severity. Corin and angiotensin converting enzyme, regulators of volume homeostasis, were significantly decreased in HAPE compared to AC. CONCLUSION Our findings indicate that regulators of endothelial function, vascular tone and cell stress are altered in altitude illness and may mechanistically contribute to the pathobiology of HAPE.
Collapse
Affiliation(s)
- Kevin R Barker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Michael Hawkes
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada, Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada and
| | - Holly Murphy
- CIWEC Hospital and Travel Medicine Center, Kathmandu, Nepal
| | - Prativa Pandey
- CIWEC Hospital and Travel Medicine Center, Kathmandu, Nepal
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada, The Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, ON, Canada,
| |
Collapse
|
24
|
Affiliation(s)
- J Michael B Hughes
- National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| |
Collapse
|
25
|
Objective criteria for diagnosing high altitude pulmonary edema in acclimatized patients at altitudes between 2700 m and 3500 m. Med J Armed Forces India 2015; 71:345-51. [PMID: 26663962 DOI: 10.1016/j.mjafi.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/08/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The criteria used for diagnosing high altitude illnesses are largely based on Western literature. This study was undertaken to define objective, simple and reliable diagnostic criteria for high altitude pulmonary edema (HAPE) in Indian soldiers at altitudes between 2700 m and 3500 m. METHODS Clinical data of 235 cases of HAPE that occurred between 2700 m and 3500 m were analysed. Receiver operator characteristic (ROC) curve analysis was used to select simple clinical parameters suitable for the diagnosis of HAPE at peripheral medical facilities. Cut-off values and their reliability for the diagnosis of HAPE were defined. RESULTS HAPE occurred 2.8 ± 2.2 days after arrival at altitudes between 2700 m and 3500 m. Breathlessness, cough, chest discomfort and headache were the commonest symptoms. Low pulse oximetry (SPO2) values than normal for this altitude were seen in 89% of patients. ROC analysis of clinical parameters identified a heart rate more than 95 beats per minute (bpm), respiratory rate more than 21 per minute and SPO2 less than 86% while breathing ambient air at this altitude as diagnostic of HAPE. The sensitivity and specificity of these cut-offs was 0.66, 0.83 and 0.82 and 0.94, 0.95 and 0.93 respectively. CONCLUSION A heart rate of more than 95 bpm, respiratory rate more than 21 per minute and SPO2 less than 86% breathing room air in individuals complaining of breathlessness, cough, chest discomfort or headache within the first 5 days of arrival at altitudes between 2700 m and 3500 m is highly suggestive of HAPE.
Collapse
|
26
|
Abstract
Acute high-altitude illness is an encompassing term for the range of pathology that the unacclimatised individual can develop at increased altitude. This includes acute mountain sickness, high-altitude cerebral oedema and high-altitude pulmonary oedema. These conditions represent an increasing clinical problem as more individuals are exposed to the hypobaric hypoxic environment of high altitude for both work and leisure. In this review of acute high-altitude illness, the epidemiology, risk factors and pathophysiology are explored, before their prevention and treatment are discussed. Appropriate ascent rate remains the most effective acute high-altitude illness prevention, with pharmacological prophylaxis indicated in selected individuals. Descent is the definitive treatment for acute high-altitude illness, with the adjuncts of oxygen and specific drug therapies.
