1
|
Lumsangkul C, Kaewtui P, Huanhong K, Tso KH. Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks. Toxins (Basel) 2024; 16:334. [PMID: 39195744 PMCID: PMC11360618 DOI: 10.3390/toxins16080334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to assess the effectiveness of aflatoxin B1 (AFB1) and Thunbergia laurifolia extract (TLE) in the diets of Cherry Valley ducklings. Our investigation covered growth indicators, blood biochemical indices, meat quality, intestinal morphology, immune response, and CP450 enzyme-related gene expression. We conducted the study with 180 seven-day-old Cherry Valley ducks, randomly divided into five dietary treatments. These treatments included a basal diet without AFB1 (T1 group), TLE, or a commercial binder; the basal diet containing 0.1 mg AFB1/kg (T2 group), 0.1 mg AFB1/kg and 100 mg TLE/kg (T3 group), 0.1 mg AFB1/kg and 200 mg TLE/kg (T4 group), and 0.1 mg AFB1/kg and 0.5 g/kg of a commercial binder (T5 group), respectively. Ducklings fed with the T2 diet exhibited lower final body weight (BW), average body weight gain (ADG), and poor feed conversion ratio (FCR) during the 42-day trials. However, all ducklings in the T3, T4, and T5 groups showed significant improvements in final BW, ADG, and FCR compared to the T2 group. Increased alanine transaminase (ALT) concentration and increased expression of CYP1A1 and CYP1A2 indicated hepatotoxicity in ducklings fed the T2 diet. In contrast, ducklings fed T3, T4, and T5 diets all showed a decrease in the expression of CYP1A1 and CYP1A2, but only the T4 treatment group showed improvement in ALT concentration. AFB1 toxicity considerably raised the crypt depth (CD) in both the duodenum and jejunum of the T2 group, while the administration of 200 mg TLE/kg (T4) or a commercial binder (T5) effectively reduced this toxicity. Additionally, the villus width of the jejunum in the T2 treatment group decreased significantly, while all T3, T4, and T5 groups showed improvement in this regard. In summary, T. laurifolia extract can detoxify aflatoxicosis, leading to growth reduction and hepatic toxicosis in Cherry Valley ducklings.
Collapse
Affiliation(s)
- Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
- Multidisciplinary Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Chiang Mai 50200, Thailand
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Phruedrada Kaewtui
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
| | - Kiattisak Huanhong
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
| | - Ko-Hua Tso
- Dr. Bata Ltd., Bajcsy-Zs. u. 139, H-2364 Ócsa, Hungary
| |
Collapse
|
2
|
Han X, D'Angelo C, Otamendi A, Cifuente JO, de Astigarraga E, Ochoa-Lizarralde B, Grininger M, Routier FH, Guerin ME, Fuehring J, Etxebeste O, Connell SR. CryoEM analysis of the essential native UDP-glucose pyrophosphorylase from Aspergillus nidulans reveals key conformations for activity regulation and function. mBio 2023; 14:e0041423. [PMID: 37409813 PMCID: PMC10470519 DOI: 10.1128/mbio.00414-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus Aspergillus, including Aspergillus fumigatus, the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs. UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) is a central enzyme in the metabolism of carbohydrates that catalyzes the biosynthesis of UDP-glucose, a key precursor of fungal cell wall polysaccharides. Here, we demonstrate that the function of UGP is vital for Aspergillus nidulans (AnUGP). To understand the molecular basis of AnUGP function, we describe a cryoEM structure (global resolution of 3.5 Å for the locally refined subunit and 4 Å for the octameric complex) of a native AnUGP. The structure reveals an octameric architecture with each subunit comprising an N-terminal α-helical domain, a central catalytic glycosyltransferase A-like (GT-A-like) domain, and a C-terminal (CT) left-handed β-helix oligomerization domain. AnUGP displays unprecedented conformational variability between the CT oligomerization domain and the central GT-A-like catalytic domain. In combination with activity measurements and bioinformatics analysis, we unveil the molecular mechanism of substrate recognition and specificity for AnUGP. Altogether, our study not only contributes to understanding the molecular mechanism of catalysis/regulation of an important class of enzymes but also provides the genetic, biochemical, and structural groundwork for the future exploitation of UGP as a potential antifungal target. IMPORTANCE Fungi cause diverse diseases in humans, ranging from allergic syndromes to life-threatening invasive diseases, together affecting more than a billion people worldwide. Increasing drug resistance in Aspergillus species represents an emerging global health threat, making the design of antifungals with novel mechanisms of action a worldwide priority. The cryoEM structure of UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) from the filamentous fungus Aspergillus nidulans reveals an octameric architecture displaying unprecedented conformational variability between the C-terminal oligomerization domain and the central glycosyltransferase A-like catalytic domain in the individual protomers. While the active site and oligomerization interfaces are more highly conserved, these dynamic interfaces include motifs restricted to specific clades of filamentous fungi. Functional study of these motifs could lead to the definition of new targets for antifungals inhibiting UGP activity and, thus, the architecture of the cell wall of filamentous fungal pathogens.
Collapse
Affiliation(s)
- Xu Han
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Cecilia D'Angelo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Ainara Otamendi
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Javier O. Cifuente
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Elisa de Astigarraga
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Borja Ochoa-Lizarralde
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Marcelo E. Guerin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jana Fuehring
- Institute for Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Sean R. Connell
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Mfengwana PMAH. Mutagenic and antimutagenic evaluation of Asparagus laricinus Burch., Senecio asperulus DC., and Gunnera perpensa L. to hepatic cells. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction. The use of traditional medicinal plant concoctions to cure or treat different diseases daily in African folk medicine. However, the effects of most medicinal plants on human health or genetic material remain unknown. This study thus aimed to evaluate the mutagenic and antimutagenic potentials of Asparagus laricinus Burch. cladodes, Senecio asperulus DC., and Gunnera perpensa L. roots extract in vitro.
Methods. Neutral red uptake assay, alkaline comet assay, and the VITOTOX test was used with plant extract dilutions of 4, 20, 50, and 100 µg/ml, respectively, on hepatic (C3A) cells and Salmonella Typhimurium TA104 strains. Ethyl methane-sulfonate and 4-nitroquinoline oxide were used as positive controls for the comet and VITOTOX assays, respectively.
Results. In vitro cytotoxicity and genotoxicity were not observed from all tested extracts, except for the two dichloromethane (DCM) extracts of S. asperulus and G. perpensa, which appeared to be cytotoxic with S9 metabolic activation, but not genotoxic or mutagenic. From the VITOTOX test results, none of the extracts appeared to have antimutagenic properties after treating S. Typhimurium strains with a known mutagen.
Conclusions. These results confirm that previously reported anticarcinogenic properties of A. laricinus, S. asperulus, and G. perpensa did not result from the protective mechanism against genotoxicity but from other ones. Moreover, the negative mutagenic and cytotoxic activities of the tested plants highlighted the safe use of these medicinal plants in vitro. Therefore, S. asperulus and G. perpensa DCM extracts require further investigation for their possible in vivo cytotoxic effects on humans.
Collapse
|
4
|
Wiesner J. Regulatory Perspectives of Pyrrolizidine Alkaloid Contamination in Herbal Medicinal Products. PLANTA MEDICA 2022; 88:118-124. [PMID: 34169489 DOI: 10.1055/a-1494-1363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The toxicity of plants containing certain pyrrolizidine alkaloids has long been recognized in grazing animals and humans. Genotoxicity and carcinogenicity data from in vitro and in vivo (animal) studies were published over the last few decades for some of the 1,2-unsaturated pyrrolizidine alkaloids, leading to regulatory action on herbal medicinal products with pyrrolizidine alkaloid-containing plants more than 30 years ago. In recent years, it has become evident that in addition to herbal medicinal products containing pyrrolizidine alkaloid-containing plants, these products may also contain pyrrolizidine alkaloids without actually including pyrrolizidine alkaloid-containing plants. This is explained by contamination by accessory herbs (weeds). The national competent authorities of the European member states and the European Medicines Agency, in this case, the Committee on Herbal Medicinal Products, reacted to these findings by setting limits for all herbal medicinal products. This review article will briefly discuss the data leading to the establishment of thresholds and the regulatory developments and consequences, as well as the current discussions and research in this area.
