1
|
Zhang X, Wu P, Bai R, Gan Q, Yang Y, Li H, Ni J, Huang Q, Shen Y. PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A. Nucleic Acids Res 2025; 53:gkae1263. [PMID: 39727184 PMCID: PMC11724291 DOI: 10.1093/nar/gkae1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation. We show that with H2O2 treatment and sisperR deletion, expression of genes encoding proteins predicted to be involved in cellular metal ion homeostasis regulation, Dps, NirD, VIT1/CCC1 and MntH, is significantly upregulated, while expression of ROS-scavenging enzymes remains unaffected. Conversely, the expression of these genes is repressed when SisPerR is overexpressed. Notably, the genes coding for Dps, NirD and MntH are direct targets of SisPerR. Moreover, we identified three novel residues critical for ferrous ion binding and one novel residue for zinc ion binding. In summary, this study has established that SisPerR is a repressive redox-sensing transcription factor regulating intracellular metal ion homeostasis in Sa. islandicus for oxidative stress defense. These findings have shed new light on our understanding of microbial adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Ruining Bai
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Haodun Li
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| |
Collapse
|
2
|
Wu K, Li H, Wang Y, Liu D, Li H, Zhang Y, Lynch M, Long H. Silver nanoparticles elevate mutagenesis of eukaryotic genomes. G3 (BETHESDA, MD.) 2023; 13:jkad008. [PMID: 36635051 PMCID: PMC9997555 DOI: 10.1093/g3journal/jkad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Metal nanoparticles, especially silver, have been used in various medical scenarios, due to their excellent antimicrobial effects. Recent studies have shown that AgNPs do not exert mutagenic effects on target bacteria, but the degree to which they compromise eukaryotic genomes remains unclear. To study this, we evaluated the mutagenic effects of AgNPs on the fission yeast Schizosaccharomyces pombe ATCC-16979, of which ∼23% genes are homologous to human ones, at single-nucleotide resolution, and whole-genome scale by running 283 mutation accumulation lines for ∼260,000 cell divisions in total. We also explored the action and mutagenesis mechanisms using differential gene-expression analysis based on RNAseq. Upon AgNPs treatment, the genomic base-substitution mutation rate of S. pombe at four-fold degenerate sites increased by 3.46×, and small indels were prone to occur in genomic regions that are not simple sequence repeats. The G:C → T:A transversion rate was also significantly increased, likely mostly from oxidative damage. Thus, in addition to their antimicrobial potency, AgNPs might pose slight genotoxicity threats to eukaryotic and possibly human genomes, though at a low magnitude.
Collapse
Affiliation(s)
- Kun Wu
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province 266237, China
| | - Haichao Li
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yaohai Wang
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Dan Liu
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Hui Li
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yu Zhang
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Hongan Long
- KLMME, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province 266237, China
| |
Collapse
|
3
|
Ogawa A, Kojima F, Miyake Y, Yoshimura M, Ishijima N, Iyoda S, Sekine Y, Yamanaka Y, Yamamoto K. Regulation of constant cell elongation and Sfm pili synthesis in Escherichia coli via two active forms of FimZ orphan response regulator. Genes Cells 2022; 27:657-674. [PMID: 36057789 DOI: 10.1111/gtc.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Escherichia coli (E. coli) has multiple copies of the chaperone-usher (CU) pili operon in five fimbria groups: CU pili, curli, type IV pili, type III secretion pili, and type IV secretion pili. Commensal E. coli K-12 contains 12 CU pili operons. Among these operons, Sfm is expressed by the sfmACDHF operon. Transcriptome analyses, reporter assays, and chromatin immunoprecipitation PCR analyses reported that FimZ directly binds to and activates the sfmA promoter, transcribing sfmACDHF. In addition, FimZ regularly induces constant cell elongation in E. coli, which is required for F-type ATPase function. The bacterial two-hybrid system showed a specific interaction between FimZ and the α subunit of the cytoplasmic F1 domain of F-type ATPase. Studies performed using mutated FimZs have revealed two active forms, I and II. Active form I is required for constant cell elongation involving amino acid residues K106 and D109. Active form II additionally required D56, a putative phosphorylation site, to activate the sfmA promoter. The chromosomal fimZ was hardly expressed in parent strain but functioned in phoB and phoP double-gene knockout strains. These insights may help to understand bacterial invasion restricted host environments by the sfm γ-type pili.
Collapse
Affiliation(s)
- Ayano Ogawa
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Fumika Kojima
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yukari Miyake
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Miho Yoshimura
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Nozomi Ishijima
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Nippon Dental University School of Dentistry, Tokyo, Japan
| | | |
Collapse
|
4
|
Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152:113238. [PMID: 35687909 DOI: 10.1016/j.biopha.2022.113238] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/07/2022] Open
Abstract
Oxidative stress is a complex biological process characterized by the excessive production of reactive oxygen species (ROS) that act as destroyers of the REDOX balance in the body and, implicitly, inducing oxidative damage. All the metabolisms are impaired in oxidative stress and even nucleic acid balance is influenced. ROS will promote structural changes of the tissues and organs due to interaction with proteins and phospholipids. The constellation of the cardiovascular risk factors (CVRFs) will usually develop in subjects with predisposition to cardiac disorders. Oxidative stress is usually related with hypertension (HTN), diabetes mellitus (DM), obesity and cardiovascular diseases (CVDs) like coronary artery disease (CAD), cardiomyopathy or heart failure (HF), that can develop in subjects with the above-mentioned diseases. Elements describing the complex relationship between CVD and oxidative stress should be properly explored and described because prevention may be the optimal approach. Our paper aims to expose in detail the complex physiopathology of oxidative stress in CVD occurrence and novelties regarding the phenomenon. Biomarkers assessing oxidative stress or therapy targeting specific pathways represent a major progress that actually change the outcome of subjects with CVD. New antioxidants therapy specific for each CVD represents a captivating and interesting future perspective with tremendous benefits on subject's outcome.
Collapse
Affiliation(s)
- Dragos Rotariu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Emilia Elena Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Madalina Moisi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | | | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
5
|
Soto W, Nishiguchi MK. Environmental Stress Selects for Innovations That Drive Vibrio Symbiont Diversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.616973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic bacteria in the Vibrionaceae are a dynamic group of γ-Proteobacteria that are commonly found throughout the world. Although they primarily are free-living in the environment, they can be commonly found associated with various Eukarya, either as beneficial or pathogenic symbionts. Interestingly, this dual lifestyle (free-living or in symbiosis) enables the bacteria to have enormous ecological breadth, where they can accommodate a variety of stresses in both stages. Here, we discuss some of the most common stressors that Vibrio bacteria encounter when in their free-living state or associated with an animal host, and how some of the mechanisms that are used to cope with these stressors can be used as an evolutionary advantage that increases their diversity both in the environment and within their specific hosts.