Collapse
Affiliation(s)
- Tom Smedley
- UCL Centre for Altitude, Space and Extreme Environment Medicine, Portex Unit, Institute of Child Health, London, UK ; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Michael Pw Grocott
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK ; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK ; NIHR Southampton Respiratory Biomedical Research Unit, Southampton, UK
| |
Collapse
|
27
|
Kellihan HB, Waller KR, Pinkos A, Steinberg H, Bates ML. Acute resolution of pulmonary alveolar infiltrates in 10 dogs with pulmonary hypertension treated with sildenafil citrate: 2005-2014. J Vet Cardiol 2015; 17:182-91. [PMID: 26293206 DOI: 10.1016/j.jvc.2015.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To describe clinical canine patients with naturally occurring pulmonary hypertension and radiographic pulmonary alveolar infiltrates before and after treatment with sildenafil. ANIMALS Ten client-owned dogs. METHODS A retrospective analysis of dogs with echocardiographically-determined pulmonary hypertension and pulmonary alveolar infiltrates on thoracic radiographs was performed before (PRE) and after (POST) sildenafil therapy. Clinical scores, pulmonary alveolar infiltrate scores and tricuspid regurgitation gradients were analyzed PRE and POST sildenafil. RESULTS Pulmonary alveolar infiltrates associated with pulmonary hypertension developed in a diffusely patchy distribution (10/10). Sixty percent of dogs had a suspected diagnosis of interstitial pulmonary fibrosis as the etiology of pulmonary hypertension. Median PRE clinical score was 4 (range: 3-4) compared to POST score of 0 (0-2) (p = 0.005). Median alveolar infiltrate score PRE was 10 (5-12) compared to POST score of 4 (0-6) (p = 0.006). Median tricuspid regurgitation gradient PRE was 83 mmHg (57-196) compared to 55 mmHg POST (33-151) (p = 0.002). CONCLUSIONS A subset of dogs with moderate to severe pulmonary hypertension present with diffuse, patchy alveolar infiltrates consistent with non-cardiogenic pulmonary edema. The typical clinical presentation is acute dyspnea and syncope, often in conjunction with heart murmurs suggestive of valvular insufficiency. This constellation of signs may lead to an initial misdiagnosis of congestive heart failure or pneumonia; however, these dogs clinically and radiographically improve with the initiation of sildenafil.
Collapse
Affiliation(s)
- Heidi B Kellihan
- University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Kenneth R Waller
- University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA
| | - Alyssa Pinkos
- University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA
| | - Howard Steinberg
- University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA
| | - Melissa L Bates
- University of Wisconsin, School of Medicine and Public Health, Department of Pediatrics and the John Rankin Laboratory of Pulmonary Medicine, 600 Highland Avenue, Madison, WI 53792, USA; University of Iowa, Department of Health and Human Physiology, 225 S. Grand Avenue, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Bhagi S, Srivastava S, Tomar A, Bala Singh S, Sarkar S. Positive Association of D Allele of ACE Gene With High Altitude Pulmonary Edema in Indian Population. Wilderness Environ Med 2015; 26:124-32. [PMID: 25683681 DOI: 10.1016/j.wem.2014.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/01/2014] [Accepted: 09/06/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE High altitude pulmonary edema (HAPE) is a potentially fatal high altitude illness occurring as a result of hypobaric hypoxia with an unknown underlying genetic mechanism. Recent studies have shown a possible association between HAPE and polymorphisms in genes of the renin-angiotensin-aldosterone system (RAAS), which play a key role in sensitivity of an individual toward HAPE. METHODS For the present investigation, study groups consisted of HAPE patients (HAPE) and acclimatized control subjects (rCON). Four single-nucleotide polymorphisms (SNPs) were genotyped using restriction fragment length polymorphism (RFLP) analysis in genes of the RAAS pathway, specifically, renin (REN) C(-4063)T (rs41317140) and RENi8-83 (rs2368564), angiotensin (AGT) M(235)T (rs699), and angiotensin-converting enzyme (ACE) insertion/deletion (I/D) (rs1799752). RESULTS Only the I/D polymorphism of the ACE gene showed a significant difference between the HAPE and rCON groups. The frequency of the D allele was found to be significantly higher in the HAPE group. Arterial oxygen saturation levels were significantly lower in the HAPE group compared with the rCON group and also decreased in the I/D and D/D genotypes compared with the I/I genotype in these groups. The other polymorphisms occurring in the REN and AGT genes were not significantly different between the 2 groups. CONCLUSIONS These findings demonstrate a possible association of the I/D polymorphism of the ACE gene with the development of HAPE, with D/D being the at-risk genotype.
