1
|
Rodríguez EM, Guerra M, Blázquez JL. Roots and early routes of neuroendocrinology. Cell Tissue Res 2025; 400:137-215. [PMID: 39883141 DOI: 10.1007/s00441-024-03928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Carl C. Speidel (1919) and Ernst Scharrer (1928) were privileged witnesses of the encounter between neurons and hormones, a biological phenomenon that had been occurring in nature during millions of years of evolution, as Berta Scharrer started to unfold since 1935 on. The story of neurosecretion is intimately associated to that of the hypothalamus, such a "marvellous region", as Wolfgang Bargmann (1975) called it. This story started more than two millennia ago. We have made an effort to trace the roots of the discoveries that gave rise to a medical discipline, neuroendocrinology. Our trip to the roots covers a period from the fourth century BC, when an extraordinary Medical School was founded in Alexandria, and extends into the late 1970s of the twentieth century, when neuroendocrine research had started to grow exponentially. An effort has been made to track back the origin of each piece of knowledge that was constructing, brick upon brick, the building of this new medical science, hoping that it would help neuroendocrinologists of the new era to find their own roots, to meet their ancestors. Tracking the roots of a particular phenomenon provides the opportunity to have an overview of the whole phenomenon, allowing comprehension rather than merely knowledge. An important purpose pursued throughout this article was to pay a tribute to all those who, in the early days, contributed to the brain-endocrine encounter. We have tried our best to bring back the achievements of most of them.
Collapse
Affiliation(s)
- Esteban M Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.
| | - Montserrat Guerra
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Luis Blázquez
- Departamento de Anatomía e Histología Humana, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Uehara SK, Nishiike Y, Maeda K, Karigo T, Kuraku S, Okubo K, Kanda S. Identification of the FSH-RH as the other gonadotropin-releasing hormone. Nat Commun 2024; 15:5342. [PMID: 38937445 PMCID: PMC11211334 DOI: 10.1038/s41467-024-49564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.
Collapse
Affiliation(s)
- Shun Kenny Uehara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Tomomi Karigo
- Kennedy Krieger Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
3
|
Silver R, Yao Y, Roy RK, Stern JE. Parallel trajectories in the discovery of the SCN-OVLT and pituitary portal pathways: Legacies of Geoffrey Harris. J Neuroendocrinol 2023; 35:e13245. [PMID: 36880566 PMCID: PMC10423749 DOI: 10.1111/jne.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.
Collapse
Affiliation(s)
- Rae Silver
- Department of Neuroscience, Barnard College, 3009 Broadway, New York City, NY, 10027, USA
- Columbia University Department of Psychology, 1190 Amsterdam Avenue, New York City, NY, 10027, USA
- Department of Psychology, Barnard College, 3009 Broadway, New York City, NY, 10027, USA
| | - Yifan Yao
- Columbia University Department of Psychology, 1190 Amsterdam Avenue, New York City, NY, 10027, USA
| | - Ranjan K. Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, 30303, USA
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
4
|
Moenter SM, Evans NP. Gonadotropin-releasing hormone (GnRH) measurements in pituitary portal blood: A history. J Neuroendocrinol 2022; 34:e13065. [PMID: 34918405 PMCID: PMC9200367 DOI: 10.1111/jne.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/29/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023]
Abstract
Much about the neuroendocrine control of reproduction is inferred from changes in the episodic release of luteinizing hormone (LH), as measured in samples of peripheral blood. This, however, assumes that LH precisely mirrors gonadotropin-releasing hormone (GnRH) release from the hypothalamus. Because GnRH is not measurable in peripheral blood, characterization of the relationship between these two hormones required the simultaneous measurement of GnRH and LH in pituitary portal and peripheral blood, respectively. Here, we review the history of why and how portal blood collection was developed, the aspects of the true output of the central component of the hypothalamic-pituitary-gonadal axis that this methodology helped clarify, and conditions under which the pituitary fails to serve as an adequate bioassay for the release pattern of GnRH.
Collapse
Affiliation(s)
- Suzanne M. Moenter
- Departments of Molecular & Integrative Physiology, Internal Medicine, Obstetrics & Gynecology, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Neil P. Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Chemerinski A, Liu C, Morelli SS, Babwah AV, Douglas NC. Mouse Cre drivers: tools for studying disorders of the human female neuroendocrine-reproductive axis†. Biol Reprod 2022; 106:835-853. [PMID: 35084017 PMCID: PMC9113446 DOI: 10.1093/biolre/ioac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.