Collapse
|
6
|
Gorini F, Scala G, Cooke MS, Majello B, Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair (Amst) 2021; 97:103027. [PMID: 33285475 PMCID: PMC7926032 DOI: 10.1016/j.dnarep.2020.103027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of DNA oxidation, is a pre-mutagenic lesion which is prone to mispair, if left unrepaired, with 2'-deoxyadenosine during DNA replication. While unrepaired or incompletely repaired 8-oxodG has classically been associated with genome instability and cancer, it has recently been reported to have a role in the epigenetic regulation of gene expression. Despite the growing collection of genome-wide 8-oxodG mapping studies that have been used to provide new insight on the functional nature of 8-oxodG within the genome, a comprehensive view that brings together the epigenetic and the mutagenic nature of the 8-oxodG is still lacking. To help address this gap, this review aims to provide (i) a description of the state-of-the-art knowledge on both the mutagenic and epigenetic roles of 8-oxodG; (ii) putative molecular models through which the 8-oxodG can cause genome instability; (iii) a possible molecular model on how 8-oxodG, acting as an epigenetic signal, could cause the translocations and deletions which are associated with cancer.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy.
| |
Collapse
|
7
|
Kumar K, Moirangthem R, Kaur R. Histone H4 dosage modulates DNA damage response in the pathogenic yeast Candida glabrata via homologous recombination pathway. PLoS Genet 2020; 16:e1008620. [PMID: 32134928 PMCID: PMC7058290 DOI: 10.1371/journal.pgen.1008620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/22/2020] [Indexed: 12/05/2022] Open
Abstract
Candida glabrata, a nosocomial fungal bloodstream pathogen, causes significant morbidity and mortality in hospitals worldwide. The ability to replicate in macrophages and survive a high level of oxidative stress contributes to its virulence in the mammalian host. However, the role of DNA repair and recombination mechanisms in its pathobiology is still being discovered. Here, we have characterized the response of C. glabrata to the methyl methanesulfonate (MMS)-induced DNA damage. We found that the MMS exposure triggered a significant downregulation of histone H4 transcript and protein levels, and that, the damaged DNA was repaired by the homologous recombination (HR) pathway. Consistently, the reduced H4 gene dosage was associated with increased HR frequency and elevated resistance to MMS. The genetic analysis found CgRad52, a DNA strand exchange-promoter protein of the HR system, to be essential for this MMS resistance. Further, the tandem-affinity purification and mass spectrometry analysis revealed a substantially smaller interactome of H4 in MMS-treated cells. Among 23 identified proteins, we found the WD40-repeat protein CgCmr1 to interact genetically and physically with H4, and regulate H4 levels, HR pathway and MMS stress survival. Controlling H4 levels tightly is therefore a regulatory mechanism to survive MMS stress in C. glabrata. The cellular hereditary material DNA is present in a compact ordered form in eukaryotic cells which involves its winding around an octamer of four basic histone proteins, H2A, H2B, H3 and H4. DNA-protein (including histones) complexes form chromatin, with the chromatin structure, open or closed, modulating gene expression. Any change in histone levels impacts chromatin architecture and functions. Here, we have studied the effect of diminished histone H4 levels on viability, DNA damage response and virulence of the pathogenic yeast Candida glabrata. C. glabrata, a constituent of the normal microflora of healthy humans, causes both superficial and invasive infections in immunocompromised individuals. Despite it being the second most common cause of Candida bloodstream infections in USA after C. albicans, its pathogenesis determinants are yet to deciphered in full. We report that the reduced histone H4 gene dosage in C. glabrata results in elevated resistance to the DNA alkylating agent, methyl methanesulfonate, increased homologous recombination (HR) and attenuated virulence. We also show that the H4 interacting protein CgCmr1 regulates HR probably through maintaining H4 levels. Overall, our data underscore the H4 protein abundance as a cue to express virulence factors and regulate DNA metabolism in pathogenic fungi.
Collapse
Affiliation(s)
- Kundan Kumar
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Romila Moirangthem
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
8
|
Silva E, Ideker T. Transcriptional responses to DNA damage. DNA Repair (Amst) 2019; 79:40-49. [PMID: 31102970 PMCID: PMC6570417 DOI: 10.1016/j.dnarep.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/20/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
In response to the threat of DNA damage, cells exhibit a dramatic and multi-factorial response spanning from transcriptional changes to protein modifications, collectively known as the DNA damage response (DDR). Here, we review the literature surrounding the transcriptional response to DNA damage. We review differences in observed transcriptional responses as a function of cell cycle stage and emphasize the importance of experimental design in these transcriptional response studies. We additionally consider topics including structural challenges in the transcriptional response to DNA damage as well as the connection between transcription and protein abundance.
Collapse
Affiliation(s)
- Erica Silva
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Biomedical Sciences Program, University of California San Diego, La Jolla, California, USA.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Biomedical Sciences Program, University of California San Diego, La Jolla, California, USA; Program in Bioinformatics, University of California San Diego, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
9
|
Milo-Cochavi S, Pareek M, Delulio G, Almog Y, Anand G, Ma LJ, Covo S. The response to the DNA damaging agent methyl methanesulfonate in a fungal plant pathogen. Fungal Biol 2019; 123:408-422. [PMID: 31053330 DOI: 10.1016/j.funbio.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
DNA damage can cause mutations that in fungal plant pathogens lead to hypervirulence and resistance to pesticides. Almost nothing is known about the response of these fungi to DNA damage. We performed transcriptomic and phosphoproteomic analyses of Fusarium oxysporum exposed to methyl methanesulfonate (MMS). At the RNA level we observe massive induction of DNA repair pathways including the global genome nucleotide excision. Cul3, Cul4, several Ubiquitin-like ligases and components of the proteasome are significantly induced. In agreement, we observed drug synergism between a proteasome inhibitor and MMS. While our data suggest that Yap1 and Xbp1 networks are similarly activated in response to damage in yeast and F. oxysporum we were able to observe modules that were MMS-responsive in F. oxysporum and not in yeast. These include transcription/splicing modules that are upregulated and respiration that is down-regulated. In agreement, MMS treated cells are much more sensitive to a respiration inhibitor. At the phosphoproteomic level, Adenylate cyclase, which generates cAMP, is phosphorylated in response to MMS and forms a network of phosphorylated proteins that include cell cycle regulators and several MAPKs. Our analysis provides a starting point in understanding how genomic changes in response to DNA damage occur in Fusarium species.
Collapse
Affiliation(s)
- Shira Milo-Cochavi
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Manish Pareek
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Gregory Delulio
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Yael Almog
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Gautam Anand
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel.
| |
Collapse
|
10
|
Lu G, Qin D, Wang Y, Liu J, Chen W. Single and combined effects of selected haloacetonitriles in a human-derived hepatoma line. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:417-426. [PMID: 30071462 DOI: 10.1016/j.ecoenv.2018.07.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 05/23/2023]
Abstract
Haloacetonitriles (HANs) are nitrogenous disinfection byproducts (N-DBPs) detected in drinking water that have high toxicity and are a high risk to human health. The cytotoxicity and genotoxicity as well as the oxidative stress of five HANs, namely chloroacetonitrile (CAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), bromoacetonitrile (BAN), and dibromoacetonitrile (DBAN) on a hepatoma cell line (HepG2) were determined by single, binary or ternary exposure. The median effective concentrations, based on cell viability, ranged from 0.8360 mg/L for BAN to 256.9 mg/L for DCAN, with a cytotoxicity order of BAN > DBAN > CAN > TCAN > DCAN. The lowest observed effective concentrations regarding DNA damage were 0.01 mg/L for CAN and DCAN, 0.1 mg/L for DBAN and TCAN, and 1 mg/L for BAN. The DNA damage induced by CAN, DCAN and TCAN was repaired to about 80% in 30 min, and when induced by BAN and DBAN, it was repaired completely in 60 min. The intracellular reactive oxygen species (ROS) levels were significantly increased by the five HANs, and bromo-acetonitrile produced a stronger oxidative stress than chloro-acetonitrile. Co-exposure of DCAN, TCAN and DBAN significantly inhibited cell viability, induced DNA damage and facilitated ROS generation in HepG2 cells. However, the interactive effects were inconsistent for the different endpoints, which seemed to be antagonism for cell viability but synergy for ROS generation.
