1
|
Tan WX, Ye T, Zhang QM, Zhang M, Chen XT, Tang LY, Yang MT, Jiang J, Zhao Q. Prevalence of Clostridium perfringens in sheep (Ovis aries) and goat (Capra hircus) populations across Asia: A systematic review and meta-analysis. Res Vet Sci 2025; 187:105605. [PMID: 40054367 DOI: 10.1016/j.rvsc.2025.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/26/2025]
Abstract
South Asia, East Asia, and Southeast Asia have consistently been the regions with the highest prevalence of Clostridium perfringens in sheep and goats. Given the significant economic importance of sheep and goats in these regions and the potential threat posed by this pathogen, a thorough investigation of the prevalence of C. perfringens in sheep and goats throughout Asia is important to inform the development of robust and effective regulatory measures to prevent its spread among sheep and goats. In this study, we conducted a systematic review and meta-analysis in accordance with the PRISMA guidelines to quantitatively estimate the prevalence of C. perfringens in sheep and goats. Through extensive searches of eligible studies in electronic databases, 29 studies were identified. The pooled prevalence estimate was 38.8 % (95 %CI: 30.9-46.9), with type A showing the highest prevalence. Additionally, the results of the subgroup analysis indicated that the prevalence of C. perfringens in sheep and goats varied based on factors such as age, sample type, sample size, vaccination status, and sampling time. These findings emphasise the need for vaccination and ongoing surveillance to mitigate the risk of C. perfringens-associated outbreaks.
Collapse
Affiliation(s)
- Wen-Xu Tan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Tong Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China; College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province 130600, PR China
| | - Qi-Man Zhang
- Anhui Jinmu feed Co., LTD, Fuyang, Anhui Province 236000, PR China
| | - Miao Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Xiao-Tong Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Lu-Yao Tang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Meng-Ting Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Jing Jiang
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province 130600, PR China.
| | - Quan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| |
Collapse
|
2
|
Ohnishi T, Watanabe M, Yodotani Y, Nishizato E, Araki S, Sasaki S, Hara-Kudo Y, Kojima Y, Misawa N, Okabe N. Contamination of Japanese Retail Foods With Enterotoxigenic Clostridium Perfringens Spores. J Food Prot 2025; 88:100429. [PMID: 39662735 DOI: 10.1016/j.jfp.2024.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The contamination of Japanese retail foods and the intestinal contents of animals with the spores of enterotoxigenic Clostridium perfringens were investigated by analyzing clostridial toxin genes (cpa and cpe) using a culture method and PCR. Enterotoxigenic C. perfringens was detected in 12.3% (8/65 samples) of shellfishes, 8.4% (7/83 samples) of dried seafoods, 7.4% (15/204 samples) of curry mixes and spices, 2.6% (1/39 samples) of dried seaweeds, 2.5% (2/79 samples) of fishes and shrimp, 1.9% (2/105 samples) of chicken, and 0.8% (1/121 samples) of root vegetables. Enterotoxigenic C. perfringens was not detected in beef (95 samples) and pork (110 samples). The ratio of enterotoxigenic C. perfringens-positive to all C. perfringens-positive samples was high for fish and shrimp (40.0%), curry mixes and spices (19.0%), shellfish (18.1%), dried seafood (16.7%), and dried seaweed (16.7%). Although C. perfringens was investigated in the intestinal contents of cattle (212 samples), pigs (207 samples), and chicken (159 samples), enterotoxigenic C. perfringens was not detected. These results indicate that beef and pork sold in Japan are unlikely to be contaminated with enterotoxigenic C. perfringens, and that other foods such as curry powder, shellfish, and dried seafoods are more important as the sources of contamination in Japan. Dried seafoods are frequently used to make soup stock in Japanese and other Asian dishes. In cases of food-borne illness linked to C. perfringens contamination of Japanese and Asian dishes, dried seafood should be investigated, in addition to other ingredients such as meat.
Collapse
Affiliation(s)
- Takahiro Ohnishi
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| | - Maiko Watanabe
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Yusuke Yodotani
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Emiri Nishizato
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Seiya Araki
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Satomi Sasaki
- University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Yukiko Hara-Kudo
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan; Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo 142-8501, Japan
| | - Yuka Kojima
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Naoaki Misawa
- University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Nobuhiko Okabe
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| |
Collapse
|
3
|
Li J, Sayeed S, McClane BA. The presence of differentiated C2C12 muscle cells enhances toxin production and growth by Clostridium perfringens type A strain ATCC3624. Virulence 2024; 15:2388219. [PMID: 39192628 PMCID: PMC11364075 DOI: 10.1080/21505594.2024.2388219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Clostridium perfringens type A causes gas gangrene, which involves muscle infection. Both alpha toxin (PLC), encoded by the plc gene, and perfringolysin O (PFO), encoded by the pfoA gene, are important when type A strains cause gas gangrene in a mouse model. This study used the differentiated C2C12 muscle cell line to test the hypothesis that one or both of those toxins contributes to gas gangrene pathogenesis by releasing growth nutrients from muscle cells. RT-qPCR analyses showed that the presence of differentiated C2C12 cells induces C. perfringens type A strain ATCC3624 to upregulate plc and pfoA expression, as well as increase expression of several regulatory genes, including virS/R, agrB/D, and eutV/W. The VirS/R two component regulatory system (TCRS) and its coupled Agr-like quorum sensing system, along with the EutV/W TCRS (which regulates expression of genes involved in ethanolamine [EA] utilization), were shown to mediate the C2C12 cell-induced increase in plc and pfoA expression. EA was demonstrated to increase toxin gene expression. ATCC3624 growth increased in the presence of differentiated C2C12 muscle cells and this effect was shown to involve both PFO and PLC. Those membrane-active toxins were each cytotoxic for differentiated C2C12 cells, suggesting they support ATCC3624 growth by releasing nutrients from differentiated C2C12 cells. These findings support a model where, during gas gangrene, increased production of PFO and PLC in the presence of muscle cells causes more damage to those host cells, which release nutrients like EA that are then used to support C. perfringens growth in muscle.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sameera Sayeed
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Yin J, Yuan D, Xu Z, Wu Y, Chen Z, Xiang X. Significant Differences in Intestinal Bacterial Communities of Sympatric Bean Goose, Hooded Crane, and Domestic Goose. Animals (Basel) 2024; 14:1688. [PMID: 38891737 PMCID: PMC11170997 DOI: 10.3390/ani14111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
The host's physiological well-being is intricately associated with the gut microbiota. However, previous studies regarding the intestinal microbiota have focused on domesticated or captive birds. This study used high-throughput sequencing technology to identify the gut bacterial communities of sympatric bean geese, hooded cranes, and domestic geese. The results indicated that the gut bacterial diversity in domestic geese and hooded cranes showed considerably higher diversity than bean geese. The gut bacterial community compositions varied significantly among the three hosts (p < 0.05). Compared to the hooded crane, the bean goose and domestic goose were more similar in their genotype and evolutionary history, with less difference in the bacterial community composition and assembly processes between the two species. Thus, the results might support the crucial role of host genotypes on their gut microbiota. The gut bacteria of wild hooded cranes and bean geese had a greater capacity for energy metabolism compared to domestic geese, suggesting that wild birds may rely more on their gut microbiota to survive in cold conditions. Moreover, the intestines of the three hosts were identified as harboring potential pathogens. The relative abundance of pathogens was higher in the hooded crane compared to the other two species. The hooded crane gut bacterial community assemblage revealed the least deterministic process with the lowest filtering/selection on the gut microbiota, which might have been a reason for the highest number of pathogens result. Compared to the hooded crane, the sympatric bean goose showed the least diversity and relative abundance of pathogens. The intestinal bacterial co-occurrence network showed the highest stability in the bean goose, potentially enhancing host resistance to adverse environments and reducing the susceptibility to pathogen invasion. In this study, the pathogens were also discovered to overlap among the three hosts, reminding us to monitor the potential for pathogen transmission between poultry and wild birds. Overall, the current findings have the potential to enhance the understanding of gut bacterial and pathogenic community structures in poultry and wild birds.
Collapse
Affiliation(s)
- Jing Yin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Dandan Yuan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Ziqiu Xu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
| | - Yuannuo Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Zhong Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei 230601, China
| |
Collapse
|
5
|
García-Vela S, Martínez-Sancho A, Said LB, Torres C, Fliss I. Pathogenicity and Antibiotic Resistance Diversity in Clostridium perfringens Isolates from Poultry Affected by Necrotic Enteritis in Canada. Pathogens 2023; 12:905. [PMID: 37513752 PMCID: PMC10383762 DOI: 10.3390/pathogens12070905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Necrotic enteritis (NE) caused by C. perfringens is one of the most common diseases of poultry and results in a huge economic loss to the poultry industry, with resistant clostridial strains being a serious concern and making the treatment difficult. Whole-genome sequencing approaches represent a good tool to determine resistance profiles and also shed light for a better understanding of the pathogen. The aim of this study was to characterize, at the genomic level, a collection of 20 C. perfringens isolates from poultry affected by NE, giving special emphasis to resistance mechanisms and production of bacteriocins. Antimicrobial resistance genes were found, with the tet genes (associated with tetracycline resistance) being the most prevalent. Interestingly, two isolates carried the erm(T) gene associated with erythromycin resistance, which has only been reported in other Gram-positive bacteria. Twelve of the isolates were toxinotyped as type A and seven as type G. Other virulence factors encoding hyaluronases and sialidases were frequently detected, as well as different plasmids. Sequence types (ST) revealed a high variability of the isolates, finding new allelic combinations. Among the isolates, C. perfringens MLG7307 showed unique characteristics; it presented a toxin combination that made it impossible to toxinotype, and, despite being identified as C. perfringens, it lacked the housekeeping gene colA. Genes encoding bacteriocin BCN5 were found in five isolates even though no antimicrobial activity could be detected in those isolates. The bcn5 gene of three of our isolates was similar to one previously reported, showing two polymorphisms. Concluding, this study provides insights into the genomic characteristics of C. perfringens and a better understanding of this avian pathogen.
