1
|
Nakamizo S, Kabashima K. Cutaneous granulomas: mechanisms, cellular interactions and therapeutic insights. Br J Dermatol 2025; 192:974-982. [PMID: 40080709 DOI: 10.1093/bjd/ljaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
Granulomas are specialized biologic defence mechanisms that form in response to infections by pathogens, foreign bodies or specific stimuli such as antimicrobials or fungi. These structures function to isolate foreign materials and pathogens that cannot be eliminated by immune cells, primarily through macrophage activity. In the skin, granulomas are a hallmark of several conditions, including sarcoidosis, granuloma annulare, tuberculosis and leprosy, each exhibiting distinct pathological and immunological features. Granulomas can also arise from lipid accumulation, as observed in xanthogranuloma, or be triggered by inflammatory processes associated with unidentified antigens. Among their cellular components, Langhans-type multinucleated giant cells play a pivotal role in granuloma structure and function, contributing to pathogen containment and tissue remodelling, although their precise mechanisms of action remain an area of active investigation. In addition to these giant cells, recent studies have identified triggering receptors expressed on myeloid cells 2 (TREM2)+ macrophages as key contributors to granuloma formation and maintenance. These macrophages are involved in extracellular degradation of foreign substances and play a role in adapting to the hypoxic and nutrient-poor microenvironment of granulomas through metabolic reprogramming, including the pentose phosphate pathway. Recent advances in molecular biology, such as single-cell RNA sequencing, have provided unprecedented insights into the cellular heterogeneity and molecular pathways involved in granuloma formation. These techniques have revealed disease-specific differences in immune cell profiles and activation states, offering new perspectives on the underlying mechanisms of granulomatous diseases. Despite these advances, the precise processes driving granuloma formation and their functional significance remain largely unclear. This review addresses the central question, 'What is a granuloma?', by synthesizing recent findings, with a particular focus on cutaneous granulomas, and presenting interpretations grounded in the current body of literature. We also discuss the implications of these findings for the development of novel therapeutic strategies, including targeted immunomodulation and cytokine blockade, which hold promise for treating granulomatous diseases while preserving host defence.
Collapse
Affiliation(s)
- Satoshi Nakamizo
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- A*STAR Skin Research Labs (A*SRL), Singapore Immunology Network (SIgN), and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology, and Research (A*STAR), Singapore
| |
Collapse
|
2
|
Luo P, Zhong Y, Yang X, Lai Q, Huang S, Zhang X, Zhang B, Wei Y. Self-assembled water soluble and bone-targeting phosphorylated quercetin ameliorates postmenopausal osteoporosis in ovariectomy mice. Colloids Surf B Biointerfaces 2025; 249:114495. [PMID: 39798316 DOI: 10.1016/j.colsurfb.2025.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Natural compounds have shown promising application prospects in preventing or treating various diseases, including osteoporosis on account of their abundant sources, low price, multi-targeting and multiple biological effects. As a bioactive natural product, quercetin (Que) has previously demonstrated to ameliorate osteoporosis (OP), however, its poor bioavailability resulting from low water solubility, poor stability and lack of bone-targeting largely restricted its efficacy and clinical applications. Inspired by the bone-targeting capability of phosphate compounds, we reported a one-step procedure for synthesis of phosphorylated Que (p-Que) by direct phosphorylating phenol groups of Que for the first time. The phosphate groups on p-Que could not only improve the water dispersibility of Que, but also endow p-Que desirable bioavailability and bone-targeting feature. The results from biological assays suggested that p-Que could inhibit osteoclastogenesis and bone resorption and alleviate trabeculae loss in osteoporotic mice. In conclusion, this work demonstrated that phosphorylation strategy can effectively solve low water solubility, lack of bone-targeting capability and poor bioavailability of natural compounds, providing a novel and efficient approach for development of OP nanomedicines.
Collapse
Affiliation(s)
- Peng Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yanlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaowei Yang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qi Lai
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Bin Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Song M, Sun J, Lv K, Li J, Shi J, Xu Y. A comprehensive review of pathology and treatment of staphylococcus aureus osteomyelitis. Clin Exp Med 2025; 25:131. [PMID: 40299136 PMCID: PMC12040984 DOI: 10.1007/s10238-025-01595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 04/30/2025]
Abstract
Osteomyelitis (OM) is an inflammation of the bone and bone marrow triggered by infectious pathogens which may induce progressive bone destruction. The majority of OM cases, especially the chronic OM cases, are induced by the most prevalent and devastating pathogen Staphylococcus aureus (S. aureus), partially due to its resistance mechanisms against the immune system and antibiotic therapies. Regarding the high rate of morbidity and recurrence in patients, it is pivotal to elucidate underlying mechanisms that how S. aureus enter and survive in hosts. The accumulated discoveries have identified multiple distinct strategies associated with chronicity and recurrence include biofilm development, small colony variants (SCVs), staphylococcus abscess communities (SACs), the osteocyte lacuno-canalicular network invasion (OLCN) of cortical bones, and S. aureus protein A (SpA). Unfortunately, little clinical progress has been achieved for the diagnosis and therapeutic treatment for OM patients, indicating that numerous questions remain to be solved. Therefore, we still have a long way to obtain the clear elucidation of the host-pathogen interactions which could be applied for clinical treatment of OM. In this review, we provide insights of current knowledge about how S. aureus evades immune eradication and remains persistent in hosts with recent discoveries. The common and novel treatment strategies for OM are also described. The purpose of this review is to have in-dept understanding of S. aureus OM and bring new perspectives to therapeutic fields which may be translated to the clinic.
Collapse
Affiliation(s)
- Muguo Song
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Sun
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Kehan Lv
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Junyi Li
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Shi
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| |
Collapse
|
4
|
Liu Y, Deng X, Chen C, Fu B, Wang M, Li J, Xu L, Wang B. Atractylenolide I Attenuates Glucocorticoid-Induced Osteoporosis via Inhibiting NF-κB Signaling Pathway. Calcif Tissue Int 2025; 116:51. [PMID: 40074976 DOI: 10.1007/s00223-025-01358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Long-term treatment with glucocorticoids significantly impacts bone health, with glucocorticoid-induced osteoporosis (GIOP) being the most prevalent consequence. Previous studies have established that Atractylenolide I (Atr I) possesses anti-inflammatory, antioxidant and anti-tumor properties, however, its specific effects on osteoclastogenesis and GIOP are still unclear. In this study, our in vitro results revealed that Atr I inhibited RANKL-stimulated osteoclast differentiation in a dose-dependent manner, disrupted the structure of the F-actin belt in mature osteoclasts, blocked RANKL-induced ROS production, and suppressed the expression of osteoclast-associated genes. Mechanistically, the findings indicated that Atr I inhibited the RANKL-induced activation of the NF-κB signaling pathway. In vivo, the micro-CT, bone histomorphometric analysis and histological data demonstrated that Dex administration led to significant bone loss, accompanied by a considerable increase in the number of osteoclasts on the bone surface. Conversely, treatment with Atr I effectively prevented these Dex-induced alterations. Taken together, this study suggests that Atr I may hold potential as a therapeutic agent for the treatment of GIOP.
Collapse
Affiliation(s)
- Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoqi Deng
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chen Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Binlan Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Min Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinglan Li
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liangliang Xu
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Bin Wang
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Ye W, Liao Y, Liu X, Wang Y, Li T, Zhao Y, He Z, Chen J, Yin M, Sheng Y, Du Y, Ji Y, He H. Dectin-2 depletion alleviates osteoclast-induced bone loss in periodontitis via Syk/NOX2/ROS signaling. Free Radic Biol Med 2025; 229:13-29. [PMID: 39800085 DOI: 10.1016/j.freeradbiomed.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Periodontitis is the sixth most common disease worldwide and is closely associated with various systemic diseases, impacting overall health. It is characterized by the over-differentiation and activity of osteoclasts, leading to increased bone resorption and subsequent bone loss. Current treatments for bone loss are not ideal, highlighting the need for new targeted therapeutic strategies. Dectin-2, a member of the C-type lectin receptor (CLR) family, has recently been reported to play an important role in immune regulation, but its role in osteoclastogenesis has not been documented. This study identified a significant upregulation of Dectin-2 expression during osteoclast differentiation through single-cell sequencing and transcriptomic analysis. Knocking down Dectin-2 significantly inhibits the differentiation of RAW264.7 cells and bone marrow-derived macrophages (BMDMs) into osteoclasts, while overexpressing Dectin-2 enhances osteoclast differentiation and function. Mechanistically, transcriptomic analysis indicates that Dectin-2 deficiency disrupts redox homeostasis and affects the MAPK signaling pathway. Furthermore, the study demonstrates that Dectin-2 promotes osteoclastogenesis via the Syk/NOX2/ROS/MAPK signaling axis. In vivo, Dectin-2 knockout mice show reduced osteoclast numbers and decreased alveolar bone resorption in a periodontitis model. In conclusion, these findings suggest that Dectin-2 is a key regulatory factor in osteoclast-mediated bone resorption and may serve as a promising therapeutic target for bone diseases characterized by osteoclast overactivity, such as periodontitis.