Collapse
Affiliation(s)
- Guanghua Lu
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China; Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Donghong Qin
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Chen
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
11
|
Yu S, Yin Y, Wang Q, Wang L. Dual gene deficient models of Apc Min/+ mouse in assessing molecular mechanisms of intestinal carcinogenesis. Biomed Pharmacother 2018; 108:600-609. [PMID: 30243094 DOI: 10.1016/j.biopha.2018.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The ApcMin/+ mouse, carrying an inactivated allele of the adenomatous polyposis coli (Apc) gene, is a widely used animal model of human colorectal tumorigenesis. While crossed with other gene knockout or knock-in mice, these mice possess advantages in investigation of human intestinal tumorigenesis. Intestinal tumor pathogenesis involves multiple gene alterations; thus, various double gene deficiency models could provide novel insights into molecular mechanisms of tumor biology, as well as gene-gene interactions involved in intestinal tumor development and assessment of novel strategies for preventing and treating intestinal cancer. This review discusses approximately 100 double gene deficient mice and their associated intestinal tumor development and progression phenotypes. The dual gene knockouts based on the Apc mutation background consist of inflammation and immune-related, cell cycle-related, Wnt/β-catenin signaling-related, tumor growth factor (TGF)-signaling-related, drug metabolism-related, and transcription factor genes, as well as some oncogenes and tumor suppressors. Future studies should focus on conditional or inducible dual or multiple mouse gene knockout models to investigate the molecular mechanisms underlying intestinal tumor development, as well as potential drug targets.
Collapse
Affiliation(s)
- Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Yanhui Yin
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qian Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
12
|
A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress. J Theor Biol 2017. [DOI: 10.1016/j.jtbi.2017.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Liu J, Ma Z, Zhu H, Caiyin Q, Liang D, Wu H, Huang X, Qiao J. Improving xylose utilization of defatted rice bran for nisin production by overexpression of a xylose transcriptional regulator in Lactococcus lactis. BIORESOURCE TECHNOLOGY 2017; 238:690-697. [PMID: 28499254 DOI: 10.1016/j.biortech.2017.04.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Present investigation explores the potential of defatted rice bran (DRB) serving as sole carbon source and partial nitrogen source to support Lactococcus lactis growth and nisin production. To retain the nutrients in DRB, especially protein fractions, thermal pretreatment followed by enzymatic hydrolysis without washing step was applied for saccharification. A maximum of 45.64g reducing sugar mainly containing 30.26g glucose and 5.66g xylose from 100g DRB was attained in hydrolysates of DRB (HD). A novel strategy of xylR (xylose transcriptional regulator) overexpression followed by evolutionary engineering was proposed, which significantly increased the capacity of L. lactis to metabolize xylose. Subsequently, RT-PCR results indicated that xylR overexpression stimulated expression of xylose assimilation genes synergistically with exposure to xylose. In HD medium, the highest nisin titer of the engineered strain FEXR was 3824.53IU/mL, which was 1.37 times of that in sucrose medium by the original strain F44.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zelin Ma
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongji Zhu
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dongmei Liang
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hao Wu
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xu Huang
- China Oil & Foodstuffs Corporation (COFCO), Nutrition and Health Research Institute, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
14
|
Genome-wide and protein kinase-focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006477. [PMID: 28742144 PMCID: PMC5542689 DOI: 10.1371/journal.ppat.1006477] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 06/17/2017] [Indexed: 12/21/2022] Open
Abstract
All cells are subject to structural damage that must be addressed for continued growth. A wide range of damage affects the genome, meaning multiple pathways have evolved to repair or bypass the resulting DNA lesions. Though many repair pathways are conserved, their presence or function can reflect the life style of individual organisms. To identify genome maintenance pathways in a divergent eukaryote and important parasite, Trypanosoma brucei, we performed RNAi screens to identify genes important for survival following exposure to the alkylating agent methyl methanesulphonate. Amongst a cohort of broadly conserved and, therefore, early evolved repair pathways, we reveal multiple activities not so far examined functionally in T. brucei, including DNA polymerases, DNA helicases and chromatin factors. In addition, the screens reveal Trypanosoma- or kinetoplastid-specific repair-associated activities. We also provide focused analyses of repair-associated protein kinases and show that loss of at least nine, and potentially as many as 30 protein kinases, including a nuclear aurora kinase, sensitises T. brucei to alkylation damage. Our results demonstrate the potential for synthetic lethal genome-wide screening of gene function in T. brucei and provide an evolutionary perspective on the repair pathways that underpin effective responses to damage, with particular relevance for related kinetoplastid pathogens. By revealing that a large number of diverse T. brucei protein kinases act in the response to damage, we expand the range of eukaryotic signalling factors implicated in genome maintenance activities. Damage to the genome is a universal threat to life. Though the repair pathways used to tackle damage can be widely conserved, lineage-specific specialisations are found, reflecting the differing life styles of extant organisms. Using RNAi coupled with next generation sequencing we have screened for genes that are important for growth of Trypanosoma brucei, a diverged eukaryotic microbe and important parasite, in the presence of alkylation damage caused by methyl methanesulphonate. We reveal both repair pathway conservation relative to characterised eukaryotes and specialisation, including uncharacterised roles for translesion DNA polymerases, DNA helicases and chromatin factors. Furthermore, we demonstrate that loss of around 15% of T. brucei protein kinases sensitises the parasites to alkylation, indicating phosphorylation signalling plays widespread and under-investigated roles in the damage response pathways of eukaryotes.
Collapse
|
15
|
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human. PLoS One 2016; 11:e0153970. [PMID: 27100653 PMCID: PMC4839732 DOI: 10.1371/journal.pone.0153970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.
Collapse
|
16
|
Abstract
It is emerging that the pathways that process newly transcribed RNA molecules also regulate the response to DNA damage at multiple levels. Here, we discuss recent insights into how RNA processing pathways participate in DNA damage recognition, signaling, and repair, selectively influence the expression of genome-stabilizing proteins, and resolve deleterious DNA/RNA hybrids (R-loops) formed during transcription and RNA processing. The importance of these pathways for the DNA damage response (DDR) is underscored by the growing appreciation that defects in these regulatory connections may be connected to the genome instability involved in several human diseases, including cancer.