Collapse
Affiliation(s)
- Sara García-Vela
- Department of Food Science, University of Laval, Quebec, QC QCG1V0A6, Canada
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logrono, La Rioja, Spain
| | - Agustí Martínez-Sancho
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logrono, La Rioja, Spain
| | - Laila Ben Said
- Department of Food Science, University of Laval, Quebec, QC QCG1V0A6, Canada
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logrono, La Rioja, Spain
| | - Ismail Fliss
- Department of Food Science, University of Laval, Quebec, QC QCG1V0A6, Canada
| |
Collapse
|
6
|
Liggins M, Ramírez Ramírez N, Abel-Santos E. Comparison of sporulation and germination conditions for Clostridium perfringens type A and G strains. Front Microbiol 2023; 14:1143399. [PMID: 37228374 PMCID: PMC10203408 DOI: 10.3389/fmicb.2023.1143399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Clostridium perfringens is a spore forming, anaerobic, Gram-positive bacterium that causes a range of diseases in humans and animals. C. perfringens forms spores, structures that are derived from the vegetative cell under conditions of nutrient deprivation and that allows survival under harsh environmental conditions. To return to vegetative growth, C. perfringens spores must germinate when conditions are favorable. Previous work in analyzing C. perfringens spore germination has produced strain-specific results. Hence, we analyzed the requirements for spore formation and germination in seven different C. perfringens strains. Our data showed that C. perfringens sporulation conditions are strain-specific, but germination responses are homogenous in all strains tested. C. perfringens spores can germinate using two distinct pathways. The first germination pathway (the amino acid-only pathway or AA) requires L-alanine, L-phenylalanine, and sodium ions (Na+) as co-germinants. L-arginine is not a required germinant but potentiates germination. The AA pathway is inhibited by aromatic amino acids and potassium ions (K+). Bicarbonate (HCO3-), on the other hand, bypasses potassium-mediated inhibition of C. perfringens spore germination through the AA pathway. The second germination pathway (the bile salt / amino acid pathway or BA) is more promiscuous and is activated by several bile salts and amino acids. In contrast to the AA pathway, the BA pathway is insensitive to Na+, although it can be activated by either K+ or HCO3-. We hypothesize that some C. perfringens strains may have evolved these two distinct germination pathways to ensure spore response to different host environments.
Collapse
Affiliation(s)
- Marc Liggins
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Norma Ramírez Ramírez
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
7
|
Mining transcriptome data: Utilization of environmentally regulated promoters for protein expression and purification in Clostridium perfringens. J Microbiol Methods 2022; 199:106519. [PMID: 35718279 DOI: 10.1016/j.mimet.2022.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
Clostridium perfringens is a Gram-positive pathogen with low GC content. To identify genes that are transcribed at higher levels when the bacteria grow on a surface, we used RNA-seq in a previous study to measure global transcript levels of cells grown in three types of media on both plates and in liquid culture. We found the arcABDC-argR operon is induced >1000-fold when the cells were grown on plates than in liquid brain heart infusion (BHI). In addition, the pyrBICFZDE operon was transcribed >1000-fold higher in liquid BHI than on plates. Biochemical analysis of C. perfringens proteins is usually accomplished by cloning and expressing the relevant genes in Escherichia coli, a Gram-negative bacterium. Here we utilize both the arcA and pyrB promoters to express and purify proteins from C. perfringens plate and liquid-grown cultures, respectively. Three mg of the His-tagged cytoplasmic protein PilM were obtained when the pilM gene was expressed in cells grown on 10 BHI plates using the arcA promoter. Using the pyrB promoter, 0.85 mg of the C. perfringens His-tagged secreted toxin collagenase was purified from the culture supernatant of 500 ml of cells grown in liquid BHI. In the process of constructing clones, we found we can transform C. perfringens strain HN13 directly with DNA from an in vitro ligation mix, bypassing E. coli. These environmentally regulated promoters can be used to express clostridial or other low GC content genes for protein purification without the addition of an inducer molecule.
Collapse
|
8
|
Garcia Gonzalez J, Hernandez FJ. Nuclease activity: an exploitable biomarker in bacterial infections. Expert Rev Mol Diagn 2022; 22:265-294. [PMID: 35240900 DOI: 10.1080/14737159.2022.2049249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In the increasingly challenging field of clinical microbiology, diagnosis is a cornerstone whose accuracy and timing are crucial for the successful management, therapy, and outcome of infectious diseases. Currently employed biomarkers of infectious diseases define the scope and limitations of diagnostic techniques. As such, expanding the biomarker catalog is crucial to address unmet needs and bring about novel diagnostic functionalities and applications. AREAS COVERED This review describes the extracellular nucleases of 15 relevant bacterial pathogens and discusses the potential use of nuclease activity as a diagnostic biomarker. Articles were searched for in PubMed using terms: "nuclease", "bacteria", "nuclease activity" or "biomarker". For overview sections, original and review articles between 2000 and 2019 were searched for using terms: "infections", "diagnosis", "bacterial", "burden", "challenges". Informative articles were selected. EXPERT OPINION Using the catalytic activity of nucleases offers new possibilities compared to established biomarkers. Nucleic acid activatable reporters in combination with different transduction platforms and delivery methods can be used to detect disease-associated nuclease activity patterns in vitro and in vivo for prognostic and diagnostic applications. Even when these patterns are not obvious or of unknown etiology, screening platforms could be used to identify new disease reporters.
Collapse
Affiliation(s)
- Javier Garcia Gonzalez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Linköping, Sweden.,Nucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Linköping, Sweden.,Nucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, El-Shall NA, Saad AM, Salem HM, El-Tahan AM, Khafaga AF, Taha AE, AbuQamar SF, El-Tarabily KA. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult Sci 2022; 101:101590. [PMID: 34953377 PMCID: PMC8715378 DOI: 10.1016/j.psj.2021.101590] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In line with the substantial increase in the broiler industry worldwide, Clostridium perfringens-induced necrotic enteritis (NE) became a continuous challenge leading to high economic losses, especially after banning antimicrobial growth promoters in feeds by many countries. The disease is distributed worldwide in either clinical or subclinical form, causing a reduction in body weight or body weight gain and the feed conversion ratio, impairing the European Broiler Index or European Production Efficiency Factor. There are several predisposing factors in the development of NE. Clinical signs varied from inapparent signs in case of subclinical infection (clostridiosis) to obvious enteric signs (morbidity), followed by an increase in mortality level (clostridiosis or clinical infection). Clinical and laboratory diagnoses are based on case history, clinical signs, gross and histopathological lesions, pathogenic agent identification, serological testing, and molecular identification. Drinking water treatment is the most common route for the administration of several antibiotics, such as penicillin, bacitracin, and lincomycin. Strict hygienic management practices in the farm, careful selection of feed ingredients for ration formulation, and use of alternative antibiotic feed additives are all important in maintaining broiler efficiency and help increase the profitability of broiler production. The current review highlights NE caused by C. perfringens and explains the advances in the understanding of C. perfringens virulence factors involved in the pathogenesis of NE with special emphasis on the use of available antibiotic alternatives such as herbal extracts and essential oils as well as vaccines for the control and prevention of NE in broiler chickens.
Collapse
|
10
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Yu ACY, Volkers G, Jongkees SAK, Worrall LJ, Withers SG, Strynadka NCJ. Crystal structure of the Propionibacterium acnes surface sialidase, a drug target for P. acnes-associated diseases. Glycobiology 2021; 32:162-170. [PMID: 34792586 DOI: 10.1093/glycob/cwab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
Propionibacterium acnes, though generally considered part of the normal flora of human skin, is an opportunistic pathogen associated with acne vulgaris as well as other diseases, including endocarditis, endophthalmitis and prosthetic joint infections. Its virulence potential is also supported by knowledge gained from its sequenced genome. Indeed, a vaccine targeting a putative cell wall-anchored P. acnes sialidase has been shown to suppress cytotoxicity and pro-inflammatory cytokine release induced by the organism, and is proposed as an alternative treatment for P. acnes-associated diseases. Here, we report the crystal structures of the surface sialidase and its complex with the transition-state mimic Neu5Ac2en. Our structural and kinetic analyses, together with insight from a glycan array screen, which probes subtle specificities of the sialidase for α-2,3-sialosides, provide a basis for the structure-based design of novel small-molecule therapeutics against P. acnes infections.
Collapse
Affiliation(s)
- Angel C Y Yu
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, 2350 Health Sciences Mall, V6T 1Z3, Canada
| | - Gesa Volkers
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, 2350 Health Sciences Mall, V6T 1Z3, Canada
| | - Seino A K Jongkees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, 2350 Health Sciences Mall, V6T 1Z3, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, 2350 Health Sciences Mall, V6T 1Z3, Canada
| |
Collapse
|
12
|
Abdel-Glil MY, Thomas P, Linde J, Jolley KA, Harmsen D, Wieler LH, Neubauer H, Seyboldt C. Establishment of a Publicly Available Core Genome Multilocus Sequence Typing Scheme for Clostridium perfringens. Microbiol Spectr 2021; 9:e0053321. [PMID: 34704797 PMCID: PMC8549748 DOI: 10.1128/spectrum.00533-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens is a spore-forming anaerobic pathogen responsible for a variety of histotoxic and intestinal infections in humans and animals. High-resolution genotyping aiming to identify bacteria at strain level has become increasingly important in modern microbiology to understand pathogen transmission pathways and to tackle infection sources. This study aimed at establishing a publicly available genome-wide multilocus sequence-typing (MLST) scheme for C. perfringens. A total of 1,431 highly conserved core genes (1.34 megabases; 50% of the reference genome genes) were indexed for a core genome-based MLST (cgMLST) scheme for C. perfringens. The scheme was applied to 282 ecologically and geographically diverse genomes, showing that the genotyping results of cgMLST were highly congruent with the core genome-based single-nucleotide-polymorphism typing in terms of resolution and tree topology. In addition, the cgMLST provided a greater discrimination than classical MLST methods for C. perfringens. The usability of the scheme for outbreak analysis was confirmed by reinvestigating published outbreaks of C. perfringens-associated infections in the United States and the United Kingdom. In summary, a publicly available scheme and an allele nomenclature database for genomic typing of C. perfringens have been established and can be used for broad-based and standardized epidemiological studies. IMPORTANCE Global epidemiological surveillance of bacterial pathogens is enhanced by the availability of standard tools and sharing of typing data. The use of whole-genome sequencing has opened the possibility for high-resolution characterization of bacterial strains down to the clonal and subclonal levels. Core genome multilocus sequence typing is a robust system that uses highly conserved core genes for deep genotyping. The method has been successfully and widely used to describe the epidemiology of various bacterial species. Nevertheless, a cgMLST typing scheme for Clostridium perfringens is currently not publicly available. In this study, we (i) developed a cgMLST typing scheme for C. perfringens, (ii) evaluated the performance of the scheme on different sets of C. perfringens genomes from different hosts and geographic regions as well as from different outbreak situations, and, finally, (iii) made this scheme publicly available supported by an allele nomenclature database for global and standard genomic typing.