Collapse
|
5
|
Sharif R, Shahar S, Rajab NF, Fenech M. Dietary Pattern, Genomic Stability and Relative Cancer Risk in Asian Food Landscape. Nutr Cancer 2021; 74:1171-1187. [PMID: 34282666 DOI: 10.1080/01635581.2021.1952627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of cancer globally is increasing, partly due to lifestyle factors. Despite a better understanding of cancer biology and advancement in cancer management and therapies, current strategies in cancer treatment remain costly and cause socioeconomic burden especially in Asian countries. Hence, instead of putting more efforts in searches for new cancer cures, attention has now shifted to understanding how to mitigate cancer risk by modulating lifestyle factors. It has been established that carcinogenesis is multifactorial, and the important detrimental role of oxidative stress, chronic inflammation, and genomic instability is evident. To date, there is no study linking dietary pattern and genomic stability in cancer risk in the Asian food landscape. Thus, this present review article discusses recent literature on dietary pattern and genomic stability and its relationship with cancer risk in Asia.
Collapse
Affiliation(s)
- Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Michael Fenech
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Genome Health Foundation, Adelaide, Australia
| |
Collapse
|
6
|
Torad NL, Kim J, Kim M, Lim H, Na J, Alshehri SM, Ahamad T, Yamauchi Y, Eguchi M, Ding B, Zhang X. Nanoarchitectured porous carbons derived from ZIFs toward highly sensitive and selective QCM sensor for hazardous aromatic vapors. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124248. [PMID: 33191025 DOI: 10.1016/j.jhazmat.2020.124248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 05/24/2023]
Abstract
Metal-organic frameworks (MOFs) are a versatile source of carbon nanoarchitectures in gas sensing applications (Torad et al., 2019). Herein, several types of nanoporous carbons (NPCs) have been prepared by in-situ carbothermal treatment of zeolitic imidazolate frameworks (ZIFs) under different inert atmospheres to achieve a highly sensitive discrimination of vaporized aromatic compounds. In this study, we demonstrate how different carbonization conditions under the flow of N2 or H2 gases affect the surface area and the degree of graphitization of the resulting NPCs polyhedrons, and their consequent effect on the sensing performance in terms of sensitivity and selectivity toward toxic volatile hydrocarbons. A growth of carbon nanotubes (CNTs) is observed on the surface of polyhedral NPCs after careful carbonization of ZIF crystals under H2 atmosphere. The fabricated quartz crystal microbalance (QCM) sensor with CNT-containing NPCs demonstrates increased sensitivity and selectivity towards toxic volatile aromatic hydrocarbons over the aliphatic analogues, suggesting the rich growth of hairy graphitic-like CNTs on the surface of carbon framework act as highly selective sensing antennae for vapor molecular discrimination of toxic aromatic hydrocarbons. Despite of increased selectivity towards volatile aromatic compounds, however, the surface area of CNT-rich NPCs derived from hybrid ZIFs and ZIF-67 is greatly sacrificed as compared to CNT-free NPCs from ZIF-8 polyhedron. In the case of Co-containing ZIF-67, the rich growth of hair-like CNTs, which is induced by the presence of Co, is observed during carbothermal reduction under a flow of H2 gas, thus allowing ultra-selective detection of aromatic hydrocarbons in the vapor phase, such as benzene (C6H6) and toluene (C6H5CH3) over their aliphatic analogue, c-hexane (c-C6H12) of same molecular mass, size and vapor pressure.
Collapse
Affiliation(s)
- Nagy L Torad
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China; JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia
| | - Hyunsoo Lim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China; JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China.
| |
Collapse
|
7
|
Chung WH. Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms. J Microbiol Biotechnol 2021; 31:171-180. [PMID: 33397827 PMCID: PMC9706025 DOI: 10.4014/jmb.2011.11042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul 0369, Republic of Korea,Innovative Drug Center, Duksung Women’s University, Seoul 01369, Republic of Korea,Corresponding author Phone: +82-2-901-8737 Fax: +82-2-901-8386 E-mail:
| |
Collapse
|
8
|
Grover M, Behl T, Sanduja M, Habibur Rahman M, Ahmadi A. Exploring the Potential of Aromatherapy as an Adjuvant Therapy in Cancer and its Complications: A Comprehensive Update. Anticancer Agents Med Chem 2021; 22:629-653. [PMID: 33563202 DOI: 10.2174/1871520621666210204201937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aromatherapy is a traditional practice of employing essential oils for the therapeutic purposes, currently headed under the category of complementary and adjuvant medicine. OBJECTIVE The aim of this review article is to summarize the potential health benefits of aromatic essential oil from traditional times till the present. It also proposed some mechanisms which can be utilized as basis for using aromatherapy in cancer and cancer linked complications. METHODS To find out the relevant and authentic data, several search engines like Science direct, Pubmed, research gate, etc. were thoroughly checked by inserting key words like aromatherapy, complementary, adjuvant therapy etc. to collect the relevant material in context of article. Also, the chemical components of essential oil were classified based on the presence of functional groups, which are further explored for their cytotoxic potential. RESULTS The result depicted the anti-cancer potential of chemical constituents of essential oil against different types of cancer. Moreover, the essential oils show promising anti-inflammatory, anti-microbial, anti-oxidant and anti-mutagenic potential in several studies, which collectively can form the basis for initiation of its anti-cancer utility. CONCLUSION Aromatherapy can serve as adjuvant economic therapy in cancer after the standardization of protocol.
Collapse
Affiliation(s)
- Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Faridabad, Haryana, . India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, . India
| | | | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, . South Korea
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| |
Collapse
|
9
|
Kaźmierczak-Barańska J, Boguszewska K, Karwowski BT. Nutrition Can Help DNA Repair in the Case of Aging. Nutrients 2020; 12:nu12113364. [PMID: 33139613 PMCID: PMC7692274 DOI: 10.3390/nu12113364] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Micronutrients such as vitamins and trace elements are crucial for maintaining the health of all organisms. Micronutrients are involved in every cellular/biochemical process. They play roles in proper heart and brain functioning, influence immunological responses, and antioxidant defense systems. Therefore, prolonged deficiency in one or more micronutrients leads to cardiovascular or neurodegenerative disorders. Keeping micronutrients at adequate levels is especially important for seniors. They are prone to deficiencies due to age-associated functional decline and often to a diet poor in nutrients. Moreover, lack of micronutrients has an indirect impact on the genome. Their low levels reduce the activity of antioxidant enzymes, and therefore inhibit the efficiency of defense against free radicals which can lead to the formation of DNA lesions. The more DNA damage in the genetic material, the faster aging at the cellular level and a higher risk of pathological processes (e.g., carcinogenesis). Supplementation of crucial antioxidative micronutrients such as selenium, zinc, vitamin C, and vitamin E seems to have the potential to positively influence the condition of an aging organism, including minimizing inflammation, enhancing antioxidative defense, and limiting the formation of DNA lesions. In consequence, it may lead to lowering the risk and incidence of age-related diseases such as cardiovascular diseases, neurodegenerative diseases, and malnutrition. In this article, we attempt to present the synergistic action of selected antioxidant micronutrients (vitamin C, vitamin E, selenium, and zinc) for inhibiting oxidative stress and DNA damage, which may impede the process of healthy aging.