Collapse
Affiliation(s)
- Shuchi Bhagi
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India (Ms Bhagi, Drs Srivastava, Singh, and Sarkar)
| | - Swati Srivastava
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India (Ms Bhagi, Drs Srivastava, Singh, and Sarkar).
| | - Arvind Tomar
- Defence Research and Development Establishment, Defence Research and Development Organization, Gwalior, India (Mr Tomar)
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India (Ms Bhagi, Drs Srivastava, Singh, and Sarkar)
| | - Soma Sarkar
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India (Ms Bhagi, Drs Srivastava, Singh, and Sarkar)
| |
Collapse
|
29
|
Abstract
OBJECTIVE At High altitude (HA) (elevation >2,500 m), hypobaric hypoxia may lead to the development of symptoms associated with low oxygen pressure in many sojourners. High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. It is a multifactorial disease involving both environmental and genetic risk factors. Since thousands of lowlanders travel to high altitude areas for various reasons every year, we thought it would be interesting to review pathological aspects related to hypobaric hypoxia, particularly HAPE. METHOD Since the pathogenesis of HAPE is still a subject of study, we systematically identified and categorized a broad range of facets of HAPE such as its incidence, symptoms, physiological effects, pathophysiology including physiological and genetic factors, prevention and treatment. RESULTS This review focuses on HA-related health problems in general with special reference to HAPE, which is one of the primary causes of deaths at extreme altitudes. Hence, it is extremely important, as it summarizes the literature in this area and provides an overview of this severe HA malady for evaluation of physiological, biochemical and genetic responses during early induction and acclimatization to HA. This article could be of broad scientific interest for researchers working in the field of high altitude medicine.
Collapse
Affiliation(s)
- Shuchi Bhagi
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO)
| | | | | |
Collapse
|
30
|
Arya A, Sethy NK, Singh SK, Das M, Bhargava K. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int J Nanomedicine 2013; 8:4507-20. [PMID: 24294000 PMCID: PMC3839803 DOI: 10.2147/ijn.s53032] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. METHODS A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. RESULTS Spherical nanoceria of 7-10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria. CONCLUSION Cumulatively, these results suggest nanoceria deposit in lungs, confer protection by quenching noxious free radicals during hypobaric hypoxia, and do not evoke any inflammatory response.
Collapse
Affiliation(s)
- Aditya Arya
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | | | | | | | | |
Collapse
|
31
|
Khurana P, Sugadev R, Jain J, Singh SB. HypoxiaDB: a database of hypoxia-regulated proteins. Database (Oxford) 2013; 2013:bat074. [PMID: 24178989 PMCID: PMC3813937 DOI: 10.1093/database/bat074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/04/2013] [Accepted: 09/27/2013] [Indexed: 01/29/2023]
Abstract
There has been intense interest in the cellular response to hypoxia, and a large number of differentially expressed proteins have been identified through various high-throughput experiments. These valuable data are scattered, and there have been no systematic attempts to document the various proteins regulated by hypoxia. Compilation, curation and annotation of these data are important in deciphering their role in hypoxia and hypoxia-related disorders. Therefore, we have compiled HypoxiaDB, a database of hypoxia-regulated proteins. It is a comprehensive, manually-curated, non-redundant catalog of proteins whose expressions are shown experimentally to be altered at different levels and durations of hypoxia. The database currently contains 72 000 manually curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected from PubMed. HypoxiaDB is distinctive from other generalized databases: (i) it compiles tissue-specific protein expression changes under different levels and duration of hypoxia. Also, it provides manually curated literature references to support the inclusion of the protein in the database and establish its association with hypoxia. (ii) For each protein, HypoxiaDB integrates data on gene ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, protein-protein interactions, protein family (Pfam), OMIM (Online Mendelian Inheritance in Man), PDB (Protein Data Bank) structures and homology to other sequenced genomes. (iii) It also provides pre-compiled information on hypoxia-proteins, which otherwise requires tedious computational analysis. This includes information like chromosomal location, identifiers like Entrez, HGNC, Unigene, Uniprot, Ensembl, Vega, GI numbers and Genbank accession numbers associated with the protein. These are further cross-linked to respective public databases augmenting HypoxiaDB to the external repositories. (iv) In addition, HypoxiaDB provides an online sequence-similarity search tool for users to compare their protein sequences with HypoxiaDB protein database. We hope that HypoxiaDB will enrich our knowledge about hypoxia-related biology and eventually will lead to the development of novel hypothesis and advancements in diagnostic and therapeutic activities. HypoxiaDB is freely accessible for academic and non-profit users via http://www.hypoxiadb.com.
