1
|
Fazeli MA, Amiri M, Rostaminasab G, Akbaripour V, Mikaeili A, Othman M, Rezakhani L. Application of decellularized tissues in ear regeneration. J Tissue Viability 2025; 34:100870. [PMID: 39970482 DOI: 10.1016/j.jtv.2025.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
More than 5 % of people worldwide suffer from hearing disorders. Ototoxic drugs, aging, exposure to loud sounds, rupture, subperichondrial hematoma, perichondritis, burns and frostbite and infections are the main causes of hearing loss, some of which can destroy the cartilage and lead to deformation. On the other hand, disorders of the external ear are diverse and can range from dangerous neoplasms to defects that are not acceptable from a cosmetic standpoint. These issues include injuries, blockages, dermatoses, and infections, and any or all of them may be bothersome to the busy doctor. Using an implant or hearing aid is one of the treatment strategies for deafness. However, these medical devices are not useful for every eligible patient. With the right therapy, many of these issues are not life-threatening and can be treated with confidence in a positive outcome. As medical research and treatment have advanced dramatically in the past ten years, tissue engineering (TE) has emerged as a promising method to regenerate damaged tissue, raising the prospect of a permanent cure for deafness. Decellularization is now seen as a promising development for regenerative medicine, and an increasing number of applications are being found for acellular matrices. Studies on decellularization show that natural scaffolds made from decellularized tissues can serve as a suitable platform while preserving the main components, and the preparation of such scaffolds will be an important part of future bioscience research. It can have wide applications in regenerative medicine and TE. This review intends to give an overview of the status of research and alternative scaffolds in inner and outer ear regenerative medicine from both a preclinical and clinical perspective for ear disorders in order to show how ongoing TE research has the potential to advance and enhance novel disease treatments.
Collapse
Affiliation(s)
- Manouchehr Avatef Fazeli
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Amiri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Akbaripour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Othman
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Contento BM, Garibaldi N, Sala A, Palladino E, Oldani A, Carriero A, Forlino A, Besio R. Lack of TRIC-B dysregulates cytoskeleton assembly, trapping β-catenin at osteoblast adhesion sites. FEBS J 2025; 292:1920-1933. [PMID: 39834042 PMCID: PMC12001182 DOI: 10.1111/febs.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K+) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca2+) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca2+ flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38bfl/fl; cKO), we investigated how the ion imbalance affects the osteogenetic process. We found an abnormal cytoskeleton in the cKO OBs, with actin accumulation at OB adhesion sites. The reduced amount of active Ca2+-dependent actin-binding proteins myristoylated alanine-rich C-kinase substrate (MARCKS) and fascin, which modulate cytoskeletal actin dynamics, explains the altered cytoskeletal assembly. The actin clusters at adhesion sites trap β-catenin, a key structural protein at cell-cell junction sites, that abnormally accumulates despite the significant reduction in both N- and E-cadherins. Besides its structural fuction at cell borders, β-catenin also has a pivotal role as a transcription factor for proper osteoblastogenesis. Immunofluorescence of cKO nuclei revealed impaired nuclear β-catenin translocation, further validated in human fetal OB knocked out for TMEM38B, which was not rescued by specifically stimulating the canonical Wnt pathway. Thus, we demonstrated in vitro that alterations of intracellular Ca2+ homeostasis, as a consequence of lack of TRIC-B, cause cytoskeleton disorganization in cKO OBs, resulting in abnormal β-catenin accumulation at cell adhesion sites and reduced nuclear β-catenin translocation, contributing to impaired osteoblastogenesis.
Collapse
Affiliation(s)
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry UnitUniversity of PaviaItaly
| | - Alessandra Sala
- Department of Molecular Medicine, Biochemistry UnitUniversity of PaviaItaly
| | - Erika Palladino
- Department of Molecular Medicine, Biochemistry UnitUniversity of PaviaItaly
| | - Amanda Oldani
- Optical Microscopy Facility, Centro Grandi StrumentiUniversity of PaviaItaly
| | | | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry UnitUniversity of PaviaItaly
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry UnitUniversity of PaviaItaly
| |
Collapse
|
3
|
Ławkowska K, Bonowicz K, Jerka D, Bai Y, Gagat M. Integrins in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Opportunities. Biomolecules 2025; 15:233. [PMID: 40001536 PMCID: PMC11853560 DOI: 10.3390/biom15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases, including atherosclerosis, hypertension, and heart failure, remain the leading cause of global mortality, with endothelial dysfunction and vascular remodeling as critical contributors. Integrins, as transmembrane adhesion proteins, are central regulators of cell adhesion, migration, and signaling, playing a pivotal role in maintaining vascular homeostasis and mediating pathological processes such as inflammation, angiogenesis, and extracellular matrix remodeling. This article comprehensively examines the role of integrins in the pathogenesis of cardiovascular diseases, focusing on their dysfunction in endothelial cells and interactions with inflammatory mediators, such as TNF-α. Molecular mechanisms of integrin action are discussed, including their involvement in mechanotransduction, leukocyte adhesion, and signaling pathways that regulate vascular integrity. The review also highlights experimental findings, such as the use of specific integrin-targeting plasmids and immunofluorescence to elucidate integrin functions under inflammatory conditions. Additionally, potential therapeutic strategies are explored, including the development of integrin inhibitors, monoclonal antibodies, and their application in regenerative medicine. These approaches aim not only to mitigate pathological vascular remodeling but also to promote tissue repair and angiogenesis. By bridging insights from molecular studies with their translational potential, this work underscores the promise of integrin-based therapies in advancing the management and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| |
Collapse
|
4
|
Murawska-Ciałowicz E, Ciałowicz M, Rosłanowski A, Kaczmarek A, Ratajczak-Wielgomas K, Kmiecik A, Partyńska A, Dzięgiel P, Andrzejewski W. Changes in BDNF Concentration in Men after Foam Roller Massage. Cells 2024; 13:1564. [PMID: 39329748 PMCID: PMC11430617 DOI: 10.3390/cells13181564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Massage is one of the oldest forms of therapy practiced since ancient times. Nowadays, it is used in sports practice, recovery from injury, or supportive therapy for various conditions. The practice of massage uses a variety of instruments that facilitate massaging while relieving the stress on the masseur. One of them is a foam roller. Although roller massage is widely used, there are still no scientific studies describing the biological mechanisms of its effects on the body. The purpose of our study was to analyze the effect of roller massage on BDNF levels in men undergoing self-massage 4x/week/7 weeks. The control group consisted of men who did not perform self-massage. Before the test and after the first, third, fifth, and seventh weeks of self-massage, the study participants' blood was drawn, the serum BDNF was determined, and the results were subjected to analysis of variance by ANOVA test. After the first week of self-massage, an increase in BDNF concentration was observed in the self-massage group compared to the control group (p = 0.023). Similarly, changes were observed in week five (p = 0.044) and week seven (p = 0.046). In the massaged group, BDNF concentrations were significantly higher after the first week of self-massage compared to baseline. In the third week of the study, BDNF decreased to a value comparable to the baseline study, then increased significantly in the fifth and seventh weeks compared to the value recorded in the third week (p = 0.049 and p = 0.029). It was significantly higher in week seven compared to week five (p = 0.03). Higher concentrations of BDNF in subjects undergoing roller self-massage may be one of the biological mechanisms justifying the therapeutic effects of massage in both sports and clinical practice. Studies analyzing the stimulation of BDNF synthesis through various massage techniques should be performed on a larger group of healthy individuals, patients after trauma of multiple origins, and sick people with indications for therapeutic massage.