Collapse
|
10
|
Purushothaman A, Sufiya P, Meenatchi P, Sundaram R, Saravanan N. Antigenotoxic and Antimutagenic Effects of Andrographis paniculata, a Traditional Medicinal Herb against Genotoxicity of Cyclophosphamide: An In Vitro Study on Human Peripheral Lymphocytes. Prev Nutr Food Sci 2020; 25:246-253. [PMID: 33083373 PMCID: PMC7541925 DOI: 10.3746/pnf.2020.25.3.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 11/06/2022] Open
Abstract
Andrographis paniculata (family: Acanthaceae) is a medicinal herb—used in Indian system of medicine (Ayurveda, Siddha, and Unani), traditional and folk systems to treat various illnesses. This study examined the phytochemical constituents of ethanol extract from A. paniculata and its protective effect against genotoxicity caused by cyclophosphamide (CPA). Phytochemical screening and estimation of total phenolic content were analyzed using standard methods. The bioactive components from the ethanol extract of A. paniculata (EAP) were analyzed using gas chromatography-mass spectrometry. To investigate the protective effect of EAP against CPA-induced genotoxicity, human peripheral lymphocyte cultures were used. To test the antigenotoxic and antimutagenic effects of EAP, lymphocytes were treated with different concentrations of extract (50∼250 mg/mL) alone and co-treated along with CPA+EAP for 48 h. The cells were analyzed for structural chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) in control, CPA treated, and CPA+ EAP co-treated lymphocytes. Results of the study revealed that the lymphocyte cultures which had 48 h continuous exposure to EAP (50∼250 mg/mL) did not show any significant changes in CAs and SCE frequencies. These results substanti-ate the antimutagenic nature of the extract. Furthermore, the lymphocytes co-treated with CPA along with extract showed a significant reduction in CAs (reduced from 26.50±2.50% to 11.00±1.00%) and SCEs (reduced from 9.92±0.63 per cell to 4.56±0.18 per cell). These results suggest that A. paniculata is protective against CPA induced genotoxicity and put forward its possible use as a supplement with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ayyakkannu Purushothaman
- Post-Graduate and Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, University of Madras, Chennai, Tamil Nadu 600119, India
| | - Parveen Sufiya
- Post-Graduate and Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, University of Madras, Chennai, Tamil Nadu 600119, India
| | - Packirisamy Meenatchi
- Post-Graduate and Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, University of Madras, Chennai, Tamil Nadu 600119, India
| | - Ramalingam Sundaram
- Post-Graduate and Research Department of Biochemistry, Mohamed Sathak College of Arts and Science, University of Madras, Chennai, Tamil Nadu 600119, India
| | - Nallappan Saravanan
- Department of Zoology, Government Arts College, Periyar University, Salem, Tamil Nadu 636007, India
| |
Collapse
|
11
|
DNA-BINDING and DNA-protecting activities of small natural organic molecules and food extracts. Chem Biol Interact 2020; 323:109030. [PMID: 32205154 DOI: 10.1016/j.cbi.2020.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
The review summarizes literature data on the DNA-binding, DNA-protecting and DNA-damaging activities of a range of natural human endogenous and exogenous compounds. Small natural organic molecules bind DNA in a site-specific mode, by arranging tight touch with the structure of the major and minor grooves, as well as individual bases in the local duplex DNA. Polyphenols are the best-studied exogenous compounds from this point of view. Many of them demonstrate hormetic effects, producing both beneficial and damaging effects. An attempt to establish the dependence of DNA damage or DNA protection on the concentration of the compound turned out to be successful for some polyphenols, daidzein, genistein and resveratrol, which were DNA protecting in low concentrations and DNA damaging in high concentrations. There was no evident dependence on concentration for quercetin and kaempferol. Probably, the DNA-protecting effect is associated with the affinity to DNA. Caffeine and theophylline are DNA binders; at the same time, they favor DNA repair. Although most alkaloids damage DNA, berberine can protect DNA against damage. Among the endogenous compounds, hormones belonging to the amine class, thyroid and steroid hormones appear to bind DNA and produce some DNA damage. Thus, natural compounds continue to reveal beneficial or adverse effects on genome integrity and provide a promising source of therapeutic activities.
Collapse
|
12
|
Alam I, Ali F, Zeb F, Almajwal A, Fatima S, Wu X. Relationship of nutrigenomics and aging: Involvement of DNA methylation. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
13
|
López-Romero D, Izquierdo-Vega JA, Morales-González JA, Madrigal-Bujaidar E, Chamorro-Cevallos G, Sánchez-Gutiérrez M, Betanzos-Cabrera G, Alvarez-Gonzalez I, Morales-González Á, Madrigal-Santillán E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 2: Plants, Vegetables, and Natural Resin. Nutrients 2018; 10:1954. [PMID: 30544726 PMCID: PMC6316078 DOI: 10.3390/nu10121954] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The agents capable of causing damage to genetic material are known as genotoxins and, according to their mode of action, are classified into mutagens, carcinogens, or teratogens. Genotoxins are also involved in the pathogenesis of several chronic degenerative diseases, including hepatic, neurodegenerative, and cardiovascular disorders; diabetes; arthritis; cancer; chronic inflammation; and ageing. In recent decades, researchers have found novel bioactive phytocompounds able to counteract the effects of physical and chemical mutagens. Several studies have shown the antigenotoxic potential of different fruits and plants (Part 1). In this review (Part 2), we present a research overview conducted on some plants and vegetables (spirulina, broccoli, chamomile, cocoa, ginger, laurel, marigold, roselle, and rosemary), which are frequently consumed by humans. In addition, an analysis of some phytochemicals extracted from those vegetables and the analysis of a resin (propolis),whose antigenotoxic power has been demonstrated in various tests, including the Ames assay, sister chromatid exchange, chromosomal aberrations, micronucleus, and comet assay, was also performed.
Collapse
Affiliation(s)
- David López-Romero
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Germán Chamorro-Cevallos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Isela Alvarez-Gonzalez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Juan de Dios Bátiz. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| |
Collapse
|
14
|
Kour J, Ali MN, Ganaie HA, Tabassum N. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of Equisetum arvense. Toxicol Rep 2017; 4:226-233. [PMID: 28959643 PMCID: PMC5615123 DOI: 10.1016/j.toxrep.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/27/2022] Open
Abstract
Plants like E. arvense posess not only nutritional value but therapeutic value as well. CPA is an important chemotherapeutic agent but is associated with various mutagenic and other toxic side effects. Ethanolic extract of the plant has immense protective effect against the genotoxic damage induced by the cyclophosphamide. GC–MS analysis of the extract shows various important phyto components which may be associated with its antimutagenic property. Plant can be used in cancer as a chemopreventive agent or even as a coadjuvant to chemotherapy to reduce the side effects associated with it.
In the present study, we evaluated the potential of the plant E. arvense against the cytotoxic and mutagenic effects induced by cyclophosphamide (chemotherapeutic agent) in the bone marrow cells of mice using the Chromosome assay (CA) and Mitotic index (MI) in vivo as the biomarkers. The study was performed following 3 protocols: pre-treatment, simultaneous treatment and post-treatment with the ethanolic extract of the plant. The results demonstrated that the plant extract was not cytotoxic and mutagenic and has a protective effect against the mutagenicity induced by cyclophosphamide in pre, simultaneous and post treatments and against its cytotoxicity as well. Because of its ability to prevent chromosomal damage, E. arvense is likely to open an interesting field concerning its possible use in clinical applications, most importantly in cancer as a chemopreventive agent or even as a coadjuvant to chemotherapy to reduce the side effects associated with it.
Collapse
Affiliation(s)
- Jasbir Kour
- Cytogenetics & Molecular Biology Research Laboratory, Centre of Research for Development, University of Kashmir, Srinagar 190 006, JK, India
| | - Md Niamat Ali
- Cytogenetics & Molecular Biology Research Laboratory, Centre of Research for Development, University of Kashmir, Srinagar 190 006, JK, India
| | - Hilal Ahmad Ganaie
- Cytogenetics & Molecular Biology Research Laboratory, Centre of Research for Development, University of Kashmir, Srinagar 190 006, JK, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar 190 006, JK, India
| |
Collapse
|
15
|
Ladeira C, Carolino E, Gomes MC, Brito M. Role of Macronutrients and Micronutrients in DNA Damage: Results From a Food Frequency Questionnaire. Nutr Metab Insights 2017; 10:1178638816684666. [PMID: 28469462 PMCID: PMC5395264 DOI: 10.1177/1178638816684666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022] Open
Abstract
The links between diet and genomic instability have been under investigation for several decades, and evidence suggests a significant causal or preventive role for various dietary factors. This study investigates the influence of macronutrients (calories, protein, and glucides) and micronutrients, such as vitamins and minerals, as assessed by a food frequency questionnaire, on genotoxicity biomarkers measured by cytokinesis-blocked micronucleus assay and comet assay. The results found significant positive and negative correlations. Micronucleus frequency tends to increase with higher intake of caffeine, calcium, magnesium, zinc, and protein (P < .05, Spearman correlation). Calorie and omega-6 intakes are negatively correlated with DNA damage measured by the comet assay. These results are somewhat controversial because some of the correlations found are contrary to dominant views in the literature; however, we suggest that unraveling the association between diet and genetic instability requires a much better understanding of the modulating role of macronutrients and micronutrients.