Collapse
Affiliation(s)
- Pankaj Khurana
- Bioinformatics Group, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization, Lucknow Road, Timarpur, New Delhi-110054, India
| | - Ragumani Sugadev
- Bioinformatics Group, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization, Lucknow Road, Timarpur, New Delhi-110054, India
| | - Jaspreet Jain
- Bioinformatics Group, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization, Lucknow Road, Timarpur, New Delhi-110054, India
| | - Shashi Bala Singh
- Bioinformatics Group, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization, Lucknow Road, Timarpur, New Delhi-110054, India
| |
Collapse
|
32
|
Abstract
The primary function of the pulmonary circulation is to deliver blood to the alveolar capillaries to exchange gases. Distributing blood over a vast surface area facilitates gas exchange, yet the pulmonary vascular tree must be constrained to fit within the thoracic cavity. In addition, pressures must remain low within the circulatory system to protect the thin alveolar capillary membranes that allow efficient gas exchange. The pulmonary circulation is engineered for these unique requirements and in turn these special attributes affect the spatial distribution of blood flow. As the largest organ in the body, the physical characteristics of the lung vary regionally, influencing the spatial distribution on large-, moderate-, and small-scale levels.
Collapse
Affiliation(s)
- Robb W Glenny
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
33
|
Pagé M, Sauvé C, Serri K, Pagé P, Yin Y, Schampaert E. Echocardiographic Assessment of Cardiac Performance in Response to High Altitude and Development of Subclinical Pulmonary Edema in Healthy Climbers. Can J Cardiol 2013; 29:1277-84. [DOI: 10.1016/j.cjca.2013.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 11/26/2022] Open
|
34
|
Chitra L, Boopathy R. Adaptability to hypobaric hypoxia is facilitated through mitochondrial bioenergetics: an in vivo study. Br J Pharmacol 2013; 169:1035-47. [PMID: 23517027 PMCID: PMC3696327 DOI: 10.1111/bph.12179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE High-altitude pulmonary oedema (HAPE) experienced under high-altitude conditions is attributed to mitochondrial redox distress. Hence, hypobaric hypoxia (HH)-induced alteration in expression of mitochondrial biogenesis and dynamics genes was determined in rat lung. Further, such alteration was correlated with expression of mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (mtOXPHOS) genes. The prophylactic effect of dexamethasone (DEX) in counteracting the HH-induced mitochondrial distress was used as control to understand adaptation to high-altitude exposure. EXPERIMENTAL APPROACH Rats pretreated with DEX were exposed to normobaric normoxia (NN) or HH. HH-induced injury was assessed as an increase in lung water content, tissue damage and oxidant generation. Mitochondrial number, mtDNA content and mtOXPHOS activities were measured to determine mitochondrial function. The expression of mitochondrial biogenesis, dynamics and mtOXPHOS genes was studied. KEY RESULTS HH-induced lung injury was associated with decreased mitochondrial number, mtDNA content and mtOXPHOS activities. HH exposure decreased the nuclear gene oestrogen-related receptor-α (ERRα), which interacts with PPAR-γ coactivator-1α (PGC-1α) in controlling mitochondrial metabolism. Consequently, mtOXPHOS transcripts are repressed under HH. Further, HH modulated mitochondrial dynamics by decreasing mitofusin 2 (Mfn2) and augmenting fission 1 (Fis1) and dynamin-related protein 1 (Drp1) expression. Nevertheless, DEX treatment under NN (i.e. adaptation to HH) did not affect mitochondrial biogenesis and dynamics, but increased mtOXPHOS transcripts. Further, mtOXPHOS activities increased together with reduced oxidant generation. Also, DEX pretreatment normalized ERRα along with mitochondrial dynamics genes and increased mtOXPHOS transcripts to elicit the mitochondrial function under HH. CONCLUSIONS AND IMPLICATIONS HH stress (HAPE)-mediated mitochondrial dysfunction is due to repressed ERRα and mtOXPHOS transcripts. Thus, ERRα-mediated protection of mitochondrial bioenergetics might be the likely candidate required for lung adaptation to HH.