Collapse
Affiliation(s)
- Eugenia Murawska-Ciałowicz
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Maria Ciałowicz
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| | - Adam Rosłanowski
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| | - Agnieszka Kaczmarek
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Aleksandra Partyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Piotr Dzięgiel
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.R.-W.); (A.K.); (A.P.)
| | - Waldemar Andrzejewski
- Physiotherapy Faculty, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland (P.D.); (W.A.)
| |
Collapse
|
5
|
Zhang X, Li P, Zhou J, Zhang Z, Wu H, Shu X, Li W, Wu Y, Du Y, Lü D, Lü S, Li N, Long M. FAK-p38 signaling serves as a potential target for reverting matrix stiffness-modulated liver sinusoidal endothelial cell defenestration. Biomaterials 2024; 305:122462. [PMID: 38171118 DOI: 10.1016/j.biomaterials.2023.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specific endothelial cells which play an essential role in the maintenance of liver homeostasis. During the progression of liver fibrosis, matrix stiffening promotes LSEC defenestration, however, the underlying mechanotransduction mechanism remains poorly understood. Here, we applied stiffness-tunable hydrogels to assess the matrix stiffening-induced phenotypic changes in primary mouse LSECs. Results indicated that increased stiffness promoted LSEC defenestration through cytoskeletal reorganization. LSECs sensed the increased matrix stiffness via focal adhesion kinase (FAK), leading to the activation of p38-mitogen activated protein kinase activated protein kinase 2 (MK2) pathway, thereby inducing actin remodeling via LIM Kinase 1 (LIMK1) and Cofilin. Interestingly, inhibition of FAK or p38-MK2 pathway was able to effectively restore the fenestrae to a certain degree in LSECs isolated from early to late stages of liver fibrosis mice. Thus, this study highlights the impact of mechanotransduction in LSEC defenestration, and provides novel insights for potential therapeutic interventions for liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiwen Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziliang Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huan Wu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Du
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Yan X, Sun J, Yang W, Li X, Yang Q, Li Y, Wu W, Wei P, Wang L, Song L. An immunoglobulin superfamily member (CgIgIT2) functions as immune inhibitory receptor to inhibit the inflammatory cytokine expressions in Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104708. [PMID: 37044269 DOI: 10.1016/j.dci.2023.104708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/05/2023]
Abstract
Immune inhibitory receptors are increasingly acknowledged as potent regulators of immune response, which inhibit the overactivation of immune system and play an important role in maintaining immune homeostasis. In the present study, a novel immunoglobulin superfamily member (CgIgIT2) was identified from the Pacific oyster, Crassostrea gigas. The protein sequence of CgIgIT2 contained one signal peptide, four Ig domains, one fibronectin type III domain, one transmembrane domain, and a cytoplasmic tail with two intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and one immunoreceptor tyrosine-based switch motif (ITSM). The mRNA transcripts of CgIgIT2 were widely expressed in all the tested tissues, including haemolymph, gill, mantle, adductor muscle, labial palp, gonad and hepatopancreas, with the highest expression in haemolymph. The mRNA expressions of CgIgIT2 in haemocytes increased significantly at 24, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgIgIT2 protein were mainly detected in granulocytes of haemocytes, which were 1.27-fold and 2.15-fold (p < 0.05) higher than that of semi-granulocytes and agranulocytes, respectively. And CgIgIT2 was mainly located in the membrane and cytoplasm of haemocytes. The recombinant protein of CgIgIT2-4 × Ig (rCgIgIT2-4 × Ig) exhibited binding activity towards multiple pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS), peptidoglycan (PGN), mannose (MAN) and polyinosinic-polycytidylic acid (Poly (I: C)) with the highest affinity for LPS. rCgIgIT2-4 × Ig could also bind Gram-negative bacteria (V. splendidus, V. anguillarum, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), and fungi (Pichia pastoris). In the blocking assay with anti-CgIgIT2 antibody, the mRNA expressions of interleukins (CgIL17-1, CgIL17-3 and CgIL17-6) and tumor necrosis factors (CgTNF-1 and CgTNF-2) in haemocytes all increased significantly at 12 h after V. splendidus stimulation. These results suggested that CgIgIT2 could function as an inhibitor receptor to bind different PAMPs and microbes, as well as inhibit the mRNA expressions of multiple inflammatory cytokines in oysters.
Collapse
Affiliation(s)
- Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Xiaopeng Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Ping Wei
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
7
|
Rojas-Zambrano PM, Meyer-Herrera JE, Ruiz-Aparicio PF, Vernot JP. Simultaneously Targeting Two Coupled Signalling Molecules in the Mesenchymal Stem Cell Support Efficiently Sensitises the Multiple Myeloma Cell Line H929 to Bortezomib. Int J Mol Sci 2023; 24:ijms24098157. [PMID: 37175864 PMCID: PMC10178910 DOI: 10.3390/ijms24098157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Several studies have shown that diverse components of the bone marrow (BM) microenvironment play a central role in the progression, pathophysiology, and drug resistance in multiple myeloma (MM). In particular, the dynamic interaction between BM mesenchymal stem cells (BM-MSC) and MM cells has shown great relevance. Here we showed that inhibiting both PKC and NF-κB signalling pathways in BM-MSC reduced cell survival in the MM cell line H929 and increased its susceptibility to the proteasome inhibitor bortezomib. PKC-mediated cell survival inhibition and bortezomib susceptibility induction were better performed by the chimeric peptide HKPS than by the classical enzastaurin inhibitor, probably due to its greatest ability to inhibit cell adhesion and its increased capability to counteract the NF-κB-related signalling molecules increased by the co-cultivation of BM-MSC with H929 cells. Thus, inhibiting two coupled signalling molecules in BM-MSC was more effective in blocking the supportive cues emerging from the mesenchymal stroma. Considering that H929 cells were also directly susceptible to PKC and NF-κB inhibition, we showed that treatment of co-cultures with the HKPS peptide and BAY11-7082, followed by bortezomib, increased H929 cell death. Therefore, targeting simultaneously connected signalling elements of BM-MSC responsible for MM cells support with compounds that also have anti-MM activity can be an improved treatment strategy.
Collapse
Affiliation(s)
- P M Rojas-Zambrano
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J E Meyer-Herrera
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - P F Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J P Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
8
|
Weissenfeld F, Wesenberg L, Nakahata M, Müller M, Tanaka M. Modulation of wetting of stimulus responsive polymer brushes by lipid vesicles: experiments and simulations. SOFT MATTER 2023; 19:2491-2504. [PMID: 36942886 DOI: 10.1039/d2sm01673g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interactions between vesicle and substrate have been studied by simulation and experiment. We grafted polyacrylic acid brushes containing cysteine side chains at a defined area density on planar lipid membranes. Specular X-ray reflectivity data indicated that the addition of Cd2+ ions induces the compaction of the polymer brush layer and modulates the adhesion of lipid vesicles. Using microinterferometry imaging, we determined the onset level, [CdCl2] = 0.25 mM, at which the wetting of the vesicle emerges. The characteristics of the interactions between vesicle and brush were quantitatively evaluated by the shape of the vesicle near the substrate and height fluctuations of the membrane in contact with brushes. To analyze these experiments, we have systematically studied the shape and adhesion of axially symmetric vesicles for finite-range membrane-substrate interaction, i.e., a relevant experimental characteristic, through simulations. The wetting of vesicles sensitively depends on the interaction range and the approximate estimates of the capillary length change significantly, depending on the adhesion strength. We found, however, that the local transversality condition that relates the maximal curvature at the edge of the adhesion zone to the adhesion strength remains rather accurate even for a finite interaction range as long as the vesicle is large compared to the interaction range.