Collapse
Affiliation(s)
- Carina Ladeira
- Environment and Health Research Group, Instituto Politécnico de Lisboa (IPL), Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Lisboa, Portugal.,Grupo de Investigação em Genética e Metabolismo, Instituto Politécnico de Lisboa (IPL), Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Lisboa, Portugal.,Centro de Investigação e Estudos em Saúde Pública, Escola Nacional de Saúde Pública (ENSP), Universidade Nova de Lisboa, Lisboa, Portugal
| | - Elisabete Carolino
- Environment and Health Research Group, Instituto Politécnico de Lisboa (IPL), Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Lisboa, Portugal
| | - Manuel C Gomes
- Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Brito
- Grupo de Investigação em Genética e Metabolismo, Instituto Politécnico de Lisboa (IPL), Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Lisboa, Portugal
| |
Collapse
|
16
|
Izquierdo-Vega JA, Morales-González JA, SánchezGutiérrez M, Betanzos-Cabrera G, Sosa-Delgado SM, Sumaya-Martínez MT, Morales-González Á, Paniagua-Pérez R, Madrigal-Bujaidar E, Madrigal-Santillán E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 1: Fruits and Polysaccharides. Nutrients 2017; 9:102. [PMID: 28157162 PMCID: PMC5331533 DOI: 10.3390/nu9020102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of deaths worldwide. The agents capable of causing damage to genetic material are known as genotoxins and, according to their mode of action, are classified into mutagens, carcinogens or teratogens. Genotoxins are involved in the pathogenesis of several chronic degenerative diseases including hepatic, neurodegenerative and cardiovascular disorders, diabetes, arthritis, cancer, chronic inflammation and ageing. In recent decades, researchers have found novel bioactive phytocompounds able to counteract the effects of physical and chemical mutagens. Several studies have shown potential antigenotoxicity in a variety of fruits. In this review (Part 1), we present an overview of research conducted on some fruits (grapefruit, cranberries, pomegranate, guava, pineapple, and mango) which are frequentl consumed by humans, as well as the analysis of some phytochemicals extracted from fruits and yeasts which have demonstrated antigenotoxic capacity in various tests, including the Ames assay, sister chromatid exchange, chromosomal aberrations, micronucleus and comet assay.
Collapse
Affiliation(s)
- Jeannett Alejandra Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| | - Manuel SánchezGutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - Sara M Sosa-Delgado
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| | - María Teresa Sumaya-Martínez
- Secretaría de Investigación y Estudios de Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo. Boulevard Tepic-Xalisco s/n, Tepic 28000, Nayarit, México.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad A. López Mateos, Av. Juan de Dios Bátiz. Col., Lindavista, México D.F. 07738, Mexico.
| | - Rogelio Paniagua-Pérez
- Laboratorio de Bioquímica Muscular, Instituto Nacional de Rehabilitación, Av. México-Xochimilco. Col., Arenal de Guadalupe, México D.F. 14389, México.
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Unidad A. López-Mateos, Av. Wilfrido Massieu s/n, Lindavista, México D.F. 07738, México.
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| |
Collapse
|
17
|
Lokhov P, Lisitsa A, Archakov A. Metabolomic blood test: purpose, implementation and interpretation of data. ACTA ACUST UNITED AC 2017; 63:232-240. [DOI: 10.18097/pbmc20176303232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human body is an open system that receives a variety of xenobiotics in the course of dietary route or respiration and in the form of the drugs. As a lump sum scores of toxic and potentially toxic substances are detected in a human body that significantly affect health and human lifespan. There are also thousands of diseases, dozens of which latently occur in the body of each person. Traditional diagnosis is not able to screen all the variety of xenobiotics and potential human diseases. For this purpose metabolomic blood test is available which is of non-targeted (review) nature. The test can reveal all the diversity of low molecular weight substances in blood, including tens of thousands of xenobiotics and markers of different diseases. Detection of xenobiotics in the blood, directional detoxification and subsequent monitoring of “body's chemical purity” together with the control of “normality” of all biochemical processes in the organism, using metabolomics blood tests is a necessary and presumably a sufficient condition in the implementation of inherent human genotype longevity. This article describes the purpose, implementation and interpretation of metabolomic blood test facilitating the implementation of this method in the Russian Federation, in order to significantly increase the average life expectancy.
Collapse
Affiliation(s)
- P.G. Lokhov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A.V. Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
18
|
Whitehead TP, Metayer C, Wiemels JL, Singer AW, Miller MD. Childhood Leukemia and Primary Prevention. Curr Probl Pediatr Adolesc Health Care 2016; 46:317-352. [PMID: 27968954 PMCID: PMC5161115 DOI: 10.1016/j.cppeds.2016.08.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leukemia is the most common pediatric cancer, affecting 3800 children per year in the United States. Its annual incidence has increased over the last decades, especially among Latinos. Although most children diagnosed with leukemia are now cured, many suffer long-term complications, and primary prevention efforts are urgently needed. The early onset of leukemia-usually before 5 years of age-and the presence at birth of "pre-leukemic" genetic signatures indicate that pre- and postnatal events are critical to the development of the disease. In contrast to most pediatric cancers, there is a growing body of literature-in the United States and internationally-that has implicated several environmental, infectious, and dietary risk factors in the etiology of childhood leukemia, mainly for acute lymphoblastic leukemia, the most common subtype. For example, exposures to pesticides, tobacco smoke, solvents, and traffic emissions have consistently demonstrated positive associations with the risk of developing childhood leukemia. In contrast, intake of vitamins and folate supplementation during the preconception period or pregnancy, breastfeeding, and exposure to routine childhood infections have been shown to reduce the risk of childhood leukemia. Some children may be especially vulnerable to these risk factors, as demonstrated by a disproportionate burden of childhood leukemia in the Latino population of California. The evidence supporting the associations between childhood leukemia and its risk factors-including pooled analyses from around the world and systematic reviews-is strong; however, the dissemination of this knowledge to clinicians has been limited. To protect children's health, it is prudent to initiate programs designed to alter exposure to well-established leukemia risk factors rather than to suspend judgment until no uncertainty remains. Primary prevention programs for childhood leukemia would also result in the significant co-benefits of reductions in other adverse health outcomes that are common in children, such as detriments to neurocognitive development.
Collapse
Affiliation(s)
- Todd P Whitehead
- Department of Epidemiology, School of Public Health, University of California, Berkeley, CA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA.
| | - Catherine Metayer
- Department of Epidemiology, School of Public Health, University of California, Berkeley, CA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA
| | - Joseph L Wiemels
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA; Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, CA
| | - Amanda W Singer
- Department of Epidemiology, School of Public Health, University of California, Berkeley, CA
| | - Mark D Miller
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA; Western States Pediatric Environmental Health Specialty Unit, University of California, San Francisco, CA
| |
Collapse
|
19
|
Sahraie-Rad M, Izadyari A, Rakizadeh S, Sharifi-Rad J. Preparation of Strong Antidandruff Shampoo Using Medicinal Plant Extracts: A Clinical Trial and Chronic Dandruff Treatment. Jundishapur J Nat Pharm Prod 2015. [DOI: 10.17795/jjnpp-21517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Liu L, Wang Y, Shen C, He J, Liu X, Ding Y, Gao R, Chen X. Benzo(a)pyrene inhibits migration and invasion of extravillous trophoblast HTR-8/SVneo cells via activation of the ERK and JNK pathway. J Appl Toxicol 2015; 36:946-55. [PMID: 26359795 DOI: 10.1002/jat.3227] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/02/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Benzo(a)pyrene (BaP) is a persistent organic pollutant (POP) that is a serious threat to human health. Numerous studies have shown that BaP causes adverse effects in pregnancy, but the mechanism remains unclear. The moderate invasion of trophoblast cells into the endometrium is an important factor during successful embryo implantation. The aim of this study was to investigate the effect and mechanism of BaP on the invasion and migration of trophoblast cells. HTR-8/SVneo cells were treated with different concentrations (1, 5, 10, 25, 50 and 100 μM) of BaP. The invasion and migration of HTR-8/SVneo cells were observed after BaP treatment. The protein levels related to migration and invasion was detected by Western blot. The results confirmed that BaP inhibits the migration and invasion of extravillous trophoblast HTR-8/SVneo cells. Further investigations indicated that the protein levels of MMP-2, MMP-9 and E-cadherin in HTR-8/SVneo cells were changed by BaP treatment. Moreover, the data demonstrated that BaP activated the MAPK signaling pathway. Pretreatment with specific inhibitors of MAPK rescued BaP-induced change in the migration and invasion of HTR-8/SVneo cells. Taken together, our results indicated that BaP inhibits invasion and the migration of HTR-8/SVneo cells, which might cause a failure in early pregnancy. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liyuan Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Cha Shen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| |
Collapse
|
21
|
Eini H, Frishman V, Yulzari R, Kachko L, Lewis EC, Chaimovitz C, Douvdevani A. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor. Biochem Pharmacol 2015; 98:110-8. [PMID: 26296573 DOI: 10.1016/j.bcp.2015.08.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022]
Abstract
Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.
Collapse
Affiliation(s)
- Hadar Eini
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Valeria Frishman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Robert Yulzari
- Department of Nephrology, Soroka Medical Center Beer-Sheva, Israel.
| | - Leonid Kachko
- Department of Pathology, Soroka Medical Center Beer-Sheva, Israel.