Collapse
Affiliation(s)
- Anat Chemerinski
- Correspondence: Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB E561, Newark, NJ 07103, USA. Tel: 301-910-6800; Fax: 973-972-4574. E-mail:
| | | | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | | |
Collapse
|
7
|
Ross JA, Van Bockstaele EJ. The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Front Psychiatry 2021; 11:601519. [PMID: 33584368 PMCID: PMC7873441 DOI: 10.3389/fpsyt.2020.601519] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
Arousal may be understood on a spectrum, with excessive sleepiness, cognitive dysfunction, and inattention on one side, a wakeful state in the middle, and hypervigilance, panic, and psychosis on the other side. However, historically, the concepts of arousal and stress have been challenging to define as measurable experimental variables. Divergent efforts to study these subjects have given rise to several disciplines, including neurobiology, neuroendocrinology, and cognitive neuroscience. We discuss technological advancements that chronologically led to our current understanding of the arousal system, focusing on the multifaceted nucleus locus coeruleus. We share our contemporary perspective and the hypotheses of others in the context of our current technological capabilities and future developments that will be required to move forward in this area of research.
Collapse
Affiliation(s)
- Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| | | |
Collapse
|
8
|
Kreier F, Swaab DF. History of hypothalamic research: "The spring of primitive existence". HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:7-43. [PMID: 34225985 DOI: 10.1016/b978-0-12-819975-6.00031-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The central brain region of interest for neuroendocrinology is the hypothalamus, a name coined by Wilhelm His in 1893. Neuroendocrinology is the discipline that studies hormone production by neurons, the sensitivity of neurons for hormones, as well as the dynamic, bidirectional interactions between neurons and endocrine glands. These interactions do not only occur through hormones, but are also partly accomplished by the autonomic nervous system that is regulated by the hypothalamus and that innervates the endocrine glands. A special characteristic of the hypothalamus is that it contains neuroendocrine neurons projecting either to the neurohypophysis or to the portal vessels of the anterior lobe of the pituitary in the median eminence, where they release their neuropeptides or other neuroactive compounds into the bloodstream, which subsequently act as neurohormones. In the 1970s it was found that vasopressin and oxytocin not only are released as hormones in the circulation but that their neurons project to other neurons within and outside the hypothalamus and function as neurotransmitters or neuromodulators that regulate central functions, including the autonomic innervation of all our body organs. Recently magnocellular oxytocin neurons were shown to send not only an axon to the neurohypophysis, but also axon collaterals of the same neuroendocrine neuron to a multitude of brain areas. In this way, the hypothalamus acts as a central integrator for endocrine, autonomic, and higher brain functions. The history of neuroendocrinology is described in this chapter from the descriptions in De humani corporis fabrica by Vesalius (1537) to the present, with a timeline of the scientists and their findings.
Collapse
Affiliation(s)
- Felix Kreier
- Department Pediatrics, OLVG Hospitals, Amsterdam, The Netherlands.
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Churilov AN, Milton J, Salakhova ER. An integrate-and-fire model for pulsatility in the neuroendocrine system. CHAOS (WOODBURY, N.Y.) 2020; 30:083132. [PMID: 32872840 DOI: 10.1063/5.0010553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A model for pulsatility in neuroendocrine regulation is proposed which combines Goodwin-type feedback control with impulsive input from neurons located in the hypothalamus. The impulsive neural input is modeled using an integrate-and-fire mechanism; namely, inputs are generated only when the membrane potential crosses a threshold, after which it is reset to baseline. The resultant model takes the form of a functional-differential equation with continuous and impulsive components. Despite the impulsive nature of the inputs, realistic hormone profiles are generated, including ultradian and circadian rhythms, pulsatile secretory patterns, and even chaotic dynamics.
Collapse
Affiliation(s)
- Alexander N Churilov
- Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetsky av. 28, Stary Peterhof, 198504 St. Petersburg, Russia
| | - John Milton
- Keck Science Department, The Claremont Colleges, 925 North Mills Ave., Claremont, California 91711, USA
| | - Elvira R Salakhova
- Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetsky av. 28, Stary Peterhof, 198504 St. Petersburg, Russia
| |
Collapse
|
10
|
Abstract
Endocrine organs secrete a variety of hormones involved in the regulation of a multitude of body functions. Although pancreatic islets were discovered at the turn of the 19th century, other endocrine glands remained commonly described as diffuse endocrine systems. Over the last two decades, development of new imaging techniques and genetically-modified animals with cell-specific fluorescent tags or specific hormone deficiencies have enabled in vivo imaging of endocrine organs and revealed intricate endocrine cell network structures and plasticity. Overall, these new tools have revolutionized our understanding of endocrine function. The overarching aim of this Review is to describe the current mechanistic understanding that has emerged from imaging studies of endocrine cell network structure/function relationships in animal models, with a particular emphasis on the pituitary gland and the endocrine pancreas.
