1
|
Abe K. Biological and biochemical studies on cell surface functions in microorganisms used in brewing and fermentation industry. Biosci Biotechnol Biochem 2025; 89:649-667. [PMID: 39993924 DOI: 10.1093/bbb/zbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
When brewing microorganisms, which include bacteria and fungi, act on solid cereal substrates, the microbial cell surface interacts with the substrate. When microorganisms use sugars and amino acids released by hydrolysis of the substrate, this occurs on the cell surface. Throughout my career, I have focused on functional studies of cell surface molecules such as solute transporters, cell wall components, and bio-surfactants and applied the knowledge obtained to the development of fermentation technologies. In this review, I describe (i) catabolite control by sugar transporters and energy generation coupled with amino acid decarboxylation in lactic acid bacteria; (ii) recruitment of a polyesterase by the fungal bio-surfactant proteins to polyesters and subsequent promotion of polyester hydrolysis; and (iii) hyphal aggregation via cell wall α-1,3-glucan and galactosaminogalactan in aspergilli and the development of a novel liquid culture method with hyphal dispersed mutants lacking these two polysaccharides.
Collapse
Affiliation(s)
- Keietsu Abe
- Laboratory of Fermentation Microbiology, Department of Agrochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Al Hallak M, Verdier T, Bertron A, Mercade M, Lepercq P, Roques C, Bailly JD. Efficiency of the Coriolis µ Air Sampling Device for Fungal Contamination Analysis of Indoor Air: A Case Study. Pathogens 2025; 14:345. [PMID: 40333156 PMCID: PMC12030049 DOI: 10.3390/pathogens14040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
Molds are frequent indoor contaminants, where they can colonize many materials. The subsequent aerosolization of fungal spores from moldy surfaces can strongly impact indoor air quality and the health of occupants. The investigation of fungal contamination of habitations is a key point in evaluating sanitary risks and understanding the relationship that may exist between the fungal presence on surfaces and air contamination. However, to date there is no "gold standard" of sampling indoor air for such investigations. Among various air sampling methods, impingement can be used for capturing fungal spores, as it enables real-time sampling and preserves analytical follow-up. Its efficiency varies depending on several factors, such as spore hydrophobicity, sampling conditions, etc. Sampling devices may also impact the results, with recovery rates sometimes lower than filtration-based methods. The Coriolis µ air sampler, an impingement-based device, utilizes centrifugal force to concentrate airborne particles into a liquid medium, offering flexibility for molecular analysis. Several studies have used this device for air sampling, demonstrating its application in detecting pollen, fungal spores, bacteria, and viruses, but it is most often used in laboratory conditions. The present case study, conducted in a moldy house, aims to investigate the efficiency of this device in sampling fungal spores for DNA analysis in indoor environments. The results obtained suggest that the use of this device requires an optimized methodology to enhance its efficiency and reliability in bioaerosol research.
Collapse
Affiliation(s)
- Mohamad Al Hallak
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Thomas Verdier
- Laboratory of Materials and Durability of Construction, University of Toulouse, UPS, INSA, 31077 Toulouse, France; (T.V.); (A.B.)
| | - Alexandra Bertron
- Laboratory of Materials and Durability of Construction, University of Toulouse, UPS, INSA, 31077 Toulouse, France; (T.V.); (A.B.)
| | - Myriam Mercade
- Toulouse Biotechnology Institute, University of Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (M.M.); (P.L.)
| | - Pascale Lepercq
- Toulouse Biotechnology Institute, University of Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (M.M.); (P.L.)
| | - Christine Roques
- Chemical Engineering Laboratory, University of Toulouse, CNRS, INPT, 31062 Toulouse, France;
| | - Jean-Denis Bailly
- Laboratory of Agro-Industrial Chemistry, University of Toulouse, INRAE, INPT, 31030 Toulouse, France
| |
Collapse
|
3
|
Medina HR, Rangel DEN. Metarhizium acridum exhibits a different conidial hydrophobicity than other insect-pathogenic fungi. Fungal Biol 2025; 129:101547. [PMID: 40023527 DOI: 10.1016/j.funbio.2025.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Metarhizium acridum is an insect-pathogenic fungus with a narrow host range that is used to control grasshoppers, locusts, and crickets. Its conidia show impressive resilience against UV-B radiation and heat compared to other insect pathogens. Despite this high tolerance, M. acridum is notably susceptible to various chemical stressors. The conidial surface is a monolayer formed by hydrophobins and the first barrier against stressors. However, little is known about the conidial surface properties of this fungus. This work aimed to evaluate the hydrophobic properties of the conidial surface in M. acridum ARSEF 324 and to compare them with those of other entomopathogen fungi. For this, drop profiles of water and diiodomethane on fungal cultures were analyzed, and the conidial hydrophobicity was estimated from a contact angle following the sessile drop method. The analysis of droplet profiles revealed distinct hydrophobic properties among the conidia of various insect-pathogenic fungi. The conidia of Beauveria bassiana, M. acridum, and Metarhizium robertsii exhibited high hydrophobicity, as indicated by water contact angles greater than 140°. In contrast, the conidia of Tolypocladium inflatum showed slightly lower hydrophobicity with a water contact angle below 130°. The behavior of diiodomethane further highlighted the variation in surface interactions, particularly for M. acridum, where the drop flattened instantly, indicating its low affinity for nonpolar compounds, which correlated with the extremely low tolerance of ARSEF 324 to chemicals. Overall, the study provides a deeper understanding of fungal surface properties, which could have implications for its tolerance to chemical stressors.
Collapse
Affiliation(s)
- Humberto R Medina
- Laboratory of Molecular Biology - LGO, Tecnológico Nacional de México, Celaya, Gto., 38010, Mexico
| | - Drauzio E N Rangel
- Inbioter - Institute of Biotechnology Rangel, Caixa Postal 5, Itatiba, SP, 13250-970, Brazil.
| |
Collapse
|
4
|
Zotti M, Bonanomi G, Mazzoleni S. Fungal fairy rings: history, ecology, dynamics and engineering functions. IMA Fungus 2025; 16:e138320. [PMID: 40052080 PMCID: PMC11881004 DOI: 10.3897/imafungus.16.138320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/04/2025] [Indexed: 03/09/2025] Open
Abstract
Fungal fairy rings (FFR) are fascinating natural phenomena that have intrigued people and scientists for centuries. These patterns, often represented by circular distributions of altered vegetation, are found in grasslands and forest habitats. Fairy rings occur when fungi grow radially in the soil, raising from a central point, progressively degrading organic matter and thus affecting vegetation. The observation of such spatial patterns allows mycologists to conduct an in-depth analysis of the role of fungi in ecosystems. This review presents the current knowledge and scientific advancement of the studies of FFRs. An historical appraisal from the most representative pioneer studies until recent works is presented in different scientific fields, including microbiology, chemistry, botany and ecology. Based on a deep analysis of bibliographic data, we synopsised different aspects of FFRs: i) history of studies, ii) taxonomy, iii) ecology (environmental conditions and biogeography), iv) classification of vegetation patterns, v) spatial dynamics, vi) role as ecosystem engineer (impact on soil chemistry, plants and microbiota). In conclusion, beside still open research areas requiring further investigation, a schematic functional model of fungal fairy rings is proposed, in which on one hand the dynamics of the fungal mycelium is explained by self-DNA accumulation and the build-up of autotoxicity. On the other hand, the effects of fungi on plants are related to the intermingled and differently spatially distributed effects of hydrophobicity, phytotoxicity and phytostimulation.
Collapse
Affiliation(s)
- Maurizio Zotti
- Department of Agricultural Sciences, University of Naples Federico II, Portici NA, via Università 100, Naples, ItalyUniversity of Naples Federico IIPorticiItaly
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Portici NA, via Università 100, Naples, ItalyUniversity of Naples Federico IIPorticiItaly
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Portici NA, via Università 100, Naples, ItalyUniversity of Naples Federico IIPorticiItaly
| |
Collapse
|
5
|
Han J, Kawauchi M, Terauchi Y, Tsuji K, Yoshimi A, Tanaka C, Nakazawa T, Honda Y. Physiological function of hydrophobin Hydph16 in cell wall formation in agaricomycete Pleurotus ostreatus. Fungal Genet Biol 2025; 176:103943. [PMID: 39612978 DOI: 10.1016/j.fgb.2024.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Hydrophobins are small-secreted proteins with both hydrophobic and hydrophilic regions, enabling the mycelium to break through the air-medium interface by reducing the medium surface tension. Over 20 putative hydrophobin-encoding genes have been predicted in the agaricomycete Pleurotus ostreatus. Three hydrophobin-encoding genes, vmh2, vmh3, and hydph16, were predominantly expressed in the vegetative mycelium. Despite these common properties, we have previously demonstrated the distinct functions of Vmh2 and Vmh3 in environmental stress resistance. In this study, we focused on hydph16 and found that Δhydph16 strains had sparser aerial mycelium than control strains. The cell wall thickness of Δhydph16 strains reduced by 40 % compared to that of control strains, but no significant differences were found in the relative chitin and glucan percentages or relative putative cell wall synthesis-related gene expression levels. Furthermore, unlike vmh2 and vmh3, hydph16 deletion did not change the hydrophobicity of the aerial mycelium. This study is the first to report that the lack of hydrophobin can lead to a significant change in aerial hyphae cell wall formation without altering the major cell wall polysaccharide composition. Additionally, this study revealed multiple roles for Hydph16, distinct from those of other highly expressed hydrophobins, Vmh2 and Vmh3. These results suggested that agaricomycetes, including P. ostreatus, have evolved to possess multiple hydrophobins with different functions.