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Cidio Chaimovitz
- Department of Nephrology, Soroka Medical Center Beer-Sheva, Israel.
| | - Amos Douvdevani
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Nephrology, Soroka Medical Center Beer-Sheva, Israel.
| |
Collapse
|
22
|
Tsujimoto Y, Shimizu Y, Otake K, Nakamura T, Okada R, Miyazaki T, Watanabe K. Multidrug resistance transporters Snq2p and Pdr5p mediate caffeine efflux in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2015; 79:1103-10. [DOI: 10.1080/09168451.2015.1010476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
SNQ2 was identified as a caffeine-resistance gene by screening a genomic library of Saccharomyces cerevisiae in a multicopy vector YEp24. SNQ2 encodes an ATP-binding cassette transporter and is highly homologous to PDR5. Multicopy of PDR5 also conferred resistance to caffeine, while its resistance was smaller than that of SNQ2. Residual caffeine contents were analyzed after transiently exposing cells to caffeine. The ratios of caffeine contents were 21.3 ± 8.8% (YEp24-SNQ2) and 81.9 ± 8.7% (YEp24-PDR5) relative to control (YEp24, 100%). In addition, multicopies of SNQ2 or PDR5 conferred resistance to rhodamine 6G (R6G), which was widely used as a substrate for transport assay. R6G was exported by both transporters, and their efflux activities were inhibited by caffeine with half-maximal inhibitory concentrations of 5.3 ± 1.9 (YEp24-SNQ2) and 17.2 ± 9.6 mM (YEp24-PDR5). These results demonstrate that Snq2p is a more functional transporter of caffeine than Pdr5p in yeast cells.
Collapse
Affiliation(s)
- Yoshiyuki Tsujimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yoshihiro Shimizu
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Kazuya Otake
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tatsuya Nakamura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Ryutaro Okada
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Toshitaka Miyazaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Kunihiko Watanabe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
23
|
Singh A, Kaur M, Choudhary A, Kumar B. Effect of Butea monosperma leaf extracts on cyclophosphamide induced clastogenicity and oxidative stress in mice. Pharmacognosy Res 2015; 7:85-91. [PMID: 25598640 PMCID: PMC4285655 DOI: 10.4103/0974-8490.147215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/13/2014] [Accepted: 12/17/2014] [Indexed: 11/29/2022] Open
Abstract
Background: Butea monosperma is a medium sized deciduous tree of family Fabaceae. It is widely used by rural people in India to cure many disorders. It possesses antioxidant and anticancer activity which is a prerequisite for anticlastogenic activity. Objective: To evaluate the effect of Butea monosperma leaf extracts on cyclophosphamide induced clastogenicity and oxidative stress in mice. Materials and Methods: The present study assessed the role of aqueous and ethanolic leaf extracts of B. monosperma (AQEBM and ETEBM) on cyclophosphamide (CP) induced oxidative stress and DNA damage in mice using micronucleus assay for anticlastogenic activity and biochemical estimation of malondialdehyde (MDA) and glutathione (GSH) for antioxidant activity. The frequency of the micronucleated erythrocytes and mitotic index was studied in peripheral blood and bone marrow after 24 and 48 h of clastogenic exposure. Results: CP treatment led to a significant (P < 0.001) increase in the frequency of micronuclei and decrease in the mitotic index (MI) in bone marrow and peripheral blood cells. Moreover, CP also significantly increased the lipid peroxidation as evidenced by an increase in the MDA content and decreased the antioxidant enzyme (GSH) in mice liver. Pretreatment with AQEBM and ETEBM reduced the frequency of micronuclei and increased the MI in the bone marrow and peripheral blood cells and also restored the MDA and GSH levels in mice liver. Conclusion: The AQEBM and ETEBM do contain compounds capable of inhibiting the CP induced oxidative stress and subsequent DNA damage in both the peripheral blood and bone marrow cells in mice.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Mohanjit Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Adarsh Choudhary
- Department of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Bimlesh Kumar
- Department of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| |
Collapse
|
24
|
Lombardi C, Ganguly A, Bunin GR, Azary S, Alfonso V, Ritz B, Heck JE. Maternal diet during pregnancy and unilateral retinoblastoma. Cancer Causes Control 2014; 26:387-97. [PMID: 25542139 DOI: 10.1007/s10552-014-0514-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/18/2014] [Indexed: 01/29/2023]
Abstract
PURPOSE Previous studies have suggested a role for parental diet in childhood cancer prevention, but there are few studies of retinoblastoma. The aim of this study was to examine the relation between maternal diet and unilateral retinoblastoma. METHODS A case-control study of 163 unilateral RB cases and 136 controls ascertained information on maternal diet during pregnancy using a standardized food frequency questionnaire. Logistic regression was used to assess the relation between retinoblastoma and food groups and dietary patterns. RESULTS We observed a negative association between retinoblastoma and intake of fruit [odds ratio (OR) 0.38, 95 % confidence interval (CI) 0.14-1.02]. Positive associations were seen with intake of cured meats (OR 5.07, 95 % CI 1.63-15.70) and fried foods (OR 4.89, 95 % CI 1.72-13.89). A food pattern of high fruits and vegetables and low fried food and sweets was negatively associated with disease (OR 0.75, 95 % CI 0.61-0.92). CONCLUSION Our study provides preliminary evidence that mothers who consume diets higher in fruit and lower in fried foods and cured meats during pregnancy may reduce the risk of unilateral retinoblastoma in their offspring.
Collapse
Affiliation(s)
- Christina Lombardi
- Department of Epidemiology, UCLA Jonathan and Karin Fielding School of Public Health, 650 Charles E. Young Drive, Box 951772, Los Angeles, CA, 90095-1772, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Manzanares MÁ, Solanas M, Moral R, Escrich R, Vela E, Escrich E. Ontogeny of the Major Xenobiotic-Metabolizing Enzymes Expression and the Dietary Lipids Modulatory Effect in the Rat Dimethylbenz(a)anthracene-Induced Breast Cancer Model. J Biochem Mol Toxicol 2014; 28:539-48. [DOI: 10.1002/jbt.21596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Miguel Ángel Manzanares
- Department of Cell Biology; Physiology and Immunology; Medical Physiology Unit; School of Medicine; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Montserrat Solanas
- Department of Cell Biology; Physiology and Immunology; Medical Physiology Unit; School of Medicine; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Raquel Moral
- Department of Cell Biology; Physiology and Immunology; Medical Physiology Unit; School of Medicine; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Raquel Escrich
- Department of Cell Biology; Physiology and Immunology; Medical Physiology Unit; School of Medicine; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Elena Vela
- Department of Cell Biology; Physiology and Immunology; Medical Physiology Unit; School of Medicine; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Eduard Escrich
- Department of Cell Biology; Physiology and Immunology; Medical Physiology Unit; School of Medicine; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| |
Collapse
|
26
|
Hormesis is induced in the red flour beetle Tribolium castaneum through ingestion of charred toast. Eur J Nutr 2014; 54:535-41. [PMID: 25004999 DOI: 10.1007/s00394-014-0734-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Charred foods are generally suspected to exert health threats by providing toxicants, such as acrylamide or polycyclic aromatic hydrocarbons. Using the red flour beetle Tribolium castaneum as a model organism, we tested its survival under heat stress in response to feeding charred toast. METHODS Survival of beetles was measured at 42 °C after a pre-feeding phase with flour enriched with increasing concentrations of charred toast. In order to assess the influence of key transcription factors for phase-I and phase-II xenobiotic metabolism, gene homologs for ahr and nrf-2, respectively, were knocked down by the use of RNA interference (RNAi). RESULTS Beetles fed only charred toast died off much earlier than control beetles fed on flour, whereas beetles fed flour enriched with 5% charred toast survived significantly longer than the control. Both, ahr and nrf-2 proved essential in order to enable the increase in survival by the feeding of 5% charred toast. Moreover, functional loss of ahr and nrf-2 made the beetles hypersensitive versus the feeding of 100% charred toast. Finally, at the transcriptional level, it was shown that RNAi for ahr blocked the inducing activities of charred toast on nrf-2. CONCLUSIONS Our studies suggest a hormetic response of the red flour beetle to feeding of charred toast that causes an increased stress resistance through the activation of ahr and nrf-2. Those adaptations, however, are saturable and accordingly the hormetic effects at increasing concentrations of the toxicants become expended.