Collapse
Affiliation(s)
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
17
|
Efficiency of Base Excision Repair of Oxidative DNA Damage and Its Impact on the Risk of Colorectal Cancer in the Polish Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3125989. [PMID: 26649135 PMCID: PMC4663340 DOI: 10.1155/2016/3125989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
DNA oxidative lesions are widely considered as a potential risk factor for colorectal cancer development. The aim of this work was to determine the role of the efficiency of base excision repair, both in lymphocytes and in epithelial tissue, in patients with CRC and healthy subjects. SNPs were identified within genes responsible for steps following glycosylase action in BER, and patients and healthy subjects were genotyped. A radioisotopic BER assay was used for assessing repair efficiency and TaqMan for genotyping. Decreased BER activity was observed in lymphocyte extract from CRC patients and in cancer tissue extract, compared to healthy subjects. In addition, polymorphisms of EXO1, LIG3, and PolB may modulate the risk of colorectal cancer by decreasing (PolB) or increasing (LIG3 and EXO1) the chance of malignant transformation.
Collapse
|
18
|
Abstract
The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biology, Stanford University, Stanford, CA 94305-5020,USA.
| |
Collapse
|
19
|
Lee HJ, Kim SJ, Yoon JJ, Kim KH, Seo JH, Park YC. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. BIORESOURCE TECHNOLOGY 2015; 191:445-451. [PMID: 25804535 DOI: 10.1016/j.biortech.2015.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Soo-Jung Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jeong-Jun Yoon
- IT Convergence Materials R&BD Group, Korea Institute of Industrial Technology, Chungnam 330-825, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Jin-Ho Seo
- Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea.
| |
Collapse
|
20
|
Gebre AA, Okada H, Kim C, Kubo K, Ohnuki S, Ohya Y. Profiling of the effects of antifungal agents on yeast cells based on morphometric analysis. FEMS Yeast Res 2015; 15:fov040. [DOI: 10.1093/femsyr/fov040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
|
21
|
Hendriks IA, Treffers LW, Verlaan-de Vries M, Olsen JV, Vertegaal ACO. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell Rep 2015; 10:1778-1791. [PMID: 25772364 DOI: 10.1016/j.celrep.2015.02.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 12/17/2014] [Accepted: 02/11/2015] [Indexed: 02/09/2023] Open
Abstract
Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO-targeted ubiquitin ligase RNF4 and degraded by the proteasome in response to DNA damage, JARID1C was SUMOylated and recruited to the chromatin to demethylate histone H3K4.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Louise W Treffers
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Matty Verlaan-de Vries
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
22
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
23
|
Burgess RJ, Han J, Zhang Z. The Ddc1-Mec3-Rad17 sliding clamp regulates histone-histone chaperone interactions and DNA replication-coupled nucleosome assembly in budding yeast. J Biol Chem 2014; 289:10518-10529. [PMID: 24573675 DOI: 10.1074/jbc.m114.552463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maintenance of genome integrity is regulated in part by chromatin structure and factors involved in the DNA damage response pathway. Nucleosome assembly is a highly regulated process that restores chromatin structure after DNA replication, DNA repair, and gene transcription. During S phase the histone chaperones Asf1, CAF-1, and Rtt106 coordinate to deposit newly synthesized histones H3-H4 onto replicated DNA in budding yeast. Here we describe synthetic genetic interactions between RTT106 and the DDC1-MEC3-RAD17 (9-1-1) complex, a sliding clamp functioning in the S phase DNA damage and replication checkpoint response, upon treatment with DNA damaging agents. The DNA damage sensitivity of rad17Δ rtt106Δ cells depends on the function of Rtt106 in nucleosome assembly. Epistasis analysis reveals that 9-1-1 complex components interact with multiple DNA replication-coupled nucleosome assembly factors, including Rtt106, CAF-1, and lysine residues of H3-H4. Furthermore, rad17Δ cells exhibit defects in the deposition of newly synthesized H3-H4 onto replicated DNA. Finally, deletion of RAD17 results in increased association of Asf1 with checkpoint kinase Rad53, which may lead to the observed reduction in Asf1-H3 interaction in rad17Δ mutant cells. In addition, we observed that the interaction between histone H3-H4 with histone chaperone CAF-1 or Rtt106 increases in cells lacking Rad17. These results support the idea that the 9-1-1 checkpoint protein regulates DNA replication-coupled nucleosome assembly in part through regulating histone-histone chaperone interactions.
Collapse
Affiliation(s)
- Rebecca J Burgess
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Junhong Han
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| |
Collapse
|
24
|
Kayaaltı Z, Kaya D, Bacaksız A, Söylemez E, Söylemezoğlu T. An association between polymorphism of the NADH/NADPH oxidase p22phox (phagocyte oxidase) subunit and aging in Turkish population. Aging Clin Exp Res 2013; 25:511-516. [PMID: 23949976 DOI: 10.1007/s40520-013-0129-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS Aging is a complex and multifactorial process that is stimulated by a number of factors including genes and life-style. It is thought that the production of reactive oxygen species (ROS) in the face of antioxidant enzymes and molecules is related to aging and age-related diseases. NAD(P)H oxidase system is the predominant cellular source of ROS, and p22phox, the major component of that system, is essential for the activation of NAD(P)H oxidase. The aim of this study was to investigate the association between p22phox C242T single nucleotide polymorphism and aging in Turkish population. METHODS Blood samples were collected from 332 volunteers between 18 and 95 years of age and were classified into three groups according to their ages as <65, 65-84 and ≥ 85. p22phox C242T polymorphism was genotyped by PCR-RFLP method. RESULTS CC genotype frequency in the C242T polymorphism is higher in older group (≥ 85) than younger groups (<65 and 65-85), whereas CT + TT genotype frequency is lower in older group. When the p22phox C242T polymorphism was compared with the mean ages and age groups, statistically significant associations were found. CONCLUSIONS We showed for the first time that human aging is significantly associated with p22phox C242T genotypes in Turkish population, being highest in CC, intermediate in CT, and lowest in TT homozygote. It is plausible to suggest that CC genotype might protect people from chronic inflammation, diseases as well as from oxidative stress and, thus, individuals with CC genotype might be more advantageous for aging as compared to those with CT + TT genotypes.
Collapse
Affiliation(s)
- Zeliha Kayaaltı
- Institute of Forensic Sciences, Ankara University, No: 27, Dikimevi, 06590, Ankara, Turkey,
| | | | | | | | | |
Collapse
|
25
|
Unraveling DNA damage response-signaling networks through systems approaches. Arch Toxicol 2013; 87:1635-48. [DOI: 10.1007/s00204-013-1106-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
26
|
Mazumder A, Pesudo LQ, McRee S, Bathe M, Samson LD. Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae. Nucleic Acids Res 2013; 41:9310-24. [PMID: 23935119 PMCID: PMC3814357 DOI: 10.1093/nar/gkt715] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An effective response to DNA damaging agents involves modulating numerous facets of cellular homeostasis in addition to DNA repair and cell-cycle checkpoint pathways. Fluorescence microscopy-based imaging offers the opportunity to simultaneously interrogate changes in both protein level and subcellular localization in response to DNA damaging agents at the single-cell level. We report here results from screening the yeast Green Fluorescent Protein (GFP)-fusion library to investigate global cellular protein reorganization on exposure to the alkylating agent methyl methanesulfonate (MMS). Broad groups of induced, repressed, nucleus- and cytoplasm-enriched proteins were identified. Gene Ontology and interactome analyses revealed the underlying cellular processes. Transcription factor (TF) analysis identified principal regulators of the response, and targets of all major stress-responsive TFs were enriched amongst the induced proteins. An unexpected partitioning of biological function according to the number of TFs targeting individual genes was revealed. Finally, differential modulation of ribosomal proteins depending on methyl methanesulfonate dose was shown to correlate with cell growth and with the translocation of the Sfp1 TF. We conclude that cellular responses can navigate different routes according to the extent of damage, relying on both expression and localization changes of specific proteins.