Collapse
Affiliation(s)
- Patrice Mollard
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
11
|
Le Tissier P, Campos P, Lafont C, Romanò N, Hodson DJ, Mollard P. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat Rev Endocrinol 2017; 13:257-267. [PMID: 27934864 DOI: 10.1038/nrendo.2016.193] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Pauline Campos
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| | - Chrystel Lafont
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| | - Nicola Romanò
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Edgbaston, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Patrice Mollard
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| |
Collapse
|
12
|
Kramáriková I, Šípková J, Šída P, Hynie S, Klenerová V. The Effect of Stress on the Galaninergic System in the Rat Adenohypophysis: mRNA Expression and Immunohistochemistry of Galanin Receptors. Folia Biol (Praha) 2017; 63:197-201. [PMID: 29687773 DOI: 10.14712/fb2017063050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The effect of stress is dependent on the activity of the hypothalamic-adenohypophyseal-adrenal axis. Although the adenohypophysis is a crucial part of this axis, galanin peptides and their receptors have not yet been identified in this part of the pituitary after activation of the stress response. Since there are many controversies about the occurrence of individual galanin receptor subtypes in the adenohypophysis under basal conditions, we decided to verify their presence immunohistochemically, and we clearly demonstrated that the adenohypophysis expresses neuropeptides galanin, galanin-like peptide, and subtypes of galanin receptors GalR1, GalR2 and GalR3. The specificity of the reactions was confirmed by Western blots for galanin receptors. Using real-time qPCR we also demonstrated the presence of three GalR subtypes, with the highest expression of GalR2. In addition, we tested the effect of stress. We found that acute stress did not induce any changes in the GalR2 expression, but increased expression of GalR1 and decreased that of GalR3. We confirmed the involvement of the galanin system in the stress regulation in the adenohypophysis.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Galanin/metabolism
- Immunohistochemistry
- Pituitary Gland, Anterior/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/metabolism
- Receptors, Galanin/metabolism
Collapse
Affiliation(s)
- I Kramáriková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Šípková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Šída
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - S Hynie
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - V Klenerová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Reichlin S. 60 YEARS OF NEUROENDOCRINOLOGY: MEMOIR: working in the 'Huts' with the professor: the first Maudsley years. J Endocrinol 2015. [PMID: 26209093 DOI: 10.1530/joe-15-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seymour Reichlin
- Professor of MedicineEmeritus, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Leng G, Pineda R, Sabatier N, Ludwig M. 60 YEARS OF NEUROENDOCRINOLOGY: The posterior pituitary, from Geoffrey Harris to our present understanding. J Endocrinol 2015; 226:T173-85. [PMID: 25901040 DOI: 10.1530/joe-15-0087] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 01/12/2023]
Abstract
Geoffrey Harris pioneered our understanding of the posterior pituitary, mainly with experiments that involved the electrical stimulation of the supraoptico-hypophysial tract. In the present essay, we explain how his observations included clues to the pulsatile nature of the oxytocin signal - clues that were followed up by subsequent workers, including his students and their students. These studies ultimately led to our present understanding of the milk-ejection reflex and of the role of oxytocin in parturition. Discoveries of wide significance followed, including: the recognition of the importance of pulsatile hormone secretion; the recognition of the importance of stimulus-secretion coupling mechanisms in interpreting the patterned electrical activity of neurons; the physiological importance of peptide release in the brain; the recognition that peptide release comes substantially from dendrites and can be regulated independently of nerve terminal secretion; and the importance of dynamic morphological changes to neuronal function in the hypothalamus. All of these discoveries followed from the drive to understand the milk-ejection reflex. We also reflect on Harris's observations on vasopressin secretion, on the effects of stress, and on oxytocin secretion during sexual activity.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative PhysiologyUniversity of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH9 8XD, UK
| | - Rafael Pineda
- Centre for Integrative PhysiologyUniversity of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH9 8XD, UK
| | - Nancy Sabatier
- Centre for Integrative PhysiologyUniversity of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH9 8XD, UK
| | - Mike Ludwig
- Centre for Integrative PhysiologyUniversity of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH9 8XD, UK
| |
Collapse
|
15
|
Abstract
Geoffrey Harris is chiefly known for his demonstration of the control of the pituitary gland by the portal vessels coming from the hypothalamus. This does not do justice to his extraordinary contribution to biology. Harris' life's work was central in demonstrating the brain/body interactions by which animals and humans adapt to their environment, and above all the control of that most crucial and proximate of all evolutionary events - reproduction. In this brief review, I have tried to put Geoffrey Harris' work in the context of the scientific thinking at the time when he began his work, and above all, the contribution of his mentor, FHA Marshall, on whose towering shoulders Harris rose. But this is mainly my personal story, in which I have tried to show the debt that my work owed to Harris and especially to my dear friend, the late Keith Brown-Grant in Harris' team. I myself was never an endocrinologist, but over a short period in the early 1970s, under the influence of such inspirational mentors, and using purely anatomical methods, I was able to demonstrate sexual dimorphism and hormone-dependent sexual differentiation in the connections of the preoptic area, regeneration of the median eminence, the ultrastructure of apoptosis, the requirement for the suprachiasmatic nuclei in reproductive rhythms, the existence of non-rod or cone photoreceptors in the albino rat retina and, later, the expression of vasopressin by solitary (one in 600) magnocellular neurons in the polydipsic di/di Brattleboro mutant rat; this phenomenon was subsequently shown to be due to a+1 reading frameshift. I end this brief overview by mentioning some of the abiding and fascinating mysteries of the endocrine memory of the brain that arise from Harris' work on the control of the endocrines, and by pointing out how the current interest in chronobiology emphasises what a Cinderella the endocrine mechanisms have become in current brain imaging studies.