Collapse
Affiliation(s)
- Wengwanyue Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yuting Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Zhenru He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Mengjie Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yue Sheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
6
|
Huang Y, Ouyang X, Tan J, Meng Z, Ma X, Yan Y. The physiological and pathogenic roles of yes-associated protein/transcriptional co-activator with PDZ-binding motif in bone or skeletal motor system-related cells. Cytojournal 2025; 22:13. [PMID: 40134564 PMCID: PMC11932947 DOI: 10.25259/cytojournal_237_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 03/27/2025] Open
Abstract
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are the primary downstream effectors of the Hippo signaling pathway. This pathway plays a crucial role in regulating organ size, maintaining tissue homeostasis, and controlling cellular processes such as fate determination and tissue development. This review provides an overview of the current understanding of how the transcriptional regulators YAP and TAZ contribute to the physiological and pathological processes in tissues and cells associated with the skeletal motor system. The underlying molecular mechanisms and mechanical transduction were reviewed.
Collapse
Affiliation(s)
- Yao Huang
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Xueqian Ouyang
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Jinghua Tan
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Zhenyu Meng
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Xiuwen Ma
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Yiguo Yan
- Department of Spinal Surgery, Orthopaedic Research Center, The First Affiliated Hospital of the University of South China, Hengyang, China
| |
Collapse
|
7
|
Rabbitt D, Villapún VM, Carter LN, Man K, Lowther M, O'Kelly P, Knowles AJ, Mottura A, Tang YT, Luerti L, Reed RC, Cox SC. Rethinking Biomedical Titanium Alloy Design: A Review of Challenges from Biological and Manufacturing Perspectives. Adv Healthc Mater 2025; 14:e2403129. [PMID: 39711273 PMCID: PMC11804846 DOI: 10.1002/adhm.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Indexed: 12/24/2024]
Abstract
Current biomedical titanium alloys have been repurposed from other industries, which has contributed to several biologically driven implant failure mechanisms. This review highlights the added value that may be gained by building an appreciation of implant biological responses at the onset of alloy design. Specifically, the fundamental mechanisms associated with immune response, angiogenesis, osseointegration and the potential threat of infection are discussed, including how elemental selection can modulate these pivotal systems. With a view to expedite inclusion of these interactions in alloy design criteria, methods to analyze these performance characteristics are also summarized. While machine learning techniques are being increasingly used to unearth complex relationships between alloying elements and material properties, much is still unknown about the correlation between composition and some bio-related properties. To bridge this gap, high-throughput methods are also reviewed to validate biological response along with cutting edge manufacturing approaches that may support rapid discovery. Taken together, this review encourages the alloy development community to rethink their approach to enable a new generation of biomedical implants intrinsically designed for a life in the body, including functionality to tackle biological challenges thereby offering improved patient outcomes.
Collapse
Affiliation(s)
- Daisy Rabbitt
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Victor M. Villapún
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Luke N. Carter
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht3508 GAThe Netherlands
- Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584 CTThe Netherlands
| | - Morgan Lowther
- Paihau‐Robinson Research InstituteVictoria University of WellingtonWellington5010New Zealand
| | - Paraic O'Kelly
- Center for the Accelerated Maturation of MaterialsDepartment of Materials Science and EngineeringThe Ohio State University1305 Kinnear RoadColumbusOH43212USA
| | | | - Alessandro Mottura
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
| | - Yuanbo T. Tang
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
| | - Lorenzo Luerti
- Alloyed LtdUnit 15, Oxford Industrial ParkYarntonOX5 1QUUK
| | - Roger C. Reed
- School of Metallurgy and MaterialsUniversity of BirminghamBirminghamB15 2TTUK
- Department of MaterialsUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
8
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Wang Q, Tao H, Wang H, Chen K, Zhu P, Chen W, Shi F, Gu Y, Xu Y, Geng D. Albiflorin inhibits osteoclastogenesis and titanium particles-induced osteolysis via inhibition of ROS accumulation and the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 142:113245. [PMID: 39340985 DOI: 10.1016/j.intimp.2024.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Periprosthetic osteolysis (PPO), caused by wear particles, is a significant complication of total joint replacement, leading to prosthesis failure. Previous research has highlighted the crucial role of osteoclast-induced bone destruction in PPO progression. Albiflorin (AF), a monoterpene glycoside from Paeonia lactiflora, is a key active ingredient known for its antioxidant and anti-inflammatory properties. Although AF has shown promise in treating various conditions, its impact on osteoclasts and PPO remains unexplored. Our study revealed that AF could effectively inhibit osteoclast differentiation to reduce overactivated bone resorption and effectively inhibit the accumulation of reactive oxygen species (ROS) induced by wear particles. In vitro experiments also confirmed that AF could effectively inhibit the PI3K/AKT signaling pathway and inhibit inflammation to regulate osteoclast generation. Studies in animal models have also verified the antioxidant and anti-inflammatory properties of AF. In summary, the above studies indicate that AF inhibits osteoclastogenesis via inhibiting ROS accumulation and the PI3K/AKT signaling pathway, which may be a potential therapeutic method for PPO.
Collapse
Affiliation(s)
- Qiufei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenxiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Shi
- Department of Dermatology and Venereology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Xing J, Liu S. Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects. Bone Joint Res 2024; 13:725-740. [PMID: 39631429 PMCID: PMC11617066 DOI: 10.1302/2046-3758.1312.bjr-2024-0048.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds' diverse roles and potential applications in bone defect treatment.
Collapse
Affiliation(s)
- Jinyi Xing
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuzhong Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Kaneko K, Tsai J, Meñez D, Oh B, Suh AJ, Bae S, Mizuno M, Umemoto A, Giannopoulou E, Fujii T, Zhang Y, Stein EM, Bockman RS, Park-Min KH. Cellular signatures in human blood track bone mineral density in postmenopausal women. JCI Insight 2024; 9:e178977. [PMID: 39576015 PMCID: PMC11601907 DOI: 10.1172/jci.insight.178977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Osteoclasts are the sole bone-resorbing cells and are formed by the fusion of osteoclast precursor cells (OCPs) derived from myeloid lineage cells. Animal studies reveal that circulating OCPs (cOCPs) in blood travel to bone and fuse with bone-resident osteoclasts. However, the characteristics of human cOCPs and their association with bone diseases remain elusive. We have identified and characterized human cOCPs and found a positive association between cOCPs and osteoclast activity. Sorted cOCPs have a higher osteoclastogenic potential than other myeloid cells and effectively differentiate into osteoclasts. cOCPs exhibit distinct morphology and transcriptomic signatures. The frequency of cOCPs in the blood varies among treatment-naive postmenopausal women and has an inverse correlation with lumbar spine bone density and a positive correlation with serum CTX, a bone resorption marker. The increased cOCPs in treatment-naive patients with osteoporosis were significantly diminished by denosumab, a widely used antiresorptive therapy. Our study reveals the distinctive identity of human cOCPs and the potential link between the dynamic regulation of cOCPs and osteoporosis and its treatment. Taken together, our study enhances our understanding of human cOCPs and highlights a potential opportunity to measure cOCPs through a simple blood test, which could potentially identify high-risk individuals.
Collapse
Affiliation(s)
- Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Division of Rheumatology, Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan
| | - Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Deniece Meñez
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Andrew Junwoo Suh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Masataka Mizuno
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Akio Umemoto
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
| | - Takayuki Fujii
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Yaxia Zhang
- Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York, USA
- Pathology and Clinical Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Emily M. Stein
- Endocrine Service, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Richard S. Bockman
- Endocrine Service, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
12
|
Zur Y, Katchkovsky S, Itzhar A, Abramovitch-Dahan CV, Stepensky D, Papo N, Levaot N. Preventing osteoporotic bone loss in mice by promoting balanced bone remodeling through M-CSF RGD, a dual antagonist to c-FMS and αvβ3 receptors. Int J Biol Macromol 2024; 282:136821. [PMID: 39447795 DOI: 10.1016/j.ijbiomac.2024.136821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Osteoporosis is a common, age-related disease caused by imbalanced bone remodeling. Current treatments either shut down bone resorption or robustly stimulate bone formation. Here, we describe a novel compound that inhibits osteoclast activity without causing apparent disruptions to bone formation by targeting both c-FMS (i.e., osteoclast differentiation) and αvβ3 integrin (i.e., osteoclastic bone resorption) receptors. We show that human serum albumin (HSA)-conjugated M-CSFRGD protein (M-CSFRGD-HSA) effectively inhibits the activity of both receptors, with a three-fold higher serum half-life compared to the unconjugated M-CSFRGD. We then treated ovariectomized mice with different doses of M-CSFRGD-HSA, alendronate, or a monospecific control protein. The bispecific M-CSFRGD-HSA was superior to a monospecific control in alleviating bone loss and reducing osteoclast distribution and function. M-CSFRGD-HSA and alendronate effectively prevented ovariectomy-induced bone loss, but M-CSFRGD-HSA had a milder inhibitory effect on osteoclast distribution and activity. Moreover, alendronate halted bone formation, while M-CSFRGD-HSA-treated mice showed an increased level of serum amino-terminal propeptide of type I collagen, a bone formation marker. Our data indicate that the mild reduction in osteoclast activity facilitated by the bispecific M-CSFRGD-HSA allows the maintenance of certain levels of bone formation and may be superior to treatments that induce osteoclast depletion.