Collapse
Affiliation(s)
- Aprotim Mazumder
- Department of Biological Engineering, Center for Environmental Health Sciences, Laboratory for Computational Biology and Biophysics, Department of Biology and The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
27
|
Caporale LH. Overview of the creative genome: effects of genome structure and sequence on the generation of variation and evolution. Ann N Y Acad Sci 2012; 1267:1-10. [PMID: 22954209 DOI: 10.1111/j.1749-6632.2012.06749.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This overview of a special issue of Annals of the New York Academy of Sciences discusses uneven distribution of distinct types of variation across the genome, the dependence of specific types of variation upon distinct classes of DNA sequences and/or the induction of specific proteins, the circumstances in which distinct variation-generating systems are activated, and the implications of this work for our understanding of evolution and of cancer. Also discussed is the value of non text-based computational methods for analyzing information carried by DNA, early insights into organizational frameworks that affect genome behavior, and implications of this work for comparative genomics.
Collapse
|
28
|
Dale AG, Hinds J, Mann J, Taylor PW, Neidle S. Symmetric Bis-benzimidazoles Are Potent Anti-Staphylococcal Agents with Dual Inhibitory Mechanisms against DNA Gyrase. Biochemistry 2012; 51:5860-71. [DOI: 10.1021/bi300645n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aaron G. Dale
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square,
London WC1N 1AX, U.K
| | - Jason Hinds
- Bacterial
Microarray Group,
Division of Cellular and Molecular Medicine, St. George’s, University of London, Cranmer Terrace, London SW17
0RE, U.K
| | - John Mann
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square,
London WC1N 1AX, U.K
| | - Peter W. Taylor
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square,
London WC1N 1AX, U.K
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square,
London WC1N 1AX, U.K
| |
Collapse
|
29
|
Oxidative stress, mitochondrial dysfunction, and aging. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:646354. [PMID: 21977319 PMCID: PMC3184498 DOI: 10.1155/2012/646354] [Citation(s) in RCA: 622] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 08/03/2011] [Indexed: 12/31/2022]
Abstract
Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases. Although aging is almost universally conserved among all organisms, the underlying molecular mechanisms of aging remain largely elusive. Many theories of aging have been proposed, including the free-radical and mitochondrial theories of aging. Both theories speculate that cumulative damage to mitochondria and mitochondrial DNA (mtDNA) caused by reactive oxygen species (ROS) is one of the causes of aging. Oxidative damage affects replication and transcription of mtDNA and results in a decline in mitochondrial function which in turn leads to enhanced ROS production and further damage to mtDNA. In this paper, we will present the current understanding of the interplay between ROS and mitochondria and will discuss their potential impact on aging and age-related diseases.
Collapse
|
30
|
Mui TP, Fuss JO, Ishida JP, Tainer JA, Barton JK. ATP-stimulated, DNA-mediated redox signaling by XPD, a DNA repair and transcription helicase. J Am Chem Soc 2011; 133:16378-81. [PMID: 21939244 DOI: 10.1021/ja207222t] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using DNA-modified electrodes, we show DNA-mediated signaling by XPD, a helicase that contains a [4Fe-4S] cluster and is critical for nucleotide excision repair and transcription. The DNA-mediated redox signal resembles that of base excision repair proteins, with a DNA-bound redox potential of ~80 mV versus NHE. Significantly, this signal increases with ATP hydrolysis. Moreover, the redox signal is substrate-dependent, reports on the DNA conformational changes associated with enzymatic function, and may reflect a general biological role for DNA charge transport.
Collapse
Affiliation(s)
- Timothy P Mui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
31
|
Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress. Proc Natl Acad Sci U S A 2011; 108:10620-5. [PMID: 21673141 DOI: 10.1073/pnas.1019735108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent work has identified several posttranslational modifications (PTMs) on chromatin-remodeling complexes. Compared with our understanding of histone PTMs, significantly less is known about the functions of PTMs on remodeling complexes, because identification of their specific roles often is hindered by the presence of redundant pathways. Remodels the Structure of Chromatin (RSC) is an essential, multifunctional ATP-dependent chromatin-remodeling enzyme of Saccharomyces cerevisiae that preferentially binds acetylated nucleosomes. RSC is itself acetylated by Gcn5 on lysine 25 (K25) of its Rsc4 subunit, adjacent to two tandem bromodomains. It has been shown that an intramolecular interaction between the acetylation mark and the proximal bromodomain inhibits binding of the second bromodomain to acetylated histone H3 tails. We report here that acetylation does not significantly alter the catalytic activity of RSC or its ability to recognize histone H3-acetylated nucleosomes preferentially in vitro. However, we find that Rsc4 acetylation is crucial for resistance to DNA damage in vivo. Epistatic miniarray profiling of the rsc4-K25R mutant reveals an interaction with mutants in the INO80 complex, a mediator of DNA damage and replication stress tolerance. In the absence of a core INO80 subunit, rsc4-K25R mutants display sensitivity to hydroxyurea and delayed S-phase progression under DNA damage. Thus, Rsc4 helps promote resistance to replication stress, and its single acetylation mark regulates this function. These studies offer an example of acetylation of a chromatin-remodeling enzyme controlling a biological output of the system rather than regulating its core enzymatic properties.
Collapse
|
32
|
Lan A, Smoly IY, Rapaport G, Lindquist S, Fraenkel E, Yeger-Lotem E. ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Res 2011; 39:W424-9. [PMID: 21576238 PMCID: PMC3125767 DOI: 10.1093/nar/gkr359] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cellular response to stimuli is typically complex and involves both regulatory and metabolic processes. Large-scale experimental efforts to identify components of these processes often comprise of genetic screening and transcriptomic profiling assays. We previously established that in yeast genetic screens tend to identify response regulators, while transcriptomic profiling assays tend to identify components of metabolic processes. ResponseNet is a network-optimization approach that integrates the results from these assays with data of known molecular interactions. Specifically, ResponseNet identifies a high-probability sub-network, composed of signaling and regulatory molecular interaction paths, through which putative response regulators may lead to the measured transcriptomic changes. Computationally, this is achieved by formulating a minimum-cost flow optimization problem and solving it efficiently using linear programming tools. The ResponseNet web server offers a simple interface for applying ResponseNet. Users can upload weighted lists of proteins and genes and obtain a sparse, weighted, molecular interaction sub-network connecting their data. The predicted sub-network and its gene ontology enrichment analysis are presented graphically or as text. Consequently, the ResponseNet web server enables researchers that were previously limited to separate analysis of their distinct, large-scale experiments, to meaningfully integrate their data and substantially expand their understanding of the underlying cellular response. ResponseNet is available at http://bioinfo.bgu.ac.il/respnet.