Collapse
Affiliation(s)
- Felix Weissenfeld
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany.
| | - Lucia Wesenberg
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Masaki Nakahata
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 560-8531 Osaka, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 560-8531 Osaka, Japan
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany.
- Center for Advanced Study, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan
| |
Collapse
|
9
|
Ullo MF, Case LB. How cells sense and integrate information from different sources. WIREs Mech Dis 2023:e1604. [PMID: 36781396 DOI: 10.1002/wsbm.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Cell signaling is a fundamental cellular process that enables cells to sense and respond to information in their surroundings. At the molecular level, signaling is primarily carried out by transmembrane protein receptors that can initiate complex downstream signal transduction cascades to alter cellular behavior. In the human body, different cells can be exposed to a wide variety of environmental conditions, and cells express diverse classes of receptors capable of sensing and integrating different signals. Furthermore, different receptors and signaling pathways can crosstalk with each other to calibrate the cellular response. Crosstalk occurs through multiple mechanisms at different levels of signaling pathways. In this review, we discuss how cells sense and integrate different chemical, mechanical, and spatial signals as well as the mechanisms of crosstalk between pathways. To illustrate these concepts, we use a few well-studied signaling pathways, including receptor tyrosine kinases and integrin receptors. Finally, we discuss the implications of dysregulated cellular sensing on driving diseases such as cancer. This article is categorized under: Cancer > Molecular and Cellular Physiology Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Maria F Ullo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lindsay B Case
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Zhang J, Che L, Wu Y, Zhou L, Liu L, Yue Y, Song D, Lou X. Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix. J Tissue Eng Regen Med 2023; 2023:5280613. [PMID: 40226421 PMCID: PMC11918522 DOI: 10.1155/2023/5280613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 04/15/2025]
Abstract
Bone defects that arise from trauma, skeletal diseases, or tumor resections have become the commonest and most thorny problems in orthopedic clinics. Recently, biocomposite materials used as artificial bone repair materials have provided a promising approach for bone regeneration. In this study, poly (l-lactide acid) (PLLA) and silk fibroin (SF) were used to fabricate nanofiber scaffolds by electrospinning technology. In order to simulate a biomimetic osteoblast microenvironment, decellularized extracellular matrix from osteoblasts was loaded into the biocomposite scaffolds (O-ECM/PLLA/SF). It was found that the O-ECM/PLLA/SF scaffolds were nontoxic for L929 cells and had good cytocompatibility. Their effects on mesenchymal stem cells derived from human-induced pluripotent stem cell (iPSC-MSC) behavior were investigated. As a result, the scaffolds with the addition of O-ECM showed enhanced alizarin red S (ARS) activity. In addition, higher expression of osteogenic gene markers such as runt-related transcription factor 2 (Runx2), collagen type I (Col-1), and osteocalcin (OCN) as well as upregulated expression of osteogenic marker protein osteopontin (OPN) and Col-1 further substantiated the applicability of O-ECM/PLLA/SF scaffolds for osteogenesis. Furthermore, the in vivo study also indicated maximal new bone formation in the skull defect model of Sprague Dawley (SD) rats treated with the O-ECM/PLLA/SF carried by human iPSC-MSCs. Hence, this study suggests that O-ECM/PLLA/SF scaffolds have a potential application in bone tissue engineering.
Collapse
Affiliation(s)
- Junming Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yunliang Wu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Lei Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Liu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yuanhang Yue
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiangxin Lou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
11
|
Sheikh MA, O'Connell KS, Lekva T, Szabo A, Akkouh IA, Osete JR, Agartz I, Engh JA, Andreou D, Boye B, Bøen E, Elvsåshagen T, Hope S, Frogner Werner MC, Joa I, Johnsen E, Kroken RA, Lagerberg TV, Melle I, Drange OK, Morken G, Nærland T, Sørensen K, Vaaler AE, Weibell MA, Westlye LT, Aukrust P, Djurovic S, Steen NE, Andreassen OA, Ueland T. Systemic Cell Adhesion Molecules in Severe Mental Illness: Potential Role of Intercellular CAM-1 in Linking Peripheral and Neuroinflammation. Biol Psychiatry 2023; 93:187-196. [PMID: 36182530 DOI: 10.1016/j.biopsych.2022.06.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cell adhesion molecules (CAMs) orchestrate leukocyte trafficking and could link peripheral and neuroinflammation in patients with severe mental illness (SMI), by promoting inflammatory and immune-mediated responses and mediating signals across blood-brain barrier. We hypothesized that CAMs would be dysregulated in SMI and evaluated plasma levels of different vascular and neural CAMs. Dysregulated CAMs in plasma were further evaluated in vivo in leukocytes and brain tissue and in vitro in induced pluripotent stem cells. METHODS We compared plasma soluble levels of different vascular (VCAM-1, ICAM-1, P-SEL) and neural (JAM-A, NCAD) CAMs in circulating leukocytes in a large SMI sample of schizophrenia (SCZ) spectrum disorder (n = 895) and affective disorder (n = 737) and healthy control participants (n = 1070) controlling for age, sex, body mass index, C-reactive protein, and freezer storage time. We also evaluated messenger RNA expression of ICAM1 and related genes encoding ICAM-1 receptors in leukocytes using microarray (n = 842) and in available RNA sequencing data from the CommonMind Consortium (CMC) in postmortem samples from the dorsolateral prefrontal cortex (n = 474). The regulation of soluble ICAM-1 in induced pluripotent stem cell-derived neurons and astrocytes was assessed in patients with SCZ and healthy control participants (n = 8 of each). RESULTS Our major findings were 1) increased soluble ICAM-1 in patients with SMI compared with healthy control participants; 2) increased ITGB2 messenger RNA, encoding the beta chain of the ICAM-1 receptor, in circulating leukocytes from patients with SMI and increased prefrontal cortex messenger RNA expression of ICAM1 in SCZ; and 3) enhanced soluble ICAM-1 release in induced pluripotent stem cell-derived neurons from patients with SCZ. CONCLUSIONS Our results support a systemic and cerebral dysregulation of soluble ICAM-1 expression in SMI and especially in patients with SCZ.
Collapse
Affiliation(s)
- Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - John A Engh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Vestfold Hospital Trust, Division of Mental Health and Addiction, Tønsberg, Norway
| | - Dimitrios Andreou
- NORMENT, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | | | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway
| | - Maren Caroline Frogner Werner
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Inge Joa
- Network for Clinical Psychosis Research, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Bergen, Norway
| | - Trine Vik Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway; Department of Psychiatry, Sørlandet Hospital HF, Kristiansand, Norway
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Kjetil Sørensen
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
| | - Melissa Authen Weibell
- Network for Clinical Psychosis Research, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
12
|
Zhang N, Liu X, Wu J, Li X, Wang Q, Chen G, Ma L, Wu S, Zhou F. Serum proteomics screening intercellular adhesion molecule-2 improves intermediate-risk stratification in acute myeloid leukemia. Ther Adv Hematol 2022; 13:20406207221132346. [PMID: 36324489 PMCID: PMC9619266 DOI: 10.1177/20406207221132346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022] Open
Abstract
Background The clinical risk classification of acute myelocytic leukemia (AML) is largely based on cytogenetic and molecular genetic detection. However, the optimal treatment for intermediate-risk AML patients remains uncertain. Further refinement and improvement of prognostic stratification are therefore necessary. Objectives The aim of this study was to identify serum protein biomarkers to refine risk stratification in AML patients. Design This study is a retrospective study. Methods Label-free proteomics was used to identify the differential abundance of serum proteins in AML patients. Transcriptomic data were combined to identify key altered markers that could indicate the risk rank of AML patients. The survival status was assessed by Kaplan-Meier and multivariate Cox regression analyses. Results We delineated serum protein expression in a population of AML patients. Many biological processes were influenced by the identified differentially expressed proteins. Association analysis of transcriptome data showed that intercellular adhesion molecule-2 (ICAM2) had a higher survival prediction value in the intermediate-risk AML group. ICAM2 was detrimental for intermediate-risk AML, regardless of whether patients received bone marrow transplantation. ICAM2 well distinguishes the intermediate group of patients, whose probability of survival is comparable to that of patients with the ELN-2017 according to the reference classification. In addition, newly established stratified clinical features were associated with leukemia stem cell scores. Conclusion The inclusion of ICAM2 expression into the AML risk classification according to ELN-2017 was a good way to transfer patients from three to two groups. Thus, providing more information for clinical decision-making to improve intermediate-risk stratification in AML patients.