Collapse
Affiliation(s)
- Yuval Zur
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amit Itzhar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Chen-Viki Abramovitch-Dahan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
13
|
Chu W, Peng W, Lu Y, Liu Y, Li Q, Wang H, Wang L, Zhang B, Liu Z, Han L, Ma H, Yang H, Han C, Lu X. PRMT6 Epigenetically Drives Metabolic Switch from Fatty Acid Oxidation toward Glycolysis and Promotes Osteoclast Differentiation During Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403177. [PMID: 39120025 PMCID: PMC11516099 DOI: 10.1002/advs.202403177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Epigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis. Conversely, Prmt6 deficiency reverses this shift, markedly reducing HIF-1α-mediated glycolysis and enhancing fatty acid oxidation. Consequently, PRMT6 deficiency or inhibitor impedes osteoclast differentiation and alleviates bone loss in ovariectomized (OVX) mice. At the molecular level, Prmt6 deficiency reduces asymmetric dimethylation of H3R2 at the promoters of genes including Ppard, Acox3, and Cpt1a, enhancing genomic accessibility for fatty acid oxidation. PRMT6 thus emerges as a metabolic checkpoint, mediating metabolic switch from fatty acid oxidation to glycolysis, thereby supporting osteoclastogenesis. Unveiling PRMT6's critical role in epigenetically orchestrating metabolic shifts in osteoclastogenesis offers a promising target for anti-resorptive therapy.
Collapse
Affiliation(s)
- Wenxiang Chu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Weilin Peng
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Yingying Lu
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yishan Liu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Qisheng Li
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haibin Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Liang Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bangke Zhang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Zhixiao Liu
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
| | - Lin Han
- Department of OrthopaedicsThird Affiliated Hospital of Naval Medical UniversityShanghai201805China
| | - Hongdao Ma
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haisong Yang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Chaofeng Han
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and Inflammation, Institute of ImmunologyNaval Medical UniversityShanghai200433China
| | - Xuhua Lu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| |
Collapse
|
14
|
Barnea-Zohar M, Stein M, Reuven N, Winograd-Katz S, Lee S, Addadi Y, Arman E, Tuckermann J, Geiger B, Elson A. SNX10 regulates osteoclastogenic cell fusion and osteoclast size in mice. J Bone Miner Res 2024; 39:1503-1517. [PMID: 39095084 DOI: 10.1093/jbmr/zjae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Bone-resorbing osteoclasts (OCLs) are formed by differentiation and fusion of monocyte precursor cells, generating large multinucleated cells. Tightly regulated cell fusion during osteoclastogenesis leads to formation of resorption-competent OCLs, whose sizes fall within a predictable physiological range. The molecular mechanisms that regulate the onset of OCL fusion and its subsequent arrest are, however, largely unknown. We have previously shown that OCLs cultured from mice homozygous for the R51Q mutation in the vesicle trafficking-associated protein sorting nexin 10, a mutation that induces autosomal recessive osteopetrosis in humans and in mice, display deregulated and continuous fusion that generates gigantic, inactive OCLs. Fusion of mature OCLs is therefore arrested by an active, genetically encoded, cell-autonomous, and SNX10-dependent mechanism. To directly examine whether SNX10 performs a similar role in vivo, we generated SNX10-deficient (SKO) mice and demonstrated that they display massive osteopetrosis and that their OCLs fuse uncontrollably in culture, as do homozygous R51Q SNX10 (RQ/RQ) mice. OCLs that lack SNX10 exhibit persistent presence of DC-STAMP protein at their periphery, which may contribute to their uncontrolled fusion. To visualize endogenous SNX10-mutant OCLs in their native bone environment, we genetically labeled the OCLs of WT, SKO, and RQ/RQ mice with enhanced Green Fluorescent Protein (EGFP), and then visualized the 3D organization of resident OCLs and the pericellular bone matrix by 2-photon, confocal, and second harmonics generation microscopy. We show that the volumes, surface areas and, in particular, the numbers of nuclei in the OCLs of both mutant strains were on average 2-6-fold larger than those of OCLs from WT mice, indicating that deregulated, excessive fusion occurs in the mutant mice. We conclude that the fusion of OCLs, and consequently their size, is regulated in vivo by SNX10-dependent arrest of fusion of mature OCLs.
Collapse
Affiliation(s)
- Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabina Winograd-Katz
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
16
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
17
|
Xu C, Wei Z, Dong X, Xing J, Meng X, Qiu Y, Zhou H, Zheng W, Xu Z, Huang S, Xia W, Lv L, Jiang H, Wang W, Zhao X, Liu Z, Akimoto Y, Zhao B, Wang S, Hu Z. A p38 MAP kinase inhibitor suppresses osteoclastogenesis and alleviates ovariectomy-induced bone loss through the inhibition of bone turnover. Biochem Pharmacol 2024; 226:116391. [PMID: 38914317 DOI: 10.1016/j.bcp.2024.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Inhibition of excessive osteoclastic activity is an efficient therapeutic strategy for many bone diseases induced by increased bone resorption, such as osteoporosis. BMS-582949, a clinical p38α inhibitor, is a promising drug in Phase II studies for treating rheumatoid arthritis. However, its function on bone resorption is largely unknown. In this study, we find that BMS-582949 represses RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, BMS-582949 inhibits osteoclastic F-actin ring formation and osteoclast-specific gene expression. Mechanically, BMS-582949 treatment attenuates RANKL-mediated osteoclastogenesis through mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) signaling pathways without disturbing nuclear factor-κB (NF-κB) signaling. Interestingly, BMS-582949 impairs osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation (OXPHOS). Furthermore, BMS-582949 administration prevents bone loss in ovariectomized mouse mode by inhibiting both bone resorption and bone formation in vivo. Taken together, these findings indicate that BMS-582949 may be a potential and effective drug for the therapy of osteolytic diseases.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China.
| | - Zhixin Wei
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Xiaoyu Dong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Junqiao Xing
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Xiangrui Meng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Yaxuan Qiu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Huimei Zhou
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Wenrui Zheng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Zhenyu Xu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Shanhua Huang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Wenwen Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Longfei Lv
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China
| | - Haochen Jiang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Weihua Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Xue Zhao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Zixuan Liu
- Gogdel Cranleigh High School, Wuhan, Hubei 430312, China
| | | | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China.
| | - Zhangfeng Hu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China; Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, Hubei 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.
| |
Collapse
|
18
|
Wei G, Liang X, Wu F, Cheng C, Huang S, Zeng Y. Ginkgetin attenuates bone loss in OVX mice by inhibiting the NF-κB/IκBα signaling pathway. PeerJ 2024; 12:e17722. [PMID: 39006031 PMCID: PMC11246017 DOI: 10.7717/peerj.17722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Background Osteoporosis is a disease associated with bone resorption, characterized primarily by the excessive activation of osteoclasts. Ginkgetin is a compound purified from natural ginkgo leaves which has various biological properties, including anti-inflammation, antioxidant, and anti-tumor effects. This study investigated the bone-protective effects of ginkgetin in ovariectomized (OVX) mice and explored their potential signaling pathway in inhibiting osteoclastogenesis in a mouse model of osteoporosis. Methods Biochemical assays were performed to assess the levels of Ca, ALP, and P in the blood. Micro CT scanning was used to evaluate the impact of ginkgetin on bone loss in mice. RT-PCR was employed to detect the expression of osteoclast-related genes (ctsk, c-fos, trap) in their femoral tissue. Hematoxylin and eosin (H&E) staining was utilized to assess the histopathological changes in femoral tissue due to ginkgetin. The TRAP staining was used to evaluate the impact of ginkgetin osteoclast generation in vivo. Western blot analysis was conducted to investigate the effect of ginkgetin on the expression of p-NF-κB p65 and IκBα proteins in mice. Results Our findings indicate that ginkgetin may increase the serum levels of ALP and P, while decreasing the serum level of Ca in OVX mice. H&E staining and micro CT scanning results suggest that ginkgetin can inhibit bone loss in OVX mice. The TRAP staining results showed ginkgetin suppresses the generation of osteoclasts in OVX mice. RT-PCR results demonstrate that ginkgetin downregulate the expression of osteoclast-related genes (ctsk, c-fos, trap) in the femoral tissue of mice, and this effect is dose-dependent. Western blot analysis results reveal that ginkgetin can inhibit the expression of p-NF-κB p65 and IκBα proteins in mice. Conclusion Ginkgetin can impact osteoclast formation and activation in OVX mice by inhibiting the NF-κB/IκBα signaling pathway, thereby attenuating bone loss in mice.
Collapse
Affiliation(s)
- GeJin Wei
- Department of Orthopaedics, 923rd Hospital of PLA, Nanning, China
| | - Xiongbo Liang
- Graduate School, Guilin Medical College, Guilin, China
| | - Feng Wu
- Department of Orthopaedics, 923rd Hospital of PLA, Nanning, China
| | - Changzhi Cheng
- Department of Orthopaedics, 923rd Hospital of PLA, Nanning, China
| | - Shasha Huang
- Department of Orthopaedics, 923rd Hospital of PLA, Nanning, China
| | - Yanping Zeng
- Department of Orthopaedics, 923rd Hospital of PLA, Nanning, China
| |
Collapse
|
19
|
Lin P, Gan YB, He J, Lin SE, Xu JK, Chang L, Zhao LM, Zhu J, Zhang L, Huang S, Hu O, Wang YB, Jin HJ, Li YY, Yan PL, Chen L, Jiang JX, Liu P. Advancing skeletal health and disease research with single-cell RNA sequencing. Mil Med Res 2024; 11:33. [PMID: 38816888 PMCID: PMC11138034 DOI: 10.1186/s40779-024-00538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Orthopedic conditions have emerged as global health concerns, impacting approximately 1.7 billion individuals worldwide. However, the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders. The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity. Nevertheless, investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges. In this comprehensive review, we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines. By utilizing these methodologies, crucial insights into the developmental dynamics, maintenance of homeostasis, and pathological processes involved in spine, joint, bone, muscle, and tendon disorders have been uncovered. Specifically focusing on the joint diseases of degenerative disc disease, osteoarthritis, and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension. These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.