Collapse
Affiliation(s)
- Alex Lan
- Department of Computer Science, Department of Software Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Clinical Biochemistry and National Center for Biotechnology in the Negev, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel
| | - Ilan Y. Smoly
- Department of Computer Science, Department of Software Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Clinical Biochemistry and National Center for Biotechnology in the Negev, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel
| | - Guy Rapaport
- Department of Computer Science, Department of Software Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Clinical Biochemistry and National Center for Biotechnology in the Negev, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel
| | - Susan Lindquist
- Department of Computer Science, Department of Software Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Clinical Biochemistry and National Center for Biotechnology in the Negev, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel
| | - Ernest Fraenkel
- Department of Computer Science, Department of Software Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Clinical Biochemistry and National Center for Biotechnology in the Negev, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel
| | - Esti Yeger-Lotem
- Department of Computer Science, Department of Software Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Clinical Biochemistry and National Center for Biotechnology in the Negev, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel
- *To whom correspondence should be addressed. Tel/Fax: +972 8 6428675;
| |
Collapse
|
33
|
Markkanen E, van Loon B, Ferrari E, Hübscher U. Ubiquitylation of DNA polymerase λ. FEBS Lett 2011; 585:2826-30. [PMID: 21486570 DOI: 10.1016/j.febslet.2011.03.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 12/26/2022]
Abstract
DNA polymerase (pol) λ, one of the 15 cellular pols, belongs to the X family. It is a small 575 amino-acid protein containing a polymerase, a dRP-lyase, a proline/serine rich and a BRCT domain. Pol λ shows various enzymatic activities including DNA polymerization, terminal transferase and dRP-lyase. It has been implicated to play a role in several DNA repair pathways, particularly base excision repair (BER), non-homologous end-joining (NHEJ) and translesion DNA synthesis (TLS). Similarly to other DNA repair enzymes, pol λ undergoes posttranslational modifications during the cell cycle that regulate its stability and possibly its subcellular localization. Here we describe our knowledge about ubiquitylation of pol λ and the impact of this modification on its regulation.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
34
|
Sambir M, Ivanova LB, Bryksin AV, Godfrey HP, Cabello FC. Functional analysis of Borrelia burgdorferi uvrA in DNA damage protection. FEMS Microbiol Lett 2011; 317:172-80. [PMID: 21272060 DOI: 10.1111/j.1574-6968.2011.02226.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial pathogens face constant challenges from DNA-damaging agents generated by host phagocytes. Although Borrelia burgdorferi appears to have much fewer DNA repair enzymes than pathogens with larger genomes, it does contain homologues of uvrA and uvrB (subunits A and B of excinuclease ABC). As a first step to exploring the physiologic function of uvrA(Bbu) and its possible role in survival in the host in the face of DNA-damaging agents, a partially deleted uvrA mutant was isolated by targeted inactivation. While growth of this mutant was markedly inhibited by UV irradiation, mitomycin C (MMC) and hydrogen peroxide at doses that lacked effect on wild-type B. burgdorferi, its response to pH 6.0-6.8 and reactive nitrogen intermediates was similar to that of the wild-type parental strain. The sensitivity of the inactivation mutant to UV irradiation, MMC and peroxide was complemented by an extrachromosomal copy of uvrA(Bbu). We conclude that uvrA(Bbu) is functional in B. burgdorferi.
Collapse
Affiliation(s)
- Mariya Sambir
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Chan CTY, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 2010; 6:e1001247. [PMID: 21187895 PMCID: PMC3002981 DOI: 10.1371/journal.pgen.1001247] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Decades of study have revealed more than 100 ribonucleoside structures incorporated as post-transcriptional modifications mainly in tRNA and rRNA, yet the larger functional dynamics of this conserved system are unclear. To this end, we developed a highly precise mass spectrometric method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed several novel biosynthetic pathways for RNA modifications and led to the discovery of signature changes in the spectrum of tRNA modifications in the damage response to mechanistically different toxicants. This is illustrated with the RNA modifications Cm, m(5)C, and m(2) (2)G, which increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m(5)C, and m(2) (2)G, which demonstrates that tRNA modifications are critical features of the cellular stress response. The results of our study support a general model of dynamic control of tRNA modifications in cellular response pathways and add to the growing repertoire of mechanisms controlling translational responses in cells.
Collapse
Affiliation(s)
- Clement T. Y. Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Madhu Dyavaiah
- Department of Biomedical Sciences, Gen*NY*sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, New York, United States of America
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Koli Taghizadeh
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (PCD); (TJB)
| | - Thomas J. Begley
- Department of Biomedical Sciences, Gen*NY*sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, New York, United States of America
- * E-mail: (PCD); (TJB)
| |
Collapse
|
37
|
van Loon B, Markkanen E, Hübscher U. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst) 2010; 9:604-16. [PMID: 20399712 DOI: 10.1016/j.dnarep.2010.03.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 12/20/2022]
Abstract
The maintenance of genetic stability is of crucial importance for any form of life. Prior to cell division in each mammalian cell, the process of DNA replication must faithfully duplicate the three billion bases with an absolute minimum of mistakes. Various environmental and endogenous agents, such as reactive oxygen species (ROS), can modify the structural properties of DNA bases and thus damage the DNA. Upon exposure of cells to oxidative stress, an often generated and highly mutagenic DNA damage is 7,8-dihydro-8-oxo-guanine (8-oxo-G). The estimated steady-state level of 8-oxo-G lesions is about 10(3) per cell/per day in normal tissues and up to 10(5) lesions per cell/per day in cancer tissues. The presence of 8-oxo-G on the replicating strand leads to frequent (10-75%) misincorporations of adenine opposite the lesion (formation of A:8-oxo-G mispairs), subsequently resulting in C:G to A:T transversion mutations. These mutations are among the most predominant somatic mutations in lung, breast, ovarian, gastric and colorectal cancers. Thus, in order to reduce the mutational burden of ROS, human cells have evolved base excision repair (BER) pathways ensuring (i) the correct and efficient repair of A:8-oxo-G mispairs and (ii) the removal of 8-oxo-G lesions from the genome. Very recently it was shown that MutY glycosylase homologue (MUTYH) and DNA polymerase lambda play a crucial role in the accurate repair of A:8-oxo-G mispairs. Here we review the importance of accurate BER of 8-oxo-G damage and its regulation in prevention of cancer.
Collapse
Affiliation(s)
- Barbara van Loon
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
38
|
Bekker-Jensen S, Mailand N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst) 2010; 9:1219-28. [PMID: 21035408 DOI: 10.1016/j.dnarep.2010.09.010] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2010] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (γ-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing Radiation-Induced Foci (IRIF). The assembly of proteins at the DSB-flanking chromatin occurs in a highly ordered and strictly hierarchical fashion. To a large extent, this is achieved by regulation of protein-protein interactions triggered by a variety of post-translational modifications including phosphorylation, ubiquitylation, SUMOylation, and acetylation. Over the last decade, insight into the identity of proteins residing in IRIF and the molecular underpinnings of their retention at these structures has been vastly expanded. Despite such advances, however, our understanding of the biological relevance of such DNA repair foci still remains limited. In this review, we focus on recent discoveries on the mechanisms that govern the formation of IRIF, and discuss the implications of such findings in light of our understanding of the physiological importance of these structures.