Collapse
Affiliation(s)
- Junxian Han
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yuki Terauchi
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan
| | - Kenya Tsuji
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akira Yoshimi
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan; Graduate School of Global Environmental Studies, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chihiro Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan; Graduate School of Global Environmental Studies, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Rojas-Osnaya J, Nájera H. Assembly of Hydrophobin class I from Agaricus bisporus produced different amyloid-like fibrils. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141048. [PMID: 39341582 DOI: 10.1016/j.bbapap.2024.141048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
This work studied the extraction, purification, characterization, and assembly of hydrophobin class I from Agaricus bisporus (ABH4). The highest soluble protein concentration was obtained from the pinhead, the extraction and purification were efficient for hydrophobin class I, obtaining a band of 12 kDa. The identified sequence of hydrophobin presented the eight cysteine residues; for the prediction of the structure, hydrophobin presented more alpha helix structures than beta sheets. It was observed that the hydrophobin managed to decrease and increase the contact angle in Teflon and glass, respectively, finding a micellar critical concentration of 221 μg mL-1. ThT experiments demonstrated that the production of fibrils decreased at basic pH, while acidic and neutral pH favoured the formation of fibrils. Likewise, the addition of colloidal Teflon affects the formation of fibrils. Circular dichroism spectra proved that hydrophobin class I undergo changes in its secondary structure, increasing its alpha helix and beta sheet content after vortexing. It was observed that the analysis by scanning electron microscopy and atomic force microscopy of the hydrophobin produced different amyloid-like structures in glass and mica.
Collapse
Affiliation(s)
- Jesús Rojas-Osnaya
- Universidad Autónoma Metropolitana-Cuajimalpa. Departamento de Ciencias Naturales. Laboratorio de Biofisicoquímica, Av. Vasco de Quiroga 4871. Col. Santa Fe Cuajimalpa, Alcaldía Cuajimalpa, Mexico City, CP 05348, Mexico.
| | - Hugo Nájera
- Universidad Autónoma Metropolitana-Cuajimalpa. Departamento de Ciencias Naturales. Laboratorio de Biofisicoquímica, Av. Vasco de Quiroga 4871. Col. Santa Fe Cuajimalpa, Alcaldía Cuajimalpa, Mexico City, CP 05348, Mexico.
| |
Collapse
|
7
|
Beijen EPW, van Maanen MH, Marian IM, Klusener JX, van Roosmalen E, Herman KC, Koster MC, Ohm RA. Transcriptomics reveals the regulation of the immune system of the mushroom-forming fungus Schizophyllum commune during interaction with four competitors. Microbiol Res 2024; 289:127929. [PMID: 39413670 DOI: 10.1016/j.micres.2024.127929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Mushroom-forming fungi frequently encounter competitors during their lifecycle, but their defense mechanisms remain largely unexplored. We studied the response of the mushroom-forming fungus Schizophyllum commune during interaction with the fungal competitors Trichoderma harzianum, Trichoderma aggressivum and Purpureocillium lilacinum and the bacterial competitor Serratia quinivorans. Transcriptomics revealed 632 up-regulated genes in the direct interaction zone, which were enriched in small secreted proteins and transporters. A set of 26 genes were up-regulated during all interactions, indicating a core transcriptomic defense response. In the non-interacting edge of the mycelium of S. commune, there were 154 up-regulated genes, suggesting that there is a systemic response due to a signal that reaches unaffected areas. The GATA zinc finger transcription factor gene gat1 was up-regulated during interaction and a Δgat1 strain displayed increased colonization by T. harzianum. Previously linked to mushroom development, this transcription factor apparently has a dual role. Moreover, 138 genes were up-regulated during both interaction and mushroom development, indicating priming of the defense response during development to prepare the fruiting body for future interactions. Overall, we unveiled a defensive response of S. commune during interaction with fungal and bacterial competitors and identified a regulator of this response.
Collapse
Affiliation(s)
- Erik P W Beijen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Marieke H van Maanen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Janieke X Klusener
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Emmeline van Roosmalen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Koen C Herman
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Margot C Koster
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
8
|
de Miranda RPR, Soares TKDA, Castro DP, Genta FA. General aspects, host interaction, and application of Metarhizium sp. in arthropod pest and vector control. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1456964. [PMID: 39634290 PMCID: PMC11614621 DOI: 10.3389/ffunb.2024.1456964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
The application of microorganisms as bio-control agents against arthropod populations is a need in many countries, especially in tropical, subtropical, and neotropical endemic areas. Several arthropod species became agricultural pests of paramount economic significance, and many methods have been developed for field and urban applications to prevent their, the most common being the application of chemical insecticides. However, the indiscriminate treatment based upon those substances acted as a selective pressure for upcoming resistant phenotype populations. As alternative tools, microorganisms have been prospected as complementary tools for pest and vectorial control, once they act in a more specific pattern against target organisms than chemicals. They are considered environmentally friendly since they have considerably less off-target effects. Entomopathogenic fungi are organisms capable of exerting pathogenesis in many vector species, thus becoming potential tools for biological management. The entomopathogenic fungi Metarhizium sp. have been investigated as a microbiological agent for the control of populations of insects in tropical regions. However, the development of entomopathogenic fungi as control tools depends on physiological studies regarding aspects such as mechanisms of pathogenicity, secreted enzymes, viability, and host-pathogen aspects. The following review briefly narrates current aspects of entomopathogenic fungi, such as physiology, cellular characteristics, host-pathogen interactions, and its previous applications against different insect orders with medical and economic importance. Approaches integrating new isolation, prospection, characterization, delivery strategies, formulations, and molecular and genetic tools will be decisive to elucidate the molecular mechanisms of EPFs and to develop more sustainable alternative pesticides.
Collapse
Affiliation(s)
| | | | - Daniele Pereira Castro
- Laboratorio de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratorio de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Chellappan BV. Comparative secretome analysis unveils species-specific virulence factors in Elsinoe perseae, the causative agent of the scab disease of avocado ( Persea americana). AIMS Microbiol 2024; 10:894-916. [PMID: 39628720 PMCID: PMC11609419 DOI: 10.3934/microbiol.2024039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
The scab disease, caused by Elsinoe perseae, poses a significant risk to avocado (Persea americana) production in countries with warm and humid climates. Although the genome has been published, the precise virulence factors accountable for the pathogenicity of E. perseae have not yet been determined. The current study employed an in silico approach to identify and functionally characterize the secretory proteins of E. perseae. A total of 654 potential secretory proteins were identified, of which 190 were classified as carbohydrate-active enzymes (CAZymes), 49 as proteases, and 155 as potential effectors. A comparison to six other closely related species identified 40 species-specific putative effectors in E. perseae, indicating their specific involvement in the pathogenicity of E. perseae on avocado. The data presented in this study might be valuable for further research focused on understanding the molecular mechanisms that contribute to the pathogenicity of E. perseae on avocado.
Collapse
|
10
|
Hariri Akbari F, Song Z, Turk M, Gunde-Cimerman N, Gostinčar C. Experimental evolution of extremotolerant and extremophilic fungi under osmotic stress. IUBMB Life 2024; 76:617-631. [PMID: 38647201 DOI: 10.1002/iub.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Experimental evolution was carried out to investigate the adaptive responses of extremotolerant fungi to a stressful environment. For 12 cultivation cycles, the halotolerant black yeasts Aureobasidium pullulans and Aureobasidium subglaciale were grown at high NaCl or glycerol concentrations, and the halophilic basidiomycete Wallemia ichthyophaga was grown close to its lower NaCl growth limit. All evolved Aureobasidium spp. accelerated their growth at low water activity. Whole genomes of the evolved strains were sequenced. No aneuploidies were detected in any of the genomes, contrary to previous studies on experimental evolution at high salinity with other species. However, several hundred single-nucleotide polymorphisms were identified compared with the genomes of the progenitor strains. Two functional groups of genes were overrepresented among the genes presumably affected by single-nucleotide polymorphisms: voltage-gated potassium channels in A. pullulans at high NaCl concentration, and hydrophobins in W. ichthyophaga at low NaCl concentration. Both groups of genes were previously associated with adaptation to high salinity. Finally, most evolved Aureobasidium spp. strains were found to have increased intracellular and decreased extracellular glycerol concentrations at high salinity, suggesting that the strains have optimised their management of glycerol, their most important compatible solute. Experimental evolution therefore not only confirmed the role of potassium transport, glycerol management, and cell wall in survival at low water activity, but also demonstrated that fungi from extreme environments can further improve their growth rates under constant extreme conditions in a relatively short time and without large scale genomic rearrangements.