Collapse
Affiliation(s)
- Mostafa Y. Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, Egypt
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, Muenster, Germany
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
13
|
Effective Oncoleaking Treatment of Pancreatic Cancer by Claudin-Targeted Suicide Gene Therapy with Clostridium perfringens Enterotoxin (CPE). Cancers (Basel) 2021; 13:cancers13174393. [PMID: 34503203 PMCID: PMC8431234 DOI: 10.3390/cancers13174393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Current therapies for pancreas carcinoma (PC) are of limited efficacy due to tumor aggressiveness and therapy resistance. Bacterial toxins with pore-forming (oncoleaking) potential are promising tools in cancer therapy. We have developed a novel, suicide gene therapy treatment, based on Clostridium perfringens enterotoxin (CPE)-mediated oncoleaking. This is achieved by CPE suicide gene therapy to treat PC, which overexpresses the claudin-3 and -4 (Cldn3/4) tight junction proteins, which are targets of CPE action. This targeted gene therapy causes rapid eradication of Cldn3/4 overexpressing PC cells via oncoleaking and initiation of apoptotic/necrotic signaling. We demonstrate efficacy of this approach in vitro and after nonviral in vivo gene transfer in cell lines and in patient derived xenograft PC models. This therapy approach has translational potential for treatment of pancreas carcinomas and could also be translated into new combination settings with conventional chemotherapy. Abstract Pancreatic cancer (PC) is one of the most lethal cancers worldwide, associated with poor prognosis and restricted therapeutic options. Clostridium perfringens enterotoxin (CPE), is a pore-forming (oncoleaking) toxin, which binds to claudin-3 and -4 (Cldn3/4) causing selective cytotoxicity. Cldn3/4 are highly upregulated in PC and represent an effective target for oncoleaking therapy. We utilized a translation-optimized CPE vector (optCPE) for new suicide approach of PC in vitro and in cell lines (CDX) and patient-derived pancreatic cancer xenografts (PDX) in vivo. The study demonstrates selective toxicity in Cldn3/4 overexpressing PC cells by optCPE gene transfer, mediated by pore formation, activation of apoptotic/necrotic signaling in vitro, induction of necrosis and of bystander tumor cell killing in vivo. The optCPE non-viral intratumoral in vivo jet-injection gene therapy shows targeted antitumoral efficacy in different CDX and PDX PC models, leading to reduced tumor viability and induction of tumor necrosis, which is further enhanced if combined with chemotherapy. This selective oncoleaking suicide gene therapy improves therapeutic efficacy in pancreas carcinoma and will be of value for better local control, particularly of unresectable or therapy refractory PC.
Collapse
|
14
|
Identifying the Basis for VirS/VirR Two-Component Regulatory System Control of Clostridium perfringens Beta-Toxin Production. J Bacteriol 2021; 203:e0027921. [PMID: 34228498 DOI: 10.1128/jb.00279-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens toxin production is often regulated by the Agr-like quorum sensing (QS) system signaling the VirS/VirR two-component regulatory system (TCRS), which consists of the VirS membrane sensor histidine kinase and the VirR response regulator. VirS/VirR is known to directly control expression of some genes by binding to a DNA binding motif consisting of two VirR boxes located within 500 bp of the target gene start codon. Alternatively, the VirS/VirR system can indirectly regulate production levels of other proteins by increasing expression of a small regulatory RNA, VR-RNA. Previous studies demonstrated that C. perfringens beta-toxin (CPB) production by C. perfringens type B and C strains is positively regulated by both the Agr-like QS and the VirS/VirR TCRS, but the mechanism has been unclear. The current study first inactivated the vrr gene encoding VR-RNA to show that VirS/VirR regulation of cpb expression does not involve VR-RNA. Subsequently, bioinformatic analyses identified a potential VirR binding motif, along with a predicted strong promoter, ∼1.4 kb upstream of the cpb open reading frame (ORF). Two insertion sequences were present between this VirR binding motif/promoter region and the cpb ORF. PCR screening of a collection of strains carrying cpb showed that the presence and sequence of this VirR binding motif/promoter is highly conserved among CPB-producing strains. Reverse transcription-PCR (RT-PCR) and a GusA reporter assay showed this VirR binding motif is important for regulating CPB production. These findings indicate that VirS/VirR directly regulates cpb expression via VirS binding to a VirR binding motif located unusually distant from the cpb start codon. IMPORTANCE Clostridium perfringens beta-toxin (CPB) is only produced by type B and C strains. Production of CPB is essential for the pathogenesis of type C-associated infections, which include hemorrhagic necrotizing enteritis and enterotoxemia in both humans and animals. In addition, CPB can synergize with other toxins during C. perfringens gastrointestinal diseases. CPB toxin production is cooperatively regulated by the Agr-like quorum sensing (QS) system and the VirS/VirR two-component regulatory system. This study now reports that the VirS/VirR regulatory cascade directly controls expression of the cpb gene via a process involving a VirR box binding motif located unusually far (∼1.4 kb) upstream of the cpb ORF. This study provides a better understanding of the regulatory mechanisms for CPB production by the VirS/VirR regulatory cascade.
Collapse
|
15
|
Wlazło Ł, Nowakowicz-Dębek B, Czech A, Chmielowiec-Korzeniowska A, Ossowski M, Kułażyński M, Łukaszewicz M, Krasowska A. Fermented Rapeseed Meal as a Component of the Mink Diet ( Neovison vison) Modulating the Gastrointestinal Tract Microbiota. Animals (Basel) 2021; 11:ani11051337. [PMID: 34066725 PMCID: PMC8150280 DOI: 10.3390/ani11051337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Fermented rapeseed meal (FRSM) was used in the diet of American mink (Neovison vison). An advantage of this product is its prebiotic and functional properties, which can modify the bacterial microbiota of the GIT. A control group and three experimental groups were formed, with 60 animals in each group. The control group received a basal diet and the experimental groups received a diet with a 2%, 4% or 6% of FRSM as a replacement of extruded wheat. Bacillus subtilis strain 87Y was used to ferment the rapeseed meal (RSM). The study was conducted on mink from the age of 16-17 weeks until slaughter. Changes in the microbiota were analysed in samples of the animals' faeces and intestinal contents. The analyses included determination of the total number of bacteria and fungi, the number of coliforms and Escherichia coli, the total number of anaerobic Clostridium perfringens, and the presence of Salmonella spp. In animals receiving 4% and 6% FRSM (groups II and III), the content of microscopic fungi and the number of C. perfringens bacteria was significantly (p ≤ 0.05) lower than in the animals from the control group (group 0). A decrease in E. coli was observed in all experimental groups (I, II and III), although these differences were not statistically significant. The inclusion of FRSM in the feed ration did not affect the number of lactic acid intestinal bacteria. Analysis of the results obtained from the stool samples showed that the inclusion of FRSM in the ration did not significantly affect the number of microorganisms in each group. However, as in the case of the intestinal contents, in these samples there was a decrease in the total number of C. perfringens in the experimental groups (I, II and III), with a simultaneous increase in the number of mesophilic bacteria in relation to the control. There was no detection of Salmonella bacteria in any of the analysed material.
Collapse
Affiliation(s)
- Łukasz Wlazło
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.C.-K.)
| | - Bożena Nowakowicz-Dębek
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.C.-K.)
- Correspondence: (B.N.-D.); (M.O.); Tel.: +48-81-445-69-98 (B.N.-D.); +48-81-445-69-85 (M.O.)
| | - Anna Czech
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Anna Chmielowiec-Korzeniowska
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.C.-K.)
| | - Mateusz Ossowski
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (Ł.W.); (A.C.-K.)
- Correspondence: (B.N.-D.); (M.O.); Tel.: +48-81-445-69-98 (B.N.-D.); +48-81-445-69-85 (M.O.)
| | - Marek Kułażyński
- Department of Fuel Chemistry and Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland;
- InventionBio, Wojska Polskiego 65, 85-825 Bydgoszcz, Poland; (M.Ł.); (A.K.)
| | - Marcin Łukaszewicz
- InventionBio, Wojska Polskiego 65, 85-825 Bydgoszcz, Poland; (M.Ł.); (A.K.)
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wrocław, Poland
| | - Anna Krasowska
- InventionBio, Wojska Polskiego 65, 85-825 Bydgoszcz, Poland; (M.Ł.); (A.K.)
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wrocław, Poland
| |
Collapse
|
16
|
Khan MUZ, Humza M, Yang S, Alvi MA, Iqbal MZ, Zain-ul-Fatima H, Khalid S, Munir T, Cai J. Occurrence and Toxicogenetic Profiling of Clostridium perfringens in Buffalo and Cattle: An Update from Pakistan. Toxins (Basel) 2021; 13:toxins13030212. [PMID: 33805744 PMCID: PMC7999003 DOI: 10.3390/toxins13030212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens is a Gram-positive bacterium that possess seven toxinotypes (A, B, C, D, E, F, and G) that are responsible for the production of six major toxins, i.e., α, β, ε, ι, CPE, and NetB. The aim of this study is to find out the occurrence of toxinotypes in buffalo and cattle of Punjab province in Pakistan and their corresponding toxin-encoding genes from the isolated toxinotypes. To accomplish this aim, six districts in Punjab province were selected (i.e., Lahore, Sahiwal, Cheecha Watni, Bhakkar, Dera Ghazi Khan, and Bahawalpur) and a total of 240 buffalo and 240 cattle were selected for the collection of samples. From isolation and molecular analysis (16S rRNA), it was observed that out of seven toxinotypes (A–G), two toxinotypes (A and D) were found at most, whereas other toxinotypes, i.e., B, C, E, F, and G, were not found. The most frequently occurring toxinotype was type A (buffalo: 149/240; cattle: 157/240) whereas type D (buffalo: 8/240 cattle: 7/240) was found to occur the least. Genes encoding toxinotypes A and D were cpa and etx, respectively, whereas genes encoding other toxinotypes were not observed. The occurrence of isolated toxinotypes was studied using response surface methodology, which suggested a considerable occurrence of the isolated toxinotypes (A and D) in both buffalo and cattle. Association between type A and type D was found to be significant among the isolated toxinotypes in both buffalo and cattle (p ≤ 0.05). Correlation was also found to be positive and significant between type A and type D. C. perfringens exhibits a range of toxinotypes that can be diagnosed via genotyping, which is more reliable than classical toxinotyping.