Collapse
Affiliation(s)
- Simon Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
39
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|
40
|
Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 2010; 8:511-22. [DOI: 10.1038/nrmicro2392] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Overexpression of the recA gene decreases oral but not intraperitoneal fitness of Salmonella enterica. Infect Immun 2010; 78:3217-25. [PMID: 20457791 DOI: 10.1128/iai.01321-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Salmonella enterica recA gene is negatively controlled by the LexA protein, the repressor of the SOS response. The introduction of a mutation (recAo6869) in the LexA binding site, in the promoter region of the S. enterica ATCC 14028 recA gene, allowed the analysis of the effect that RecA protein overproduction has on the fitness of this virulent strain. The fitness of orally but not intraperitoneally inoculated recAo6869 cells decreased dramatically. However, the SOS response of this mutant was induced normally, and there was no increase in the sensitivity of the strain toward DNA-damaging agents, bile salts, or alterations in pH. Nevertheless, S. enterica recAo6869 cells were unable to swarm and their capacity to cross the intestinal epithelium was significantly reduced. The swarming deficiency in recAo6869 cells is independent of the flagellar phase. Moreover, swimming activity of the recAo6869 strain was not diminished with respect to the wild type, indicating that the flagellar synthesis is not affected by RecA protein overproduction. In contrast, swarming was recovered in a recAo6869 derivative that overproduced CheW, a protein known to be essential for this function. These data demonstrate that an equilibrium between the intracellular concentrations of RecA and CheW is necessary for swarming in S. enterica. Our results are the first to point out that the SOS response plays a critical role in the prevention of DNA damage by abolishing bacterial swarming in the presence of a genotoxic compound.
Collapse
|
42
|
Hillenmeyer ME, Ericson E, Davis RW, Nislow C, Koller D, Giaever G. Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action. Genome Biol 2010; 11:R30. [PMID: 20226027 PMCID: PMC2864570 DOI: 10.1186/gb-2010-11-3-r30] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 01/09/2010] [Accepted: 03/12/2010] [Indexed: 02/07/2023] Open
Abstract
The relationship between co-fitness and co-inhibition of genes in chemicogenomic yeast screens provides insights into gene function and drug target prediction. We systematically analyzed the relationships between gene fitness profiles (co-fitness) and drug inhibition profiles (co-inhibition) from several hundred chemogenomic screens in yeast. Co-fitness predicted gene functions distinct from those derived from other assays and identified conditionally dependent protein complexes. Co-inhibitory compounds were weakly correlated by structure and therapeutic class. We developed an algorithm predicting protein targets of chemical compounds and verified its accuracy with experimental testing. Fitness data provide a novel, systems-level perspective on the cell.
Collapse
Affiliation(s)
- Maureen E Hillenmeyer
- Biomedical Informatics, 251 Campus Drive, MSOB, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Ward WO, Swartz CD, Hanley NM, Whitaker JW, Franzén R, DeMarini DM. Mutagen structure and transcriptional response: induction of distinct transcriptional profiles in Salmonella TA100 by the drinking-water mutagen MX and its homologues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:69-79. [PMID: 19598237 DOI: 10.1002/em.20512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The relationship between chemical structure and biological activity has been examined for various compounds and endpoints for decades. To explore this question relative to global gene expression, we performed microarray analysis of Salmonella TA100 after treatment under conditions of mutagenesis by the drinking-water mutagen MX and two of its structural homologues, BA-1, and BA-4. Approximately 50% of the genes expressed differentially following MX treatment were unique to MX; the corresponding percentages for BA-1 and BA-4 were 91 and 80, respectively. Among these mutagens, there was no overlap of altered Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or RegulonDB regulons. Among the 25 Comprehensive Microbial Resource functions altered by these mutagens, only four were altered by more than one mutagen. Thus, the three structural homologues produced distinctly different transcriptional profiles, with none having a single altered KEGG pathway in common. We tested whether structural similarity between a xenobiotic and endogenous metabolites could explain transcriptional changes. For the 830 intracellular metabolites in Salmonella that we examined, BA-1 had a high degree of structural similarity to 2-isopropylmaleate, which is the substrate for isopropylmalate isomerase. The transcription of the gene for this enzyme was suppressed twofold in BA-1-treated cells. Finally, the distinct transcriptional responses of the three structural homologues were not predicted by a set of phenotypic anchors, including mutagenic potency, cytotoxicity, mutation spectra, and physicochemical properties. Ultimately, explanations for varying transcriptional responses induced by compounds with similar structures await an improved understanding of the interactions between small molecules and the cellular machinery.
Collapse
Affiliation(s)
- William O Ward
- Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Doyle M, Feuerbaum EA, Fox KR, Hinds J, Thurston DE, Taylor PW. Response of Staphylococcus aureus to subinhibitory concentrations of a sequence-selective, DNA minor groove cross-linking pyrrolobenzodiazepine dimer. J Antimicrob Chemother 2009; 64:949-59. [PMID: 19744983 PMCID: PMC2764867 DOI: 10.1093/jac/dkp325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES ELB-21 is a pyrrolo[2,1-c][1,4]benzodiazepine dimer with potent antistaphylococcal activity; it binds covalently to guanine residues on opposing strands of duplex DNA, interfering with regulatory proteins and transcription elongation in a sequence-selective manner. Transcriptional and proteomic alterations induced by exposure of Staphylococcus aureus clinical isolate EMRSA-16 to ELB-21 were determined in order to define more precisely the bactericidal mechanism of the drug. METHODS DNase I footprinting was used to identify high-affinity DNA binding sites. Microarrays and gel electrophoresis were used to assess the ELB-21-induced phenotype. RESULTS High-affinity interstrand binding sites in which guanine residues were separated by 4 bp, and also some intrastrand cross-linking sites of variable length were identified. Exposure of EMRSA-16 to 0.015 mg/L ELB-21 elicited a 2-fold or greater up-regulation of 168 genes in logarithmic phase and 181 genes in stationary phase; the majority of genes affected were associated with resident prophages Sa2 and Sa3, pathogenicity island SaPI4 and DNA damage repair. ELB-21 induced a marked increase in the number of viable phage particles in culture supernatants. The expression of only a limited number of genes showed a >50% reduction. Sixteen extracellular and four intracellular proteins were differentially expressed during logarithmic and stationary phases, including RecA, proteins associated with staphylococcal pathogenesis (IsaA, CspA), cell division and wall synthesis. CONCLUSIONS ELB-21 kills S. aureus by forming multiple interstrand and intrastrand DNA cross-links, resulting in induction of the DNA damage response, derepression of resident prophages and modulation of a limited number of genes involved with cell wall synthesis.