Collapse
Affiliation(s)
- Farhad Hariri Akbari
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Zewei Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Martina Turk
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Landeta C, Medina-Ortiz D, Escobar N, Valdez I, González-Troncoso MP, Álvares-Saravia D, Aldridge J, Gómez C, Lienqueo ME. Integrative workflows for the characterization of hydrophobin and cerato-platanin in the marine fungus Paradendryphiella salina. Arch Microbiol 2024; 206:385. [PMID: 39177836 DOI: 10.1007/s00203-024-04087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
Hydrophobins (HFBs) and cerato-platanins (CPs) are surface-active extracellular proteins produced by filamentous fungi. This study identified two HFB genes (pshyd1 and pshyd2) and one CP gene (pscp) in the marine fungus Paradendryphiella salina. The proteins PsCP, PsHYD2, and PsHYD1 had molecular weights of 12.70, 6.62, and 5.98 kDa, respectively, with isoelectric points below 7. PsHYD1 and PsHYD2 showed hydrophobicity (GRAVY score 0.462), while PsCP was hydrophilic (GRAVY score - 0.202). Stability indices indicated in-solution stability. Mass spectrometry identified 2,922 proteins, including CP but not HFB proteins. qPCR revealed differential gene expression influenced by developmental stage and substrate, with pshyd1 consistently expressed. These findings suggest P. salina's adaptation to marine ecosystems with fewer hydrophobin genes than other fungi but capable of producing surface-active proteins from seaweed carbohydrates. These proteins have potential applications in medical biocoatings, food industry foam stabilizers, and environmental bioremediation.
Collapse
Affiliation(s)
- Catalina Landeta
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - David Medina-Ortiz
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Natalia Escobar
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Iván Valdez
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - María Paz González-Troncoso
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - Diego Álvares-Saravia
- Teaching and Research Assistance Center, CADI, University of Magallanes, Av. los Flamencos, Punta Arenas, 01364, Chile
| | - Jacqueline Aldridge
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Carlos Gómez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Chile
| | - María Elena Lienqueo
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile.
| |
Collapse
|
12
|
Marian IM, Valdes ID, Hayes RD, LaButti K, Duffy K, Chovatia M, Johnson J, Ng V, Lugones LG, Wösten HAB, Grigoriev IV, Ohm RA. High phenotypic and genotypic plasticity among strains of the mushroom-forming fungus Schizophyllum commune. Fungal Genet Biol 2024; 173:103913. [PMID: 39004162 DOI: 10.1016/j.fgb.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Schizophyllum commune is a mushroom-forming fungus notable for its distinctive fruiting bodies with split gills. It is used as a model organism to study mushroom development, lignocellulose degradation and mating type loci. It is a hypervariable species with considerable genetic and phenotypic diversity between the strains. In this study, we systematically phenotyped 16 dikaryotic strains for aspects of mushroom development and 18 monokaryotic strains for lignocellulose degradation. There was considerable heterogeneity among the strains regarding these phenotypes. The majority of the strains developed mushrooms with varying morphologies, although some strains only grew vegetatively under the tested conditions. Growth on various carbon sources showed strain-specific profiles. The genomes of seven monokaryotic strains were sequenced and analyzed together with six previously published genome sequences. Moreover, the related species Schizophyllum fasciatum was sequenced. Although there was considerable genetic variation between the genome assemblies, the genes related to mushroom formation and lignocellulose degradation were well conserved. These sequenced genomes, in combination with the high phenotypic diversity, will provide a solid basis for functional genomics analyses of the strains of S. commune.
Collapse
Affiliation(s)
- Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ivan D Valdes
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Richard D Hayes
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kecia Duffy
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Luis G Lugones
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
13
|
Krom J, Meister K, Vilgis TA. Simple Method to Assess Foam Structure and Stability using Hydrophobin and BSA as Model Systems. Chemphyschem 2024; 25:e202400050. [PMID: 38683048 DOI: 10.1002/cphc.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The properties and arrangement of surface-active molecules at air-water interfaces influence foam stability and bubble shape. Such multiscale-relationships necessitate a well-conducted analysis of mesoscopic foam properties. We introduce a novel automated and precise method to characterize bubble growth, size distribution and shape based on image analysis and using the machine learning algorithm Cellpose. Studying the temporal evolution of bubble size and shape facilitates conclusions on foam stability. The addition of two sets of masks, for tiny bubbles and large bubbles, provides for a high precision of analysis. A python script for analysis of the evolution of bubble diameter, circularity and dispersity is provided in the Supporting Information. Using foams stabilized by bovine serum albumin (BSA), hydrophobin (HP), and blends thereof, we show how this technique can be used to precisely characterize foam structures. Foams stabilized by HP show a significantly increased foam stability and rounder bubble shape than BSA-stabilized foams. These differences are induced by the different molecular structure of the two proteins. Our study shows that the proposed method provides an efficient way to analyze relevant foam properties in detail and at low cost, with higher precision than conventional methods of image analysis.
Collapse
Affiliation(s)
- Judith Krom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Konrad Meister
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, 83725, United States
| | - Thomas A Vilgis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
14
|
Angulo V, Bleichrodt RJ, Dijksterhuis J, Erktan A, Hefting MM, Kraak B, Kowalchuk GA. Enhancement of soil aggregation and physical properties through fungal amendments under varying moisture conditions. Environ Microbiol 2024; 26:e16627. [PMID: 38733112 DOI: 10.1111/1462-2920.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Soil structure and aggregation are crucial for soil functionality, particularly under drought conditions. Saprobic soil fungi, known for their resilience in low moisture conditions, are recognized for their influence on soil aggregate dynamics. In this study, we explored the potential of fungal amendments to enhance soil aggregation and hydrological properties across different moisture regimes. We used a selection of 29 fungal isolates, recovered from soils treated under drought conditions and varying in colony density and growth rate, for single-strain inoculation into sterilized soil microcosms under either low or high moisture (≤-0.96 and -0.03 MPa, respectively). After 8 weeks, we assessed soil aggregate formation and stability, along with soil properties such as soil water content, water hydrophobicity, sorptivity, total fungal biomass and water potential. Our findings indicate that fungal inoculation altered soil hydrological properties and improved soil aggregation, with effects varying based on the fungal strains and soil moisture levels. We found a positive correlation between fungal biomass and enhanced soil aggregate formation and stabilization, achieved by connecting soil particles via hyphae and modifying soil aggregate sorptivity. The improvement in soil water potential was observed only when the initial moisture level was not critical for fungal activity. Overall, our results highlight the potential of using fungal inoculation to improve the structure of agricultural soil under drought conditions, thereby introducing new possibilities for soil management in the context of climate change.
Collapse
Affiliation(s)
- Violeta Angulo
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Robert-Jan Bleichrodt
- Microbiology Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Amandine Erktan
- Eco&Sols, University Montpellier, IRD, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Mariet M Hefting
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bart Kraak
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
15
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol 2024; 22:226-239. [PMID: 37863969 DOI: 10.1038/s41579-023-00980-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 198.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.
Collapse
Affiliation(s)
- Laurent Philippot
- Université de Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroecology, Dijon, France.
| | - Claire Chenu
- University of Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France
| | - Andreas Kappler
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
17
|
Kolodkin-Gal I, Dash O, Rak R. Probiotic cultivated meat: bacterial-based scaffolds and products to improve cultivated meat. Trends Biotechnol 2024; 42:269-281. [PMID: 37805297 DOI: 10.1016/j.tibtech.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Cultivated meat is emerging to replace traditional livestock industries, which have ecological costs, including land and water overuse and considerable carbon emissions. During cultivated meat production, mammalian cells can increase their numbers dramatically through self-renewal/proliferation and transform into mature cells, such as muscle or fat cells, through maturation/differentiation. Here, we address opportunities for introducing probiotic bacteria into the cultivated meat industry, including using them to produce renewable antimicrobials and scaffolding materials. We also offer solutions to challenges, including the growth of bacteria and mammalian cells, the effect of probiotic bacteria on production costs, and the effect of bacteria and their products on texture and taste. Our summary provides a promising framework for applying microbial composites in the cultivated meat industry.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Orit Dash
- Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
18
|
Morris RJ, Bamford NC, Bromley KM, Erskine E, Stanley-Wall NR, MacPhee CE. Bacillus subtilis Matrix Protein TasA is Interfacially Active, but BslA Dominates Interfacial Film Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4164-4173. [PMID: 38351711 PMCID: PMC10905994 DOI: 10.1021/acs.langmuir.3c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA's ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in β-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic "raincoat" observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA's role in forming a stable film integral to B. subtilis biofilm hydrophobicity.