Collapse
Affiliation(s)
- Muhammad Umar Zafar Khan
- State Key Laboratory of Veterinary Etological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.U.Z.K.); (S.Y.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Humza
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shunli Yang
- State Key Laboratory of Veterinary Etological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.U.Z.K.); (S.Y.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Muhammad Zahid Iqbal
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Outfall Road, Lahore 54000, Pakistan;
| | - Hafiza Zain-ul-Fatima
- Veterinary Research Institute, Zarrar Shaheed Road, Lahore Cantt., Lahore 54810, Pakistan;
| | - Shumaila Khalid
- Department of Livestock and Dairy Development, Lahore 54000, Pakistan; (S.K.); (T.M.)
| | - Tahir Munir
- Department of Livestock and Dairy Development, Lahore 54000, Pakistan; (S.K.); (T.M.)
| | - Jianping Cai
- State Key Laboratory of Veterinary Etological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.U.Z.K.); (S.Y.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
17
|
Takehara M, Kobayashi K, Nagahama M. Toll-Like Receptor 4 Protects Against Clostridium perfringens Infection in Mice. Front Cell Infect Microbiol 2021; 11:633440. [PMID: 33763386 PMCID: PMC7982660 DOI: 10.3389/fcimb.2021.633440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4) has been reported to protect against Gram-negative bacteria by acting as a pathogen recognition receptor that senses mainly lipopolysaccharide (LPS) from Gram-negative bacteria. However, the role of TLR4 in Gram-positive bacterial infection is less well understood. Clostridium perfringens type A is a Gram-positive bacterium that causes gas gangrene characterized by severe myonecrosis. It was previously demonstrated that C. perfringens θ-toxin is a TLR4 agonist, but the role of TLR4 in C. perfringens infection is unclear. Here, TLR4-defective C3H/HeJ mice infected with C. perfringens showed a remarkable decrease in survival rate, an increase in viable bacterial counts, and accelerated destruction of myofibrils at the infection site compared with wild-type C3H/HeN mice. These results demonstrate that TLR4 plays an important role in the elimination of C. perfringens. Remarkable increases in levels of inflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF), were observed in C. perfringens-infected C3H/HeN mice, whereas the increases were limited in C3H/HeJ mice. Generally, increased G-CSF accelerates granulopoiesis in the bone marrow and the spleen to exacerbate neutrophil production, resulting in elimination of bacteria. The number of neutrophils in the spleen was increased in C. perfringens-infected C3H/HeN mice compared with non-infected mice, while the increase was lower in C. perfringens-infected C3H/HeJ mice. Furthermore, DNA microarray analysis revealed that the mutation in TLR4 partially affects host gene expression during C. perfringens infection. Together, our results illustrate that TLR4 is crucial for the innate ability to eliminate C. perfringens.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Japan
| |
Collapse
|
18
|
Complete genomic sequence and analysis of β2 toxin gene mapping of Clostridium perfringens JXJA17 isolated from piglets in China. Sci Rep 2021; 11:475. [PMID: 33436645 PMCID: PMC7804025 DOI: 10.1038/s41598-020-79333-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/07/2020] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens (Cp) is a ubiquitous opportunistic pathogen of humans and animals in the natural environment and animal intestines. The pathogenicity of Cp depends on the production of toxins encoded by genes on the chromosomes or plasmids. In contemporary literature, there is no clear consensus about the pathogenicity of CpA β2 toxin. To analyze the homology of the genome of piglet source CpA and its β2 toxin, we sequenced the whole genome of strain JXJA17 isolated from diarrhea piglets using the Illumina Miseq and Pacbio Sequel platforms. The genome was composed of a circular chromosome with 3,324,072 bp (G + C content: 28.51%) and nine plasmids. Genome and 16S rDNA homology analysis revealed a close relation of the JXJA17 strain with the JGS1495, Cp-06, Cp-16, and FORC_003 strains. These strains were isolated from different samples and belonged to different toxin-types. JXJA17 strain was found to carry two toxin genes (plc and cpb2). In contrast to other Cp strains, the cpb2 of JXJA17 was located on a large plasmid (58 kb) with no co-localization of other toxin genes or antibiotic resistance genes. Analysis of JXJA17 genome homology and its cpb2 would facilitate our further study the relationship between β2 toxin and piglet diarrhea.
Collapse
|
19
|
Nair AT. Bioaerosols in the landfill environment: an overview of microbial diversity and potential health hazards. AEROBIOLOGIA 2021; 37:185-203. [PMID: 33558785 PMCID: PMC7860158 DOI: 10.1007/s10453-021-09693-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Landfilling is one of the indispensable parts of solid waste management in various countries. Solid waste disposed of in landfill sites provides nutrients for the proliferation of pathogenic microbes which are aerosolized into the atmosphere due to the local meteorology and various waste disposal activities. Bioaerosols released from landfill sites can create health issues for employees and adjoining public. The present study offers an overview of the microbial diversity reported in the air samples collected from various landfill sites worldwide. This paper also discusses other aspects, including effect of meteorological conditions on the bioaerosol concentrations, sampling techniques, bioaerosol exposure and potential health impacts. Analysis of literature concluded that landfill air is dominated by microbial dust or various pathogenic microbes like Enterobacteriaceae, Staphylococcus aureus, Clostridium perfringens, Acinetobacter calcoaceticus and Aspergillus fumigatus. The bioaerosols present in the landfill environment are of respirable sizes and can penetrate deep into lower respiratory systems and trigger respiratory symptoms and chronic pulmonary diseases. Most studies reported higher bioaerosol concentrations in spring and summer as higher temperature and relative humidity provide a favourable environment for survival and multiplication of microbes. Landfill workers involved in solid waste disposal activities are at the highest risk of exposure to these bioaerosols due to their proximity to solid waste and as they practise minimum personal safety and hygiene measures during working hours. Workers are recommended to use personal protective equipment and practise hygiene to reduce the impact of occupational exposure to bioaerosols.
Collapse
Affiliation(s)
- Abhilash T. Nair
- Department of Applied Sciences and Humanities, National Institute of Foundry and Forge Technology (NIFFT), Hatia, Ranchi, Jharkhand 834003 India
| |
Collapse
|
20
|
Valeriani RG, Beard LL, Moller A, Ohtani K, Vidal JE. Gas gangrene-associated gliding motility is regulated by the Clostridium perfringens CpAL/VirSR system. Anaerobe 2020; 66:102287. [PMID: 33130105 DOI: 10.1016/j.anaerobe.2020.102287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens strains cause a wide variety of human and animal disease, including gas gangrene or myonecrosis. Production of toxins required for myonecrosis, PFO and CPA, is regulated by the C. perfringens Agr-like (CpAL) system via the VirSR two-component system. Myonecrosis begins at the site of infection from where bacteria migrate deep into the host tissue likely using a previously described gliding motility phenotype. We therefore assessed whether gliding motility was under the control of the CpAL/VirSR regulon. The migration rate of myonecrosis-causing C. perfringens strain 13 (S13) was investigated during a 96 h period, including an adaptation phase with bacterial migration (∼1.4 mm/day) followed by a gliding phase allowing bacteria faster migration (∼8.6 mm/day). Gliding required both an intact CpAL system, and signaling through VirSR. Mutants lacking ΔagrB, or ΔvirR, were impaired for onward gliding while a complemented strain S13ΔagrB/pTS1303 had the gliding phenotype restored. Gene expression studies revealed upregulated transcription of pili genes (pilA1, pilA2 and pilT) whose encoded proteins were previously found to be required for gliding motility and CpAL/VirSR-regulated pfoA and cpa toxin genes. Compared to S13, transcription of cpa and pfoA significantly decreased in S13ΔagrB, or S13ΔvirR, strains but not that of pili genes. Further experiments demonstrated that mutants S13ΔpfoA and S13Δcpa migrated at the same rate as S13 wt. We demonstrated that CpAL/VirSR regulates C. perfringens gliding motility and that gliding bacteria have an increased transcription of toxin genes involved in myonecrosis.
Collapse
Affiliation(s)
| | - LaMonta L Beard
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Abraham Moller
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kaori Ohtani
- Tokai University School of Medicine, Ishihara-shi, Kanagawa, Japan
| | - Jorge E Vidal
- Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
21
|
Zhang X, Zhao Q, Ci X, Chen S, Xie Z, Li H, Zhang H, Chen F, Xie Q. Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A. Poult Sci 2020; 99:6606-6618. [PMID: 33248576 PMCID: PMC7810911 DOI: 10.1016/j.psj.2020.09.082] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of the study was testing the effects of chlorogenic acid (CA) supplementation on small intestine healthiness, growth performance, oxidative stress, inflammatory response, and blood biochemical indices in specific-pathogen-free (SPF) chickens after infection with Clostridium perfringens (CP) type A. In this study, 324 1-day-old male SPF chickens were randomly distributed into 6 groups: control group; CA group; CP infection group; CA + CP group; antibiotic group; antibiotic + CP group. All 1-day-old chickens were fed with CA or antibiotic in corresponding treatment group for 13 d. On the 14 d, the chickens in corresponding infection group were challenged with CP type A for 3 d. Samples in each group were collected when the chickens were 17 and 21 d old. This study proves for the first time that CA, a Chinese herbal medicine, can effectively improve growth performance, inhibit small intestine structural damage, improve antioxidant capacity, inhibit damage to ileal mucosal layer construction and tight junctions, inhibit inflammatory cytokines, and ameliorate blood biochemical indices. Therefore, this study provides data for CA being able to effectively alleviate small intestine damage caused by CP type A infection in chickens.
Collapse
Affiliation(s)
- Xinheng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Qiqi Zhao
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Xiaotong Ci
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Sheng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Zi Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Hongxin Li
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, USDA, Agriculture Research Service, East Lansing, MI 48823, USA
| | - Feng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Qingmei Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China.
| |
Collapse
|
22
|
Feng Y, Fan X, Zhu L, Yang X, Liu Y, Gao S, Jin X, Liu D, Ding J, Guo Y, Hu Y. Phylogenetic and genomic analysis reveals high genomic openness and genetic diversity of Clostridium perfringens. Microb Genom 2020; 6:mgen000441. [PMID: 32975504 PMCID: PMC7660258 DOI: 10.1099/mgen.0.000441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridium perfringens is associated with a variety of diseases in both humans and animals. Recent advances in genomic sequencing make it timely to re-visit this important pathogen. Although the genome sequence of C. perfringens was first determined in 2002, large-scale comparative genomics with isolates of different origins is still lacking. In this study, we used whole-genome sequencing of 45 C. perfringens isolates with isolation time spanning an 80-year period and performed comparative analysis of 173 genomes from worldwide strains. We also conducted phylogenetic lineage analysis and introduced an openness index (OI) to evaluate the openness of bacterial genomes. We classified all these genomes into five lineages and hypothesized that the origin of C. perfringens dates back to ~80 000 years ago. We showed that the pangenome of the 173 C. perfringens strains contained a total of 26 954 genes, while the core genome comprised 1020 genes, accounting for about a third of the genome of each isolate. We demonstrated that C. perfringens had the highest OI compared with 51 other bacterial species. Intact prophage sequences were found in nearly 70.0 % of C. perfringens genomes, while CRISPR sequences were found only in ~40.0 %. Plasmids were prevalent in C. perfringens isolates, and half of the virulence genes and antibiotic resistance genes (ARGs) identified in all the isolates could be found in plasmids. ARG-sharing network analysis showed that C. perfringens shared its 11 ARGs with 55 different bacterial species, and a high frequency of ARG transfer may have occurred between C. perfringens and species in the genera Streptococcus and Staphylococcus. Correlation analysis showed that the ARG number in C. perfringens strains increased with time, while the virulence gene number was relative stable. Our results, taken together with previous studies, revealed the high genome openness and genetic diversity of C. perfringens and provide a comprehensive view of the phylogeny, genomic features, virulence gene and ARG profiles of worldwide strains.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xuezheng Fan
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | | | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jiabo Ding
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
23
|
Evidence That VirS Is a Receptor for the Signaling Peptide of the Clostridium perfringens Agr-like Quorum Sensing System. mBio 2020; 11:mBio.02219-20. [PMID: 32934089 PMCID: PMC7492741 DOI: 10.1128/mbio.02219-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
C. perfringens beta toxin (CPB) is essential for the virulence of type C strains, a common cause of fatal necrotizing enteritis and enterotoxemia in humans and domestic animals. Production of CPB, as well as several other C. perfringens toxins, is positively regulated by both the Agr-like QS system and the VirS/R two-component regulatory system. This study presents evidence that the VirS membrane sensor protein is a receptor for the AgrD-derived SP and that the second extracellular loop of VirS is important for SP binding. Understanding interactions between SP and VirS improves knowledge of C. perfringens pathogenicity and may provide insights for designing novel strategies to reduce C. perfringens toxin production during infections. Since both the Agr (accessory gene regulator)-like quorum sensing (QS) system and VirS/VirR (VirS/R) two-component regulatory system of Clostridium perfringens positively regulate production of several toxins, including C. perfringens beta toxin (CPB), it has been hypothesized the VirS membrane sensor protein is an Agr-like QS signaling peptide (SP) receptor. To begin evaluating whether VirS is an SP receptor, this study sequenced the virS gene in C. perfringens strains CN3685 and CN1795 because it was reported that agrB mutants of both strains increase CPB production in response to the pentapeptide 5R, likely the natural SP, but only the CN3685 agrB mutant responds to 8R, which is 5R plus a 3-amino-acid tail. This sequencing identified differences between the predicted VirS extracellular loop 2 (ECL2) of CN3685 versus that of CN1795. To explore if those ECL2 differences explain strain-related variations in SP sensitivity and support VirS as an SP receptor, virS agrB double-null mutants of each strain were complemented to swap which VirS protein they produce. CPB Western blotting showed that this complementation changed the natural responsiveness of each strain to 8R. A pulldown experiment using biotin-5R demonstrated that VirS can bind SP. To further support VirS:SP binding and to identify a VirS binding site for SP, a 14-mer peptide corresponding to VirS ECL2 was synthesized. This ECL2 peptide inhibited 5R signaling to agrB mutant and wild-type strains. This inhibition was specific, since a single N to D substitution in the ECL2 peptide abrogated these effects. Collectively, these results support VirS as an important SP receptor and may assist development of therapeutics.