Collapse
Affiliation(s)
| | | | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
13
|
Vernaz ZJ, Lottero-Leconte RM, Alonso CAI, Rio S, Morales MF, Arroyo-Salvo C, Valiente CC, Lovaglio Diez M, Bogetti ME, Arenas G, Rey-Valzacchi G, Perez-Martinez S. Evaluation of sperm integrin α5β1 as a potential marker of fertility in humans. PLoS One 2022; 17:e0271729. [PMID: 35917320 PMCID: PMC9345343 DOI: 10.1371/journal.pone.0271729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Sperm selection for assisted reproduction techniques is generally based on basic parameters, while key aspects of sperm competence and its journey from the deposition site to the fertilization site are overlooked. Consequently, identifying molecular markers in spermatozoa that can efficiently predict the fertility of a semen sample could be of great interest, particularly in cases of idiopathic male infertility. When spermatozoa reach the female reproductive tract, it provides to them the cellular and molecular microenvironment needed to acquire fertilizing ability. In this sense, considering the role that integrin α5β1 of spermatozoa plays in reproduction-related events, we investigated the correlation between the subcellular localization of sperm integrin α5β1 and early embryo development outcome after in vitro fertilization (IVF) procedures in human. Twenty-four semen samples from normozoospermic men and metaphase II (MII) oocytes from healthy women aged under 38 years, from couples who underwent IVF cycles, were used in this work. Sperm α5β1 localization was evaluated by immunofluorescence assay using an antibody against integrin α5 subunit. Integrin α5β1 was mainly localized in the sperm acrosomal region (45.33±7.89%) or the equatorial segment (30.12±7.43%). The early embryo development rate (data obtained from the Fertility Center) correlated positively with the localization of α5β1 in the acrosomal region (number of usable embryos / inseminated oocytes: ρ = 0.75; p<0.01 and number of usable embryos/total number of two pronuclear zygotes: ρ = 0.80; p<0.01). However, this correlation was not significant when the equatorial segment mark was evaluated. In addition, human sperm released from co-culture with bovine oviductal epithelial cells (BOEC) showed a significant enrichment in the acrosomal localization pattern of α5β1 compared to those sperm that were not co-cultured with BOEC (85.20±5.35% vs 35.00±17.09%, respectively, p<0.05). In conclusion, the evaluation of sperm integrin α5β1 immunolocalization could be a useful tool to select sperm with fertilizing ability from human semen samples before IVF procedures.
Collapse
Affiliation(s)
- Zoilo José Vernaz
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Raquel María Lottero-Leconte
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Carlos Agustín Isidro Alonso
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Sofía Rio
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | | | - Camila Arroyo-Salvo
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Carla C. Valiente
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | - María Lovaglio Diez
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Gabriela Arenas
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | | | - Silvina Perez-Martinez
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
14
|
Regev O, Kizner M, Roncato F, Dadiani M, Saini M, Castro-Giner F, Yajuk O, Kozlovski S, Levi N, Addadi Y, Golani O, Ben-Dor S, Granot Z, Aceto N, Alon R. ICAM-1 on Breast Cancer Cells Suppresses Lung Metastasis but Is Dispensable for Tumor Growth and Killing by Cytotoxic T Cells. Front Immunol 2022; 13:849701. [PMID: 35911772 PMCID: PMC9328178 DOI: 10.3389/fimmu.2022.849701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Breast tumors and their derived circulating cancer cells express the leukocyte β2 integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct in vivo contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype. Notably, the presence of ICAM-1 on E0771 did not alter tumor growth or the leukocyte composition in the tumor microenvironment. Interestingly, the elimination of Tregs led to the rapid killing of primary tumor cells independently of tumor ICAM-1 expression. The in vivo elimination of a primary E0771 tumor expressing the ovalbumin (OVA) model neoantigen by the OVA-specific OVA-tcr-I mice (OT-I) transgenic cytotoxic T lymphocytes (CTLs) also took place normally in the absence of ICAM-1 expression by E0771 breast cancer target cells. The whole lung imaging of these cells by light sheet microscopy (LSM) revealed that both Wild type (WT)- and ICAM-1-deficient E0771 cells were equally disseminated from resected tumors and accumulated inside the lung vasculature at similar magnitudes. ICAM-1-deficient breast cancer cells developed, however, much larger metastatic lesions than their control counterparts. Strikingly, the vast majority of these cells gave rise to intravascular tumor colonies both in spontaneous and experimental metastasis models. In the latter model, ICAM-1 expressing E0771- but not their ICAM-1-deficient counterparts were highly susceptible to elimination by neutrophils adoptively transferred from E0771 tumor-bearing donor mice. Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions. Collectively, our results are a first indication that ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing. This is also a first indication that the breast tumor expression of ICAM-1 is not required for CTL-mediated killing but can function as a suppressor of intravascular breast cancer metastasis to lungs.
Collapse
Affiliation(s)
- Ofer Regev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Marina Kizner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Dadiani
- Cancer Research Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Massimo Saini
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Francesc Castro-Giner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Olga Yajuk
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Stav Kozlovski
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nehora Levi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Lai TH, Chen HT, Wu WB. Trophoblast Coculture Induces Intercellular Adhesion Molecule-1 Expression in Uterine Endometrial Epithelial Cells Through TNF-α Production: Implication of Role of FSH and ICAM-1 during Embryo Implantation. J Reprod Immunol 2022; 152:103650. [DOI: 10.1016/j.jri.2022.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022]
|
16
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
17
|
Effects of Cell Density and Microenvironment on Stem Cell Mitochondria Transfer among Human Adipose-Derived Stem Cells and HEK293 Tumorigenic Cells. Int J Mol Sci 2022; 23:ijms23042003. [PMID: 35216117 PMCID: PMC8876000 DOI: 10.3390/ijms23042003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells (SC) are largely known for their potential to restore damaged tissue through various known mechanisms. Among these mechanisms is their ability to transfer healthy mitochondria to injured cells to rescue them. This mitochondrial transfer plays a critical role in the healing process. To determine the optimal parameters for inducing mitochondrial transfer between cells, we assessed mitochondrial transfer as a function of seeding density and in two-dimensional (2D) and semi three-dimensional (2.5D) culture models. Since mitochondrial transfer can occur through direct contact or secretion, the 2.5D culture model utilizes collagen to provide cells with a more physiologically relevant extracellular matrix and offers a more realistic representation of cell attachment and movement. Results demonstrate the dependence of mitochondrial transfer on cell density and the distance between donor and recipient cell. Furthermore, the differences found between the transfer of mitochondria in 2D and 2.5D microenvironments suggest an optimal mode of mitochondria transport. Using these parameters, we explored the effects on mitochondrial transfer between SCs and tumorigenic cells. HEK293 (HEK) is an immortalized cell line derived from human embryonic kidney cells which grow rapidly and form tumors in culture. Consequently, HEKs have been deemed tumorigenic and are widely used in cancer research. We observed mitochondrial transfer from SCs to HEK cells at significantly higher transfer rates when compared to a SC–SC co-culture system. Interestingly, our results also revealed an increase in the migratory ability of HEK cells when cultured with SCs. As more researchers find co-localization of stem cells and tumors in the human body, these results could be used to better understand their biological relationship and lead to enhanced therapeutic applications.