Collapse
Affiliation(s)
- Ryan J. Morris
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
| | - Natalie C. Bamford
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Keith M. Bromley
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
| | - Elliot Erskine
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Nicola R. Stanley-Wall
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Cait E. MacPhee
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
| |
Collapse
|
19
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
20
|
Penman R, Kariuki R, Shaw ZL, Dekiwadia C, Christofferson AJ, Bryant G, Vongsvivut J, Bryant SJ, Elbourne A. Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. J Colloid Interface Sci 2024; 654:390-404. [PMID: 37852025 DOI: 10.1016/j.jcis.2023.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
HYPOTHESIS Nanomaterials have been extensively investigated for a wide range of biomedical applications, including as antimicrobial agents, drug delivery vehicles, and diagnostic devices. The commonality between these biomedical applications is the necessity for the nanoparticle to interact with or pass through the cellular wall and membrane. Cell-nanomaterial interactions/uptake can occur in various ways, including adhering to the cell wall, forming aggregates on the surface, becoming absorbed within the cell wall itself, or transversing into the cell cytoplasm. These interactions are common to mammalian cells, bacteria, and yeast cells. This variety of interactions can cause changes to the integrity of the cell wall and the cell overall, but the precise mechanisms underpinning such interactions remain poorly understood. Here, we investigate the interaction between commonly investigated gold nanoparticles (AuNPs) and the cell wall/membrane of a model fungal cell to explore the general effects of interaction and uptake. EXPERIMENTS The interactions between 100 nm citrate-capped AuNPs and the cell wall of Candida albicans fungal cells were studied using a range of advanced microscopy techniques, including atomic force microscopy, confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, and synchrotron-FTIR micro-spectroscopy. FINDINGS In most cases, particles adhered on the cell surface, although instances of particles being up-taken into the cell cytoplasm and localised within the cell wall and membrane were also observed. There was a measurable increase in the stiffness of the fungal cell after AuNPs were introduced. Analysis of the synchrotron-FTIR data showed significant changes in spectral features associated with phospholipids and proteins after exposure to AuNPs.
Collapse
Affiliation(s)
- Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
21
|
Hu G, Zhou Y, Mou D, Qu J, Luo L, Duan L, Xu Z, Zou X. Filtration effect of Cordyceps chanhua mycoderm on bacteria and its transport function on nitrogen. Microbiol Spectr 2024; 12:e0117923. [PMID: 38099615 PMCID: PMC10783027 DOI: 10.1128/spectrum.01179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/04/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE During the natural growth of Cordyceps chanhua, it will form a mycoderm structure specialized from hyphae. We found that the bacterial membrane of C. chanhua not only filters environmental bacteria but also absorbs and transports nitrogen elements inside and outside the body of C. chanhua. These findings are of great significance for understanding the stable mechanism of the internal microbial community maintained by C. chanhua and how C. chanhua maintains its own nutritional balance. In addition, this study also enriched our understanding of the differences in bacterial community composition and related bacterial community functions of C. chanhua at different growth stages, which is of great value for understanding the environmental adaptation mechanism, the element distribution network, and the changing process of symbiotic microbial system after Cordyceps fungi infected the host. At the same time, it can also provide a theoretical basis for some important ecological imitation cultivation technology of Cordyceps fungi.
Collapse
Affiliation(s)
- Gongping Hu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yeming Zhou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Dan Mou
- Department of Humanities, Business College of Guizhou University of Finance and Economics, Qiannan, Guizhou, China
| | - Jiaojiao Qu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
- Tea College, Guizhou University, Guiyang, Guizhou, China
| | - Li Luo
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Lin Duan
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zhongshun Xu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
22
|
Wang C, Kuzyakov Y. Mechanisms and implications of bacterial-fungal competition for soil resources. THE ISME JOURNAL 2024; 18:wrae073. [PMID: 38691428 PMCID: PMC11104273 DOI: 10.1093/ismejo/wrae073] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Elucidating complex interactions between bacteria and fungi that determine microbial community structure, composition, and functions in soil, as well as regulate carbon (C) and nutrient fluxes, is crucial to understand biogeochemical cycles. Among the various interactions, competition for resources is the main factor determining the adaptation and niche differentiation between these two big microbial groups in soil. This is because C and energy limitations for microbial growth are a rule rather than an exception. Here, we review the C and energy demands of bacteria and fungi-the two major kingdoms in soil-the mechanisms of their competition for these and other resources, leading to niche differentiation, and the global change impacts on this competition. The normalized microbial utilization preference showed that bacteria are 1.4-5 times more efficient in the uptake of simple organic compounds as substrates, whereas fungi are 1.1-4.1 times more effective in utilizing complex compounds. Accordingly, bacteria strongly outcompete fungi for simple substrates, while fungi take advantage of complex compounds. Bacteria also compete with fungi for the products released during the degradation of complex substrates. Based on these specifics, we differentiated spatial, temporal, and chemical niches for these two groups in soil. The competition will increase under the main five global changes including elevated CO2, N deposition, soil acidification, global warming, and drought. Elevated CO2, N deposition, and warming increase bacterial dominance, whereas soil acidification and drought increase fungal competitiveness.
Collapse
Affiliation(s)
- Chaoqun Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen 37077, Germany
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yakov Kuzyakov
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
23
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
24
|
Yarden O, Zhang J, Marcus D, Changwal C, Mabjeesh SJ, Lipzen A, Zhang Y, Savage E, Ng V, Grigoriev IV, Hadar Y. Altered Expression of Two Small Secreted Proteins ( ssp4 and ssp6) Affects the Degradation of a Natural Lignocellulosic Substrate by Pleurotus ostreatus. Int J Mol Sci 2023; 24:16828. [PMID: 38069150 PMCID: PMC10705924 DOI: 10.3390/ijms242316828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small secreted proteins (SSPs) encoded by the ssp1-6 genes. Using RNA sequencing (RNA-seq), we determined that ssp4 and ssp6 are the predominant members of this gene family that were expressed by P. ostreatus during the first three weeks of growth on wheat straw. Downregulation of ssp4 in a strain harboring an ssp RNAi construct (KDssp1) was then confirmed, which, along with an increase in ssp6 transcript levels, coincided with reduced lignin degradation and the downregulation of vp2 and mnp1. In contrast, we observed an increase in the expression of genes related to pectin and side-chain hemicellulose degradation, which was accompanied by an increase in extracellular pectin-degrading capacity. Genome-wide comparisons between the KDssp1 and the wild-type strains demonstrated that ssp silencing conferred accumulated changes in gene expression at the advanced cultivation stages in an adaptive rather than an inductive mode of transcriptional response. Based on co-expression networking, crucial gene modules were identified and linked to the ssp knockdown genotype at different cultivation times. Based on these data, as well as previous studies, we propose that P. ostreatus SSPs have potential roles in modulating the lignocellulolytic and pectinolytic systems, as well as a variety of fundamental biological processes related to fungal growth and development.
Collapse
Affiliation(s)
- Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Dor Marcus
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Chunoti Changwal
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Sameer J. Mabjeesh
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Yu Zhang
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Emily Savage
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Vivian Ng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Igor V. Grigoriev
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| |
Collapse
|
25
|
Sinha A, Kummer N, Wu T, De France KJ, Pinotsi D, Thoma JL, Fischer P, Campioni S, Nyström G. Nanocellulose aerogels as 3D amyloid templates. NANOSCALE 2023; 15:17785-17792. [PMID: 37909800 PMCID: PMC10653027 DOI: 10.1039/d3nr02109b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/23/2023] [Indexed: 11/03/2023]
Abstract
Proteins in solution tend to coat solid surfaces upon exposure. Depending on the nature of the surface, the environmental conditions, and the nature of the protein these adsorbed proteins may self-assemble into ordered, fibre-like structures called amyloids. Nanoparticulate surfaces, with their high surface to volume ratio, are particularly favourable to amyloid formation. Most prior research has focussed on either inorganic or organic nanoparticles in solution. In this research, we instead focus on aerogels created from TEMPO-oxidized cellulose nanofibers (TO-CNF) to serve as bio-based, three-dimensional amyloid templates with a tuneable surface chemistry. Previous research on the use of cellulose as a protein adsorption template has shown no evidence of a change in the secondary protein structure. Herein, however, with the aid of the reducing agent TCEP, we were able to induce the formation of amyloid-like 'worms' on the surface of TO-CNF aerogels. Furthermore, we demonstrate that the addition of the TO-CNF aerogel can also induce bulk aggregation under conditions where it previously did not exist. Finally, we show that the addition of the aerogel increases the rate of 'worm' formation in conditions where previous research has found a long lag-phase. Therefore, TO-CNF aerogels are shown to be excellent templates for inducing ordered protein aggregation.