Collapse
Grants
- 2022YFA1103202 National Key Research and Development Program of China
- 82272507 National Natural Science Foundation of China
- 32270887 National Natural Science Foundation of China
- 32200654 National Natural Science Foundation of China
- CSTB2023NSCQ-ZDJO008 Natural Science Foundation of Chongqing
- BX20220397 Postdoctoral Innovative Talent Support Program
- SFLKF202201 Independent Research Project of State Key Laboratory of Trauma and Chemical Poisoning
- 2021-XZYG-B10 General Hospital of Western Theater Command Research Project
- 14113723 University Grants Committee, Research Grants Council of Hong Kong, China
- N_CUHK472/22 University Grants Committee, Research Grants Council of Hong Kong, China
- C7030-18G University Grants Committee, Research Grants Council of Hong Kong, China
- T13-402/17-N University Grants Committee, Research Grants Council of Hong Kong, China
- AoE/M-402/20 University Grants Committee, Research Grants Council of Hong Kong, China
Collapse
Affiliation(s)
- Peng Lin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi-Bo Gan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jian He
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, the General Hospital of Western Theater Command, Chengdu, 610031, China
| | - Si-En Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Li-Ming Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Sacramento, CA, 94305, USA
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Sha Huang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ying-Bo Wang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huai-Jian Jin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yang-Yang Li
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Pu-Lin Yan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jian-Xin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
20
|
He D, Jiao Y, Xu J, Luo J, Cui Y, Han X, Zhao H. mmu-miR-185 regulates osteoclasts differentiation and migration by targeting Btk. J Gene Med 2024; 26:e3687. [PMID: 38690623 DOI: 10.1002/jgm.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.
Collapse
Affiliation(s)
- Dan He
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yueying Jiao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Jian Xu
- Department of Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Junjie Luo
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yaqi Cui
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Xiabing Han
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Hongshan Zhao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Clark R, Park SY, Bradley EW, Mansky K, Tasca A. Mouse mandibular-derived osteoclast progenitors have differences in intrinsic properties compared with femoral-derived progenitors. JBMR Plus 2024; 8:ziae029. [PMID: 38606149 PMCID: PMC11008737 DOI: 10.1093/jbmrpl/ziae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Craniofacial osteoclasts are essential for site-specific processes such as alveolar bone resorption, tooth eruption, and orthodontic tooth movement. Much of the current understanding of osteoclast development and function comes from studies using long bone-derived cells. Minimal investigation has been done to explore skeletal site differences. The overall goal of this study was to determine if mandibular- and femoral-derived osteoclasts represent distinct populations. To test this hypothesis, bone marrow cells were initially analyzed from the mandible and femur of 2-month-old mice. It was shown that mandibular-derived osteoclasts have enhanced size (mm2) compared with femoral-derived osteoclasts. Since bone marrow macrophages are a heterogenous population, we additionally selected for monocytes and demonstrated that mandibular-derived monocytes also form osteoclasts with increased size compared with femoral-derived monocytes. Osteoclast precursor populations from both skeletal sites were analyzed by flow cytometry. A newly described Ly6CHigh+ population as well as the Ly6Cint population was increased in the mandibular-derived cells. The difference in differentiation potential between monocyte cultures suggests that the increase in the Ly6CHigh+ population may explain the enhanced differentiation potential in mandibular-derived cells. Monocyte genes such as Pu.1, C/ebp-a, and Prdm1 are increased in expression in mandibular-derived monocytes compared with femoral-derived monocytes. As expected with enhanced differentiation, osteoclast genes including Nfatc1, Dc-stamp, Ctsk, and Rank are upregulated in mandibular-derived osteoclast precursors. Future studies will determine how changes in the environment of the mandible lead to changes in percentages of osteoclast progenitors and their differentiation potential.
Collapse
Affiliation(s)
- Rachel Clark
- Department of Developmental and Surgical Sciences, Oral Biology Graduate Program, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - Soo Y Park
- School of Dentistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kim Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry Minneapolis, Minneapolis, MN 55455, United States
| | - Amy Tasca
- Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry Minneapolis, Minneapolis, MN 55455, United States
| |
Collapse
|
22
|
Qu Z, Zhang B, Kong L, Zhang Y, Zhao Y, Gong Y, Gao X, Feng M, Zhang J, Yan L. Myeloid zinc finger 1 knockdown promotes osteoclastogenesis and bone loss in part by regulating RANKL-induced ferroptosis of osteoclasts through Nrf2/GPX4 signaling pathway. J Leukoc Biol 2024; 115:946-957. [PMID: 38266238 DOI: 10.1093/jleuko/qiae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
The overactivation of the osteoclasts is a crucial pathological factor in the development of osteoporosis. MZF1, belonging to the scan-zinc finger family, plays a significant role in various processes associated with tumor malignant progression and acts as an essential transcription factor regulating osteoblast expression. However, the exact role of MZF1 in osteoclasts has not been determined. In this study, the purpose of our study was to elucidate the role of MZF1 in osteoclastogenesis. First, we established MZF1-deficient female mice and evaluated the femur bone phenotype by micro-computed tomography and histological staining. Our findings indicate that MZF1-/- mice exhibited a low bone mass osteoporosis phenotype. RANKL could independently induce the differentiation of RAW264.7 cells into osteoclasts, and we found that the expression level of MZF1 protein decreased gradually. Then, the CRISPR/Cas 9 gene-editing technique was used to build a RAW264.7 cell model with MZF1 knockout, and RANKL was used to independently induce MZF1-/- and wild-type cells to differentiate into mature osteoclasts. Tartrate-resistant acid phosphatase staining and F-actin fluorescence results showed that the MZF1-/- group produced more tartrate-resistant acid phosphatase-positive mature osteoclasts and larger actin rings. The expression of osteoclast-associated genes (including tartrate-resistant acid phosphatase, CTSK, c-Fos, and NFATc1) was evaluated by reverse transcription quantitative polymerase chain reaction and Western blot. The expression of key genes of osteoclast differentiation in the MZF1-/- group was significantly increased. Furthermore, we found that cell viability was increased in the early stages of RANKL-induced cell differentiation in the MZF1-/- group cells. We examined some prevalent ferroptosis markers, including malondialdehyde, glutathione, and intracellular Fe, the active form of iron in the cytoplasm during the early stages of osteoclastogenesis. The results suggest that MZF1 may be involved in osteoclast differentiation by regulating RANKL-induced ferroptosis of osteoclasts. Collectively, our findings shed light on the essential involvement of MZF1 in the regulation of osteoclastogenesis in osteoporosis and provide insights into its potential underlying mechanism.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yong Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yiwei Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Jingjun Zhang
- Health Science Centre, Xi'an Jiaotong University, No. 76, Yanta West Road, Yanta District, Xi'an City, Shaanxi Province 710061, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| |
Collapse
|
23
|
Wang H, Yuan T, Wang Y, Liu C, Li D, Li Z, Sun S. Osteoclasts and osteoarthritis: Novel intervention targets and therapeutic potentials during aging. Aging Cell 2024; 23:e14092. [PMID: 38287696 PMCID: PMC11019147 DOI: 10.1111/acel.14092] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Dengju Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
24
|
Takegahara N, Kim H, Choi Y. Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med 2024; 56:264-272. [PMID: 38297158 PMCID: PMC10907717 DOI: 10.1038/s12276-024-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoclasts are the principal cells that efficiently resorb bone. Numerous studies have attempted to reveal the molecular pathways leading to the differentiation and activation of osteoclasts to improve the treatment and prevention of osteoporosis and other bone-destructive diseases. While the cumulative knowledge of osteoclast regulatory molecules, such as receptor activator of nuclear factor-kB ligand (RANKL) and nuclear factor of activated T cells 1 (NFATc1), contributes to the understanding of the developmental progression of osteoclasts, little is known about how the discrete steps of osteoclastogenesis modify osteoclast status but not the absolute number of osteoclasts. The regulatory mechanisms involved in osteoclast maturation but not those involved in differentiation deserve special attention due to their potential use in establishing a more effective treatment strategy: targeting late-phase differentiation while preserving coupled bone formation. Recent studies have shed light on the molecules that govern late-phase osteoclast differentiation and maturation, as well as the metabolic changes needed to adapt to shifting metabolic demands. This review outlines the current understanding of the regulation of osteoclast differentiation, as well as osteoclast metabolic adaptation as a differentiation control mechanism. Additionally, this review introduces molecules that regulate the late-phase osteoclast differentiation and thus minimally impact coupled bone formation.