Collapse
|
27
|
Antimutagenic compounds and their possible mechanisms of action. J Appl Genet 2014; 55:273-85. [PMID: 24615570 PMCID: PMC3990861 DOI: 10.1007/s13353-014-0198-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/20/2014] [Accepted: 01/31/2014] [Indexed: 12/23/2022]
Abstract
Mutagenicity refers to the induction of permanent changes in the DNA sequence of an organism, which may result in a heritable change in the characteristics of living systems. Antimutagenic agents are able to counteract the effects of mutagens. This group of agents includes both natural and synthetic compounds. Based on their mechanism of action among antimutagens, several classes of compounds may be distinguished. These are compounds with antioxidant activity; compounds that inhibit the activation of mutagens; blocking agents; as well as compounds characterized with several modes of action. It was reported previously that several antitumor compounds act through the antimutagenic mechanism. Hence, searching for antimutagenic compounds represents a rapidly expanding field of cancer research. It may be observed that, in recent years, many publications were focused on the screening of both natural and synthetic compounds for their beneficial muta/antimutagenicity profile. Thus, the present review attempts to give a brief outline on substances presenting antimutagenic potency and their possible mechanism of action. Additionally, in the present paper, a screening strategy for mutagenicity testing was presented and the characteristics of the most widely used antimutagenicity assays were described.
Collapse
|
28
|
Khandelwal N, Abraham SK. Intake of anthocyanidins pelargonidin and cyanidin reduces genotoxic stress in mice induced by diepoxybutane, urethane and endogenous nitrosation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:837-843. [PMID: 24642102 DOI: 10.1016/j.etap.2014.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
Pelargonidin (PEL) and cyanidin (CYN) are among the six most abundant anthocyanidins which provide red, blue and purple colors to fruits and vegetables. Health benefits associated with intake of anthocyanins have been attributed mainly to antioxidant activity of these color pigments. The aim of our present study was to assess in mice the impact of PEL and CYN intake on genotoxic stress induced by DNA damaging environmental toxicants. These anthocyanidins were administered by gavage to mice before exposure to genotoxic carcinogens diepoxybutane (DEB) and urethane (URE). In addition, the inhibitory effect of PEL and CYN on endogenous nitrosation was evaluated by using a model nitrosation reaction mixture consisting of methyl urea (MU)+sodium nitrite (SN) which reacts in the stomach to form the carcinogenic methyl nitrosourea (MNU). All the test doses of PEL (2.5-20 mg/kg) and CYN (1-4 mg/kg) significantly reduced the genotoxicity of DEB. A dose-related increase was observed for antigenotoxicity of PEL against URE. The lowest test-dose of CYN showed maximum protection against URE. Co-administration of PEL/CYN with the nitrosation reaction mixture led to reduction in genotoxicity. CYN was more effective as an inhibitor of endogenous nitrosation. Combination of PEL with ascorbic acid (AA) enhanced the antinitrosating effect when compared to that with each phytochemical alone. The results of our present study indicate that common anthocyanidins PEL and CYN can play a major role in reducing genotoxic stress induced by environmental toxicants.
Collapse
Affiliation(s)
- Nidhi Khandelwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suresh K Abraham
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
29
|
Maternal coffee consumption during pregnancy and risk of childhood acute leukemia: a metaanalysis. Am J Obstet Gynecol 2014; 210:151.e1-151.e10. [PMID: 24060443 DOI: 10.1016/j.ajog.2013.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/16/2013] [Accepted: 09/18/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study was undertaken to explore the association between maternal coffee consumption during pregnancy and childhood acute leukemia (AL). STUDY DESIGN The PubMed database was used to search studies up to May 5, 2013, and the lists of references of retrieved articles were also screened to identify additional relevant studies. Studies were included if they reported the odds ratio and corresponding 95% confidence interval (CI) of childhood AL, including childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), with respect to maternal coffee consumption during pregnancy. RESULTS Compared with non/lowest drinkers, the combined odds ratio regarding the relationship of maternal coffee consumption during pregnancy and childhood AL was 1.22 (95% CI, 1.04-1.43) for ever drinkers, 1.16 (95% CI, 1.00-1.34) for low to moderate-level drinkers, and 1.72 (95% CI, 1.37-2.16) for high-level drinkers. When analysis was conducted by subtypes of childhood AL, maternal coffee consumption (high-level drinkers vs non/lowest drinkers) was statistically significantly associated with childhood ALL (1.65; 95% CI, 1.28-2.12) and childhood AML (1.58; 95% CI, 1.20-2.08). We observed the linear dose-response relationship of coffee consumption and childhood AL (P for nonlinearity = .68), including childhood ALL and childhood AML; with increased coffee consumption, the risk of childhood AL increased. CONCLUSION The findings of the metaanalysis suggest that maternal coffee consumption during pregnancy may increase the risk of childhood AL. Because of limited studies, further prospective studies are urgently needed to explore the adverse effect of coffee consumption on childhood AL.
Collapse
|
30
|
Fenech MF. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control. Cancer Treat Res 2014; 159:427-441. [PMID: 24114494 DOI: 10.1007/978-3-642-38007-5_24] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.
Collapse
Affiliation(s)
- Michael F Fenech
- CSIRO Food and Nutritional Sciences, 10041, Adelaide BC, SA, 5000, Australia,
| |
Collapse
|
31
|
The carotenoid lycopene protects rats against DNA damage induced by Ochratoxin A. Toxicon 2013; 73:96-103. [DOI: 10.1016/j.toxicon.2013.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
|
32
|
Arigony ALV, de Oliveira IM, Machado M, Bordin DL, Bergter L, Prá D, Pêgas Henriques JA. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BIOMED RESEARCH INTERNATIONAL 2013; 2013:597282. [PMID: 23781504 PMCID: PMC3678455 DOI: 10.1155/2013/597282] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022]
Abstract
Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.
Collapse
Affiliation(s)
- Ana Lúcia Vargas Arigony
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Iuri Marques de Oliveira
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Miriana Machado
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Diana Lilian Bordin
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Lothar Bergter
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Prá
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- PPG em Promoção da Saúde, Universidade de Santa Cruz do Sul (UNISC), Avenida Independência 2293, 96815-900 Santa Cruz do Sul, RS, Brazil
| | - João Antonio Pêgas Henriques
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Biotecnologia, Departamento de Ciências Biomédicas, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| |
Collapse
|
33
|
Pimentel E, Cruces MP, Zimmering S. A Further Study of the Role of Copper in Regard to the Antimutagenic Action of Sodium Copper Chlorophyllin (SCC) in Somatic Cells of Drosophila melanogaster. Biomark Insights 2013; 8:29-33. [PMID: 23531495 PMCID: PMC3603386 DOI: 10.4137/bmi.s11081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous findings suggest that copper plays a crucial role in the antimutagenic effect of sodium copper chlorophyllin (SCC). The objective of the current research was to compare the antimutagenic effects of two SCC compounds with different amounts of copper (3.7% and 5.4%, respectively) on the genetic damage induced by gamma rays in somatic cells of Drosophila. Data indicate that an increase in copper content of 31.5% in SCC-5.4 resulted in a greater inhibition of gamma ray genetic damage of 49% whereas only a 2% inhibition with SCC-3.7 occurred. Of greater interest is the association of SCC with a variety of uses in humans, such as a chemo preventive agent and food supplement. A greater attention to the concentration of copper in the SCC product in use should be required.
Collapse
Affiliation(s)
- Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, México CP, México
| | | | | |
Collapse
|
34
|
Arriaga-Alba M, Ruiz-Pérez NJ, Sánchez-Navarrete J, de Angel BL, Flores-Lozada J, Blasco JL. Antimutagenic evaluation of vitamins B1, B6 and B12 in vitro and in vivo, with the Ames test. Food Chem Toxicol 2013. [DOI: 10.1016/j.fct.2012.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Bonaventure A, Rudant J, Goujon-Bellec S, Orsi L, Leverger G, Baruchel A, Bertrand Y, Nelken B, Pasquet M, Michel G, Sirvent N, Bordigoni P, Ducassou S, Rialland X, Zelenika D, Hémon D, Clavel J. Childhood acute leukemia, maternal beverage intake during pregnancy, and metabolic polymorphisms. Cancer Causes Control 2013; 24:783-93. [DOI: 10.1007/s10552-013-0161-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
|
36
|
Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:215-32. [PMID: 22956504 PMCID: PMC4281087 DOI: 10.1007/978-1-4419-9967-2_11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumorigenesis, a complex and multifactorial progressive process of transformation of normal cells into malignant cells, is characterized by the accumulation of multiple cancer-specific heritable phenotypes triggered by the mutational and/or non-mutational (i.e., epigenetic) events. Accumulating evidence suggests that environmental and occupational exposures to natural substances, as well as man-made chemical and physical agents, play a causative role in human cancer. In a broad sense, carcinogenesis may be induced through either genotoxic or non-genotoxic mechanisms; however, both genotoxic and non-genotoxic carcinogens also cause prominent epigenetic changes. This review presents current evidence of the epigenetic alterations induced by various chemical carcinogens, including arsenic, 1,3-butadine, and pharmaceutical and biological agents, and highlights the potential for epigenetic changes to serve as markers for carcinogen exposure and cancer risk assessment.