Collapse
Affiliation(s)
- Geoffrey Raisman
- Spinal Repair UnitDepartment of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
16
|
Nazar FN, Barrios BE, Kaiser P, Marin RH, Correa SG. Immune neuroendocrine phenotypes in Coturnix coturnix: do avian species show LEWIS/FISCHER-like profiles? PLoS One 2015; 10:e0120712. [PMID: 25793369 PMCID: PMC4368694 DOI: 10.1371/journal.pone.0120712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/26/2015] [Indexed: 12/23/2022] Open
Abstract
Immunoneuroendocrinology studies have identified conserved communicational paths in birds and mammals, e.g. the Hypothalamus-Pituitary-Adrenal axis with anti-inflammatory activity mediated by glucocorticoids. Immune neuroendocrine phenotypes (INPs) have been proposed for mammals implying the categorization of a population in subgroups underlying divergent immune-neuroendocrine interactions. These phenotypes were studied in the context of the LEWIS/FISCHER paradigm (rats expressing high or low pro-inflammatory profiles, respectively). Although avian species have some common immunological mechanisms with mammals, they have also evolved some distinct strategies and, until now, it has not been studied whether birds may also share with mammals similar INPs. Based on corticosterone levels we determined the existence of two divergent groups in Coturnix coturnix that also differed in other immune-neuroendocrine responses. Quail with lowest corticosterone showed higher lymphoproliferative and antibody responses, interferon-γ and interleukin-1β mRNA expression levels and lower frequencies of leukocyte subpopulations distribution and interleukin-13 levels, than their higher corticosterone counterparts. Results suggest the existence of INPs in birds, comparable to mammalian LEWIS/FISCHER profiles, where basal corticosterone also underlies responses of comparable variables associated to the phenotypes. Concluding, INP may not be a mammalian distinct feature, leading to discuss whether these profiles represent a parallel phenomenon evolved in birds and mammals, or a common feature inherited from a reptilian ancestor millions of years ago.
Collapse
Affiliation(s)
- F. Nicolas Nazar
- Biological and Technological Investigations Institute (IIByT), National Scientific and Technical Research Council (CONICET) and National University of Cordoba, Cordoba, Argentina
| | - Bibiana E. Barrios
- Clinical Biochemistry and Immunology Research Center (CIBICI), National Scientific and Technical Research Council (CONICET) and National University of Cordoba, Cordoba, Argentina
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Raul H. Marin
- Biological and Technological Investigations Institute (IIByT), National Scientific and Technical Research Council (CONICET) and National University of Cordoba, Cordoba, Argentina
| | - Silvia G. Correa
- Clinical Biochemistry and Immunology Research Center (CIBICI), National Scientific and Technical Research Council (CONICET) and National University of Cordoba, Cordoba, Argentina
| |
Collapse
|
17
|
Abstract
Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.
Collapse
Affiliation(s)
- E Ron de Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research, Leiden University and Department of Endocrinology and Metabolism, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| |
Collapse
|
18
|
de Kloet ER. Lifetime achievement from a brain-adrenal perspective: on the CRF-urocortin-glucocorticoid balance. J Chem Neuroanat 2013; 54:42-9. [PMID: 24161414 DOI: 10.1016/j.jchemneu.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/15/2013] [Indexed: 01/06/2023]
Abstract
This contribution dedicated to Wylie Vale is focused on the action of the glucocorticoid hormone aimed to counterbalance the stress response orchestrated by the corticotrophin releasing factor (CRF) and urocortin (Ucn) family of peptides. It appears that the release and action of these stress hormones themselves are subjected to intrinsic self-regulatory feedback loops that operate as checks and balances in stress adaptation. One of these feedback loops is operated by the mineralocorticoid (MR) and glucocorticoid receptors (GR) that mediate in complementary fashion the action of endogenous cortisol/corticosterone in brain circuits underlying the onset and termination of the stress response. By affecting appraisal processes MR has an important role in coordinating emotional expression and cognitive flexibility with the onset of the stress response, while GR's role is prominent in the management of behavioral and physiological adaptations during the recovery phase. Genetic variation in interaction with environmental input and experience-related factors can modulate this balance between susceptibility and recovery governed by a balanced MR:GR signaling. Thanks to the Wylie Vale School of scientists a parallel balanced regulation between the CRF/CRF-1 and Ucn/CRF-2 receptor systems is being uncovered, leading inexorably to the question: how do the CRF/Ucn and glucocorticoid systems interact in multiple brain sites to maintain homeostasis and health?