Collapse
Affiliation(s)
- Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
26
|
Reuven N, Barnea-Zohar M, Elson A. Osteoclast Methods in Protein Phosphatase Research. Methods Mol Biol 2024; 2743:57-79. [PMID: 38147208 DOI: 10.1007/978-1-0716-3569-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Osteoclasts are specialized cells that degrade bone and are essential for bone formation and maintaining bone homeostasis. Excess or deficient activity of these cells can significantly alter bone mass, structure, and physical strength, leading to significant morbidity, as in osteoporosis or osteopetrosis, among many other diseases. Protein phosphorylation in osteoclasts plays critical roles in the signaling pathways that govern the production of osteoclasts and regulate their bone-resorbing activity. In this chapter, we describe the isolation of mouse splenocytes and their differentiation into mature osteoclasts on resorptive (e.g., bone) and non-resorptive (e.g., plastic or glass) surfaces, examining matrix resorption by osteoclasts, immunofluorescence staining of these cells, and knocking out genes by CRISPR in the mouse osteoclastogenic cell line RAW264.7.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
28
|
Arisumi S, Fujiwara T, Yasumoto K, Tsutsui T, Saiwai H, Kobayakawa K, Okada S, Zhao H, Nakashima Y. Metallothionein 3 promotes osteoclast differentiation and survival by regulating the intracellular Zn 2+ concentration and NRF2 pathway. Cell Death Discov 2023; 9:436. [PMID: 38040717 PMCID: PMC10692135 DOI: 10.1038/s41420-023-01729-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In osteoclastogenesis, the metabolism of metal ions plays an essential role in controlling reactive oxygen species (ROS) production, mitochondrial biogenesis, and survival, and differentiation. However, the mechanism regulating metal ions during osteoclast differentiation remains unclear. The metal-binding protein metallothionein (MT) detoxifies heavy metals, maintains metal ion homeostasis, especially zinc, and manages cellular redox levels. We carried out tests using murine osteoclast precursors to examine the function of MT in osteoclastogenesis and evaluated their potential as targets for future osteoporosis treatments. MT genes were significantly upregulated upon differentiation from osteoclast precursors to mature osteoclasts in response to receptor activators of nuclear factor-κB (NF-κB) ligand (RANKL) stimulation, and MT3 expression was particularly pronounced in mature osteoclasts among MT genes. The knockdown of MT3 in osteoclast precursors demonstrated a remarkable inhibition of differentiation into mature osteoclasts. In preosteoclasts, MT3 knockdown suppressed the activity of mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways upon RANKL stimulation, leading to affect cell survival through elevated cleaved Caspase 3 and poly (ADP-ribose) polymerase (PARP) levels. Additionally, ROS levels were decreased, and nuclear factor erythroid 2-related factor 2 (NRF2) (a suppressor of ROS) and the downstream antioxidant proteins, such as catalase (CAT) and heme oxygenase 1 (HO-1), were more highly expressed in the MT3 preosteoclast knockdowns. mitochondrial ROS, which is involved in mitochondrial biogenesis and the production of reactive oxygen species, were similarly decreased because cAMP response element-binding (CREB) and peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) were less activated due to MT3 depletion. Thus, by modulating ROS through the NRF2 pathway, MT3 plays a crucial role in regulating osteoclast differentiation and survival, acting as a metabolic modulator of intracellular zinc ions.
Collapse
Affiliation(s)
- Shinkichi Arisumi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Keitaro Yasumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Tsutsui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Osaka University, Suita, Japan
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA, USA
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Ng C, Qin Y, Xia Y, Hu X, Zhao B. Jagged1 Acts as an RBP-J Target and Feedback Suppresses TNF-Mediated Inflammatory Osteoclastogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1340-1347. [PMID: 37756541 PMCID: PMC10693321 DOI: 10.4049/jimmunol.2300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
TNF plays a crucial role in inflammation and bone resorption in various inflammatory diseases, including rheumatoid arthritis (RA). However, its direct ability to drive macrophages to differentiate into osteoclasts is limited. Although RBP-J is recognized as a key inhibitor of TNF-mediated osteoclastogenesis, the precise mechanisms that restrain TNF-induced differentiation of macrophages into osteoclasts are not fully elucidated. In this study, we identified that the Notch ligand Jagged1 is a previously unrecognized RBP-J target. The expression of Jagged1 is significantly induced by TNF mainly through RBP-J. The TNF-induced Jagged1 in turn functions as a feedback inhibitory regulator of TNF-mediated osteoclastogenesis. This feedback inhibition of osteoclastogenesis by Jagged1 does not exist in RANKL-induced mouse osteoclast differentiation, as RANKL does not induce Jagged1 expression. The Jagged1 level in peripheral blood monocytes/osteoclast precursors is decreased in RA compared with the nonerosive inflammatory disease systemic lupus erythematosus, suggesting a mechanism that contributes to increased osteoclast formation in RA. Moreover, recombinant Jagged1 suppresses human inflammatory osteoclastogenesis. Our findings identify Jagged1 as an RBP-J direct target that links TNF and Notch signaling pathways and restrains TNF-mediated osteoclastogenesis. Given that Jagged1 has no effect on TNF-induced expression of inflammatory genes, its use may present a new complementary therapeutic approach to mitigate inflammatory bone loss with little impact on the immune response in disease conditions.
Collapse
Affiliation(s)
- Courtney Ng
- Correspondence: Baohong Zhao, Ph.D. Hospital for Special Surgery, Research Institute R804, 535 East 70 Street, New York, NY 10021, 212-774-2772 (Tel), 646-714-6333 (Fax),
| | - Yongli Qin
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yuhan Xia
- Correspondence: Baohong Zhao, Ph.D. Hospital for Special Surgery, Research Institute R804, 535 East 70 Street, New York, NY 10021, 212-774-2772 (Tel), 646-714-6333 (Fax),
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Baohong Zhao
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
30
|
Lee SH, Park SY, Kim JH, Kim N, Lee J. Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways. BMB Rep 2023; 56:551-556. [PMID: 37605614 PMCID: PMC10618073 DOI: 10.5483/bmbrep.2023-0100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 05/25/2025] Open
Abstract
Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKLinduced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKLinduced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 551-556].
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| | - Shin-Young Park
- Division of Software Engineering, PaiChai University, Daejeon 35345, Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Junwon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| |
Collapse
|
31
|
Lee SH, Park SY, Kim JH, Kim N, Lee J. Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways. BMB Rep 2023; 56:551-556. [PMID: 37605614 PMCID: PMC10618073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKLinduced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKLinduced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 551-556].
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| | - Shin-Young Park
- Division of Software Engineering, PaiChai University, Daejeon 35345, Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Junwon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| |
Collapse
|
32
|
Yao H, Du Y, Jiang B, Liao Y, Zhao Y, Yin M, Li T, Sheng Y, Ji Y, Du M. Sulforaphene suppresses RANKL-induced osteoclastogenesis and LPS-induced bone erosion by activating Nrf2 signaling pathway. Free Radic Biol Med 2023; 207:48-62. [PMID: 37423561 DOI: 10.1016/j.freeradbiomed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Inflammatory disorders have been found to induce bone loss through sustained and persistent activation of osteoclast differentiation, leading to heightened bone resorption. The current pharmacological interventions for combating bone loss to harbor adverse effects or contraindications. There is a pressing need to identify drugs with fewer side effects. EXPERIMENTAL APPROACH The effect and underlying mechanism of sulforaphene (LFS) on osteoclast differentiation were illustrated in vitro and in vivo with RANKL-induced Raw264.7 cell line osteoclastogenesis and lipopolysaccharide (LPS)-induced bone erosion model. KEY RESULTS In this study, LFS has been shown to effectively impede the formation of mature osteoclasts induced from both Raw264.7 cell line and bone marrow macrophages (BMMs), mainly at the early stage. Further mechanistic investigations uncovered that LFS suppressed AKT phosphorylation. SC-79, a potent AKT activator, was found to reverse the inhibitory impact of LFS on osteoclast differentiation. Moreover, transcriptome sequencing analysis revealed that treatment with LFS led to a significant upregulation in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant-related genes. Then it's validated that LFS could promote NRF2 expression and nuclear translocation, as well as effectively resist oxidative stress. NRF2 knockdown reversed the suppression effect of LFS on osteoclast differentiation. In vivo experiments provide convincing evidence that LFS is protective against LPS-induced inflammatory osteolysis. CONCLUSION AND IMPLICATIONS These well-grounded and promising findings suggest LFS as a promising agent to addressing oxidative-stress related diseases and bone loss disorders.