Collapse
Affiliation(s)
- Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Pimentel E, Vidal LM, Cruces MP, Janczur MK. Action of protoporphyrin-IX (PP-IX) in the lifespan of <i>Drosophila melanogaster</i> deficient in endogenous antioxidants, Sod and Cat. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojas.2013.34a2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Peñaloza EP, Cruces Martínez MP. Sodium copper chlorophyllin (SCC) induces genetic damage in postmeiotic and somatic wing cells of Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1346-1353. [PMID: 24283476 DOI: 10.1080/15287394.2013.858233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is no apparent evidence to indicate that sodium copper chlorophyllin (SCC) is mutagenic. The aim of the present study was thus to determine the mutagenic effect of SCC, in postmeiotic germ cells of the adult male Drosophila. This investigation was based on the ability to examine whether SCC induced sex-linked recessive lethal mutations (SLRL), as well as the somatic mutation and recombination test (SMART). Four different SCC concentrations were used: 0, 45, 69, 80, and 100 mM. For SLRL, two broods were generated to test sperm and primarily spermatids. Results showed a significant frequency of recessive lethal mutations compared with control sperm cells with SCC at 69, 80, and 100 mM. In contrast, the frequency of somatic mutations rose by 0.21 only with 100 mM of SCC. These findings provide evidence that SCC is a weak mutagen in both cell lines. The differential response may be attributed to repair mechanisms that are active in somatic cells but almost absent in germ cells.
Collapse
Affiliation(s)
- Emilio Pimentel Peñaloza
- a Departamento de Biología , Instituto Nacional de Investigaciones Nucleares (ININ), La Marquesa , Ocoyoacac , México
| | | |
Collapse
|
39
|
Toker A, Yerlikaya FH, Yener Y, Toy H. Serum homocysteine, arginine, citrulline and asymmetric dimethyl arginine levels, and histopathologic examination of the abdominal aorta in rats exposed to acrylamide. Biotech Histochem 2012; 88:103-8. [DOI: 10.3109/10520295.2012.745950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Hile SE, Shabashev S, Eckert KA. Tumor-specific microsatellite instability: do distinct mechanisms underlie the MSI-L and EMAST phenotypes? Mutat Res 2012. [PMID: 23206442 DOI: 10.1016/j.mrfmmm.2012.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microsatellite DNA sequences display allele length alterations or microsatellite instability (MSI) in tumor tissues, and MSI is used diagnostically for tumor detection and classification. We discuss the known types of tumor-specific MSI patterns and the relevant mechanisms underlying each pattern. Mutation rates of individual microsatellites vary greatly, and the intrinsic DNA features of motif size, sequence, and length contribute to this variation. MSI is used for detecting mismatch repair (MMR)-deficient tumors, which display an MSI-high phenotype due to genome-wide microsatellite destabilization. Because several pathways maintain microsatellite stability, tumors that have undergone other events associated with moderate genome instability may display diagnostic MSI only at specific di- or tetranucleotide markers. We summarize evidence for such alternative MSI forms (A-MSI) in sporadic cancers, also referred to as MSI-low and EMAST. While the existence of A-MSI is not disputed, there is disagreement about the origin and pathologic significance of this phenomenon. Although ambiguities due to PCR methods may be a source, evidence exists for other mechanisms to explain tumor-specific A-MSI. Some portion of A-MSI tumors may result from random mutational events arising during neoplastic cell evolution. However, this mechanism fails to explain the specificity of A-MSI for di- and tetranucleotide instability. We present evidence supporting the alternative argument that some A-MSI tumors arise by a distinct genetic pathway, and give examples of DNA metabolic pathways that, when altered, may be responsible for instability at specific microsatellite motifs. Finally, we suggest that A-MSI in tumors could be molecular signatures of environmental influences and DNA damage. Importantly, A-MSI occurs in several pre-neoplastic inflammatory states, including inflammatory bowel diseases, consistent with a role of oxidative stress in A-MSI. Understanding the biochemical basis of A-MSI tumor phenotypes will advance the development of new diagnostic tools and positively impact the clinical management of individual cancers.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Samion Shabashev
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kristin A Eckert
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
41
|
Campa D, De Rango F, Carrai M, Crocco P, Montesanto A, Canzian F, Rose G, Rizzato C, Passarino G, Barale R. Bitter taste receptor polymorphisms and human aging. PLoS One 2012; 7:e45232. [PMID: 23133589 PMCID: PMC3487725 DOI: 10.1371/journal.pone.0045232] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/17/2012] [Indexed: 01/10/2023] Open
Abstract
Several studies have shown that genetic factors account for 25% of the variation in human life span. On the basis of published molecular, genetic and epidemiological data, we hypothesized that genetic polymorphisms of taste receptors, which modulate food preferences but are also expressed in a number of organs and regulate food absorption processing and metabolism, could modulate the aging process. Using a tagging approach, we investigated the possible associations between longevity and the common genetic variation at the three bitter taste receptor gene clusters on chromosomes 5, 7 and 12 in a population of 941 individuals ranging in age from 20 to 106 years from the South of Italy. We found that one polymorphism, rs978739, situated 212 bp upstream of the TAS2R16 gene, shows a statistically significant association (p = 0.001) with longevity. In particular, the frequency of A/A homozygotes increases gradually from 35% in subjects aged 20 to 70 up to 55% in centenarians. These data provide suggestive evidence on the possible correlation between human longevity and taste genetics.
Collapse
Affiliation(s)
- Daniele Campa
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip Toxicol 2012; 4:173-83. [PMID: 22319251 PMCID: PMC3274725 DOI: 10.2478/v10102-011-0027-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/22/2022] Open
Abstract
The consumption of a diet low in fat and enhanced by fruits and vegetables, especially rich in phenolic compounds, may reduce risks of many civilization diseases. The use of traditional medicines, mainly derived from plant sources, has become an attractive segment in the management of many lifestyle diseases. Concerning the application of dietary supplements (based on phenolic compounds) in common practice, the ongoing debate over possible adverse effects of certain nutrients and dosage levels is of great importance. Since dietary supplements are not classified as drugs, their potential toxicities and interactions have not been thoroughly evaluated. First, this review will introduce phenolic compounds as natural substances beneficial for human health. Second, the potential dual mode of action of flavonoids will be outlined. Third, potential deleterious impacts of phenolic compounds utilization will be discussed: pro-oxidant and estrogenic activities, cancerogenic potential, cytotoxic effects, apoptosis induction and flavonoid-drug interaction. Finally, future trends within the research field will be indicated.
Collapse
|
43
|
Parasramka MA, Dashwood WM, Wang R, Abdelli A, Bailey GS, Williams DE, Ho E, Dashwood RH. MicroRNA profiling of carcinogen-induced rat colon tumors and the influence of dietary spinach. Mol Nutr Food Res 2012; 56:1259-69. [PMID: 22641368 PMCID: PMC3762592 DOI: 10.1002/mnfr.201200117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/22/2012] [Accepted: 04/03/2012] [Indexed: 12/13/2022]
Abstract
SCOPE MicroRNA (miRNA) profiles are altered in chronic conditions such as cardiovascular disease, diabetes, neurological disorders, and cancer. A systems biology approach was used to examine, for the first time, miRNAs altered in rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic amine carcinogen from cooked meat. METHODS AND RESULTS Among the most highly dysregulated miRNAs were those belonging to the let-7 family. Subsequent computational modeling and target validation identified c-Myc and miRNA-binding proteins Lin28A/Lin28B (Lin28) as key players, along with Sox2, Nanog, and Oct-3/4. These targets of altered miRNAs in colon cancers have been implicated in tumor recurrence and reduced patient survival, in addition to their role as pluripotency factors. In parallel with these findings, the tumor-suppressive effects of dietary spinach given postinitiation correlated with elevated levels of let-7 family members and partial normalization of c-myc, Sox2, Nanog, Oct-3/4, HmgA2, Dnmt3b, and P53 expression. CONCLUSION We conclude that the let-7/c-Myc/Lin28 axis is dysregulated in heterocyclic amine-induced colon carcinogenesis, and that the tumor suppressive effects of dietary spinach are associated with partial normalization of this pathway.