Collapse
|
24
|
Takehara M, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin inhibits myogenic differentiation of C2C12 myoblasts. Anaerobe 2020; 65:102265. [PMID: 32860931 DOI: 10.1016/j.anaerobe.2020.102265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Clostridium perfringens type A is the causative agent of clostridial myonecrosis, and α-toxin has been reported to be responsible for the pathogenesis. Recently, it was reported that regeneration of skeletal muscle after C. perfringens-induced muscle disorders is delayed, but the detailed mechanisms have not been elucidated. Here, we tested whether α-toxin impairs the differentiation of C2C12 myoblasts, a useful cell line to study muscle growth, maturation, and regeneration in vitro. α-Toxin dose-dependently inhibited myotube formation in C2C12 cultures after induction of their differentiation by horse serum. Also, immunoblot analysis revealed that α-toxin dose-dependently decreases the expressions of two skeletal muscle differentiation markers, myogenic differentiation 1 (MyoD) and myogenin. These results demonstrate that α-toxin impairs the myogenic differentiation of C2C12 myoblasts. To reveal the mechanism behind α-toxin-mediated impairment of myogenic differentiation, we focused on ceramide production since α-toxin is known to promote the formation of ceramide by its sphingomyelinase activity. Immunofluorescent analysis revealed that ceramide production is accelerated by treatment with α-toxin. Furthermore, a synthetic cell-permeable ceramide analog, C2-ceramide, inhibited myotube formation in C2C12 cells and decreased the expressions of MyoD and myogenin, suggesting that accelerated ceramide production is involved in the α-toxin-mediated blockage of myogenic differentiation. Together, our results illustrate that the impairment of myogenic differentiation by α-toxin might be crucial for the pathogenesis of C. perfringens to delay regeneration of severely damaged skeletal muscles.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| |
Collapse
|
25
|
Takehara M, Bandou H, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin specifically induces endothelial cell death by promoting ceramide-mediated apoptosis. Anaerobe 2020; 65:102262. [PMID: 32828915 DOI: 10.1016/j.anaerobe.2020.102262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023]
Abstract
Clostridium perfringens type A-induced gas gangrene is characterized by severe myonecrosis, and α-toxin has been revealed to be a major virulence factor involved in the pathogenesis. However, the detailed mechanism is unclear. Here, we show that CD31+ endothelial cell counts decrease in muscles infected with C. perfringens in an α-toxin-dependent manner. In vitro experiments revealed that α-toxin preferentially and rapidly induces the death of human umbilical vein endothelial cells (HUVECs) compared with C2C12 murine muscle cells. The toxin induces apoptosis of HUVECs by increasing ceramide. Furthermore, the specificity might be dependent on differences in the sensitivity to ceramide between these cell lines. Together, our results suggest that α-toxin-induced endothelial cell death promotes severe myonecrosis and is involved in the pathogenesis of C. perfringens.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Hiroto Bandou
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| |
Collapse
|
26
|
Ding G, Bai J, Feng B, Wang L, Qiao X, Zhou H, Jiang Y, Cui W, Tang L, Li Y, Xu Y. An EGFP-marked recombinant lactobacillus oral tetravalent vaccine constitutively expressing α, ε, β1, and β2 toxoids for Clostridium perfringens elicits effective anti-toxins protective immunity. Virulence 2020; 10:754-767. [PMID: 31429624 PMCID: PMC6735629 DOI: 10.1080/21505594.2019.1653720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clostridium perfringens is a common opportunistic pathogen endangering livestock and poultry breeds. Here, using enhanced green fluorescent protein as screening marker, a recombinant lactobacillus tetravalent vaccine constitutively expressing α, ϵ, β1, and β2 toxoids of C. perfringens was developed, and its immunogenicity in mice was investigated via oral administration. This probiotic vaccine could effectively induce antigen-specific secretory IgA (sIgA)-based mucosal and IgG-based humoral immune responses, and significantly high levels (p< 0.05) of cytokines IL-2, IL-4, IL-10, IL-12, IL-17, and IFN-γ were produced in immunized mice. Moreover, lymphoproliferation and percentage of CD4+ and CD8+ T cells significantly increased in mice of the probiotic vaccine group. Challenge experiments were performed in mice with C. perfringens toxinotypes A, C, and D crude toxins to evaluate protection efficiency of the probiotic vaccine, using a commercial inactivated C. perfringens vaccine made by C. perfringens toxinotypes A, C, and D as vaccine control. We observed 80% protection rate in the probiotic vaccine group, which was higher than commercial vaccine group, whereas all mice in control groups died and obvious histopathological changes were observed in liver, spleen, kidney, and intestines of mice. Significantly, we compared the immunogenicity and protection efficiency of lactobacillus constitutive expression system and lactobacillus inducible expression system, and results showed that lactobacillus constitutive expression system has obvious advantages. Our study clearly demonstrated that the probiotics vaccine could effectively induce mucosal, humoral, and cellular immunity, and provide effective protection against C. perfringens toxins, suggesting a promising strategy for the development of oral vaccine against C. perfringens.
Collapse
Affiliation(s)
- Guojie Ding
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Jing Bai
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Baohua Feng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Han Zhou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China.,Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Northeast Agricultural University , Harbin , P.R. China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China.,Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Northeast Agricultural University , Harbin , P.R. China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University , Harbin , P.R. China.,Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Northeast Agricultural University , Harbin , P.R. China
| |
Collapse
|
27
|
Fourie JCJ, Bezuidenhout CC, Sanko TJ, Mienie C, Adeleke R. Inside environmental Clostridium perfringens genomes: antibiotic resistance genes, virulence factors and genomic features. JOURNAL OF WATER AND HEALTH 2020; 18:477-493. [PMID: 32833675 DOI: 10.2166/wh.2020.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Until recently, research has focused on Clostridium perfringens in clinical settings without considering environmental isolates. In this study, environmental genomes were used to investigate possible antibiotic resistance and the presence of virulence traits in C. perfringens strains from raw surface water. In silico assembly of three C. perfringens strains, DNA generated almost complete genomes setting their length ranging from 3.4 to 3.6 Mbp with GC content of 28.18%. An average of 3,175 open reading frames was identified, with the majority associated with carbohydrate and protein metabolisms. The genomes harboured several antibiotic resistance genes for glycopeptides, macrolide-lincosamide-streptogramin B, β-lactam, trimethoprim, tetracycline and aminoglycosides and also the presence of several genes encoding for polypeptides and multidrug resistance efflux pumps and 35 virulence genes. Some of these encode for haemolysins, sialidase, hyaluronidase, collagenase, perfringolysin O and phospholipase C. All three genomes contained sequences indicating phage, antibiotic resistance and pathogenic islands integration sites. A genomic comparison of these three strains confirmed high similarity and shared core genes with clinical C. perfringens strains, highlighting their health security risks. This study provides a genomic insight into the potential pathogenicity of C. perfringens present in the environment and emphasises the importance of monitoring this niche in the future.
Collapse
Affiliation(s)
| | | | - Tomasz Janusz Sanko
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Charlotte Mienie
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Rasheed Adeleke
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| |
Collapse
|
28
|
Obana N, Nakamura K, Nomura N. Temperature-regulated heterogeneous extracellular matrix gene expression defines biofilm morphology in Clostridium perfringens. NPJ Biofilms Microbiomes 2020; 6:29. [PMID: 32737303 PMCID: PMC7395162 DOI: 10.1038/s41522-020-00139-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cells in biofilms dynamically adapt to surrounding environmental conditions, which alters biofilm architecture. The obligate anaerobic pathogen Clostridium perfringens shows different biofilm structures in different temperatures. Here we find that the temperature-regulated production of extracellular polymeric substance (EPS) is necessary for morphological changes in biofilms. We identify BsaA proteins as an EPS matrix necessary for pellicle biofilm formation at lower temperature and find that extracellularly secreted BsaA protein forms filamentous polymers. We show that sipW-bsaA operon expression is bimodal, and the EPS-producing population size is increased at a lower temperature. This heterogeneous expression of the EPS gene requires a two-component system. We find that EPS-producing cells cover EPS-nonproducing cells attaching to the bottom surface. In the deletion mutant of pilA2, encoding a type IV pilin, the EPS gene expression is ON in the whole population. This heterogeneity is further regulated by the cleavage of the pilA2 mRNA by RNase Y, causing temperature-responsive EPS expression in biofilms. As temperature is an environmental cue, C. perfringens may modulate EPS expression to induce morphological changes in biofilm structure as a strategy for adapting to interhost and external environments.