Collapse
Affiliation(s)
- Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yangge Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bulin Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yilin Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoyu Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengjie Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yue Sheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
Chakraborty S, Schneider J, Mitra DK, Kubatzky KF. Mechanistic insight of interleukin-9 induced osteoclastogenesis. Immunology 2023; 169:309-322. [PMID: 36732282 PMCID: PMC7615986 DOI: 10.1111/imm.13630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Interleukin (IL)-9 is an emerging player in the pathogenesis of various chronic inflammatory diseases including bone disorders like rheumatoid arthritis (RA) and psoriatic arthritis. Recently, IL-9 was shown to enhance the osteoclast formation and their function in RA. However, the mechanisms by which IL-9 influences osteoclastogenesis are not known. Therefore, in this study we aimed to unravel the direct and indirect ways by which IL-9 can influence osteoclast formation. We used mouse bone marrow precursor cells for checking the effect of IL-9 on osteoclast differentiation and its function. Next, IL-9 induced signalling pathway were checked in the process of osteoclastogenesis. T cells play an important role in enhancing osteoclastogenesis in inflammatory conditions. We used splenic T cells to understand the impact of IL-9 on the functions of T effector (Teff) and regulatory T (Treg) cells. Furthermore, the effect of IL-9 mediated modulation of the T cell response on osteoclasts was checked using a coculture model of T cells with osteoclast precursors. We showed that IL-9 enhanced osteoclast formation and its function. We found that IL-9 activates STAT3, P38 MAPK, ERK1/2, NFκB and we hypothesize that it mediates the effect on osteoclastogenesis by accelerating mitochondrial biogenesis. Additionally, IL-9 was observed to facilitate the functions of pro-osteoclastogenic IL-17 producing T cells, but inhibits the function of anti-osteoclastogenic Treg cells. Our observations suggest that IL-9 can influence osteoclastogenesis directly by modulating the signalling cascade in the precursor cells; indirectly by enhancing IL-17 producing T cells and by reducing the functions of Treg cells.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Jakob Schneider
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
34
|
Cao G, Lin M, Gu W, Su Z, Duan Y, Song W, Liu H, Zhang F. The rules and regulatory mechanisms of FOXO3 on inflammation, metabolism, cell death and aging in hosts. Life Sci 2023:121877. [PMID: 37352918 DOI: 10.1016/j.lfs.2023.121877] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The FOX family of transcription factors was originally identified in 1989, comprising the FOXA to FOXS subfamilies. FOXO3, a well-known member of the FOXO subfamily, is widely expressed in various human organs and tissues, with higher expression levels in the ovary, skeletal muscle, heart, and spleen. The biological effects of FOXO3 are mostly determined by its phosphorylation, which occurs in the nucleus or cytoplasm. Phosphorylation of FOXO3 in the nucleus can promote its translocation into the cytoplasm and inhibit its transcriptional activity. In contrast, phosphorylation of FOXO3 in the cytoplasm leads to its translocation into the nucleus and exerts regulatory effects on biological processes, such as inflammation, aerobic glycolysis, autophagy, apoptosis, oxidative stress, cell cycle arrest and DNA damage repair. Additionally, FOXO3 isoform 2 acts as an important suppressor of osteoclast differentiation. FOXO3 can also interfere with the development of various diseases, including inhibiting the proliferation and invasion of tumor cells, blocking the production of inflammatory factors in autoimmune diseases, and inhibiting β-amyloid deposition in Alzheimer's disease. Furthermore, FOXO3 slows down the aging process and exerts anti-aging effects by delaying telomere attrition, promoting cell self-renewal, and maintaining genomic stability. This review suggests that changes in the levels and post-translational modifications of FOXO3 protein can maintain organismal homeostasis and improve age-related diseases, thus counteracting aging. Moreover, this may indicate that alterations in FOXO3 protein levels are also crucial for longevity, offering new perspectives for therapeutic strategies targeting FOXO3.
Collapse
Affiliation(s)
- Guoding Cao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wei Gu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Zaiyu Su
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Yagan Duan
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
35
|
Tsai J, Kaneko K, Suh AJ, Bockman R, Park-Min KH. Origin of Osteoclasts: Osteoclast Precursor Cells. J Bone Metab 2023; 30:127-140. [PMID: 37449346 PMCID: PMC10346003 DOI: 10.11005/jbm.2023.30.2.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells and a key player in bone remodeling for health and disease. Since the discovery of osteoclasts in 1873, the structure and function of osteoclasts and the molecular and cellular mechanisms of osteoclastogenesis have been extensively studied. Moreover, it has been well established that osteoclasts are differentiated in vitro from myeloid cells such as bone marrow macrophages or monocytes. The concept showing that osteoclasts are derived from a specific population (named osteoclast precursor cells [OCPs]) among myeloid cells has been long hypothesized. However, the specific precursor population of osteoclasts is not clearly defined yet. A growing body of work provides evidence of the developmental origin and lifespan of murine osteoclasts, particularly in vivo. Here, we review the emerging evidence that supports the existence of OCPs and discuss current insights into their identity.
Collapse
Affiliation(s)
- Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Kaichi Kaneko
- Division of Rheumatology, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba,
Japan
| | - Andrew J. Suh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Richard Bockman
- Division of Endocrinology and Metabolism, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY,
USA
| |
Collapse
|
36
|
Man K, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. J Nanobiotechnology 2023; 21:137. [PMID: 37106449 PMCID: PMC10134574 DOI: 10.1186/s12951-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Research and Clinical Innovation, Royal Centre for Defence Medicine, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, UK
- Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
- Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College, Dublin 2, D02 DK07, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, D02 VN51, Dublin, Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
37
|
Rashid S, Wilson SG, Zhu K, Walsh JP, Xu J, Mullin BH. Identification of Differentially Expressed Genes and Molecular Pathways Involved in Osteoclastogenesis Using RNA-seq. Genes (Basel) 2023; 14:genes14040916. [PMID: 37107674 PMCID: PMC10137460 DOI: 10.3390/genes14040916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis is a disease that is characterised by reduced bone mineral density (BMD) and can be exacerbated by the excessive bone resorption of osteoclasts (OCs). Bioinformatic methods, including functional enrichment and network analysis, can provide information about the underlying molecular mechanisms that participate in the progression of osteoporosis. In this study, we harvested human OC-like cells differentiated in culture and their precursor peripheral blood mononuclear cells (PBMCs) and characterised the transcriptome of the two cell types using RNA-sequencing in order to identify differentially expressed genes. Differential gene expression analysis was performed in RStudio using the edgeR package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify enriched GO terms and signalling pathways, with inter-connected regions characterised using protein-protein interaction analysis. In this study, we identified 3201 differentially expressed genes using a 5% false discovery rate; 1834 genes were upregulated, whereas 1367 genes were downregulated. We confirmed a significant upregulation of several well-established OC genes including CTSK, DCSTAMP, ACP5, MMP9, ITGB3, and ATP6V0D2. The GO analysis suggested that upregulated genes are involved in cell division, cell migration, and cell adhesion, while the KEGG pathway analysis highlighted oxidative phosphorylation, glycolysis and gluconeogenesis, lysosome, and focal adhesion pathways. This study provides new information about changes in gene expression and highlights key biological pathways involved in osteoclastogenesis.
Collapse
Affiliation(s)
- Sarah Rashid
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6907, Australia
| | - Scott G Wilson
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6907, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Kun Zhu
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Perth, WA 6907, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Perth, WA 6907, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6907, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6907, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| |
Collapse
|
38
|
Ahmadzadeh K, Pereira M, Vanoppen M, Bernaerts E, Ko J, Mitera T, Maksoudian C, Manshian BB, Soenen S, Rose CD, Matthys P, Wouters C, Behmoaras J. Multinucleation resets human macrophages for specialized functions at the expense of their identity. EMBO Rep 2023; 24:e56310. [PMID: 36597777 PMCID: PMC9986822 DOI: 10.15252/embr.202256310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Macrophages undergo plasma membrane fusion and cell multinucleation to form multinucleated giant cells (MGCs) such as osteoclasts in bone, Langhans giant cells (LGCs) as part of granulomas or foreign-body giant cells (FBGCs) in reaction to exogenous material. How multinucleation per se contributes to functional specialization of mature mononuclear macrophages remains poorly understood in humans. Here, we integrate comparative transcriptomics with functional assays in purified mature mononuclear and multinucleated human osteoclasts, LGCs and FBGCs. Strikingly, in all three types of MGCs, multinucleation causes a pronounced downregulation of macrophage identity. We show enhanced lysosome-mediated intracellular iron homeostasis promoting MGC formation. The transition from mononuclear to multinuclear state is accompanied by cell specialization specific to each polykaryon. Enhanced phagocytic and mitochondrial function associate with FBGCs and osteoclasts, respectively. Moreover, human LGCs preferentially express B7-H3 (CD276) and can form granuloma-like clusters in vitro, suggesting that their multinucleation potentiates T cell activation. These findings demonstrate how cell-cell fusion and multinucleation reset human macrophage identity as part of an advanced maturation step that confers MGC-specific functionality.
Collapse
Affiliation(s)
- Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Marie Pereira
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
| | - Margot Vanoppen
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Jeong‐Hun Ko
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
| | - Tania Mitera
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Stefaan Soenen
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Carlos D Rose
- Division of Pediatric Rheumatology Nemours Children's HospitalThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Patrick Matthys
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
- Division Pediatric RheumatologyUZ LeuvenLeuvenBelgium
- European Reference Network for Rare ImmunodeficiencyAutoinflammatory and Autoimmune Diseases (RITA) at University Hospital LeuvenLeuvenBelgium
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
- Programme in Cardiovascular and Metabolic Disorders and Centre for Computational BiologyDuke‐NUS Medical School SingaporeSingaporeSingapore
| |
Collapse
|
39
|
Yu W, Wang HL, Zhang J, Yin C. The effects of epigenetic modifications on bone remodeling in age-related osteoporosis. Connect Tissue Res 2023; 64:105-116. [PMID: 36271658 DOI: 10.1080/03008207.2022.2120392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE As the population ages, there is an increased risk of fracture and morbidity diseases associated with aging, such as age-related osteoporosis and other bone diseases linked to aging skeletons. RESULTS Several bone-related cells, including multipotent bone mesenchymal stem cells, osteoblasts that form bone tissue, and osteoclasts that break it down, are in symbiotic relationships throughout life. Growing evidence indicates that epigenetic modifications of cells caused by aging contribute to compromised bone remodeling and lead to osteoporosis. A number of epigenetic mechanisms are at play, including DNA/RNA modifications, histone modifications, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs), as well as chromatin remodeling. CONCLUSION In this review, we summarized the epigenetic modifications of different bone-related cells during the development and progression of osteoporosis associated with aging. Additionally, we described a compensatory recovery mechanism under epigenetic regulation that may lead to new strategies for regulating bone remodeling in age-related osteoporosis.