Collapse
Affiliation(s)
- Ashutosh Sinha
- Laboratory for Cellulose and Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Nico Kummer
- Laboratory for Cellulose and Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Tingting Wu
- Laboratory for Cellulose and Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | - Kevin J De France
- Laboratory for Cellulose and Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | - Dorothea Pinotsi
- Scientific Centre for Optical and Electron Microscopy, ETH Zurich, 8093, Zurich, Switzerland
| | - Janine L Thoma
- Laboratory for Cellulose and Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | - Peter Fischer
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Silvia Campioni
- Laboratory for Cellulose and Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | - Gustav Nyström
- Laboratory for Cellulose and Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| |
Collapse
|
26
|
Salvatori N, Moreno M, Zotti M, Iuorio A, Cartenì F, Bonanomi G, Mazzoleni S, Giannino F. Process based modelling of plants-fungus interactions explains fairy ring types and dynamics. Sci Rep 2023; 13:19918. [PMID: 37963907 PMCID: PMC10646123 DOI: 10.1038/s41598-023-46006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Many mushroom-forming fungi can develop circular colonies affecting the vegetation in a phenomenon named fairy rings. Since the nineteenth century, several hypotheses have been proposed to explain how fairy ring fungi form ring-like shapes instead of disks and why they produce negative or positive effects on the surrounding vegetation. In this context, we present a novel process-based mathematical model aimed at reproducing the mycelial spatial configuration of fairy rings and test different literature-supported hypotheses explaining the suppressive and stimulating effects of fungi on plants. Simulations successfully reproduced the shape of fairy rings through the accumulation of fungal self-inhibitory compounds. Moreover, regarding the negative effects of fungi on vegetation, results suggest that fungal-induced soil hydrophobicity is sufficient to reproduce all observed types of fairy rings, while the potential production of phytotoxins is not. In relation to the positive effects of fungi on plants, results show that the release of phytostimulants is needed to reproduce the vegetation patterns associated to some fairy ring types. Model outputs can guide future experiments and field work to corroborate the considered hypotheses and provide more information for further model improvements.
Collapse
Affiliation(s)
- Nicole Salvatori
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
- 1DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Mauro Moreno
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Maurizio Zotti
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.
| | - Annalisa Iuorio
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
- Parthenope University of Naples, Department of Engineering, Centro Direzionale-Isola C4, 80143, Naples, Italy
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| |
Collapse
|
27
|
Whitehead KA, Lynch S, Amin M, Deisenroth T, Liauw CM, Verran J. Effects of Cationic and Anionic Surfaces on the Perpendicular and Lateral Forces and Binding of Aspergillus niger Conidia. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2932. [PMID: 37999286 PMCID: PMC10674310 DOI: 10.3390/nano13222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
The binding of conidia to surfaces is a prerequisite for biofouling by fungal species. In this study, Aspergillus niger subtypes 1957 and 1988 were used which produced differently shaped conidia (round or spikey respectively). Test surfaces were characterised for their surface topography, wettability, and hardness. Conidial assays included perpendicular and lateral force measurements, as well as attachment, adhesion and retention assays. Anionic surfaces were less rough (Ra 2.4 nm), less wettable (54°) and harder (0.72 GPa) than cationic surfaces (Ra 5.4 nm, 36° and 0.5 GPa, respectively). Perpendicular and lateral force assays demonstrated that both types of conidia adhered with more force to the anionic surfaces and were influenced by surface wettability. Following the binding assays, fewer A. niger 1957 and A. niger 1988 conidia bound to the anionic surface. However, surface wettability affected the density and dispersion of the conidia on the coatings, whilst clustering was affected by their spore shapes. This work demonstrated that anionic surfaces were more repulsive to A. niger 1998 spores than cationic surfaces were, but once attached, the conidia bound more firmly to the anionic surfaces. This work informs on the importance of understanding how conidia become tightly bound to surfaces, which can be used to prevent biofouling.
Collapse
Affiliation(s)
- Kathryn A. Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Stephen Lynch
- Department of Computing and Mathematics, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK;
| | - Mohsin Amin
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Ted Deisenroth
- BASF Corporation (Formerly Ciba Speciality Chemicals Inc.), Tarrytown, NY 10591, USA;
| | - Christopher M. Liauw
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| | - Joanna Verran
- Microbiology at Interfaces, Manchester Metropolitan University, Chester St., Manchester M1 5GD, UK; (M.A.); (C.M.L.)
| |
Collapse
|
28
|
Albayrak Turgut B, Örtücü S. A new hydrophobin candidate from Cladosporium macrocarpum with super-hydrophobic surface. Prep Biochem Biotechnol 2023; 53:1306-1312. [PMID: 37139745 DOI: 10.1080/10826068.2023.2201930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrophobins are amphipathic proteins with small molecular weights produced in filamentous fungi. These proteins are highly stable due to the disulfide bonds formed between the protected cysteine residues. They have great potential for usage in many different fields such as surface modifications, tissue engineering, and drug transport systems because hydrophobins are surfactants and soluble in harsh mediums. In this study, it was aimed to determine the hydrophobin proteins responsible for the hydrophobicity of the super-hydrophobic fungi isolates in the culture medium and to carry out the molecular characterization of the hydrophobin producer species. As a result of measuring surface hydrophobicity by determining the water contact angle, five different fungi with the highest hydrophobicity were classified as Cladosporium by classical and molecular (ITS and D1-D2 regions) methods. Also, protein extraction according to the recommended method for obtaining hydrophobins from spores of these Cladosporium species indicated that the isolates have similar protein profiles. Ultimately, the isolate named A5 with the highest water contact angle was identified as Cladosporium macrocarpum, and the 7 kDa band was appointed as a hydrophobin since it was the most abundant protein in protein extraction for this species.
Collapse
Affiliation(s)
- Büşra Albayrak Turgut
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Türkiye
| | - Serkan Örtücü
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Türkiye
- EcoTech Biotechnology, Ata Teknokent, Erzurum, Türkiye
| |
Collapse
|
29
|
Zhang JG, Xu SY, Ying SH, Feng MG. Only one of three hydrophobins (Hyd1-3) contributes to conidial hydrophobicity and insect pathogenicity of Metarhizium robertsii. J Invertebr Pathol 2023; 201:108006. [PMID: 37844657 DOI: 10.1016/j.jip.2023.108006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Class I/II hydrophobins constitute a family of small amphiphilic proteins that mediate cell hydrophobicity and adhesion to host or substrata and have pleiotropic effects in filamentous fungi. Here we report that only class I Hyd1 is essential for conidial hydrophobicity and insect pathogenicity among three hydrophobins (Hyd1-3) characterized in Metarhizium robertsii, an insect-pathogenic fungus. Aerial conidiation levels of three Δhyd1 mutants were much more reduced in 5-day-old cultures than in 7-day-old cultures, which were wettable (hydrophilic), but restored to a wild-type level in 15-day-old cultures. The Δhyd1 mutants were compromised in conidial quality, including significant decreases in hydrophobicity (58%), adhesion to insect cuticle (36%), insect pathogenicity via normal cuticle infection (37%), UVB resistance (20%), and heat tolerance (10%). In contrast, none of all examined phenotypes were affected in the null mutants of hyd2 and hyd3. Intriguingly, micromorphology and integrity of hydrophobin rodlet bundles on conidial coat were not affected in all mutant and wild-type strains, but the rodlet bundles were disordered in the absence of hyd1, suggesting a link of the disorder to the decreased hydrophobicity. Therefore, Hyd1 mediates the fungal hydrophobicity and plays an important role in conidial quality control and insect-pathogenic lifecycle. Class I Hyd2 and class II Hyd3 seem functionally redundant in M. robertsii.