Collapse
|
18
|
Zhang N, Liu X, Wu J, Li X, Wang Q, Chen G, Ma L, Wu S, Zhou F. Serum proteomics screening intercellular adhesion molecule-2 improves intermediate-risk stratification in acute myeloid leukemia. Ther Adv Hematol 2022; 13. [DOI: 3.doi: 10.1177/20406207221132346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Background: The clinical risk classification of acute myelocytic leukemia (AML) is largely based on cytogenetic and molecular genetic detection. However, the optimal treatment for intermediate-risk AML patients remains uncertain. Further refinement and improvement of prognostic stratification are therefore necessary. Objectives: The aim of this study was to identify serum protein biomarkers to refine risk stratification in AML patients. Design: This study is a retrospective study. Methods: Label-free proteomics was used to identify the differential abundance of serum proteins in AML patients. Transcriptomic data were combined to identify key altered markers that could indicate the risk rank of AML patients. The survival status was assessed by Kaplan–Meier and multivariate Cox regression analyses. Results: We delineated serum protein expression in a population of AML patients. Many biological processes were influenced by the identified differentially expressed proteins. Association analysis of transcriptome data showed that intercellular adhesion molecule-2 (ICAM2) had a higher survival prediction value in the intermediate-risk AML group. ICAM2 was detrimental for intermediate-risk AML, regardless of whether patients received bone marrow transplantation. ICAM2 well distinguishes the intermediate group of patients, whose probability of survival is comparable to that of patients with the ELN-2017 according to the reference classification. In addition, newly established stratified clinical features were associated with leukemia stem cell scores. Conclusion: The inclusion of ICAM2 expression into the AML risk classification according to ELN-2017 was a good way to transfer patients from three to two groups. Thus, providing more information for clinical decision-making to improve intermediate-risk stratification in AML patients.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan 430072, China
| |
Collapse
|
19
|
A unique NLRC4 receptor from echinoderms mediates Vibrio phagocytosis via rearrangement of the cytoskeleton and polymerization of F-actin. PLoS Pathog 2021; 17:e1010145. [PMID: 34898657 PMCID: PMC8699970 DOI: 10.1371/journal.ppat.1010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Many members of the nucleotide-binding and oligomerization domain (NACHT)- and leucine-rich-repeat-containing protein (NLR) family play crucial roles in pathogen recognition and innate immune response regulation. In our previous work, a unique and Vibrio splendidus-inducible NLRC4 receptor comprising Ig and NACHT domains was identified from the sea cucumber Apostichopus japonicus, and this receptor lacked the CARD and LRR domains that are typical of common cytoplasmic NLRs. To better understand the functional role of AjNLRC4, we confirmed that AjNLRC4 was a bona fide membrane PRR with two transmembrane structures. AjNLRC4 was able to directly bind microbes and polysaccharides via its extracellular Ig domain and agglutinate a variety of microbes in a Ca2+-dependent manner. Knockdown of AjNLRC4 by RNA interference and blockade of AjNLRC4 by antibodies in coelomocytes both could significantly inhibit the phagocytic activity and elimination of V. splendidus. Conversely, overexpression of AjNLRC4 enhanced the phagocytic activity of V. splendidus, and this effect could be specifically blocked by treatment with the actin-mediated endocytosis inhibitor cytochalasin D but not other endocytosis inhibitors. Moreover, AjNLRC4-mediated phagocytic activity was dependent on the interaction between the intracellular domain of AjNLRC4 and the β-actin protein and further regulated the Arp2/3 complex to mediate the rearrangement of the cytoskeleton and the polymerization of F-actin. V. splendidus was found to be colocalized with lysosomes in coelomocytes, and the bacterial quantities were increased after injection of chloroquine, a lysosome inhibitor. Collectively, these results suggested that AjNLRC4 served as a novel membrane PRR in mediating coelomocyte phagocytosis and further clearing intracellular Vibrio through the AjNLRC4-β-actin-Arp2/3 complex-lysosome pathway. Vibrio splendidus is ubiquitously present in marine environments and in or on many aquaculture species and is considered to be an important opportunistic pathogen that has caused serious economic losses to the aquaculture industry worldwide. Phagocytosis is the first step of pathogen clearance and is triggered by specific interactions between host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) from invasive bacteria. However, the mechanism that underlies receptor-mediated V. splendidus phagocytosis is poorly understood. In this study, an atypical AjNLRC4 receptor without LRR and CARD domains was found to serve as the membrane receptor for V. splendidus, not the common cytoplasmic NLRs. The Ig domain of AjNLRC4 is replaced with a conventional LRR domain to bind V. splendidus, and the intracellular domain of AjNLRC4 specifically interacts with β-actin to mediate V. splendidus endocytosis in an actin-dependent manner. Endocytic V. splendidus is ultimately degraded in phagolysosomes. Our findings will contribute to the development of novel strategies for treating V. splendidus infection by modulating the actin-dependent endocytosis pathway.
Collapse
|
20
|
Sabab A, Vreugde S, Jukes A, Wormald PJ. The potential of chitosan-based haemostats for use in neurosurgical setting - Literature review. J Clin Neurosci 2021; 94:128-134. [PMID: 34863426 DOI: 10.1016/j.jocn.2021.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Haemorrhage is a major nuance in neurosurgery since blood can distort the surgeon's field of view and increase the risk of post-operative complications. Currently a variety of commercially available haemostats have been approved for use in neurosurgery, but they have caveats to their use in the brain, including, localised tissue compression, neural toxicity, induce immune reaction or form thrombus within the vessel. Thus, there is a need for haemostats that are efficacious and safe for application on brain and spinal tissue. Chitosan is a naturally occurring bio-polymer that is found on the exoskeleton of arthropods and the cell wall of fungi. Chitosan has been shown to accelerate haemostasis through a myriad of physiological pathways. These findings have led to the development of multiple chitosan-based haemostats, for use in peripheral human tissue. Although, clinical data regarding the use of chitosan-based haemostats in the brain is lacking, a range on in vivo studies have proven chitosan to be efficacious and safe in managing neurosurgical bleeds. Similarly, literature comparing chitosan-based haemostats with commercial haemostats used commonly in neurosurgery, have all demonstrated chitosan to be the superior agent. Additionally, clinical trials of chitosan-based haemostat used in peripheral tissue have all demonstrated chitosan to be safe for human use. The marriage of these findings indicates that the safety and superior efficacy of chitosan-based haemostat, makes it a potentially suitable haemostat for use in neurosurgical setting. However, further research pertaining to the clinical use of chitosan-based haemostat within the central nervous system needs to be conducted.
Collapse
Affiliation(s)
- Ahad Sabab
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia.