Collapse
Affiliation(s)
- Wenyue Yu
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chengcheng Yin
- School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| |
Collapse
|
40
|
Lim S, Ihn HJ, Kim JA, Bae JS, Kim JE, Bae YC, Shin HI, Kim TH, Park EK. Suppressive effects of (-)-tubaic acid on RANKL-induced osteoclast differentiation and bone resorption. Anim Cells Syst (Seoul) 2023; 27:1-9. [PMID: 36704446 PMCID: PMC9873279 DOI: 10.1080/19768354.2023.2166107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Regulation of osteoclastogenesis and bone-resorbing activity can be an efficacious strategy for treating bone loss diseases because excessive osteoclastic bone resorption leads to the development of such diseases. Here, we investigated the role of (-)-tubaic acid, a thermal degradation product of rotenone, in osteoclast formation and function in an attempt to identify alternative natural compounds. (-)-Tubaic acid significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation at both the early and late stages, suggesting that (-)-tubaic acid affects the commitment and differentiation of osteoclast progenitors as well as the cell-cell fusion of mononuclear osteoclasts. (-)-Tubaic acid attenuated the activation of extracellular signal-regulated kinase (ERK) and expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and its target genes in response to RANKL. Furthermore, a pit-formation assay revealed that (-)-tubaic acid significantly impaired the bone-resorbing activity of osteoclasts. Our results demonstrated that (-)-tubaic acid exhibits anti-osteoclastogenic and anti-resorptive effects, indicating its therapeutic potential in the management of osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Jung Ihn
- Cell and Matrix Research Institute (CMRI), Kyungpook National University, Daegu, Republic of Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea, Eui Kyun Park Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea; Tae Hoon Kim Department of Food Science and Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
41
|
Bae S, Kim K, Kang K, Kim H, Lee M, Oh B, Kaneko K, Ma S, Choi JH, Kwak H, Lee EY, Park SH, Park-Min KH. RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts. Cell Mol Immunol 2023; 20:94-109. [PMID: 36513810 PMCID: PMC9794822 DOI: 10.1038/s41423-022-00959-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022] Open
Abstract
Monocyte/macrophage lineage cells are highly plastic and can differentiate into various cells under different environmental stimuli. Bone-resorbing osteoclasts are derived from the monocyte/macrophage lineage in response to receptor activator of NF-κB ligand (RANKL). However, the epigenetic signature contributing to the fate commitment of monocyte/macrophage lineage differentiation into human osteoclasts is largely unknown. In this study, we identified RANKL-responsive human osteoclast-specific superenhancers (SEs) and SE-associated enhancer RNAs (SE-eRNAs) by integrating data obtained from ChIP-seq, ATAC-seq, nuclear RNA-seq and PRO-seq analyses. RANKL induced the formation of 200 SEs, which are large clusters of enhancers, while suppressing 148 SEs in macrophages. RANKL-responsive SEs were strongly correlated with genes in the osteoclastogenic program and were selectively increased in human osteoclasts but marginally presented in osteoblasts, CD4+ T cells, and CD34+ cells. In addition to the major transcription factors identified in osteoclasts, we found that BATF binding motifs were highly enriched in RANKL-responsive SEs. The depletion of BATF1/3 inhibited RANKL-induced osteoclast differentiation. Furthermore, we found increased chromatin accessibility in SE regions, where RNA polymerase II was significantly recruited to induce the extragenic transcription of SE-eRNAs, in human osteoclasts. Knocking down SE-eRNAs in the vicinity of the NFATc1 gene diminished the expression of NFATc1, a major regulator of osteoclasts, and osteoclast differentiation. Inhibiting BET proteins suppressed the formation of some RANKL-responsive SEs and NFATc1-associated SEs, and the expression of SE-eRNA:NFATc1. Moreover, SE-eRNA:NFATc1 was highly expressed in the synovial macrophages of rheumatoid arthritis patients exhibiting high-osteoclastogenic potential. Our genome-wide analysis revealed RANKL-inducible SEs and SE-eRNAs as osteoclast-specific signatures, which may contribute to the development of osteoclast-specific therapeutic interventions.
Collapse
Affiliation(s)
- Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kibyeong Kim
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 3116, Republic of Korea
| | - Haemin Kim
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Minjoon Lee
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Sungkook Ma
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Sung Ho Park
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10021, USA.
| |
Collapse
|
42
|
Yang C, Tao H, Zhang H, Xia Y, Bai J, Ge G, Li W, Zhang W, Xiao L, Xu Y, Wang Z, Gu Y, Yang H, Liu Y, Geng D. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss. Autophagy 2022; 18:2817-2829. [PMID: 35255774 PMCID: PMC9673923 DOI: 10.1080/15548627.2022.2048432] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increased bone resorption by osteoclasts after estrogen deficiency is the main cause of postmenopausal osteoporosis. TET2 (tet methylcytosine dioxygenase 2) is a DNA demethylase that regulates cellular function and differentiation potential. Macroautophagy/autophagy maintains cellular homeostasis by recycling unnecessary and damaged organelles. This study revealed that TET2 promoted bone loss in oophorectomized (OVX) mice and that TET2 promoted osteoclast differentiation by regulating autophagy. Tet2 knockdown inhibited autophagy and osteoclast differentiation in vitro. Mechanistically, Tet2 knockdown increased BCL2 (B cell leukemia/lymphoma 2) expression and BCL2 exhibited increased binding to BECN1 and negatively regulated autophagy. Small interfering RNA specific to Bcl2 interfered with BCL2 expression in Tet2-knockdown bone marrow cells/precursors, partially reversing autophagy dysregulation and promoting osteoclast differentiation. Moreover, the LV-shTet2 lentivirus prevented bone loss in OVX mice. In summary, our findings provide evidence that TET2 promotes osteoclast differentiation by inhibiting BCL2 expression and positively regulating BECN1-dependent autophagy.Abbreviations: ACP5/TRAP: acid phosphatase 5, tartrate resistant; ATP6V0D2: ATPase, H+ transporting, lysosomal V0 subunit D2; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BMs: bone marrow cells; CTSK: cathepsin K; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MMP9: matrix metallopeptidase 9; OVX: oophorectomy; RUNX1: runt related transcription factor 1; SOCS3: suppressor of cytokine signaling 3; SPI1/PU.1: Spi-1 proto-oncogene; TNFSF11/RANKL: tumor necrosis factor (ligand) superfamily, member 11; TET2: tet methylcytosine dioxygenase 2.
Collapse
Affiliation(s)
- Chen Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- CONTACT Jiaxiang Bai Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi StreetSuzhou, Jiangsu, 215006, China
| | - Haifeng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Dechun Geng
| | - Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Huilin Yang
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Yu Liu Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu214062, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Long Xiao
- Department of Orthopedics, Zhangjiagang Tcm Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhirong Wang
- Department of Orthopedics, Zhangjiagang Tcm Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Ye Gu
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Changshu, Jiangsu, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Liu
- Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Changshu, Jiangsu, China
- Dechun Geng
| |
Collapse
|
43
|
Zhang F, Zhuang J. Pathophysiology and therapeutic advances in myeloma bone disease. Chronic Dis Transl Med 2022; 8:264-270. [PMID: 36420171 PMCID: PMC9676126 DOI: 10.1002/cdt3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022] Open
Abstract
Bone disease is the most common complication in patients with multiple myeloma (MM), and it may lead to skeletal-related events (SREs) such as bone pain, pathological fractures, and spinal cord compression, which impair a patients' quality of life and survival. The pathogenesis of myeloma bone disease (MBD) involves disruption of bone reconstitution balance including excessive activation of osteoclasts, inhibition of osteoblasts, and participation of osteocytes and bone marrow stromal cells. Various factors, such as the receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG), dickkopf-1 (DKK-1), sclerostin, and activin-A, are involved in the development of MBD. Bisphosphonates and the anti-RANKL antibody denosumab are currently the main treatment options for MBD, delaying the onset of SREs. Denosumab is preferred in patients with MM and renal dysfunction. Although effective drugs have been approved, antimyeloma therapy is the most important method for controlling bone disease.
Collapse
Affiliation(s)
- Fujing Zhang
- Department of HematologyPeking Union Medical College HospitalBeijingChina
- Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Junling Zhuang
- Department of HematologyPeking Union Medical College HospitalBeijingChina
| |
Collapse
|
44
|
Zhu J, Zhang M, Liu XL, Yin ZG, Han XX, Wang HJ, Zhou Y. Hyperoside suppresses osteoclasts differentiation and function through downregulating TRAF6/p38 MAPK signaling pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:1157-1168. [PMID: 35435096 DOI: 10.1080/10286020.2022.2056028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Hyperoside (HP), as a natural product, can promote proliferation and differentiation of osteoblasts and presents a protective effect on ovariectomized (OVX) mice. However, the inhibitory effect of HP on osteoclasts (OCs) and the potential mechanism remain to be elucidated. In this study, it was found that HP could effectively inhibit the differentiation and bone resorption of OCs, and its intrinsic molecular mechanism was related to the inhibition of TRAF6/p38 MAPK signaling pathway. Therefore, HP could be a promising natural compound for lytic bone diseases.