Collapse
Affiliation(s)
- Jin-Guan Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Abstract
Lichens are a diverse group of organisms. They are both commonly observed but also mysterious. It has long been known that lichens are composite symbiotic associations of at least one fungus and an algal or cyanobacterial partner, but recent evidence suggests that they may be much more complex. We now know that there can be many constituent microorganisms in a lichen, organized into reproducible patterns that suggest a sophisticated communication and interplay between symbionts. We feel the time is right for a more concerted effort to understand lichen biology. Rapid advances in comparative genomics and metatranscriptomic approaches, coupled with recent breakthroughs in gene functional studies, suggest that lichens may now be more tractable to detailed analysis. Here we set out some of the big questions in lichen biology, and we speculate about the types of gene functions that may be critical to their development, as well as the molecular events that may lead to initial lichen formation. We define both the challenges and opportunities in lichen biology and offer a call to arms to study this remarkable group of organisms.
Collapse
Affiliation(s)
- Klara Scharnagl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; University & Jepson Herbaria, University of California Berkeley, Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Gulnara Tagirdzhanova
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| |
Collapse
|
31
|
Buchanan JA, Varghese NR, Johnston CL, Sunde M. Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality. J Mol Biol 2023; 435:167919. [PMID: 37330295 DOI: 10.1016/j.jmb.2022.167919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.
Collapse
Affiliation(s)
- Jessica A Buchanan
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Nikhil R Varghese
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
32
|
Venugopalan LP, Aimanianda V, Namperumalsamy VP, Prajna L, Kuppamuthu D, Jayapal JM. Comparative proteome analysis identifies species-specific signature proteins in Aspergillus pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12559-4. [PMID: 37166481 DOI: 10.1007/s00253-023-12559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Aspergillus flavus and Aspergillus fumigatus are important human pathogens that can infect the lung and cornea. During infection, Aspergillus dormant conidia are the primary morphotype that comes in contact with the host. As the conidial surface-associated proteins (CSPs) and the extracellular proteins during the early stages of growth play a crucial role in establishing infection, we profiled and compared these proteins between a clinical strain of A. flavus and a clinical strain of A. fumigatus. We identified nearly 100 CSPs in both Aspergillus, and these non-covalently associated surface proteins were able to stimulate the neutrophils to secrete interleukin IL-8. Mass spectrometry analysis identified more than 200 proteins in the extracellular space during the early stages of conidial growth and germination (early exoproteome). The conidial surface proteins and the early exoproteome of A. fumigatus were enriched with immunoreactive proteins and those with pathogenicity-related functions while that of the A. flavus were primarily enzymes involved in cell wall reorganization and binding. Comparative proteome analysis of the CSPs and the early exoproteome between A. flavus and A. fumigatus enabled the identification of a common core proteome and potential species-specific signature proteins. Transcript analysis of selected proteins indicate that the transcript-protein level correlation does not exist for all proteins and might depend on factors such as membrane-anchor signals and protein half-life. The probable signature proteins of A. flavus and A. fumigatus identified in this study can serve as potential candidates for developing species-specific diagnostic tests. KEY POINTS: • CSPs and exoproteins could differentiate A. flavus and A. fumigatus. • A. fumigatus conidial surface harbored more antigenic proteins than A. flavus. • Identified species-specific signature proteins of A. flavus and A. fumigatus.
Collapse
Affiliation(s)
- Lakshmi Prabha Venugopalan
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
- Present address: Centre for Biotechnology, Anna University, Chennai, India
| | - Vishukumar Aimanianda
- Unité des Aspergillus, Institut Pasteur, 75015, Paris, France
- Present address: Unité de recherche Mycologie Moléculaire, UMR2000, Institut Pasteur, 75015, Paris, France
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Jeya Maheshwari Jayapal
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India.
| |
Collapse
|
33
|
Abstract
The fungal cell wall is essential for growth and survival, and is a key target for antifungal drugs and the immune system. The cell wall must be robust but flexible, protective and shielding yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Most fungi have a common inner wall skeleton of chitin and β-glucans that functions as a flexible viscoelastic frame to which a more diverse set of outer cell wall polymers and glycosylated proteins are attached. Whereas the inner wall largely determines shape and strength, the outer wall confers properties of hydrophobicity, adhesiveness, and chemical and immunological heterogeneity. The spatial organization and dynamic regulation of the wall in response to prevailing growth conditions enable fungi to thrive within changing, diverse and often hostile environments. Understanding this architecture provides opportunities to develop diagnostics and drugs to combat life-threatening fungal infections.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, UK.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
34
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
35
|
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio 2023; 14:e0244222. [PMID: 36598191 PMCID: PMC9973345 DOI: 10.1128/mbio.02442-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For fungal plant pathogens, the germinating spore provides the first interaction with the host. Spore germlings move across the plant surface and use diverse penetration strategies for ingress into plant surfaces. Penetration strategies include pressurized melanized appressoria, which facilitate physically punching through the plant cuticle, and nonmelanized appressoria, which penetrate with the help of enzymes or cuticular damage to breach the plant surface. Two well-studied plant pathogens, Fusarium graminearum and Magnaporthe oryzae, are typical of these two modes of penetration. We applied comparative transcriptomics to Fusarium graminearum and Magnaporthe oryzae to characterize the genetic programming of the early host-pathogen interface. Four sequential stages of development following spore localization on the plant surface, from spore swelling to appressorium formation, were sampled for each species on culture medium and on barley sheaths, and transcriptomic analyses were performed. Gene expression in the prepenetration stages in both species and under both conditions was similar. In contrast, gene expression in the final stage was strongly influenced by the environment. Appressorium formation involved the greatest number of differentially expressed genes. Laser-dissection microscopy was used to perform detailed transcriptomics of initial infection points by F. graminearum. These analyses revealed new and important aspects of early fungal ingress in this species. Expression of the trichothecene genes involved in biosynthesis of deoxynivalenol by F. graminearum implies that toxisomes are not fully functional until after penetration and indicates that deoxynivalenol is not essential for penetration under our conditions. The use of comparative gene expression of divergent fungi promises to advance highly effective targets for antifungal strategies. IMPORTANCE Fusarium graminearum and Magnaporthe oryzae are two of the most important pathogens of cereal grains worldwide. Despite years of research, strong host resistance has not been identified for F. graminearum, so other methods of control are essential. The pathogen takes advantage of multiple entry points to infect the host, including breaches in the florets due to senescence of flower parts and penetration of the weakened trichome bases to breach the epidermis. In contrast, M. oryzae directly punctures leaves that it infects, and resistant cultivars have been characterized. The threat of either pathogen causing a major disease outbreak is ever present. Comparative transcriptomics demonstrated its potential to reveal novel and effective disease prevention strategies that affect the initial stages of disease. Shedding light on the basis of this diversity of infection strategies will result in development of increasingly specific control strategies.
Collapse
|
36
|
Li X, Liu M, Dong C. Hydrophobin Gene Cmhyd4 Negatively Regulates Fruiting Body Development in Edible Fungi Cordyceps militaris. Int J Mol Sci 2023; 24:ijms24054586. [PMID: 36902017 PMCID: PMC10003708 DOI: 10.3390/ijms24054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
A deep understanding of the mechanism of fruiting body development is important for mushroom breeding and cultivation. Hydrophobins, small proteins exclusively secreted by fungi, have been proven to regulate the fruiting body development in many macro fungi. In this study, the hydrophobin gene Cmhyd4 was revealed to negatively regulate the fruiting body development in Cordyceps militaris, a famous edible and medicinal mushroom. Neither the overexpression nor the deletion of Cmhyd4 affected the mycelial growth rate, the hydrophobicity of the mycelia and conidia, or the conidial virulence on silkworm pupae. There was also no difference between the micromorphology of the hyphae and conidia in WT and ΔCmhyd4 strains observed by SEM. However, the ΔCmhyd4 strain showed thicker aerial mycelia in darkness and quicker growth rates under abiotic stress than the WT strain. The deletion of Cmhyd4 could promote conidia production and increase the contents of carotenoid and adenosine. The biological efficiency of the fruiting body was remarkably increased in the ΔCmhyd4 strain compared with the WT strain by improving the fruiting body density, not the height. It was indicated that Cmhyd4 played a negative role in fruiting body development. These results revealed that the diverse negative roles and regulatory effects of Cmhyd4 were totally different from those of Cmhyd1 in C. militaris and provided insights into the developmental regulatory mechanism of C. militaris and candidate genes for C. militaris strain breeding.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence:
| |
Collapse
|
37
|
Marycz M, Brillowska-Dąbrowska A, Cantera S, Gębicki J, Muñoz R. Fungal co-culture improves the biodegradation of hydrophobic VOCs gas mixtures in conventional biofilters and biotrickling filters. CHEMOSPHERE 2023; 313:137609. [PMID: 36566789 DOI: 10.1016/j.chemosphere.2022.137609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The present study systematically evaluated the potential of Candida subhashii, Fusarium solani and their consortium for the abatement of n-hexane, trichloroethylene (TCE), toluene and α-pinene in biofilters (BFs) and biotrickling filters (BTFs). Three 3.2 L BFs packed with polyurethane foam and operated at a gas residence time of 77 s with an air mixture of hydrophobic volatile organic compounds (VOCs) were inoculated with C. subhashii, F. solani and a combination of thereof. The systems were also operated under a BTF configuration with a liquid recirculating rate of 2.5 L h-1. Steady state elimination capacities (ECs) of total VOCs of 17.4 ± 0.7 g m-3 h-1 for C. subhashii, 21.2 ± 0.8 g m-3 h-1 for F. solani and 24.4 ± 1.4 g m-3 h-1 for their consortium were recorded in BFs, which increased up to 27.2 ± 1.6 g m-3 h-1, 29.2 ± 1.9 g m-3 h-1, 37.7 ± 3.3 g m-3 h-1 in BTFs. BTFs supported a superior biodegradation performance compared to BF, regardless of the VOCs. Moreover, a more effective VOC biodegradation was observed when C. subhashii and F. solani were grown as a consortium. The microbial analysis conducted revealed that the fungi initially introduced in each BF represented the dominant species by the end of the experiment, with C. subhashii gradually overcoming F. solani in the system inoculated with the fungal consortium.