Collapse
Affiliation(s)
- Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Kouji Nakamura
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
29
|
Bioinformatics analysis of NetF proteins for designing a multi-epitope vaccine against Clostridium perfringens infection. INFECTION GENETICS AND EVOLUTION 2020; 85:104461. [PMID: 32682865 DOI: 10.1016/j.meegid.2020.104461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/28/2020] [Accepted: 07/11/2020] [Indexed: 11/20/2022]
Abstract
Clostridium perfringens is an important human and animal pathogen that is the primary causative agent of necrotizing enteritis and enterotoxemia in many types of animals. C. perfringens produces a variety of toxins, including NetF which may plays a crucial role in the pathogenesis of foal and canine necrotizing enteritis. In this study, we used several bioinformatics methods to analyze various aspects of the NetF proteins, including the physicochemical properties, secondary and tertiary structures, and the dominant B-cell and T-cell epitopes. The results showed that NetF protein was a stable and hydrophilic protein. The secondary structure of the NetF protein consisted of 2.62% alpha helixes, 6.56% beta turns, 38.69% extended strands and 52.13% random coils. Moreover, several potential B and T-cell epitopes were identified for NetF. In addition, the obtained findings from antigenicity and allergenicity evaluation remarked that this protein is immunogenic and non-allergen. Based on the results of Ramachandran plot, 94.22%, 5. 42%, and 0.36% of amino acid residues were incorporated in the favored, allowed, and outlier regions, respectively. This study provides a foundation for further investigations, and laid a theoretical basis for the development of an appropriate vaccine against C. perfringens infection.
Collapse
|
30
|
Mehdizadeh Gohari I, Unterer S, Whitehead AE, Prescott JF. NetF-producing Clostridium perfringens and its associated diseases in dogs and foals. J Vet Diagn Invest 2020; 32:230-238. [PMID: 32081091 PMCID: PMC7081511 DOI: 10.1177/1040638720904714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of type A Clostridium perfringens in canine acute hemorrhagic diarrhea syndrome and foal necrotizing enteritis is poorly characterized. However, a highly significant association between the presence of novel toxigenic C. perfringens and these specific enteric diseases has been described. These novel toxigenic strains produce 3 novel putative toxins, which have been designated NetE, NetF, and NetG. Although not conclusively demonstrated, current evidence suggests that NetF is likely the major virulence factor in strains responsible for canine acute hemorrhagic diarrhea syndrome and foal necrotizing enteritis. NetF is a beta-pore-forming toxin that belongs to the same toxin superfamily as CPB and NetB toxins produced by C. perfringens. The netF gene is encoded on a conjugative plasmid that, in the case of netF, also carries another putative toxin gene, netE. In addition, these strains consistently also carry a cpe tcp-conjugative plasmid, and a proportion also carry a separate netG tcp-conjugative plasmid. The netF and netG genes form part of a locus with all the features of the pathogenicity loci of tcp-conjugative plasmids. The netF-positive isolates are clonal in origin and fall into 2 clades. Disease in dogs or foals can be associated with either clade. Thus, these are strains with unique virulence-associated characteristics associated with serious and sometimes fatal cases of important enteric diseases in 2 animal species.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA (Mehdizadeh Gohari)
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany (Unterer)
- Department of Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Alberta, Canada (Whitehead)
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada (Prescott)
| | - Stefan Unterer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA (Mehdizadeh Gohari)
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany (Unterer)
- Department of Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Alberta, Canada (Whitehead)
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada (Prescott)
| | - Ashley E Whitehead
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA (Mehdizadeh Gohari)
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany (Unterer)
- Department of Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Alberta, Canada (Whitehead)
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada (Prescott)
| | - John F Prescott
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA (Mehdizadeh Gohari)
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany (Unterer)
- Department of Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Alberta, Canada (Whitehead)
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada (Prescott)
| |
Collapse
|
31
|
Vieco-Saiz N, Belguesmia Y, Vachée A, Le Maréchal C, Salvat G, Drider D. Antibiotic resistance, genome analysis and further safe traits of Clostridium perfringens ICVB082; a strain capable of producing an inhibitory compound directed only against a closely related pathogenic strain. Anaerobe 2020; 62:102177. [PMID: 32097777 DOI: 10.1016/j.anaerobe.2020.102177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/28/2022]
Abstract
Eleven strains of clostridia were isolated from chickens suffering from necrotic enteritis (NE) disease, and were identified by 16S rDNA sequencing as C. perfringens (Clin1, ICVB079, ICVB080, ICVB081, ICVB082, ICVB083, ICVB085, ICVB088, ICVB089, ICVB090), C. sporogenes (ICVB086) and C. cadaveris (ICVB087). These novel strains were then characterized for their pathoproperties including their sensitivity to different antibiotics, hemolytic activities and abilities to carry netB gene, which encodes the necrotic enteritis B-Like toxin (NetB); a key virulence factor involved in the NE. Whilst, no antibiotic resistance was detected for all these strains, C. perfringens ICVB081 and C. perfringens Clin1 have β-hemolytic activities and carry DNA coding for the netB gene. Remarkably, cross-resistant assays performed between these Clostridium strains underpinned the capability of C. perfringens ICVB082 to inhibit the pathogenic C. perfringens DSM756, used as reference strain. This inhibition was exerted through production of an extracellular compound, which was sensitive to heat treatment, lipase and active at pH values ranging from 4 to 7. This report deals with the isolation of novel Clostridium strains from chicken origin and underlines the safety and inhibitory capability of C. perfringens ICVB082 through an extracellular metabolite.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| | - Yanath Belguesmia
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| | - Anne Vachée
- Laboratoire de Biologie, Centre Hospitalier de Roubaix, Boulevard Lacordaire, 59100, Roubaix, France.
| | | | - Gilles Salvat
- ANSES, 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France.
| | - Djamel Drider
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| |
Collapse
|
32
|
Protection Efficacy of Oral Bait Probiotic Vaccine Constitutively Expressing Tetravalent Toxoids against Clostridium perfringens Exotoxins in Livestock (Rabbits). Vaccines (Basel) 2020; 8:vaccines8010017. [PMID: 31936328 PMCID: PMC7157649 DOI: 10.3390/vaccines8010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Clostridium perfringens is an opportunistic pathogen. Its main virulence factors are exotoxins, which are the etiological agents of enteritis necroticans and enterotoxemia caused in livestock (cattle, sheep, and rabbits). Here, we demonstrated effective immune protection for rabbits against α, β, and ε exotoxins of C. perfringens provided by an oral tetravalent bait probiotic vaccine delivering α, ε, β1, and β2 toxoids of C. perfringens. Results showed that the recombinant probiotic had good segregational stability and good colonization ability in the rabbit intestinal tract. Oral administration of the probiotic vaccine can effectively elicit significant levels of antigen-specific mucosa sIgA and sera IgG antibodies with exotoxin-neutralizing activity. Additionally, oral immunization with the probiotic vaccine effectively promoted lymphoproliferation and Th1/Th2-associated cytokine production. The protection rate of immunized rabbits with the probiotic vaccine was 80% after challenging rabbits with a combination of C. perfringens (toxinotypes A, C, and D) and exotoxin mixture, which was better than the 60% provided by a commercial inactivated C. perfringens A, C, and D trivalent vaccine. Moreover, obvious histopathological changes were observed in the intestinal tissues of rabbits in the commercial vaccine and PBS groups. The bait probiotic vaccine can provide effective protection against C. perfringens exotoxins, suggesting a promising C. perfringens vaccination strategy.
Collapse
|
33
|
Linden JR, Flores C, Schmidt EF, Uzal FA, Michel AO, Valenzuela M, Dobrow S, Vartanian T. Clostridium perfringens epsilon toxin induces blood brain barrier permeability via caveolae-dependent transcytosis and requires expression of MAL. PLoS Pathog 2019; 15:e1008014. [PMID: 31703116 PMCID: PMC6867657 DOI: 10.1371/journal.ppat.1008014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/20/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is responsible for causing the economically devastating disease, enterotoxaemia, in livestock. It is well accepted that ETX causes blood brain barrier (BBB) permeability, however the mechanisms involved in this process are not well understood. Using in vivo and in vitro methods, we determined that ETX causes BBB permeability in mice by increasing caveolae-dependent transcytosis in brain endothelial cells. When mice are intravenously injected with ETX, robust ETX binding is observed in the microvasculature of the central nervous system (CNS) with limited to no binding observed in the vasculature of peripheral organs, indicating that ETX specifically targets CNS endothelial cells. ETX binding to CNS microvasculature is dependent on MAL expression, as ETX binding to CNS microvasculature of MAL-deficient mice was not detected. ETX treatment also induces extravasation of molecular tracers including 376Da fluorescein salt, 60kDA serum albumin, 70kDa dextran, and 155kDA IgG. Importantly, ETX-induced BBB permeability requires expression of both MAL and caveolin-1, as mice deficient in MAL or caveolin-1 did not exhibit ETX-induced BBB permeability. Examination of primary murine brain endothelial cells revealed an increase in caveolae in ETX-treated cells, resulting in dynamin and lipid raft-dependent vacuolation without cell death. ETX-treatment also results in a rapid loss of EEA1 positive early endosomes and accumulation of large, RAB7-positive late endosomes and multivesicular bodies. Based on these results, we hypothesize that ETX binds to MAL on the apical surface of brain endothelial cells, causing recruitment of caveolin-1, triggering caveolae formation and internalization. Internalized caveolae fuse with early endosomes which traffic to late endosomes and multivesicular bodies. We believe that these multivesicular bodies fuse basally, releasing their contents into the brain parenchyma. Clostridium perfringens epsilon toxin (ETX) is an extremely lethal bacterial toxin known to cause a devastating disease in livestock animals and may be a possible cause of multiple sclerosis in humans. ETX is well known to cause disruption of the blood-brain barrier (BBB), a critical structure necessary for proper brain function. Deterioration of this barrier allows entry of toxic blood-borne material to enter the brain. Although ETX-induced BBB dysfunction is well accepted, how this happens is unknown. Here, we demonstrate that ETX causes BBB permeability by inducing formation of cell-surface invaginations called caveolae in endothelial cells, the cells that line blood vessels. Importantly, only endothelial cells from the brain and other central nervous system organs appear to be a target of ETX, as the toxin only binds to blood vessels in these organs and not blood vessels from other organs. These ETX-induced caveolae fuse with other caveolae and specialized intracellular vesicles called endosomes. We predict that these endosomes engulf blood-borne material during their internalization, allowing material to travel from the blood, through the cell, and into brain tissue. We also show that expression of the protein MAL and caveolin-1 is necessary for ETX-induced BBB permeability.