Collapse
Affiliation(s)
| | | | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Amir Abdelli
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - George S. Bailey
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - David E. Williams
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Roderick H. Dashwood
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
44
|
Bunin GR, Tseng M, Li Y, Meadows AT, Ganguly A. Parental diet and risk of retinoblastoma resulting from new germline RB1 mutation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:451-461. [PMID: 22730229 DOI: 10.1002/em.21705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/03/2012] [Accepted: 05/06/2012] [Indexed: 06/01/2023]
Abstract
We conducted a case-control study of sporadic bilateral retinoblastoma, which results from a new germline RB1 mutation, to investigate the role of parents' diet before their child's conception. Parents of 206 cases from nine North American institutions and 269 controls participated; of these, fathers of 184 cases and 223 controls and mothers of 204 cases and 260 controls answered a food frequency questionnaire administered by phone about their diet in the year before the child's conception. Cases provided DNA for RB1 mutation testing. We assessed parents' diet by examining 19 food groups. Father's intake of dairy products and fruit was associated with decreased risk and cured meats and sweets with increased risk. Mother's intake was not associated with disease for any food group. Considering analyses adjusted for the other food groups significantly associated with disease, energy intake, and demographic characteristics as well as more fully adjusted models, the associations with father's dairy products and cured meat intake were the most robust. In the fully adjusted, matched analysis, the odds ratios per daily serving were 0.70 (95% confidence interval (CI) 0.49-1.00, P = 0.047) for dairy products and 5.05 (CI 1.46-17.51, P = 0.01) for cured meat. The pattern of associations with paternal but not maternal diet is consistent with the fact that 85% of new germline RB1 mutations occur on the father's allele. As few human data exist on the role of diet in any condition resulting from new germ-cell mutation, additional studies will be needed to replicate or refute our findings.
Collapse
Affiliation(s)
- Greta R Bunin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
45
|
Sousa C, Fernandes F, Valentão P, Rodrigues AS, Coelho M, Teixeira JP, Silva S, Ferreres F, Guedes de Pinho P, Andrade PB. Brassica oleracea L. Var. costata DC and Pieris brassicae L. aqueous extracts reduce methyl methanesulfonate-induced DNA damage in V79 hamster lung fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5380-5387. [PMID: 22582708 DOI: 10.1021/jf300941s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Brassica oleracea L. var. costata DC leaves and Pieris brassicae L. larvae aqueous extracts were assayed for their potential to prevent/induce DNA damage. None of them was mutagenic at the tested concentrations in the Ames test reversion assay using Salmonella His(+) TA98 strains, with and without metabolic activation. In the hypoxanthine-guanine phosphoribosyltransferase mutation assay using mammalian V79 fibroblast cell line, extracts at 500 μg/mL neither induced mutations nor protected against the mutagenicity caused by methyl methanesulfonate (MMS). In the comet assay, none of the extracts revealed to be genotoxic by itself, and both afforded protection, more pronounced for larvae extracts, against MMS-induced genotoxicity. As genotoxic/antigenotoxic effects of Brassica vegetables are commonly attributed to isothiocyanates, the extracts were screened for these compounds by headspace-solid-phase microextraction/gas chromatography-mass spectrometry. No sulfur compound was detected. These findings demonstrate that both extracts could be useful against damage caused by genotoxic compounds, the larvae extract being the most promising.
Collapse
Affiliation(s)
- Carla Sousa
- REQUIMTE/Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferguson LR, Fenech MF. Vitamin and minerals that influence genome integrity, and exposure/intake levels associated with DNA damage prevention. Mutat Res 2012; 733:1-3. [PMID: 23210142 DOI: 10.1016/j.mrfmmm.2012.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
47
|
Analysis of in vitro chemoprevention of genotoxic damage by phytochemicals, as single agents or as combinations. Mutat Res 2012; 744:117-24. [PMID: 22405976 DOI: 10.1016/j.mrgentox.2012.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/15/2011] [Accepted: 01/06/2012] [Indexed: 12/26/2022]
Abstract
Cancer chemoprevention with low-dose combinations of bioactive phytochemicals instead of single agents has been suggested to induce less toxicity and improve efficacy. In this study, we selected four plant food-based phytochemicals, viz. chlorogenic acid (CLA), pelargonidin (PEL), resveratrol (RES) and epigallocatechin gallate (EGCG) to evaluate the in vitro chemoprevention of genotoxic damage in HL-60 cells. These agents were tested either individually or as a combination at two concentrations (with a 10-fold difference) against the genotoxins mitomycin C (MMC), diepoxybutane (DEB) and patulin (PAT). Our preliminary ferric reducing antioxidant power (FRAP) assay demonstrated additive effects when PEL, CLA, RES and EGCG were combined. Results of the cytokinesis-block micronucleus test showed significant protection against genotoxic damage induced by PAT, DEB and MMC when CLA, PEL, RES and EGCG were tested individually. This protective effect of the phytochemicals was not concentration-related. Both low- and high-concentration combinations of CLA, PEL, RES and EGCG showed significant reducing effects on the frequencies of micronuclei induced by PAT, DEB and MMC. However, the micronucleus test did not provide indications of additive or synergistic effects with this combination of phytochemicals. In conclusion, the chemo-preventive effects of PEL, CLA, RES and EGCG against genotoxic damage induced by MMC, DEB and PAT are indicative of a 'saturation effect' when higher concentrations and combinations of these phytochemicals are used.
Collapse
|
48
|
Gil da Costa RM, Bastos MMSM, Oliveira PA, Lopes C. Bracken-associated human and animal health hazards: chemical, biological and pathological evidence. JOURNAL OF HAZARDOUS MATERIALS 2012; 203-204:1-12. [PMID: 22226718 DOI: 10.1016/j.jhazmat.2011.12.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
Bracken (Pteridium aquilinum) is a widely distributed carcinogenic fern, to whose toxins human populations are exposed through multiple routes. Animals are also affected by bracken toxins, leading to serious production losses yearly. Accordingly, several governmental reports regarding the safeguard of public health against bracken carcinogens have been recently issued. This review describes the main bioactive compounds identified in bracken and their biological effects at the molecular, cellular, pathological and populational levels, with particular emphasis on ptaquiloside, the main bracken carcinogen. Recent biopathological studies shedding further light on the genotoxicity immunotoxicity and carcinogenicity of ptaquiloside are discussed. Key steps on the long effort to understand bracken toxicology are also reviewed, along with the latest findings on new bracken toxins and human exposures routes. The presence of ptaquiloside and related terpene glycosides in milk, meat and water are of particular concern from the viewpoints of both human and animal health.
Collapse
Affiliation(s)
- R M Gil da Costa
- Abel Salazar Institute for Biomedical Sciences (ICBAS), University of Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal.
| | | | | | | |
Collapse
|
49
|
Purev U, Chung MJ, Oh DH. Individual differences on immunostimulatory activity of raw and black garlic extract in human primary immune cells. Immunopharmacol Immunotoxicol 2012; 34:651-60. [DOI: 10.3109/08923973.2011.649288] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Kurzawa-Zegota M, Najafzadeh M, Baumgartner A, Anderson D. The protective effect of the flavonoids on food-mutagen-induced DNA damage in peripheral blood lymphocytes from colon cancer patients. Food Chem Toxicol 2011; 50:124-9. [PMID: 21907754 DOI: 10.1016/j.fct.2011.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 12/20/2022]
Abstract
The food mutagens IQ (2-amino-3-methylimidazo[4,5-f]quinoline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) are heterocyclic amines (HCA), generated when heating proteinaceous food. This study investigates the protective potential of the flavonoids quercetin (Q) and rutin (R) against oxidative stress induced in vitro by IQ and PhIP in lymphocytes from healthy individuals and untreated, newly diagnosed colon cancer patients using the Comet assay. In the presence of up to 500μM Q and R, the DNA damage resulting from a high dose of PhIP (75μM) or IQ (150μM) was significantly reduced (P<0.001) to levels comparable to six times lower IQ or 7.5 times lower PhIP doses. Lymphocytes from colon cancer patients had greater baseline DNA damage than those from healthy individuals (P<0.01) and this higher level of damage was also observed throughout in vitro treatment. Except for the >50years of age group and male gender, confounding factors such as smoking, drinking and/or dietary habits were not found to be significant. In conclusion, flavonoids reduced oxidative stress caused by food mutagens in vitro in lymphocytes of healthy individuals and colon cancer patients. Thus, dietary supplementation with flavonoid-rich vegetables and fruits may prove very effective in protecting against oxidative stress.
Collapse
Affiliation(s)
- Malgorzata Kurzawa-Zegota
- Genetic and Reproductive Toxicology Group, Division of Biomedical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | | | | | | |
Collapse
|