Collapse
Affiliation(s)
- Milena Marycz
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina S/n, 47011, Spain; Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Anna Brillowska-Dąbrowska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Sara Cantera
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Raúl Muñoz
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina S/n, 47011, Spain.
| |
Collapse
|
38
|
Gallo M, Luti S, Baroni F, Baccelli I, Cilli EM, Cicchi C, Leri M, Spisni A, Pertinhez TA, Pazzagli L. Plant Defense Elicitation by the Hydrophobin Cerato-Ulmin and Correlation with Its Structural Features. Int J Mol Sci 2023; 24:2251. [PMID: 36768573 PMCID: PMC9916430 DOI: 10.3390/ijms24032251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Cerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants (Arabidopsis) and exerts its eliciting capacity more efficiently when in its soluble monomeric form. We identified two hydrophobic clusters on the protein's loops endowed with dynamical and physical properties compatible with the possibility of reversibly interconverting between a disordered conformation and a β-strand-rich conformation when interacting with hydrophilic or hydrophobic surfaces. We propose that the plasticity of those loops may be part of the molecular mechanism that governs the protein defense elicitation capability.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Fabio Baroni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-901, Brazil
| | - Costanza Cicchi
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Manuela Leri
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | | | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| |
Collapse
|
39
|
A small secreted protein, RsMf8HN, in Rhizoctonia solani triggers plant immune response, which interacts with rice OsHIPP28. Microbiol Res 2023; 266:127219. [DOI: 10.1016/j.micres.2022.127219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
|
40
|
Han Z, Song B, Yang J, Wang B, Ma Z, Yu L, Li Y, Xu H, Qiao M. Curcumin-Encapsulated Fusion Protein-Based Nanocarrier Demonstrated Highly Efficient Epidermal Growth Factor Receptor-Targeted Treatment of Colorectal Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15464-15473. [PMID: 36454954 DOI: 10.1021/acs.jafc.2c04668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Curcumin, a polyphenol derived from turmeric, has multiple biological functions, such as anti-inflammatory, antioxidant, antibacterial and, above all, antitumor activity. Colorectal cancer is a common malignancy of the gastrointestinal tract with an extremely high mortality rate. However, the low bioavailability and poor targeting properties of curcumin generally limit its clinical application. In the present study, we designed a fusion protein GE11-HGFI as a nanodrug delivery system. The protein was connected by flexible linkers, inheriting the self-assembly properties of hydrophobin HGFI and the targeting ability of GE11. The data show that the encapsulation of curcumin by fusion protein GE11-HGFI can form uniform and stable nanoparticles with a size of only 80 nm. In addition, the nanocarrier had high encapsulation efficiency for curcumin and made it to release sustainably. Notably, the drug-loaded nanosystem selectively targeted colorectal cancer cells with high epidermal growth factor receptor expression, resulting in high aggregated concentrations of curcumin at tumor sites, thus showing a significant anticancer effect. These results suggest that the nanocarrier fusion protein has the potential to be a novel strategy for enhancing molecular bioactivity and drug targeting in cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Bo Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Zhongqiang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Yuanhao Li
- Remegen Co., Ltd., Shandong 264000, P.R. China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
- School of Life Science, Shanxi University, Shanxi 030000, P.R. China
| |
Collapse
|
41
|
Laible AR, Dinius A, Schrader M, Krull R, Kwade A, Briesen H, Schmideder S. Effects and interactions of metal oxides in microparticle-enhanced cultivation of filamentous microorganisms. Eng Life Sci 2022; 22:725-743. [PMID: 36514528 PMCID: PMC9731605 DOI: 10.1002/elsc.202100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Filamentous microorganisms are used as molecular factories in industrial biotechnology. In 2007, a new approach to improve productivity in submerged cultivation was introduced: microparticle-enhanced cultivation (MPEC). Since then, numerous studies have investigated the influence of microparticles on the cultivation. Most studies considered MPEC a morphology engineering approach, in which altered morphology results in increased productivity. But sometimes similar morphological changes lead to decreased productivity, suggesting that this hypothesis is not a sufficient explanation for the effects of microparticles. Effects of surface chemistry on particles were paid little attention, as particles were often considered chemically-inert and bioinert. However, metal oxide particles strongly interact with their environment. This review links morphological, physical, and chemical properties of microparticles with effects on culture broth, filamentous morphology, and molecular biology. More precisely, surface chemistry effects of metal oxide particles lead to ion leaching, adsorption of enzymes, and generation of reactive oxygen species. Therefore, microparticles interfere with gene regulation, metabolism, and activity of enzymes. To enhance the understanding of microparticle-based morphology engineering, further interactions between particles and cells are elaborated. The presented description of phenomena occurring in MPEC eases the targeted choice of microparticles, and thus, contributes to improving the productivity of microbial cultivation technology.
Collapse
Affiliation(s)
- Andreas Reiner Laible
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Anna Dinius
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Marcel Schrader
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Arno Kwade
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Heiko Briesen
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| | - Stefan Schmideder
- School of Life SciencesChair of Process Systems EngineeringTechnische Universität MünchenFreisingGermany
| |
Collapse
|
42
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
43
|
Yan J, Liu H, Idrees A, Chen F, Lu H, Ouyang G, Meng X. First Record of Aspergillus fijiensis as an Entomopathogenic Fungus against Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). J Fungi (Basel) 2022; 8:1222. [PMID: 36422043 PMCID: PMC9697456 DOI: 10.3390/jof8111222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2023] Open
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the most widespread and devastating pest species in citrus orchards and is the natural vector of the phloem-limited bacterium that causes Huanglongbing (HLB) disease. Thus, reducing the population of D. citri is an important means to prevent the spread of HLB disease. Due to the long-term use of chemical control, biological control has become the most promising strategy. In this study, a novel highly pathogenic fungal strain was isolated from naturally infected cadavers of adult D. citri. The species was identified as Aspergillus fijiensis using morphological identification and phylogenetic analysis and assigned the strain name GDIZM-1. Tests to detect aflatoxin B1 demonstrated that A. fijiensis GDIZM-1 is a non-aflatoxin B1 producer. The pathogenicity of the strain against D. citri was determined under laboratory and greenhouse conditions. The results of the laboratory study indicated that nymphs from the 1st to 5th instar and adults of D. citri were infected by A. fijiensis GDIZM-1. The mortality of nymphs and adults of D. citri caused by infection with A. fijiensis increased with the concentration of the conidial suspension and exposure time, and the median lethal concentration (LC50) and median lethal time (LT50) values gradually decreased. The mortality of D. citri for all instars was higher than 70%, with high pathogenicity at the 7th day post treatment with 1 × 108 conidia/mL. The results of the greenhouse pathogenicity tests showed that the survival of D. citri adults was 3.33% on the 14th day post-treatment with 1 × 108 conidia/mL, which was significantly lower than that after treatment with the Metarhizium anisopliae GDIZMMa-3 strain and sterile water. The results of the present study revealed that the isolate of A. fijiensis GDIZM-1 was effective against D. citri and it provides a basis for the development of a new microbial pesticide against D. citri after validation of these results in the field.