Collapse
Affiliation(s)
- Jennifer R. Linden
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Claudia Flores
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, New York, United States of America
| | - Francisco A. Uzal
- California Animal Health & Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, San Bernardino, California, United States of America
| | - Adam O. Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, United States of America
| | - Marissa Valenzuela
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Sebastian Dobrow
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Vartanian
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Mcdevitt R, Brooker J, Acamovic T, Sparks N. Necrotic enteritis; a continuing challenge for the poultry industry. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200593] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- R.M. Mcdevitt
- Avian Science Research Centre, Animal Health Group, SAC Edinburgh, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - J.D. Brooker
- Avian Science Research Centre, Animal Health Group, SAC Edinburgh, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - T. Acamovic
- Avian Science Research Centre, Animal Health Group, SAC Edinburgh, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - N.H.C. Sparks
- Avian Science Research Centre, Animal Health Group, SAC Edinburgh, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| |
Collapse
|
35
|
Granulocyte Colony-Stimulating Factor Does Not Influence Clostridium Perfringens α-Toxin-Induced Myonecrosis in Mice. Toxins (Basel) 2019; 11:toxins11090509. [PMID: 31480318 PMCID: PMC6784116 DOI: 10.3390/toxins11090509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens type A causes gas gangrene characterized by myonecrosis and development of an effective therapy for treating affected patients is of clinical importance. It was recently reported that the expression of granulocyte colony-stimulating factor (G-CSF) is greatly up-regulated by C. perfringens infection. However, the role of G-CSF in C. perfringens-mediated myonecrosis is still unclear. Here, we assessed the destructive changes in C. perfringens-infected skeletal muscles and tested whether inhibition of G-CSF receptor (G-CSFR) signaling or administration of recombinant G-CSF affects the tissue injury. Severe edema, contraction of muscle fiber diameter, and increased plasma creatine kinase activity were observed in mice intramuscularly injected with C. perfringens type A, and the destructive changes were α-toxin-dependent, indicating that infection induces the destruction of skeletal muscle in an α-toxin-dependent manner. G-CSF plays important roles in the protection of tissue against damage and in the regeneration of injured tissue. However, administration of a neutralizing antibody against G-CSFR had no profound impact on the destructive changes to skeletal muscle. Moreover, administration of recombinant human G-CSF, filgrastim, imparted no inhibitory effect against the destructive changes caused by C. perfringens. Together, these results indicate that G-CSF is not beneficial for treating C. perfringens α-toxin-mediated myonecrosis, but highlight the importance of revealing the mechanism by which C. perfringens negates the protective effects of G-CSF in skeletal muscle.
Collapse
|
36
|
Tamai E, Katayama S, Sekiya H, Nariya H, Kamitori S. Structures of major pilins in Clostridium perfringens demonstrate dynamic conformational change. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:718-732. [PMID: 31373571 DOI: 10.1107/s2059798319009689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
Pili in Gram-positive bacteria are flexible rod proteins associated with the bacterial cell surface, and they play important roles in the initial adhesion to host tissues and colonization. The pilus shaft is formed by the covalent polymerization of major pilins, catalyzed by sortases, a family of cysteine transpeptidases. Here, X-ray structures of the major pilins from Clostridium perfringens strains 13 and SM101 and of sortase from strain SM101 are presented with biochemical analysis to detect the formation of pili in vivo. The major pilin from strain 13 adopts an elongated structure to form noncovalently linked polymeric chains in the crystal, yielding a practical model of the pilus fiber structure. The major pilin from strain SM101 adopts a novel bent structure and associates to form a left-handed twist like an antiparallel double helix in the crystal, which is likely to promote bacterial cell-cell interactions. A modeling study showed that pilin with a bent structure interacts favorably with sortase. The major pilin from strain SM101 was considered to be in an equilibrium state between an elongated and a bent structure through dynamic conformational change, which may be involved in pili-mediated colonization and sortase-mediated polymerization of pili.
Collapse
Affiliation(s)
- Eiji Tamai
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Seiichi Katayama
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Hiroshi Sekiya
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Hirofumi Nariya
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama-cho, Higashihiroshima, Hiroshima 739-8528, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
37
|
|
38
|
Takehara M, Seike S, Sonobe Y, Bandou H, Yokoyama S, Takagishi T, Miyamoto K, Kobayashi K, Nagahama M. Clostridium perfringens α-toxin impairs granulocyte colony-stimulating factor receptor-mediated granulocyte production while triggering septic shock. Commun Biol 2019; 2:45. [PMID: 30729183 PMCID: PMC6355902 DOI: 10.1038/s42003-019-0280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
During bacterial infection, granulocyte colony-stimulating factor (G-CSF) is produced and accelerates neutrophil production from their progenitors. This process, termed granulopoiesis, strengthens host defense, but Clostridium perfringens α-toxin impairs granulopoiesis via an unknown mechanism. Here, we tested whether G-CSF accounts for the α-toxin-mediated impairment of granulopoiesis. We find that α-toxin dramatically accelerates G-CSF production from endothelial cells in response to Toll-like receptor 2 (TLR2) agonists through activation of the c-Jun N-terminal kinase (JNK) signaling pathway. Meanwhile, α-toxin inhibits G-CSF-mediated cell proliferation of Ly-6G+ neutrophils by inducing degradation of G-CSF receptor (G-CSFR). During sepsis, administration of α-toxin promotes lethality and tissue injury accompanied by accelerated production of inflammatory cytokines in a TLR4-dependent manner. Together, our results illustrate that α-toxin disturbs G-CSF-mediated granulopoiesis by reducing the expression of G-CSFR on neutrophils while augmenting septic shock due to excess inflammatory cytokine release, which provides a new mechanism to explain how pathogenic bacteria modulate the host immune system.
Collapse
Affiliation(s)
- Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Yuuta Sonobe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Hiroto Bandou
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Saki Yokoyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Teruhisa Takagishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514 Japan
| |
Collapse
|
39
|
Mehdizadeh Gohari I, Brefo-Mensah EK, Palmer M, Boerlin P, Prescott JF. Sialic acid facilitates binding and cytotoxic activity of the pore-forming Clostridium perfringens NetF toxin to host cells. PLoS One 2018; 13:e0206815. [PMID: 30403719 PMCID: PMC6221314 DOI: 10.1371/journal.pone.0206815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/20/2018] [Indexed: 11/19/2022] Open
Abstract
NetF-producing type A Clostridium perfringens is an important cause of canine and foal necrotizing enteritis. NetF, related to the β-sheet pore-forming Leukocidin/Hemolysin superfamily, is considered a major virulence factor for this disease. The main purpose of this work is to demonstrate the pore-forming activity of NetF and characterize the chemical nature of its binding site. Electron microscopy using recombinant NetF (rNetF) confirmed that NetF is able to oligomerize and form large pores in equine ovarian (EO) cell membranes and sheep red blood cells. These oligomeric pores appear to be about 4–6 nm in diameter, and the number of oligomer subunits to vary from 6 to 9. Sodium periodate treatment rendered EO cells non-susceptible to NetF, suggesting that NetF binding requires cell surface carbohydrates. NetF cytotoxicity was also inhibited by a lectin that binds sialic acid, by sialidase, and by free sialic acid in excess, all of which clearly implicate sialic acid-containing membrane carbohydrates in NetF binding and/or toxicity for EO cells. Binding of NetF to sheep red blood cells was not inhibited by the gangliosides GM1, GM2 and GM3, nor did the latter promote membrane permeabilization in liposomes, suggesting that they do not constitute the cellular receptors. In contrast, treatment of EO cells with different proteases reduced their susceptibility to NetF, suggesting that the NetF receptor is a sialic acid-containing glycoprotein.
Collapse
Affiliation(s)
| | | | - Michael Palmer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - John F. Prescott
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Adams V, Han X, Lyras D, Rood JI. Antibiotic resistance plasmids and mobile genetic elements of Clostridium perfringens. Plasmid 2018; 99:32-39. [DOI: 10.1016/j.plasmid.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
|
41
|
Affiliation(s)
- Katharine M Simpson
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA.
| | - Robert J Callan
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA
| | - David C Van Metre
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA
| |
Collapse
|
42
|
Low LY, Harrison PF, Gould J, Powell DR, Choo JM, Forster SC, Chapman R, Gearing LJ, Cheung JK, Hertzog P, Rood JI. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection. mBio 2018; 9:e00473-18. [PMID: 29588405 PMCID: PMC5874911 DOI: 10.1128/mbio.00473-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/20/2022] Open
Abstract
To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions.IMPORTANCEClostridium perfringens is the causative agent of traumatic clostridial myonecrosis, or gas gangrene. In this study, we carried out transcriptional analysis of both the host and the bacterial pathogen in a mouse myonecrosis infection. The results showed that in comparison to mock-infected control tissues, muscle tissues from C. perfringens-infected mice had a significantly altered gene expression profile. In particular, the expression of many genes involved in the innate immune system was upregulated. Comparison of the expression profiles of C. perfringens cells isolated from the infected tissues with those from equivalent broth cultures identified many potential virulence genes that were significantly upregulated in vivo These studies have provided a new understanding of the range of factors involved in host-pathogen interactions in a myonecrosis infection.
Collapse
Affiliation(s)
- Lee-Yean Low
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Paul F Harrison
- Monash Bioinformatics Platform, Monash University, Clayton, Australia
| | - Jodee Gould
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, Australia
| | - Jocelyn M Choo
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Samuel C Forster
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - Ross Chapman
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - Linden J Gearing
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - Jackie K Cheung
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Paul Hertzog
- Department of Molecular and Translational Science, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, School of Clinical Science, Monash University, Clayton, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
43
|
Kiu R, Caim S, Alexander S, Pachori P, Hall LJ. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors. Front Microbiol 2017; 8:2485. [PMID: 29312194 PMCID: PMC5733095 DOI: 10.3389/fmicb.2017.02485] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023] Open
Abstract
Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an "open" pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc), enterotoxin (cpe), and Perfringolysin O (pfo or pfoA), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet) and anti-defensins genes (mprF) were consistently detected in silico (tet: 75%; mprF: 100%). However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Shabhonam Caim
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | | | - Purnima Pachori
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Lindsay J. Hall
- Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
44
|
A Single-Cell View of the BtsSR/YpdAB Pyruvate Sensing Network in Escherichia coli and Its Biological Relevance. J Bacteriol 2017; 200:JB.00536-17. [PMID: 29038258 DOI: 10.1128/jb.00536-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
Fluctuating environments and individual physiological diversity force bacteria to constantly adapt and optimize the uptake of substrates. We focus here on two very similar two-component systems (TCSs) of Escherichia coli belonging to the LytS/LytTR family: BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB. Both TCSs respond to extracellular pyruvate, albeit with different affinities, typically during postexponential growth, and each system regulates expression of a single transporter gene, yjiY and yhjX, respectively. To obtain insights into the biological significance of these TCSs, we analyzed the activation of the target promoters at the single-cell level. We found unimodal cell-to-cell variability; however, the degree of variance was strongly influenced by the available nutrients and differed between the two TCSs. We hypothesized that activation of either of the TCSs helps individual cells to replenish carbon resources. To test this hypothesis, we compared wild-type cells with the btsSR ypdAB mutant under two metabolically modulated conditions: protein overproduction and persister formation. Although all wild-type cells were able to overproduce green fluorescent protein (GFP), about half of the btsSR ypdAB population was unable to overexpress GFP. Moreover, the percentage of persister cells, which tolerate antibiotic stress, was significantly lower in the wild-type cells than in the btsSR ypdAB population. Hence, we suggest that the BtsS/BtsR and YpdA/YpdB network contributes to a balancing of the physiological state of all cells within a population.IMPORTANCE Histidine kinase/response regulator (HK/RR) systems enable bacteria to respond to environmental and physiological fluctuations. Escherichia coli and other members of the Enterobacteriaceae possess two similar LytS/LytTR-type HK/RRs, BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB, which form a functional network. Both systems are activated in response to external pyruvate, typically when cells face overflow metabolism during post-exponential growth. Single-cell analysis of the activation of their respective target genes yjiY and yhjX revealed cell-to-cell variability, and the range of variation was strongly influenced by externally available nutrients. Based on the phenotypic characterization of a btsSR ypdAB mutant compared to the parental strain, we suggest that this TCS network supports an optimization of the physiological state of the individuals within the population.