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Alistair Jukes
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otorhinolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
21
|
Decreased Serum NCAM Levels Associated with Cognitive Impairment in Vascular Dementia. DISEASE MARKERS 2021; 2021:2792884. [PMID: 34504627 PMCID: PMC8423537 DOI: 10.1155/2021/2792884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Objective Neural cell adhesion molecule (NCAM), a glycoprotein widely distributed in the brain, has recently been shown to regulate neuroplasticity. However, the role of NCAM in vascular dementia (VaD) is still unclear. The purpose of this study is to determine whether NCAM is involved in the course of VaD. Methods Continuous recruitment of VaD patients and control population to join this study. Doctors or nurses are responsible for collecting their clinical characteristics including age, gender, formal education, heart rate, supine systolic blood pressure, supine diastolic blood pressure, fasting glucose, high-density lipoprotein, and low-density lipoprotein. Each participant received the Montreal Cognitive Assessment (MoCA) scale after being enrolled in the group. At the same time, their peripheral blood was collected, and their serum NCAM levels were measured by enzyme-linked immunosorbent assay (ELISA). Results 98 VaD patients and 83 age- and sex-matched controls were enrolled. There was no significant statistical difference between the VaD group and the control group in terms of the comparison of clinical characteristics (p > 0.05). The MoCA score of VaD patients was significantly lower than that of the controls (27.9 ± 1.4 vs. 23.0 ± 2.1 points, p < 0.001). In addition, the circulating NCAM level of VaD patients was also significantly lower than that of controls (21.7 ± 3.8 vs. 17.6 ± 4.2 ng/mL, p < 0.001). The circulating NCAM level of VaD patients was significantly positively correlated with MoCA score (r = 0.285, p = 0.026). After adjusting for clinical characteristics, circulating NCAM levels are still an independent pathogenic factor of VaD (regression coefficient = 0.223, p = 0.034). Conclusions VaD patients have low circulating NCAM levels, which can be used as a potential predictor of VaD.
Collapse
|
22
|
Zhou H, Xue Y, Dong L, Wang C. Biomaterial-based physical regulation of macrophage behaviour. J Mater Chem B 2021; 9:3608-3621. [PMID: 33908577 DOI: 10.1039/d1tb00107h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages play a critical role in regulating immune reactions induced by implanted biomaterials. They are highly plastic and in response to diverse stimuli in the microenvironment can exhibit a spectrum of phenotypes and functions. In addition to biochemical signals, the physical properties of biomaterials are becoming increasingly appreciated for their significant impact on macrophage behaviour, and the underlying mechanisms deserve more in-depth investigations. This review first summarises the effects of key physical cues - including stiffness, topography, physical confinement and applied force - on macrophage behaviour. Then, it reviews the current knowledge of cellular sensing and transduction of physical cues into intracellular signals. Finally, it discusses the major challenges in understanding mechanical regulation that could provide insights for biomaterial design.
Collapse
Affiliation(s)
- Huiqun Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yizebang Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China. and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
23
|
Yang S, Zhang Y, Yang C, Wu X, El Oud SM, Chen R, Cai X, Wu XS, Lan G, Zheng X. Competitive coordination of the dual roles of the Hedgehog co-receptor in homophilic adhesion and signal reception. eLife 2021; 10:65770. [PMID: 34003115 PMCID: PMC8131103 DOI: 10.7554/elife.65770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Hedgehog (Hh) signaling patterns embryonic tissues and contributes to homeostasis in adults. In Drosophila, Hh transport and signaling are thought to occur along a specialized class of actin-rich filopodia, termed cytonemes. Here, we report that Interference hedgehog (Ihog) not only forms a Hh receptor complex with Patched to mediate intracellular signaling, but Ihog also engages in trans-homophilic binding leading to cytoneme stabilization in a manner independent of its role as the Hh receptor. Both functions of Ihog (trans-homophilic binding for cytoneme stabilization and Hh binding for ligand sensing) involve a heparin-binding site on the first fibronectin repeat of the extracellular domain. Thus, the Ihog-Ihog interaction and the Hh-Ihog interaction cannot occur simultaneously for a single Ihog molecule. By combining experimental data and mathematical modeling, we determined that Hh-Ihog heterophilic interaction dominates and Hh can disrupt and displace Ihog molecules involved in trans-homophilic binding. Consequently, we proposed that the weaker Ihog-Ihog trans interaction promotes and stabilizes direct membrane contacts along cytonemes and that, as the cytoneme encounters secreted Hh ligands, the ligands trigger release of Ihog from trans Ihog-Ihog complex enabling transport or internalization of the Hh ligand-Ihog-Patched -receptor complex. Thus, the seemingly incompatible functions of Ihog in homophilic adhesion and ligand binding cooperate to assist Hh transport and reception along the cytonemes.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Ya Zhang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Chuxuan Yang
- Department of Physics, George Washington University, Washington, United States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Sarah Maria El Oud
- Department of Physics, George Washington University, Washington, United States
| | - Rongfang Chen
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xudong Cai
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ganhui Lan
- Department of Physics, George Washington University, Washington, United States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| |
Collapse
|
24
|
Hsieh YH, Hsu WH, Yang SF, Liu CJ, Lu KH, Wang PH, Lin RC. Potential Antimetastatic Effect of Timosaponin AIII against Human Osteosarcoma Cells through Regulating the Integrin/FAK/Cofilin Axis. Pharmaceuticals (Basel) 2021; 14:ph14030260. [PMID: 33799345 PMCID: PMC8000016 DOI: 10.3390/ph14030260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Timosaponin AIII (TSAIII) is a steroidal saponin which demonstrates anti-tumour activities. However, the effect of TSAIII on human osteosarcoma cells remains largely unknown. In this study, we demonstrated that TSAIII exerted a significant inhibitory effect on the distribution of cytoskeletal F-actin and cytoskeletal-related proteins, which contributed to the suppression of cell migration and invasion, without inhibiting cell growth or apoptosis. In the synergistic inhibitory analysis, cotreatment of TSAIII with αVβ3 integrin inhibitor [Cyclo(RGDyK)] or focal adhesion kinase (FAK) inhibitor (PF-573228) exerted greater synergistic inhibitory effects on the expression of Intergin αVβ3/FAK/cofilin axis, thus inhibiting the migration and invasion capacities of human osteosarcoma cells. TSAIII was demonstrated to significantly inhibit the pulmonary metastasis formation of human osteosarcoma cells in vivo in metastasis animal models. These findings reveal the inhibitory effects of TSAIII on the metastasis progression of human osteosarcoma cells and the regulation of integrin-αVβ3-FAK-Src and TESK1/p-cofilin mediated cytoskeletal F-actin pathway. Therefore, TSAIII might represent a novel strategy for the auxiliary treatment of human osteosarcoma cells.
Collapse
Affiliation(s)
- Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (S.-F.Y.); (P.-H.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaoshiung Medical University Hospital, Kaoshiung, Medical University, Kaoshiung 80756, Taiwan; (W.-H.H.); (C.-J.L.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (S.-F.Y.); (P.-H.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaoshiung Medical University Hospital, Kaoshiung, Medical University, Kaoshiung 80756, Taiwan; (W.-H.H.); (C.-J.L.)
| | - Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Pei-Han Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (S.-F.Y.); (P.-H.W.)
| | - Renn-Chia Lin
- Department of Orthopedics, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence:
| |
Collapse
|
25
|
Zhang H, Vreeken D, Leuning DG, Bruikman CS, Junaid A, Stam W, de Bruin RG, Sol WMPJ, Rabelink TJ, van den Berg BM, van Zonneveld AJ, van Gils JM. Netrin-4 expression by human endothelial cells inhibits endothelial inflammation and senescence. Int J Biochem Cell Biol 2021; 134:105960. [PMID: 33636396 DOI: 10.1016/j.biocel.2021.105960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Netrin-4, recognized in neural and vascular development, is highly expressed by mature endothelial cells. The function of this netrin-4 in vascular biology after development has remained unclear. We found that the expression of netrin-4 is highly regulated in endothelial cells and is important for quiescent healthy endothelium. Netrin-4 expression is upregulated in endothelial cells cultured under laminar flow conditions, while endothelial cells stimulated with tumor necrosis factor alpha resulted in decreased netrin-4 expression. Targeted reduction of netrin-4 in endothelial cells resulted in increased expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Besides, these endothelial cells were more prone to monocyte adhesion and showed impaired barrier function, measured with electric cell-substrate impedance sensing, as well as in an 'organ-on-a-chip' microfluidic system. Importantly, endothelial cells with reduced levels of netrin-4 showed increased expression of the senescence-associated markers cyclin-dependent kinase inhibitor-1 and -2A, an increased cell size and decreased ability to proliferate. Consistent with the gene expression profile, netrin-4 reduction was accompanied with more senescent associated β-galactosidase activity, which could be rescued by adding netrin-4 protein. Finally, using human decellularized kidney extracellular matrix scaffolds, we found that pre-treatment of the scaffolds with netrin-4 increased numbers of endothelial cells adhering to the matrix, showing a pro-survival effect of netrin-4. Taken together, netrin-4 acts as an anti-senescence and anti-inflammation factor in endothelial cell function and our results provide insights as to maintain endothelial homeostasis and supporting vascular health.