Collapse
Affiliation(s)
- Loganathan Chitra
- Molecular Biology and Biotechnology Division, DRDO – BU Center for Life Sciences, Bharathiar UniversityCoimbatore, India
| | | |
Collapse
|
35
|
Singh G, Chatterjee M, Grewal R, Verma R. Incidence and care of environmental dermatoses in the high-altitude region of ladakh, India. Indian J Dermatol 2013; 58:107-12. [PMID: 23716798 PMCID: PMC3657208 DOI: 10.4103/0019-5154.108038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Low humidity, high-velocity wind, excessive ultraviolet (UV) exposure, and extreme cold temperature are the main causes of various types of environmental dermatoses in high altitudes. MATERIALS AND METHODS A retrospective study was carried out in patients visiting the lone dermatology department in Ladakh between July 2009 and June 2010. The aim was to identify the common environmental dermatoses in high altitudes so that they can be treated easily or prevented. The patients were divided into three demographic groups, namely, lowlanders, Ladakhis (native highlanders), and tourists. Data was analyzed in a tabulated fashion. RESULTS A total of 1,567 patients with skin ailments were seen, of whom 965 were lowlanders, 512 native Ladakhis, and 90 were tourists. The skin disorders due to UV rays, dry skin, and papular urticaria were common among all groups. The frequency of melasma (n = 42; 49.4%), chronic actinic dermatitis (CAD) (n = 18; 81.81% of total CAD cases), and actinic cheilitis (n = 3; 100%) was much higher among the native Ladakhis. The frequency of cold-related injuries was much lesser among Ladakhis (n = 1; 1.19%) than lowlanders (n = 70; 83.33%) and tourists (n = 13; 15.47%) (P < 0.05). CONCLUSION Dryness of skin, tanning, acute or chronic sunburn, polymorphic light reaction, CAD, insect bite reactions, chilblain, and frostbite are common environmental dermatoses of high altitudes. Avoidance of frequent application of soap, application of adequate and suitable emollient, use of effective sunscreen, and wearing of protective clothing are important guidelines for skin care in this region.
Collapse
Affiliation(s)
- Gk Singh
- Department of Dermatology, Venereology and Leprosy, Command Hospital, Eastern Command, Kolkata, India
| | | | | | | |
Collapse
|
36
|
Influenza B Infection Complicated by Patent Foramen Ovale and High Altitude Pulmonary Edema. Wilderness Environ Med 2013; 24:8-11. [DOI: 10.1016/j.wem.2012.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 11/20/2022]
|
37
|
Girard O, Koehle MS, MacInnis MJ, Guenette JA, Koehle MS, Verges S, Rupp T, Jubeau M, Perrey S, Millet GY, Chapman RF, Levine BD, Conkin J, Wessel JH, Nespoulet H, Wuyam B, Tamisier R, Verges S, Levy P, Casey DP, Taylor BJ, Snyder EM, Johnson BD, Laymon AS, Stickford JL, Weavil JC, Loeppky JA, Pun M, Schommer K, Bartsch P, Vagula MC, Nelatury CF. Comments on Point:Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. J Appl Physiol (1985) 2012; 112:1788-94. [PMID: 22589492 DOI: 10.1152/japplphysiol.00356.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
39
|
Tourigny PD, Hall C. Diagnosis and management of environmental thoracic emergencies. Emerg Med Clin North Am 2011; 30:501-28, x. [PMID: 22487116 DOI: 10.1016/j.emc.2011.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Physiologic sequelae from increasing ambient pressure in underwater activities, decreasing ambient pressure while at altitude, or the consequences of drowning present a unique set of challenges to emergency physicians. In addition, several environmental toxins cause significant respiratory morbidity, whether they be pulmonary irritants, simple asphyxiants, or systemic toxins. It is important for emergency physicians to understand the pathophysiology of these illnesses as well as to apply this knowledge to the clinical arena either in the prehospital setting or in the emergency department. Current treatment paradigms and controversies within these regimens are discussed.