Collapse
Affiliation(s)
- E R de Kloet
- Medical Pharmacology, LACDR, Leiden University, Leiden, The Netherlands; Department of Endocrinology & Metabolism, Leiden University, Medical Center, Leiden, The Netherlands.
| |
Collapse
|
19
|
The suprachiasmatic nucleus and the circadian timing system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:1-28. [PMID: 23899592 DOI: 10.1016/b978-0-12-396971-2.00001-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The circadian timing system (CTS) in mammals may be defined as a network of interconnected diencephalic structures that regulate the timing of physiological processes and behavioral state. The central feature of the CTS is the suprachiasmatic nucleus (SCN) of the hypothalamus, a self-sustaining circadian oscillator entrained by visual afferents, input from other brain and peripheral oscillators. The SCN was first noted as a distinct component of the hypothalamus during the late nineteenth century and recognized soon after as a uniform feature of the mammalian and lower vertebrate brain. But, as was true for so many brain components identified in that era, its function was unknown and remained so for nearly a century. In the latter half of the twentieth century, numerous tools for studying the brain were developed including neuroanatomical tracing methods, electrophysiological methods including long-term recording in vivo and in vitro, precise methods for producing localized lesions in the brain, and molecular neurobiology. Application of these methods provided a body of data strongly supporting the view that the SCN is a circadian pacemaker in the mammalian brain. This chapter presents an analysis of the functional organization of the SCN as a component of a neural network, the CTS. This network functions as a coordinator of hypothalamic regulatory systems imposing a temporal organization of physiological processes and behavioral state to promote environmental adaptation.
Collapse
|
20
|
Bouligand J, Ghervan C, Trabado S, Brailly-Tabard S, Guiochon-Mantel A, Young J. Genetics defects in GNRH1: A paradigm of hypothalamic congenital gonadotropin deficiency. Brain Res 2010; 1364:3-9. [DOI: 10.1016/j.brainres.2010.09.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/10/2010] [Accepted: 09/23/2010] [Indexed: 11/15/2022]
|
21
|
Watts AG. Structure and function in the conceptual development of mammalian neuroendocrinology between 1920 and 1965. ACTA ACUST UNITED AC 2010; 66:174-204. [PMID: 20637232 DOI: 10.1016/j.brainresrev.2010.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/20/2010] [Accepted: 07/07/2010] [Indexed: 11/28/2022]
Abstract
With the growing realization in the 1930s that the brain played a crucial role in regulating the secretions of the pituitary gland, neuroendocrinology as we now know it developed from two rather separate directions. One approach relied heavily on morphological techniques to define neurosecretion; a novel, but for many years flawed model that was originally developed to explain the presence of gland-like cells in the diencephalon. During its first 20 years neurosecretion, as a concept, made no significant contribution to our understanding of how the pituitary was controlled. Then, following the identification by Sanford Palay and Wolfgang Bargmann of a continuous neurosecretory pathway from the hypothalamus to the neural lobe, neurosecretion became incorporated into a more broadly based concept of pituitary function, particularly regarding the neural lobe. The second approach integrated structural and functional methods to investigate neural regulation of the pituitary. This work eventually explained how the pituitary was controlled by the brain. It led directly to our understanding of the control of vasopressin and oxytocin release by neuroendocrine terminals in the neural lobe, the neurohumoral control of the pars distalis, and eventually to a detailed description of the neural networks that control pituitary function. As increasingly sophisticated morphological, neurophysiological, and eventually molecular biological techniques were applied to the problem, the original notion of the diencephalic gland and neurosecretion became unsustainable. The gland-nerve cells of the 1930s became the neurosecretory cells of the 1940s and 1950s, and then finally neuroendocrine neurons in the 1960s. From then on neuroendocrinology developed into the more unified discipline we know today. The chronology of these two approaches will be examined here using examples from research that occurred approximately between 1920 and 1965. The goal is not to give a comprehensive history of pituitary function or neuroendocrinology. Instead, the focus will be to compare the rationales and effectiveness of two contrasting experimental approaches: predominantly structural analyses as opposed to more integrated approaches.