Collapse
Affiliation(s)
- Jianquan Yan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hao Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China
| | - Fenghao Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huilin Lu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China
| | - Gecheng Ouyang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China
| | - Xiang Meng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China
| |
Collapse
|
44
|
Vergunst KL, Kenward C, Langelaan DN. Characterization of the structure and self-assembly of two distinct class IB hydrophobins. Appl Microbiol Biotechnol 2022; 106:7831-7843. [DOI: 10.1007/s00253-022-12253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
45
|
Irbe I, Loris GD, Filipova I, Andze L, Skute M. Characterization of Self-Growing Biomaterials Made of Fungal Mycelium and Various Lignocellulose-Containing Ingredients. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7608. [PMID: 36363201 PMCID: PMC9653859 DOI: 10.3390/ma15217608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
In this study, novel blends of mycelium biocomposites (MB) were developed. Various combinations of birch sawdust and hemp shives with birch bark (BB) and wheat bran (WB) additives were inoculated with basidiomycete Trametes versicolor to produce self-growing biomaterials. MB were characterized according to mycelial biomass increment in final samples, changes in chemical composition, elemental (C, H, N) analyses, granulometry of substrates, water-related and mechanical properties, as well as mold resistance and biodegradability. The mycelial biomass in manufactured MB increased by ~100% and ~50% in hemp and sawdust substrates, respectively. The lignocellulose ingredients during fungal growth were degraded as follows: cellulose up to 7% and 28% in sawdust and hemp substrates, respectively, and lignin in the range of 13% in both substrates. A larger granulometric fraction in hemp MB ensured higher strength property but weakened water absorption (600-880%) performance. Perspective MB combinations regarding strength performance were hemp/BB and pure hemp MB (σ10 0.19-0.20 MPa; E 2.9 MPa), as well as sawdust/WB combination (σ10 0.23 MPa; E 2.9 MPa). WB positively affected fungal biomass yield, but elevated water absorption ability. WB improved compressive strength in the sawdust samples but decreased it in the hemp samples. BB supplement reduced water absorption by more than 100% and increased the density of sawdust and hemp samples. All MB samples were susceptible to mold contamination after full water immersion, with identified fungal genera Rhizopus, Trichoderma and Achremonium. The MB exhibited high biodegradability after 12 weeks' exposure in compost, and are therefore competitive with non-biodegradable synthetic foam materials.
Collapse
Affiliation(s)
- Ilze Irbe
- Latvian State Institute of Wood Chemistry, Dzerbenes iela 27, LV 1006 Riga, Latvia
| | | | - Inese Filipova
- Latvian State Institute of Wood Chemistry, Dzerbenes iela 27, LV 1006 Riga, Latvia
| | - Laura Andze
- Latvian State Institute of Wood Chemistry, Dzerbenes iela 27, LV 1006 Riga, Latvia
| | - Marite Skute
- Latvian State Institute of Wood Chemistry, Dzerbenes iela 27, LV 1006 Riga, Latvia
| |
Collapse
|
46
|
The Colletotrichum siamense Hydrophobin CsHydr1 Interacts with the Lipid Droplet-Coating Protein CsCap20 and Regulates Lipid Metabolism and Virulence. J Fungi (Basel) 2022; 8:jof8090977. [PMID: 36135702 PMCID: PMC9502314 DOI: 10.3390/jof8090977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies of the lipid droplet-coating protein Cap20 in Colletotrichum show that it plays a key role in appressorium development and virulence. In this study, the hydrophobin CsHydr1, which contains a signal peptide of 19 amino acids and a hydrophobic domain (HYDRO), was shown to interact with CsCap20 in Colletotrichum siamense. The CsHydr1 deletion mutant showed slightly enhanced mycelial growth, small conidia, slow spore germination and appressoria formation, cell wall integrity and virulence. Like CsCAP20, CsHydr1 is also localized on the lipid droplet surface of C. siamense. However, when CsCap20 was absent, some CsHydr1 was observed in other parts. Quantitative lipid determination showed that the absence of either CsHydr1 or CsCap20 reduced the content of lipids in mycelia and conidia, while the effect of CsCap20 was more obvious; these results suggest that an interaction protein CsHydr1 of CsCap20 is localized on the lipid droplet surface and involved in lipid metabolism, which affects appressorium formation and virulence in C. siamense.
Collapse
|
47
|
Whitehead KA, Deisenroth T, Preuss A, Liauw CM, Verran J. Lateral force removal of fungal spores to demonstrate how surface properties affect fungal spore retention. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210344. [PMID: 35909364 DOI: 10.1098/rsta.2021.0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Microbial biofouling on polymer surfaces can lead to their biodeterioration. This may result in deterioration of the surface, leading to cracking and fracturing. Fungal spores from Aspergillus niger 1957, Aspergillus niger 1988 and Aureobasidium pullulans were tested to determine their strength of attachment on three surfaces, p(γ-MPS-co-MMA), p(γ-MPS-co-LMA) and spin-coated poly(methyl methacrylate) (PMMAsc), using lateral force measurements. The results demonstrate that A. niger 1957 and A. niger 1988 spores were most easily removed from the p(γ-MPS-co-MMA) surface, which was the surface with the highest Ra value. The A. niger 1957 and A. pullulans spores were most difficult to remove from the PMMAsc surface, which was the hardest surface. A. niger 1988 spores were the most difficult to remove from p(γ-MPS-co-LMA), the most hydrophobic surface. The results with A. pullulans were difficult to elucidate since the spores bound to all three surfaces and were removed with similar rates of force. The lateral force results demonstrate that spore attachment to a surface is a multi-factorial process, and independent surface and microbial factors influence spore binding. Thus, each environmental scenario needs to be considered on an individual basis, since a solution to one biofouling issue will probably not translate across to other systems. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
| | - Ted Deisenroth
- BASF Corporation (Formerly Ciba Speciality Chemicals Inc.), Tarrytown, NY, USA
| | - Andrea Preuss
- BASF Corporation (Formerly Ciba Speciality Chemicals Inc.), Tarrytown, NY, USA
| | | | - Joanna Verran
- Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| |
Collapse
|
48
|
Yang J, Ge L, Song B, Ma Z, Yang X, Wang B, Dai Y, Xu H, Qiao M. A novel hydrophobin encoded by hgfII from Grifola frondosa exhibiting excellent self-assembly ability. Front Microbiol 2022; 13:990231. [PMID: 36160239 PMCID: PMC9504065 DOI: 10.3389/fmicb.2022.990231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Hydrophobins are small proteins from filamentous fungi, which have remarkable self-assembly properties of great potential, e.g., as drug carriers and as anti-bacterial agents, but different hydrophobins, with improved properties, are needed. HGFI (a hydrophobin from Grifola frondosa) is a class I hydrophobin, which can self-assemble into rodlet structures with a length range 100–150 nm. In this study, we identified a new hydrophobin gene (hgfII) from the mycelium of G. frondosa with a much higher transcriptional level than hgfI. Heterologous expression of hgfII was accomplished in the Pichia pastoris. X-ray photoelectron spectroscopy and water contact angle assay measurements revealed that HGFII can self-assemble into a protein film at the air–solid interface, with circular dichroism and thioflavin T fluorescence studies showing that this effect was accompanied by a decrease in α-helix content and an increase in β-sheet content. Using atomic force microscopy, it was shown that HGFII self-assembled into rodlet-like structures with a diameter of 15–30 nm, showing that it was a class I hydrophobin, with self-assembly behavior different from HGFI. The surface hydrophobicity of HGFII was stronger than that of HGFI, meanwhile, in emulsification trials, HGFII displayed better dispersive capacity to the soybean oil than HGFI, producing a more stable and durable emulsion.
Collapse
Affiliation(s)
- Jiuxia Yang
- NHC Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Lu Ge
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Bo Song
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongqiang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaotian Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Bo Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yixin Dai
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Haijin Xu,
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Mingqiang Qiao,
| |
Collapse
|
49
|
Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms 2022; 10:microorganisms10081498. [PMID: 35893556 PMCID: PMC9394342 DOI: 10.3390/microorganisms10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Collapse
|
50
|
Isolation and Characterization of a Novel Hydrophobin, Sa-HFB1, with Antifungal Activity from an Alkaliphilic Fungus, Sodiomyces alkalinus. J Fungi (Basel) 2022; 8:jof8070659. [PMID: 35887416 PMCID: PMC9322931 DOI: 10.3390/jof8070659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The adaptations that alkaliphilic microorganisms have developed due to their extreme habitats promote the production of active natural compounds with the potential to control microorganisms, causing infections associated with healthcare. The primary purpose of this study was to isolate and identify a hydrophobin, Sa-HFB1, from an alkaliphilic fungus, Sodiomyces alkalinus. A potential antifungal effect against pathogenic and opportunistic fungi strains was determined. The MICs of Sa-HFB1 against opportunistic and clinical fungi ranged from 1 to 8 µg/mL and confirmed its higher activity against both non- and clinical isolates. The highest level of antifungal activity (MIC 1 µg/mL) was demonstrated for the clinical isolate Cryptococcus neoformans 297 m. The hydrophobin Sa-HFB1 may be partly responsible for the reported antifungal activity of S. alkalinus, and may serve as a potential source of lead compounds, meaning that it can be developed as an antifungal drug candidate.
Collapse
|