Collapse
Affiliation(s)
- Paul D Tourigny
- Division of Emergency Medicine, Foothills Medical Centre, University of Calgary, 1403-29 Street Northwest, Calgary, Alberta, Canada.
| | | |
Collapse
|
40
|
Siebenmann C, Bloch KE, Lundby C, Nussbamer-Ochsner Y, Schoeb M, Maggiorini M. Dexamethasone Improves Maximal Exercise Capacity of Individuals Susceptible to High Altitude Pulmonary Edema at 4559 m. High Alt Med Biol 2011; 12:169-77. [DOI: 10.1089/ham.2010.1075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christoph Siebenmann
- Institute of Human Movement Sciences and Sport, ETH, Zurich, Switzerland
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Konrad E. Bloch
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland
- Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland
| | - Carsten Lundby
- Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Michèle Schoeb
- Intensive Care Unit DIM, University Hospital of Zurich, Zurich, Switzerland
| | - Marco Maggiorini
- Intensive Care Unit DIM, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Hypoxic preconditioning with cobalt ameliorates hypobaric hypoxia induced pulmonary edema in rat. Eur J Pharmacol 2011; 656:101-9. [DOI: 10.1016/j.ejphar.2011.01.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 12/29/2010] [Accepted: 01/17/2011] [Indexed: 11/17/2022]
|
42
|
Stobdan T, Ali Z, Amjad Pervez Khan, Nejatizadeh A, Ram R, Thinlas T, Mohammad G, Norboo T, Himashree G, Qadar Pasha MA. Polymorphisms of renin-angiotensin system genes as a risk factor for high-altitude pulmonary oedema. J Renin Angiotensin Aldosterone Syst 2011; 12:93-101. [DOI: 10.1177/1470320310387177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genes of the renin—angiotensin system (RAS) play an important role in the regulation of pulmonary vascular tone. Although studies on individual genes polymorphisms have reported association with high-altitude pulmonary oedema (HAPE), studies on multiple genes or epistasis are lacking. We therefore investigated the association of the RAS polymorphisms with HAPE. In a case-control design, we screened 163 HAPE-resistant/controls (HAPE-r) and 160 HAPEpatients (HAPE-p) of Indian origin for eight polymorphisms of four RAS genes, ACE, AGT, AGTR1 and AGTR2. Significant difference in genotype and allele frequencies of the ACE I/D and AGT M235T polymorphisms was observed between HAPE-p and HAPE-r ( p < 0.05). In three-locus haplotype analysis of AGT the haplotype GTM was significantly higher in HAPE-p (29%) and haplotype GTT in HAPE-r (27%) after Bonferroni correction ( p < 0.006). The differences were insignificant for polymorphisms from AGTR1 and AGTR2. The MDR (multifactor dimensional reduction) approach for gene—gene interaction depicted individual polymorphism M235T as the best disease predicting model (cross validation consistency, CVC = 10/10). We found a significant association of D allele of ACE and M allele of AGT with HAPE. The findings are supported at the haplotypic level as well as through nested genetic interaction between the RAS gene polymorphisms using the MDR approach.