Collapse
Affiliation(s)
- Marie Doyle
- School of Pharmacy, University of London, London WC1N 1AX UK
| | | | - Keith R. Fox
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK
| | - Jason Hinds
- Division of Cellular and Molecular Medicine, St. George’s, University of London, London SW17 0RE, UK
| | | | - Peter W. Taylor
- School of Pharmacy, University of London, London WC1N 1AX UK
| |
Collapse
|
46
|
Komaki Y, Pals J, Wagner ED, Mariñas BJ, Plewa MJ. Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:8437-42. [PMID: 19924981 DOI: 10.1021/es901852z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Haloacetic acids (HAAs) are the second most common class of chlorinated water disinfection by-products (DBPs). The single cell gel electrophoresis genotoxicity assay using Chinese hamster ovary (CHO) cells was modified to include liquid holding recovery time to measure genomic DNA damage and repair kinetics of three monoHAAs: chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA). The rank order of genotoxic potency was IAA > BAA >> CAA from previous research. The concentration of each HAA was chosen to generate approximately the same level of genotoxic damage. No cytotoxicity was expressed during the 24 h liquid holding period. Nuclei from CHO cells treated with BAA showed the lowest rate of DNA repair (t(50) = 296 min) compared to that of CAA or IAA (t(50) = 134 and 84 min, respectively). The different rates of genomic repair expressed by IAA or CAA versus BAA suggest that different distributions of DNA lesions are induced. The use of DNA repair coupled with genomic technologies may lead to the understanding of the biological and genetic mechanisms involved in toxic responses induced by DBPs.
Collapse
Affiliation(s)
- Yukako Komaki
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
47
|
Heisig P. Type II topoisomerases--inhibitors, repair mechanisms and mutations. Mutagenesis 2009; 24:465-9. [PMID: 19762349 DOI: 10.1093/mutage/gep035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes that play an essential role in the control of replicative DNA synthesis and share structural and functional homology among different prokaryotic and eukaryotic organisms. Antibacterial fluoroquinolones target prokaryotic topoisomerases at concentrations 100- to 1000-fold lower than mammalian enzymes, the preferred targets of anticancer drugs such as etoposide. The mechanisms of action of both of these types of inhibitors involve the fixation of an intermediate reaction step, where the enzyme is covalently bound to an enzyme-mediated DNA double-strand break (DSB). The resulting ternary drug-enzyme-DNA complexes can then be converted to cleavage complexes that block further movement of the DNA replication fork, subsequently inducing stress responses. In haploid prokaryotic cells, stress responses include error-free and error-prone DNA damage repair pathways, such as homologous recombination and translesion synthesis, respectively. The latter can result in the acquisition of point mutations. Diploid mammalian cells are assumed to preferentially use recombination mechanisms for the repair of DSBs, an example of which, non-homologous end joining, is a major error-prone repair mechanism associated with an increased frequency of detectable small deletions, insertions and translocations. However, results obtained from safety testing of novel fluoroquinolones at high concentrations indicate that point mutations may also occur in mammalian cells. Recent data provide evidence for translesion synthesis catalysed by error-prone repair polymerases as a damage-tolerance repair mechanism of DSBs in eukaryotic cells. This paper discusses possible roles of different mechanisms for the repair of DSBs operating in both eukaryotic and prokaryotic cells that result in recombinational rearrangements, deletions/insertions as well as point mutations.
Collapse
Affiliation(s)
- Peter Heisig
- Pharmaceutical Biology and Microbiology, Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
48
|
Yeger-Lotem E, Riva L, Su LJ, Gitler AD, Cashikar A, King OD, Auluck PK, Geddie ML, Valastyan JS, Karger DR, Lindquist S, Fraenkel E. Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat Genet 2009; 41:316-23. [PMID: 19234470 PMCID: PMC2733244 DOI: 10.1038/ng.337] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/27/2009] [Indexed: 02/07/2023]
Abstract
Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens. By comparing the results of these two assays across various stimuli, we found that genetic screens tend to identify response regulators, whereas mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We used this approach to reveal cellular pathways responding to the toxicity of alpha-synuclein, a protein implicated in several neurodegenerative disorders including Parkinson's disease. For this we screened an established yeast model to identify genes that when overexpressed alter alpha-synuclein toxicity. Bridging these data and data from mRNA profiling provided functional explanations for many of these genes and identified previously unknown relations between alpha-synuclein toxicity and basic cellular pathways.
Collapse
Affiliation(s)
- Esti Yeger-Lotem
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura Riva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linhui Julie Su
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
| | - Aaron D. Gitler
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anil Cashikar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
| | - Oliver D. King
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
| | - Pavan K. Auluck
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Department of Pathology and Neurology, Massachusetts General Hospital, Boston, MA 02114 and Harvard Medical School, Boston MA 02115 USA
| | - Melissa L. Geddie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
| | - Julie S. Valastyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David R. Karger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
- Howard Hughes Medical Institute, Cambridge, MA 02142 USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Lotito L, Russo A, Bueno S, Chillemi G, Fogli MV, Capranico G. A specific transcriptional response of yeast cells to camptothecin dependent on the Swi4 and Mbp1 factors. Eur J Pharmacol 2008; 603:29-36. [PMID: 19094980 DOI: 10.1016/j.ejphar.2008.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Topoisomerase I (Top1) is the specific target of the anticancer drug camptothecin (CPT) that interferes with enzyme activity promoting Top1-mediated DNA breaks and inhibition of DNA and RNA synthesis. To define the specific transcriptional response to CPT, we have determined the CPT-altered transcription profiles in yeast by using a relatively low concentration of the drug. CPT could alter global expression profiles only if a catalytically active Top1p was expressed in the cell, demonstrating that drug interference with Top1 was the sole trigger of the response. A total of 95 genes showed a statistically-significant alterations. Gene Ontology term analyses suggested that the cell response was mainly to the inhibition of nucleic acid synthesis and cell cycle progression. Promoter sequence analyses of the 22 up-regulated genes and expression studies in gene-deleted strains showed that the transcription factors, Swi4p and Mbp1p, mediate at least partially the transcriptional response to CPT. The MBP1 gene deletion abrogates a transient cell growth delay caused by CPT whereas the SWI4 gene deletion increases yeast resistance to CPT. Thus, the findings show that yeast cells have a highly selective and sensitive transcriptional response to CPT depending on SWI4 and MBP1 genes suggesting a complex regulation of cell cycle progression by the two factors in the presence of CPT.
Collapse
Affiliation(s)
- Luca Lotito
- G Moruzzi Department of Biochemistry, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol 2008; 191:1152-61. [PMID: 19060143 DOI: 10.1128/jb.01292-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to ionizing radiation. In striking contrast, we found that in B. subtilis both ionizing radiation and a site-specific double-strand break causes induction of prophage PBSX and SOS gene expression in only a small subpopulation of cells. These results show that double-strand breaks provoke global SOS induction in E. coli but not in B. subtilis. Remarkably, RecA-GFP focus formation was nearly identical following ionizing radiation challenge in both E. coli and B. subtilis, demonstrating that formation of RecA-GFP foci occurs in response to double-strand breaks but does not require or result in SOS induction in B. subtilis. Furthermore, we found that B. subtilis cells incapable of inducing SOS had near wild-type levels of survival in response to ionizing radiation. Moreover, B. subtilis RecN contributes to maintaining low levels of SOS induction during double-strand break repair. Thus, we found that the contribution of SOS induction to double-strand break repair differs substantially between E. coli and B. subtilis.
Collapse
|