Collapse
Affiliation(s)
- Alan G Watts
- Department of Biological Sciences, The USC College, University of Southern California, Los Angeles, CA 90089-2520, USA.
| |
Collapse
|
22
|
Kreier F, Swaab DF. Chapter 23: history of neuroendocrinology "the spring of primitive existence". HANDBOOK OF CLINICAL NEUROLOGY 2010; 95:335-360. [PMID: 19892126 DOI: 10.1016/s0072-9752(08)02123-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The history of neuroendocrinology is intimately related to one of the key questions, i.e. how does the brain manage to keep us alive and let our species survive? Neuroendocrinology, part of the answer to this question, is the discipline that studies hormone production by neurons, the sensitivity of neurons to hormones, and the dynamic, bidirectional interactions between neurons and endocrine glands. These interactions do not only occur through hormones, but are partly executed by the autonomic system that is regulated by the hypothalamus and that innervates not only the endocrine glands, but all our organs. The hypothalamus acts as a central integrator for endocrine, autonomic, and higher brain functions. The history of neuroendocrinology begins in 200 AD, with Galenus, who postulated that the brain excreted a residue from animal spirits (pituita), and continues into the last century, when researchers from different disciplines tried to understand how the brain regulates the vital functions of the body. Thanks to massive recent electronic publications of English and German scientific journals from the early 20th century we were able to rediscover fascinating articles, written in Europe before World War II, which showed that some of our most recent "innovative" concepts had in fact already been thought up some 50-100 years earlier. Apparently, World War II and the migration and exile of many researchers interrupted the development of concepts in this field and made rediscovery necessary. Our chapter gives an overview of the developments, both new and newly discovered.
Collapse
Affiliation(s)
- Felix Kreier
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | | |
Collapse
|
23
|
Abstract
All organisms must maintain a complex dynamic equilibrium, or homeostasis, which is constantly challenged by internal or external adverse forces termed stressors. Stress occurs when homeostasis is threatened or perceived to be so; homeostasis is re-established by various physiological and behavioral adaptive responses. Neuroendocrine hormones have major roles in the regulation of both basal homeostasis and responses to threats, and are involved in the pathogenesis of diseases characterized by dyshomeostasis or cacostasis. The stress response is mediated by the stress system, partly located in the central nervous system and partly in peripheral organs. The central, greatly interconnected effectors of this system include the hypothalamic hormones arginine vasopressin, corticotropin-releasing hormone and pro-opiomelanocortin-derived peptides, and the locus ceruleus and autonomic norepinephrine centers in the brainstem. Targets of these effectors include the executive and/or cognitive, reward and fear systems, the wake-sleep centers of the brain, the growth, reproductive and thyroid hormone axes, and the gastrointestinal, cardiorespiratory, metabolic, and immune systems. Optimal basal activity and responsiveness of the stress system is essential for a sense of well-being, successful performance of tasks, and appropriate social interactions. By contrast, excessive or inadequate basal activity and responsiveness of this system might impair development, growth and body composition, and lead to a host of behavioral and somatic pathological conditions.
Collapse
|
24
|
Abstract
The concept of neurohumoral control of anterior pituitary function championed by Geoffrey Harris was based upon clinical and biological observation backed by rigorous experimental testing. The areas of the brain involved in the control of gonadotrophic hormone synthesis and release were identified by electrical stimulation, lesioning and fibre tract cutting. The medial preoptic area (MPOA) proved to be a major integrating centre, with axon terminals from this region terminating at the median eminence releasing factors into the portal vessels to give a direct route from brain to pituitary. It took over a decade before the gonadotrophic hormone-releasing hormone (GnRH) was isolated, sequenced and synthesised. With antibodies raised against this peptide, the MPOA was identified as a site rich in GnRH neurones and the hormone was detected at high levels in portal blood extracts. A natural knockout of the GnRH gene was discovered in a hypogonadal (hpg) mouse. Hormone injections, gene replacement methods and neural grafting in these mutants all confirmed the central role of GnRH in reproduction. The modern techniques of molecular biology have allowed us to extend our knowledge base. In the last few years the role of kisspeptin and its receptor (GPR54) in the control of the GnRH neurone has added a further level of hypothalamic involvement in the modulation of reproduction.