Collapse
Affiliation(s)
- Tsering Stobdan
- Institute of Genomics and Integrative Biology, India, Department of Genetic Medicine, Vanderbilt University Medical Center, USA
| | - Zahara Ali
- Institute of Genomics and Integrative Biology, India
| | - Amjad Pervez Khan
- Institute of Genomics and Integrative Biology, India, Department of Pathology, University of Michigan Medical School, USA
| | - Azim Nejatizadeh
- Institute of Genomics and Integrative Biology, India, Research Center for Molecular Medicine, School of Medicine, Hormozgan University of Medical Sciences, Iran
| | - Rekhbala Ram
- Institute of Genomics and Integrative Biology, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, India
| | - Ghulam Mohammad
- Department of Medicine, Sonam Norboo Memorial Hospital, India
| | | | | | | |
Collapse
|
43
|
Das Respiratorische System auf großer Höhe: Pathophysiologie und neue Therapieoptionen. Wien Klin Wochenschr 2011; 123:67-77. [DOI: 10.1007/s00508-010-1501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
44
|
|
45
|
Purushothaman J, Suryakumar G, Shukla D, Jayamurthy H, Kasiganesan H, Kumar R, Sawhney RC. Modulation of Hypoxia-Induced Pulmonary Vascular Leakage in Rats by Seabuckthorn (Hippophae rhamnoides L.). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011:574524. [PMID: 19996155 PMCID: PMC3136682 DOI: 10.1093/ecam/nep199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/26/2009] [Indexed: 11/17/2022]
Abstract
Cerebral and pulmonary syndromes may develop in unacclimatized individuals shortly after ascent to high altitude resulting in high altitude illness, which may occur due to extravasation of fluid from intra to extravascular space in the brain, lungs and peripheral tissues. The objective of the present study was to evaluate the potential of seabuckthorn (SBT) (Hippophae rhamnoides L.) leaf extract (LE) in curtailing hypoxia-induced transvascular permeability in the lungs by measuring lung water content, leakage of fluorescein dye into the lungs and further confirmation by quantitation of albumin and protein in the bronchoalveolar lavage fluid (BALF). Exposure of rats to hypoxia caused a significant increase in the transvascular leakage in the lungs. The SBT LE treated animals showed a significant decrease in hypoxia-induced vascular permeability evidenced by decreased water content and fluorescein leakage in the lungs and decreased albumin and protein content in the BALF. The SBT extract was also able to significantly attenuate hypoxia-induced increase in the levels of proinflammatory cytokines and decrease hypoxia-induced oxidative stress by stabilizing the levels of reduced glutathione and antioxidant enzymes. Pretreatment of the extract also resulted in a significant decrease in the circulatory catecholamines and significant increase in the vasorelaxation of the pulmonary arterial rings as compared with the controls. Further, the extract significantly attenuated hypoxia-induced increase in the VEGF levels in the plasma, BALF (ELISA) and lungs (immunohistochemistry). These observations suggest that SBT LE is able to provide significant protection against hypoxia-induced pulmonary vascular leakage.
Collapse
Affiliation(s)
- Jayamurthy Purushothaman
- Defence Institute of Physiology and Allied Sciences, DRDO, Ministry of Defence, Timarpur, Delhi 110054, India
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
With increasing altitude, there is a fall in barometric pressure and a progressive fall in the partial pressure of oxygen. Acclimatization describes the physiologic changes that help maintain tissue oxygen delivery and human performance in the setting of hypobaric hypoxemia. These changes include a marked increase in alveolar ventilation, increased hemoglobin concentration and affinity, and increased tissue oxygen extraction. In some individuals, these physiologic changes may be inadequate, such that the sojourn to altitude and the attendant hypoxia are complicated by altitude-associated medical illness. The rate of ascent, the absolute change in altitude, and individual physiology are the primary determinants whether illness will develop or not. The most common clinical manifestations of altitude illness are acute mountain sickness, high altitude pulmonary edema, and high altitude cerebral edema.
Collapse
|
47
|
Yan X, Zhang J, Shi J, Gong Q, Weng X. Cerebral and functional adaptation with chronic hypoxia exposure: a multi-modal MRI study. Brain Res 2010; 1348:21-9. [PMID: 20599837 DOI: 10.1016/j.brainres.2010.06.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/25/2010] [Accepted: 06/09/2010] [Indexed: 11/30/2022]
Abstract
The current study obtained multi-modal MRI data from 28 immigrant high altitude (HA) young adults who were born and grew up at Qinghai-Tibetan plateau matched with 28 matched sea level (SL) controls. We compared their regional gray matter volumes (VBM) and white matter quality (DAI FA values) as well as resting state brain activity (Regional Homogeneity (ReHo) of BOLD-fMRI). We found that HA residents showed decreased gray matter volume at bilateral anterior insula, bilateral prefrontal cortex, the left precentral, the left cingulate and the right lingual cortex; accompanied by changed FA and ReHo values in relevant and other regions. The resting state activity at the hippocampus and the right insula were increasing with SL relocation. The HA subjects performed worse on a series of working memory tasks, with the ReHo values of several regions as significant predictors of their performance. This study demonstrated the cerebral and functional modifications with chronic high altitude hypoxia.