Collapse
Affiliation(s)
- Jun Zhu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Min Zhang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Zhi-Gang Yin
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Xiao-Xue Han
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Hui-Juan Wang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, China
- College of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
45
|
Pan B, Zheng L, Liu S, Fang J, Lou C, Hu X, Ye L, Lai H, Gao J, Zhang Y, Ni K, He D. MiR-148a deletion protects from bone loss in physiological and estrogen-deficient mice by targeting NRP1. Cell Death Dis 2022; 8:470. [DOI: 10.1038/s41420-022-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
AbstractBone metabolic homeostasis is largely dependent on the dynamic balance between osteoblasts and osteoclasts. MicroRNAs (miRNAs) play critical roles in regulating bone metabolism. In this study, we explored the role of a new miRNA (miR-148a) in osteoporosis. We compared the bone phenotype between miR-148a knockout (KO) mice and the wild-type (WT) littermates. We found miR-148a KO mice exhibited an increased bone mass phenotype and decreased osteoclastogenesis compared to the WT group. In vitro, miR-148a overexpression promoted osteoclastogenesis and bone resorption function. Mechanistically, NRP1 was identified as a novel direct target of miR-148a, and NRP1 silencing reversed the effect of miR-148a knockout. In OVX and calvarial osteolysis models, miR-148a KO protects mice against excessive bone resorption, while miR-148a agomiR/AAV-shNRP1 accelerates pathologic bone loss. Finally, the miR-148a level was found to be positively correlated with β-CTX in postmenopausal osteoporosis (PMOP) serum specimens. In summary, our findings revealed that miR-148a genetic deletion ameliorates bone loss under physiological and pathological conditions by targeting NRP1. In osteoclast-related bone metabolic diseases such as PMOP, miR-148a may be an attractive therapeutic target in the future.
Collapse
|
46
|
Miao KZ, Cozzone A, Caetano-Lopes J, Harris MP, Fisher S. Osteoclast activity sculpts craniofacial form to permit sensorineural patterning in the zebrafish skull. Front Endocrinol (Lausanne) 2022; 13:969481. [PMID: 36387889 PMCID: PMC9664155 DOI: 10.3389/fendo.2022.969481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Efforts to understand the morphogenesis of complex craniofacial structures have largely focused on the role of chondrocytes and osteoblasts. Along with these bone-creating cells, bone-resorbing osteoclasts are critical in homeostasis of adult skeletal structures, but there is currently limited information on their role in the complex morphogenetic events of craniofacial development. Fundamental aspects of skull formation and general skeletal development are conserved from zebrafish to mammals. Using a cathepsinK reporter, we documented osteoclast location in the developing zebrafish skull over several weeks, from 5.18 mm to 9.6 mm standard length (approximately 15 to 34 days post fertilization). While broad distribution of osteoclasts is consistent across individuals, they are sparse and the exact locations vary among fish and across developmental time points. Interestingly, we observed osteoclasts concentrating at areas associated with neuromasts and their associated nerves, in particular the hyomandibular foramina and around the supraorbital lateral line. These are areas of active remodeling. In contrast, other areas of rapid bone growth, such as the osteogenic fronts of the frontal and parietal bones, show no particular concentration of osteoclasts, suggesting that they play a special role in shaping bone near neuromasts and nerves. In csf1ra mutants lacking functional osteoclasts, the morphology of the cranial bone was disrupted in both areas. The hyomandibular foramen is present in the initial cartilage template, but after the initiation of ossification, the diameter of the canal is significantly smaller in the absence of osteoclasts. The diameter of the supraorbital lateral line canals was also reduced in the mutants, as was the number of pores associated with neuromasts, which allow for the passage of associated nerves through the bone. Our findings define important and previously unappreciated roles for osteoclast activity in shaping craniofacial skeletal structures with a particular role in bone modeling around peripheral cranial nerves, providing a scaffold for wiring the sensioneural system during craniofacial development. This has important implications for the formation of the evolutionarily diverse lateral line system, as well understanding the mechanism of neurologic sequelae of congenital osteoclast dysfunction in human craniofacial development.
Collapse
Affiliation(s)
- Kelly Z. Miao
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Austin Cozzone
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Joana Caetano-Lopes
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
47
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
48
|
Zuo H, Wan Y. Inhibition of myeloid PD-L1 suppresses osteoclastogenesis and cancer bone metastasis. Cancer Gene Ther 2022; 29:1342-1354. [PMID: 35256753 DOI: 10.1038/s41417-022-00446-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/12/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Programmed death-ligand 1 (PD-L1) is predominantly expressed in the antigen-presenting cells (APCs) that are originated and are abundant in the bone marrow. The roles of PD-L1 in bone cell differentiation and cancer bone metastasis remain unclear. Here we show that PD-L1 antibody or PD-L1 conditional knockout in the hematopoietic or myeloid lineage suppresses osteoclast differentiation in vitro and in vivo. Bone metastases of breast cancer and melanoma are diminished by PD-L1 antibody or PD-L1 deletion in the myeloid lineage. Transcriptional profiling of bone marrow cells reveals that PD-L1 deletion in the myeloid cells upregulates immune-stimulatory genes, leading to increased macrophage M1 polarization, decreased M2 polarization, enhanced IFNγ signaling, and elevated T cell recruitment and activation. All these alterations result in heightened anti-tumor immunity in the cancer microenvironment. Our findings support PD-L1 antibody as a potent therapy for bone metastasis of breast cancer and melanoma by simultaneously suppressing osteoclast and enhancing immunity.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
49
|
Liu SC, Hsieh HL, Tsai CH, Fong YC, Ko CY, Wu HC, Chang SLY, Hsu CJ, Tang CH. CCN2 Facilitates IL-17 Production and Osteoclastogenesis in Human Osteoarthritis Synovial Fibroblasts by Inhibiting miR-655 Expression. J Bone Miner Res 2022; 37:1944-1955. [PMID: 35876037 DOI: 10.1002/jbmr.4661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is associated with extensive upregulation of osteoclastogenesis and subsequent bone breakdown. The CCN family protein connective tissue growth factor (CCN2, also called CCN2) enhances inflammatory cytokine production in OA disease. The cytokine interleukin (IL)-17 is known to induce osteoclastogenesis and bone erosion in arthritic disease. Our retrieval of data from the Gene Expression Omnibus (GEO) data set and clinical tissues exhibited higher CCN2 and IL-17 expression in OA synovial sample than in normal healthy samples. We observed the same phenomenon in synovial tissue from rats with anterior cruciate ligament transaction (ACLT)-elicited OA compared with synovial tissue from control healthy rats. We also found that CCN2 facilitated increases in IL-17 synthesis in human OA synovial fibroblasts (OASFs) and promoted osteoclast formation. CCN2 affected IL-17 production by reducing miR-655 expression through the ILK and Syk signaling cascades. Our findings improve our understanding about the effect of CCN2 in OA pathogenesis and, in particular, IL-17 production and osteoclastogenesis, which may help with the design of more effective OA treatments. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hung-Lun Hsieh
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsi-Chin Wu
- Department of Urology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Urology, China Medical University Beigang Hospital, Beigang, Taiwan
| | - Sunny Li-Yun Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
50
|
Sasaki K, Takeshita N, Fukunaga T, Seiryu M, Sakamoto M, Oyanagi T, Maeda T, Takano-Yamamoto T. Vibration accelerates orthodontic tooth movement by inducing osteoclastogenesis via transforming growth factor-β signalling in osteocytes. Eur J Orthod 2022; 44:698-704. [DOI: 10.1093/ejo/cjac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Background
We previously found the conditions of supplementary vibration that accelerated tooth movement and induced bone resorption in an experimental rat tooth movement model. However, the molecular biological mechanisms underlying supplementary vibration-induced orthodontic tooth movement are not fully understood. Transforming growth factor (TGF)-β upregulates osteoclastogenesis via induction of the receptor activator of nuclear factor kappa B ligand expression, thus TGF-β is considered an essential cytokine to induce bone resorption.
Objectives
The aim of this study is to examine the role of TGF-β during the acceleration of orthodontic tooth movement by supplementary vibration.
Materials and methods
In experimental tooth movement, 15 g of orthodontic force was loaded onto the maxillary right first molar for 28 days. Supplementary vibration (3 g, 70 Hz) was applied to the maxillary first molar for 3 min on days 0, 7, 14, and 21. TGF-β receptor inhibitor SB431542 was injected into the submucosal palatal and buccal areas of the maxillary first molars once every other day. The co-culture of RAW264.7 cells and MLO-Y4 cells was used as an in vitro osteoclastogenesis model.
Results
SB431542 suppressed the acceleration of tooth movement and the increase in the number of osteoclasts by supplementary vibration in our experimental rat tooth movement model. Immunohistochemical analysis showed supplementary vibration increased the number of TGF-β1-positive osteocytes in the alveolar bone on the compression side during the experimental tooth movement. Moreover, vibration-upregulated TGF-β1 in MLO-Y4 cells induced osteoclastogenesis.
Conclusions
Orthodontic tooth movement was accelerated by supplementary vibration through the promotion of the production of TGF-β1 in osteocytes and subsequent osteoclastogenesis.
Collapse
Affiliation(s)
- Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University , Fukuoka, Fukuoka , Japan
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Mayuri Sakamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University , Sendai, Miyagi , Japan
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University , Sapporo, Hokkaido , Japan
| |
Collapse
|