Collapse
|
45
|
Li C, Yan X, Lillehoj HS. Complete genome sequences of Clostridium perfringens Del1 strain isolated from chickens affected by necrotic enteritis. Gut Pathog 2017; 9:69. [PMID: 29201151 PMCID: PMC5699181 DOI: 10.1186/s13099-017-0217-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Clostridium perfringens is ubiquitous in nature. It is a normal inhabitant in the intestinal tract of animals and humans. As the primary etiological agent of gas gangrene, necrosis and bacteremia, C. perfringens causes food poisoning, necrotic enteritis (NE), and even death. Epidemiology research has indicated that the increasing incidence of NE in poultry is associated with the withdrawal of in-feed antibiotic growth promoters in poultry production in response to government regulations. The recent omics studies have indicated that bacterial virulence is typically linked to highly efficient conjugative transfer of toxins, or plasmids carrying antibiotic-resistance traits. Currently, there is limited information on understanding of host-pathogen interaction in NE caused by virulent strains of C. perfringens. Elucidating such pathogenesis has practical impacts on fighting infectious diseases through adopting strategies of prophylactic or therapeutic interventions. In this report, we sequenced and analyzed the genome of C. perfringens Del1 strain using the hybrid of PacBio and Illumina sequencing technologies. RESULTS Sequence analysis indicated that Del1 strain comprised a single circular chromosome with a complete 3,559,163 bp and 4 plasmids: pDel1_1 (82,596 bp), pDel1_2 (69,827 bp), pDel1_3 (49,582 bp), and pDel1_4 (49,728 bp). The genome had 3361 predicted coding DNA sequences, harbored numerous genes for pathogenesis and virulence factors, including 6 for antibiotic and antimicrobial resistance, and 3 phage-encoded genes. Phylogenetic analysis revealed that Del1 strain had similar genome and plasmid sequences to the CP4 strain. CONCLUSION Complete chromosomal and plasmid sequences of Del1 strain are presented in this report. Since Del1 was isolated from a field disease outbreak, this strain is a good source to identify virulent genes that cause many damaging effects of Clostridial infections in chicken gut. Genome sequencing of the chicken pathogenic isolates from commercial farms provides valuable insights into the molecular pathogenesis of C. perfringens as a gastrointestinal pathogen in food animals. The detailed information on gene sequencing of this important field strain will benefit the development of novel vaccines specific for C. perfringens-induced NE in chickens.
Collapse
Affiliation(s)
- Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, 10300 Baltimore Avenue, MD 20705 USA
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, 10300 Baltimore Avenue, MD 20705 USA
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, 10300 Baltimore Avenue, MD 20705 USA
| |
Collapse
|
46
|
Complete Genome Sequence of Clostridium perfringens LLY_N11, a Necrotic Enteritis-Inducing Strain Isolated from a Healthy Chicken Intestine. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01225-17. [PMID: 29097469 PMCID: PMC5668545 DOI: 10.1128/genomea.01225-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clostridium perfringens strain LLY_N11, a commensal bacterium, which previously induced necrotic enteritis in an experimental study, was isolated from the intestine of a young healthy chicken. Here, we present the complete genome sequence of this strain, which may provide a better understanding of the molecular mechanisms involved in necrotic enteritis pathogenesis.
Collapse
|
47
|
Yin D, Du E, Yuan J, Gao J, Wang Y, Aggrey SE, Guo Y. Supplemental thymol and carvacrol increases ileum Lactobacillus population and reduces effect of necrotic enteritis caused by Clostridium perfringes in chickens. Sci Rep 2017; 7:7334. [PMID: 28779076 PMCID: PMC5544757 DOI: 10.1038/s41598-017-07420-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
Necrotic enteritis (NE) caused by Clostridium perfringens is one of the most detrimental infectious diseases in poultry. This study examined the effect of blends of essential oils (BEOs) (25% thymol and 25% carvacrol) on NE and bacterial dynamics and functions in chicks challenged with C. perfringens. Chicks were assigned to a Control diet and BEOs diet (Control diet + 120 mg/kg BEOs), were challenged with C. perfringens from days 14 to 20 and were killed on day 21 for assessment. Supplementation with BEOs decreased the mortality, alleviated gut lesions, and decreased the virulence factors of pathogenic bacteria (VF 0073-ClpE, VF0124-LPS, and VF0350-BSH). Lack of supplementation also changed the nutrient and immunological dynamics of host microbiota in responding to C. perfringens infection. Adding BEOs changed the host ileum microbial population by increasing the numbers of Lactobacillus crispatus and Lactobacillus agilis, and decreasing Lactobacillus salivarius and Lactobacillus johnsonii. The functional roles of these changing host bacterial populations coupled with the putative reduced pathogenicity of C. perfringens by BEOs contributed to the reduction in gut lesions and mortality in infected chickens. It suggests that dietary supplementation with BEOs could significantly reduce the impact of NE caused by C. perfringens on broilers.
Collapse
Affiliation(s)
- Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Encun Du
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinxin Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - YouLi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Samuel E Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, 20602, USA
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
48
|
Ronco T, Stegger M, Ng KL, Lilje B, Lyhs U, Andersen PS, Pedersen K. Genome analysis of Clostridium perfringens isolates from healthy and necrotic enteritis infected chickens and turkeys. BMC Res Notes 2017; 10:270. [PMID: 28693615 PMCID: PMC5504799 DOI: 10.1186/s13104-017-2594-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Objective Clostridium perfringens causes gastrointestinal diseases in both humans and domestic animals. Type A strains expressing the NetB toxin are the main cause of necrotic enteritis (NE) in chickens, which has remarkable impact on animal welfare and production economy in the international poultry industry. Three pathogenicity loci NELoc-1, -2 and -3 and a collagen adhesion gene cnaA have been found to be associated with NE in chickens, whereas the presence of these has not been investigated in diseased turkeys. The purpose was to investigate the virulence associated genome content and the genetic relationship among 30 C. perfringens isolates from both healthy and NE infected chickens and turkeys, applying whole-genome sequencing. Results NELoc-1, -3, netB and cnaA were significantly associated with NE isolates from chickens, whereas only NELoc-2 was commonly observed in both diseased turkeys and chickens. A putative collagen adhesion gene that encodes a von Willebrand Factor (vWF) domain was identified in all diseased turkeys and designated as cnaD. The phylogenetic analysis based on single nucleotide polymorphisms showed that the isolates generally were not closely related. These results indicate that virulence factors and pathogenicity loci associated with NE in chickens are not important to the same extent in diseased turkeys except for NELoc-2. A putative collagen adhesion gene which potentially could be of importance in regard to the NE pathogenesis in turkeys was identified and need to be further investigated. Thus, the pathogenesis of NE in turkeys appears to be different from that of broiler chickens. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2594-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Troels Ronco
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark.
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Kim Lee Ng
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Berit Lilje
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Ulrike Lyhs
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Karl Pedersen
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870, Frederiksberg C, Denmark
| |
Collapse
|
49
|
The Contribution of Bacteriophages to the Biology and Virulence of Pathogenic Clostridia. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:169-200. [PMID: 29050666 DOI: 10.1016/bs.aambs.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteriophages are key players in the evolution of most bacteria. Temperate phages have been associated with virulence of some of the deadliest pathogenic bacteria. Among the most notorious cases, the genes encoding the botulinum neurotoxin produced by Clostridium botulinum types C and D and the α-toxin (TcnA) produced by Clostridium novyi are both encoded within prophage genomes. Clostridium difficile is another important human pathogen and the recent identification of a complete binary toxin locus (CdtLoc) carried on a C. difficile prophage raises the potential for horizontal transfer of toxin genes by mobile genetic elements. Although the TcdA and TcdB toxins produced by C. difficile have never been found outside the pathogenicity locus (PaLoc), some prophages can still influence their production. Prophages can alter the expression of several metabolic and regulatory genes in C. difficile, as well as cell surface proteins such as CwpV, which confers phage resistance. Homologs of an Agr-like quorum sensing system have been identified in a C. difficile prophage, suggesting that it could possibly participate in cell-cell communication. Yet, other C. difficile prophages contain riboswitches predicted to recognize the secondary messenger molecule c-di-GMP involved in bacterial multicellular behaviors. Altogether, recent findings on clostridial phages underline the diversity of mechanisms and intricate relationship linking phages with their host. Here, milestone discoveries linking phages and virulence of some of the most pathogenic clostridial species will be retraced, with a focus on C. botulinum, C. novyi, C. difficile, and Clostridium perfringens phages, for which evidences are mostly available.
Collapse
|
50
|
Respiratory Microbiome of Endangered Southern Resident Killer Whales and Microbiota of Surrounding Sea Surface Microlayer in the Eastern North Pacific. Sci Rep 2017; 7:394. [PMID: 28341851 PMCID: PMC5428453 DOI: 10.1038/s41598-017-00457-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/27/2017] [Indexed: 01/01/2023] Open
Abstract
In the Salish Sea, the endangered Southern Resident Killer Whale (SRKW) is a high trophic indicator of ecosystem health. Three major threats have been identified for this population: reduced prey availability, anthropogenic contaminants, and marine vessel disturbances. These perturbations can culminate in significant morbidity and mortality, usually associated with secondary infections that have a predilection to the respiratory system. To characterize the composition of the respiratory microbiota and identify recognized pathogens of SRKW, exhaled breath samples were collected between 2006–2009 and analyzed for bacteria, fungi and viruses using (1) culture-dependent, targeted PCR-based methodologies and (2) taxonomically broad, non-culture dependent PCR-based methodologies. Results were compared with sea surface microlayer (SML) samples to characterize the respective microbial constituents. An array of bacteria and fungi in breath and SML samples were identified, as well as microorganisms that exhibited resistance to multiple antimicrobial agents. The SML microbes and respiratory microbiota carry a pathogenic risk which we propose as an additional, fourth putative stressor (pathogens), which may adversely impact the endangered SRKW population.
Collapse
|