Collapse
Affiliation(s)
- Xiaodan Yan
- Laboratory for Higher Brain Function, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
48
|
STOBDAN T, KUMAR R, MOHAMMAD G, THINLAS T, NORBOO T, IQBAL M, PASHA MQ. Probable role of β2-adrenergic receptor gene haplotype in high-altitude pulmonary oedema. Respirology 2010; 15:651-8. [DOI: 10.1111/j.1440-1843.2010.01757.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Kurbel S, Kurbel B, Gulam D, Spajić B. Model of pulmonary fluid traffic homeostasis based on respiratory cycle pressure, bidirectional bronchiolo-pulmonar shunting and water evaporation. Med Hypotheses 2010; 74:993-9. [PMID: 20153588 DOI: 10.1016/j.mehy.2010.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/17/2010] [Indexed: 11/25/2022]
Abstract
The main puzzle of the pulmonary circulation is how the alveolar spaces remain dry over a wide range of pulmonary vascular pressures and blood flows. Although normal hydrostatic pressure in pulmonary capillaries is probably always below 10 mmHg, well bellow plasma colloid pressure of 25 mmHg, most textbooks state that some fluid filtration through capillary walls does occur, while the increased lymph drainage prevents alveolar fluid accumulation. The lack of a measurable pressure drop along pulmonary capillaries makes the classic description of Starling forces unsuitable to the low pressure, low resistance pulmonary circulation. Here presented model of pulmonary fluid traffic describes lungs as a matrix of small vascular units, each consisting of alveoli whose capillaries are anastomotically linked to the bronchiolar capillaries perfused by a single bronchiolar arteriole. It proposes that filtration and absorption in pulmonary and in bronchiolar capillaries happen as alternating periods of low and of increased perfusion pressures. The model is based on three levels of filtration control: short filtration phases due to respiratory cycle of the whole lung are modulated by bidirectional bronchiolo-pulmonar shunting independently in each small vascular unit, while fluid evaporation from alveolar groups further tunes local filtration. These mechanisms are used to describe a self-sustaining regulator that allows optimal fluid traffic in different settings. The proposed concept is used to describe development of pulmonary edema in several clinical entities (exercise in wet or dry climate, left heart failure, people who rapidly move to high altitudes, acute cyanide and carbon monoxide poisoning, large pulmonary embolisms).
Collapse
Affiliation(s)
- Sven Kurbel
- Department of Physiology, Osijek Medical Faculty, Osijek, Croatia.
| | | | | | | |
Collapse
|
50
|
Role of Oxidative Stress and NFkB in Hypoxia-Induced Pulmonary Edema. Exp Biol Med (Maywood) 2008; 233:1088-98. [DOI: 10.3181/0712-rm-337] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is well known to increase the free radical generation in the body, leading to oxidative stress. In the present study, we have determined whether the increased oxidative stress further upregulates the nuclear transcription factor (NFkB) in the development of pulmonary edema. The rats were exposed to hypobaric hypoxia at 7620 m (280 mm Hg) for different durations, that is, 3 hrs, 6 hrs, 12 hrs, and 24 hrs at 25 ± 1°C. The results revealed that exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, with time up to 6 hrs (256.38 ± 61 rfu/g) as compared with control (143.63 ± 60.1 rfu/g). There was a significant increase in reactive oxygen species, lipid peroxidation, and superoxide dismutase levels, with a concurrent decrease in lung glutathione peroxidase activity. There was 13-fold increase in the expression of NFkB level in nuclear fraction of lung homogenates of hypoxic animals over control rats. The DNA binding activity of NFkB was found to be increased significantly ( P < 0.001) in the lungs of rats exposed to hypoxia as compared with control. Further, we observed a significant increase in proinflammatory cytokines such as IL-1, IL-6, and TNF-α with concomitant upregulation of cell adhesion molecules such as ICAM-I, VCAM-I, and P-selectin in the lung of rats exposed to hypoxia as compared with control. Interestingly, pretreatment of animals with curcumin (NFkB blocker) attenuated hypoxia-induced vascular leakage in lungs with concomitant reduction of NFkB levels. The present study therefore reveals the possible involvement of NFkB in the development of pulmonary edema.
Collapse
|