Collapse
Affiliation(s)
- H Charlton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Abstract
Neuroendocrinology links experience and behaviour to the action of hormones. This review focusses on the corticosteroids, released in hourly pulses and after stress, to illustrate the integration of body, brain and mind achieved by these hormones. Corticosteroids coordinate cell and organ function in concert with other mediators of the stress response over time spans from seconds to hours, days, weeks, or even permanently. The actions exerted by these stress hormones are mediated by two receptor types that control initial stress reactions and manage the later adaptive phases. How the balance between the stress and adaptive responses contributes to resilience and health is a conundrum to be resolved during the next two decades of the existence of the Journal of Neuroendocrinology.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Medical Pharmacology, LACDR/LUMC, Leiden, The Netherlands
| |
Collapse
|
26
|
Senovilla L, Núñez L, Villalobos C, García-Sancho J. Rapid changes in anterior pituitary cell phenotypes in male and female mice after acute cold stress. Endocrinology 2008; 149:2159-67. [PMID: 18202140 DOI: 10.1210/en.2007-1030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anterior pituitary (AP) is made of five different cell types. The relative abundance and phenotype of AP cells may change in different physiological situations as an expression of pituitary plasticity. Here, we analyze in detail the phenotype of mouse corticotropes and the effects of acute cold stress on AP cell populations. The hormone content and the expression of hypothalamic-releasing hormone (HRH) receptors in all the five AP cell types were studied in the male and female mice at rest and after a 30-min cold stress. Expression of HRH receptors was evidenced by imaging the single-cell cytosolic Ca(2+) responses in fura-2-loaded cells. Hormone contents were studied by multiple, simultaneous immunofluorescence of all the five hormones. Corticotropes displayed a striking sexual dimorphism, even in the resting condition. Male corticotropes showed the orthodox phenotype. They were monohormonal, storing only ACTH, and monoreceptorial, responding only to CRH. In contrast, female corticotropes were made of about equal parts of orthodox cells and multifunctional cells, which co-stored additional AP hormones and expressed additional HRH receptors. Cold stress did not modify the number of ACTH containing cells, but, according to immunostaining, it increased the relative abundance of other AP cell types at the expense of the pool of cells storing no hormones. Cold stress also modified the response to CRH and other HRHs. Most of these phenotypical changes presented a strong sexual dimorphism. These results indicate that pituitary plasticity is even larger than previously thought.
Collapse
Affiliation(s)
- Laura Senovilla
- Instituto de Biología y Genética Molecular, Universidad de Valladolid, C/ Sanz y Forés s/n, 47003 Valladolid, Spain
| | | | | | | |
Collapse
|
27
|
de Kloet ER, Han F, Meijer OC. From the Stalk to Down Under about Brain Glucocorticoid Receptors, Stress and Development. Neurochem Res 2007; 33:637-42. [DOI: 10.1007/s11064-007-9520-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
|
28
|
Scanes CG, Jeftinija S, Glavaski-Joksimovic A, Proudman J, Arámburo C, Anderson LL. The anterior pituitary gland: lessons from livestock. Domest Anim Endocrinol 2005; 29:23-33. [PMID: 15905067 DOI: 10.1016/j.domaniend.2005.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 03/31/2005] [Accepted: 04/03/2005] [Indexed: 11/28/2022]
Abstract
There has been extensive research of the anterior pituitary gland of livestock and poultry due to the economic (agricultural) importance of physiological processes controlled by it including reproduction, growth, lactation and stress. Moreover, farm animals can be biomedical models or useful in evolutionary/ecological research. There are for multiple sites of control of the secretion of anterior pituitary hormones. These include the potential for independent control of proliferation, differentiation, de-differentiation and/or inter-conversion cell death, expression and translation, post-translational modification (potentially generating multiple isoforms with potentially different biological activities), release with or without a specific binding protein and intra-cellular catabolism (proteolysis) of pituitary hormones. Multiple hypothalamic hypophysiotropic peptides (which may also be produced peripherally, e.g. ghrelin) influence the secretion of the anterior pituitary hormones. There is also feedback for hormones from the target endocrine glands. These control mechanisms show broadly a consistency across species and life stages; however, there are some marked differences. Examples from growth hormone, prolactin, follicle stimulating hormone and luteinizing hormone will be considered. In addition, attention will be focused on areas that have been neglected including the role of stellate cells, multiple sub-types of the major adenohypophyseal cells, functional zonation within the anterior pituitary and the role of multiple secretagogues for single hormones.