Collapse
Affiliation(s)
- Huayu Zhang
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Dianne Vreeken
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Danielle G Leuning
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Caroline S Bruikman
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Abidemi Junaid
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wendy Stam
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruben G de Bruin
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wendy M P J Sol
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Janine M van Gils
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
26
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Ziętek M, Matkowski R, Nowak D. Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. Int J Mol Sci 2021; 22:E529. [PMID: 33430277 PMCID: PMC7825728 DOI: 10.3390/ijms22020529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is a highly metastatic type of cancer, which arises frequently from transformed pigment cells and melanocytes as a result of long-term UV radiation exposure. In recent years, the incidence of newly diagnosed melanoma patients reached 5% of all cancer cases. Despite the development of novel targeted therapies directed against melanoma-specific markers, patients' response to treatment is often weak or short-term due to a rapid acquisition of drug resistance. Among the factors affecting therapy effectiveness, elements of the tumor microenvironment play a major role. Melanoma niche encompasses adjacent cells, such as keratinocytes, cancer-associated fibroblasts (CAFs), adipocytes, and immune cells, as well as components of the extracellular matrix and tumor-specific physicochemical properties. In this review, we summarize the current knowledge concerning the influence of cancer-associated cells (keratinocytes, CAFs, adipocytes) on the process of melanomagenesis, tumor progression, invasiveness, and the emergence of drug resistance in melanoma. We also address how melanoma can alter the differentiation and activation status of cells present in the tumor microenvironment. Understanding these complex interactions between malignant and cancer-associated cells could improve the development of effective antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| |
Collapse
|
27
|
Kozlova I, Sah S, Keable R, Leshchyns'ka I, Janitz M, Sytnyk V. Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Front Mol Neurosci 2020; 13:592126. [PMID: 33281551 PMCID: PMC7689008 DOI: 10.3389/fnmol.2020.592126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion molecules (CAMs) mediate interactions of neurons with the extracellular environment by forming adhesive bonds with CAMs on adjacent membranes or via binding to proteins of the extracellular matrix. Binding of CAMs to their extracellular ligands results in the activation of intracellular signaling cascades, leading to changes in neuronal structure and the molecular composition and function of neuronal contacts. Ultimately, many of these changes depend on the synthesis of new proteins. In this review, we summarize the evidence showing that CAMs regulate protein synthesis by modulating the activity of transcription factors, gene expression, protein translation, and the structure and distribution of organelles involved in protein synthesis and transport.
Collapse
Affiliation(s)
- Irina Kozlova
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Sun J, Wang L, Yang W, Wang L, Fu Q, Song L. IgIT-Mediated Signaling Inhibits the Antimicrobial Immune Response in Oyster Hemocytes. THE JOURNAL OF IMMUNOLOGY 2020; 205:2402-2413. [PMID: 32989090 DOI: 10.4049/jimmunol.2000294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
The long-term evolutionary interaction between the host and symbiotic microbes determines their cooperative relationship. It is well known that the symbiotic microbes have evolved various mechanisms to either benefit or exploit the mammalian host immune system to maintain homeostasis. However, the strategies employed by the symbiotic microbes to overcome host immune responses in invertebrates are still not clear. In the current study, the hemolymph microbes in oyster Crassostrea gigas were found to be able to directly bind an oyster Ig superfamily member (IgSF) (designated as CgIgIT) to inhibit the immune responses of hemocytes. The mRNA transcripts of CgIgIT in hemocytes increased significantly after the stimulation with hemolymph microbes. CgIgIT was found to be located on the hemocyte membrane and it was able to directly bind the hemolymph microbes and polysaccharides via its three Ig domains and recruited the protein tyrosine phosphatase CgSHP2 through its ITIM. The recruited CgSHP2 inhibited the activities of CgERK, CgP38 and CgJNK proteins to reduce the productions of dual oxidase 2 (CgDuox2) and defensin 2 (CgDef2), which eventually protected the hemolymph microbes from CgDuox2/CgDef2-mediated elimination. Collectively, the results suggest that the oyster IgIT-SHP2 signaling pathway can recognize bacteria capable of residing in oyster hemolymph and inhibit innate immune responses, which contributes to the maintenance, colonization, and survival of hemolymph microbes.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; and.,Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qiang Fu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; and
| |
Collapse
|
29
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
30
|
Eslami-S Z, Cortés-Hernández LE, Alix-Panabières C. Epithelial Cell Adhesion Molecule: An Anchor to Isolate Clinically Relevant Circulating Tumor Cells. Cells 2020; 9:cells9081836. [PMID: 32764280 PMCID: PMC7464831 DOI: 10.3390/cells9081836] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the epithelial cell adhesion molecule (EpCAM) has received increased attention as the main membrane marker used in many enrichment technologies to isolate circulating tumor cells (CTCs). Although there has been a great deal of progress in the implementation of EpCAM-based CTC detection technologies in medical settings, several issues continue to limit their clinical utility. The biology of EpCAM and its role are not completely understood but evidence suggests that the expression of this epithelial cell-surface protein is crucial for metastasis-competent CTCs and may not be lost completely during the epithelial-to-mesenchymal transition. In this review, we summarize the most significant advantages and disadvantages of using EpCAM as a marker for CTC enrichment and its potential biological role in the metastatic cascade.
Collapse
|
31
|
Turner PR, Murray E, McAdam CJ, McConnell MA, Cabral JD. Peptide Chitosan/Dextran Core/Shell Vascularized 3D Constructs for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32328-32339. [PMID: 32597164 DOI: 10.1021/acsami.0c07212] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional (3D) bioprinting has emerged to create novel cell-based therapies for regenerative medicine applications. Vascularized networks within engineered constructs are required, and toward this end, we report a promising strategy using core-shell (c/s) extrusion 3D-bioprinting technology that employs biomimetic biomaterials to construct regenerative, prevascularized scaffolds for wound care. A custom-designed cell-responsive bioink consisting of a 13% (w/v) cell-laden gelatin methacryloyl (GelMA) shell surrounding a peptide-functionalized, succinylated chitosan (C)/dextran aldehyde (D) cell-laden core was successfully bioprinted resulting in organized microdesigns exhibiting excellent cell viability and subsequent vessel formation. Our templating strategy takes advantage of GelMA's intrinsic thermoreversible properties of low degree of acryloyl functionalization used in combination with a lightly, chemically cross-linked peptide-CD core to serve as temporal structural supports that stabilize during extrusion onto a cooled platform. Mechanical integrity was further strengthened layer-by-layer via GelMA UV photo-cross-linking. We report the first example of GelMA used in combination with a peptide-CD bioink to c/s 3D-bioprint regenerative, prevascularized constructs for wound care. Particular cell adhesion and proteolytic peptide-CD functionalized pair combinations, P15/MMP-2 and P15/cRGD, were found to significantly increase growth of human bone-marrow-derived mesenchymal stems cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs). The constructs delivered two cell types: hBMSCs in the shell bioink and HUVECs within the core bioink. Cord-like, natural microvascularization was shown with endothelial cell marker expression as confirmed by immunofluorescence (IF) staining exhibiting tubelike structures. In addition, in vitro skin wound healing activity of the construct showed a ∼twofold rate of wound closure. Overall, c/s 3D-bioprinted, peptide-CD/GelMA constructs provided the appropriate microenvironment for in vitro stem and endothelial cell viability, delivery, and differentiation. We foresee these custom constructs as representing a fundamental step toward engineering larger scale regenerative, prevascularized tissues.