Collapse
Affiliation(s)
- C G Scanes
- Department of Poultry Science, Mississippi State University, 617 Allen Hall, P.O. Box 6343, MS 39762, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Kesslak JP. Can estrogen play a significant role in the prevention of Alzheimer's disease? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:227-39. [PMID: 12456066 DOI: 10.1007/978-3-7091-6139-5_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In women the abrupt decline estrogen levels at menopause may be associated with cognitive deficits and increased risk for Alzheimer's disease (AD); estrogen replacement therapy may reduce this risk. Animal studies indicate that estrogen modulates neurotransmitter systems, regulates synaptogenesis, and is neuroprotective. These beneficial effects occur in brain areas critical to cognitive function and involved in AD. Reduced estrogen levels can compromise neuronal function and survival. Estrogen replacement therapy can reverse cognitive deficits associated with low estrogen levels and may reduce the risk of AD. However, clinical trials for estrogen replacement in the treatment of AD have produced ambiguous results. Initial, small, open-label and double blind clinical trials indicated improved cognitive function in women with AD. Recent large trials failed to show a beneficial effect for long-term estrogen replacement for women with AD. There are several variables that could affect these results, such as genetic factors, time between estrogen loss and replacement, extent and types of AD pathology, and other environmental and health factors. Presently large prospective studies are being conducted as the National Institutes of Health in the Women's Health Initiative and the Preventing Postmenopausal Memory Loss and Alzheimer's with Replacement Estrogens studies to provide a better assessment of the role of estrogen for age related health issues, including dementia.
Collapse
Affiliation(s)
- J P Kesslak
- Institute for Brain Aging and Dementia, Department of Neurology, University of California, Irvine, CA 92697-4540, USA.
| |
Collapse
|
30
|
González-Aguilar F. Electrical and chemical synaptic transmission as an interacting system. Med Hypotheses 2000; 54:40-6. [PMID: 10790722 DOI: 10.1054/mehy.1999.0966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is proposed that presynaptic potassium efflux triggered by the nerve impulse may generate either excitatory or inhibitory responses depending on the neurotransmitter which more or less steadily impregnates the postsynaptic membrane. The jelly intersynaptic matrix may potentiate the efficiency of inoic intersynaptic signals. The synaptic vesicles are proposed to shuttle mitochondrial ATP towards the presynaptic membrane, thereby supplying the energy necessary to restore the membrane polarity after synaptic transmission. Plain structural data and currently accepted functional antecedents appear to justify the proposal.
Collapse
Affiliation(s)
- F González-Aguilar
- Departamento de Biologia Cellular i Anatomia Patològica, Universitat de Barcelona, Spain
| |
Collapse
|
31
|
Abstract
1. The mammalian anterior pituitary was not known to be directly regulated by nervous elements until recently. Although it is generally acknowledged that there are a small number of nerve fibres in the anterior pituitary, they are considered to be autonomic in nature and are not directly involved in the regulation of the activities of the gland cells. 2. A growing body of evidence has been accumulated in the past decade, mainly from our laboratory, indicating that the anterior pituitary can be directly regulated by nerve fibres innervating it. The present article reviews the evidence for the hypothesis that there is neural-humoral dual regulation of the mammalian anterior pituitary. 3. Human, macaque monkey, dog and rat anterior pituitaries have been used for immunocytochemical studies at light and electron microscopic levels. Studies of the changes in the nerve fibres in the anterior pituitary following adrenalectomy or ovariectomy have been conducted on rats. The effects of electrical stimulation of the nerve fibres in the anterior pituitary on adrenocorticotropic hormone (ACTH) secretion have also been studied. 4. There are substantial amounts of nerve fibres in the anterior pituitary. They are in close proximity to the gland cells, including forming synapses. The number of nerve terminals are large. Adrenalectomy or ovariectomy induces an active response of the nerve fibres and electrical stimulation of the nerve fibres changes ACTH secretion. 5. It has been concluded that the anterior pituitary can be directly regulated by the innervating nerve fibres.
Collapse
Affiliation(s)
- G Ju
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
32
|
Abstract
Dr. Thomas PS Powell was one of the founders of modern neuroanatomy. His career spanned an era that saw techniques for analyzing connections in the central nervous system dramatically increase in number and resolving power. In tracing the history of his research, one can see how the introduction of each new technique provided an incremental step in analytical capacity although eventually revealing its own limitations. Also evident is the extent to which prejudices born in the days of applying earlier techniques could continue to influence the interpretation of results obtained with new ones. Powell's contributions to neuroscience were extremely wide-ranging, encompassing investigations of the circuitry of the basal ganglia, corticofugal connections, topographic maps in sensory systems, central olfactory pathways, corticocortical and commissural connections, and pathways for sensory convergence in the cerebral cortex. From these investigations, made with tract tracing techniques, much existing knowledge of forebrain organization is derived. He was also one of the earliest investigators to use electron microscopy in the investigation of the central nervous system, and his electron microscopic studies on the olfactory bulb, thalamus, cerebral cortex, and basal ganglia laid, to a large extent, the foundations for all modern research on the synaptic circuitry of these structures. He was given to synthesizing data across systems in order to arrive at common principles of brain organization. A number of these syntheses have been sources of great interest and, occasionally, controversy.
Collapse
Affiliation(s)
- E G Jones
- Department of Anatomy and Neurobiology, University of California, Irvine 92697-1280, USA.
| |
Collapse
|