Collapse
Affiliation(s)
- Paul R Turner
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Eoin Murray
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - C John McAdam
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Michelle A McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Jaydee D Cabral
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
- Department of Food Science, Centre of Bioengineering & Nanomedicine, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
32
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
33
|
Wang M, Li Z, Zhang M, Wang H, Zhang Y, Feng Y, Liu Y, Chen J. Decorin knockdown affects the gene expression profile of adhesion, growth and extracellular matrix metabolism in C-28/I2 chondrocytes. PLoS One 2020; 15:e0232321. [PMID: 32353084 PMCID: PMC7192450 DOI: 10.1371/journal.pone.0232321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022] Open
Abstract
Decorin is a member of small leucine-rich proteoglycan family, which is involved in multiple biological functions mainly as a structural and signaling molecule, and disturbances in its own metabolism plays a crucial role in the pathogenesis of osteoarthropathy. In this study, we aim to further explore the biological function of decorin and their role in human chondrocyte cell line, C28/I2. Lentivirus-mediated shRNA was applied to down-regulate decorin expression in C28/I2 chondrocytes. Effect of decorin knockdown on gene expression profiles was determined by RNA sequencing followed by bioinformatics analysis. MTT, adhesion assays and flow cytometry were used to investigate the effect of decorin knockdown on cell proliferation, adhesion, and apoptosis. sGAG content in the culture medium was determined by DMMB assay. Stably transfected C28/I2 cells were seeded onto the cancellous bone matrix gelatin (BMG) to construct tissue-engineered cartilage. The histological patterns were evaluated by H&E and Toluidine blue staining. In this study, 1780 differentially expressed genes (DEGs) including 864 up-regulated and 916 down-regulated genes were identified using RNA-Seq. The reliability of the gene expression was further verified by qRT-PCR. GO and KEGG pathway enrichment analysis revealed diverse cellular processes were affected by decorin silencing such as: cell adhesion, growth, and metabolism of extracellular matrix. In addition, we confirmed that down-regulation of decorin significantly suppressed cell proliferation and adhesion and induced apoptosis. The sGAG content in the media was significantly increased after decorin silencing. Engineered articular tissues in the decorin knockdown group exhibited cartilage destruction and proteoglycan loss as evidenced by H&E and Toluidine blue stains. Overall, this combined data helps to provide a comprehensive understanding of the roles of decorin following its knockdown in C28/I2 cells.
Collapse
Affiliation(s)
- Mengying Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zhengzheng Li
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Meng Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Hui Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Ying Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Yiping Feng
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Yinan Liu
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Jinghong Chen
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| |
Collapse
|
34
|
Crosstalk between Epidermal Growth Factor Receptors (EGFR) and integrins in resistance to EGFR tyrosine kinase inhibitors (TKIs) in solid tumors. Eur J Cell Biol 2020; 99:151083. [PMID: 32381360 DOI: 10.1016/j.ejcb.2020.151083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/21/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is important in a variety of physiological and pathologic processes, including development, tumor invasion, and metastasis. Integrin-mediated attachment to ECM proteins has emerged to cue events primitively important for the transformed phenotype of human cancer cells. Cross-talk between integrins and growth factor receptors takes an increasingly prominent role in defining adhesion, motility, and cell growth. This functional interaction has expanded beyond to link integrins with resistance to Tyrosine kinase inhibitors (TKIs) of Epidermal Growth Factor Receptors (EGFRs). In this regard, integrin-mediated adhesion has two separate functions one as a clear collaborator with growth factor receptor signaling and the second as a basic mechanism contributing in Epithelial to Mesenchymal Transition (EMT) which affects response to chemotherapy. This review provides an overview of these mechanisms and describes treatment options for selectively targeting and disrupting integrin interaction to EGFR for cancer therapy.
Collapse
|
35
|
MacNeil IA, Burns DJ, Rich BE, Soltani SM, Kharbush S, Osterhaus NG, Sullivan BF, Hawkins DM, Pietruska JR, Laing LG. New HER2-negative breast cancer subtype responsive to anti-HER2 therapy identified. J Cancer Res Clin Oncol 2020; 146:605-619. [PMID: 32036454 PMCID: PMC7039866 DOI: 10.1007/s00432-020-03144-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022]
Abstract
Purpose HER2 signaling functional activity may be important to measure in addition to HER2 protein quantification when identifying patients eligible for HER2 therapies. A HER2 Signaling Function (CELx HSF) Test for HER2-negative patients uses patient’s live tumor cells on a biosensor to identify patients with abnormally high HER2-related signaling (HSFs+) likely to respond to anti-HER2 therapies. Methods The CELx HSF test was employed to: (1) characterize the sensitivity and specificity of the test to detect abnormal levels of HER2 signaling; (2) evaluate the inhibitory effectiveness of five different anti-HER2 therapies; (3) assess the correlation between CELx HSF test detection of abnormal HER2 signaling and response to HER2 therapy using xenograft models; and (4) confirm the prevalence of abnormal HER2 signaling amongst HER2-negative breast cancer patients (HER2−/HSFs+). Results HER2−/HSFs+ breast cancer patient samples were identified and showed sensitivity to five approved anti-HER2 therapies. Xenograft studies using both HER2+ and HER2− cell lines confirmed that CELx HER2 signaling status better predicts HER2 inhibitor efficacy than HER2 receptor status. In a study of 114 HER2-negative breast tumor patient samples, 27 (23.7%; 95% CI = 17–32%) had abnormal HER2 signaling (HSFs+). A ROC curve constructed with this dataset projects the CELx HSF Test would have greater than 90% sensitivity and specificity to detect the HER2−/HSFs+ patient population. Conclusions The CELx HSF test is a well-characterized functional biomarker assay capable of identifying dynamic HER2-driven signaling dysfunction in tumor cells from HER2-negative breast cancer patients. This test has demonstrated efficacy of various HER2 targeted therapies in live tumor cells from the HSFs+ population and correlated the test result to HER2 drug response in mouse xenograft studies. The proportion of HER2-negative breast cancer patients found to have abnormal HER2 signaling in a 114 patient sample study, 20–25%, is significant. A clinical trial to evaluate the efficacy of anti-HER2 therapies in this patient population is warranted. Electronic supplementary material The online version of this article (10.1007/s00432-020-03144-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian A MacNeil
- Celcuity Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - David J Burns
- Celcuity Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Benjamin E Rich
- Celcuity Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Sajjad M Soltani
- Celcuity Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Samantha Kharbush
- Celcuity Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | | | - Brian F Sullivan
- Celcuity Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Douglas M Hawkins
- School of Statistics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jodie R Pietruska
- Department of Developmental, Molecular, and Chemical Biology, Tufts University, Boston, MA, 02111, USA
| | - Lance G Laing
- Celcuity Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA.
| |
Collapse
|
36
|
Bouwens E, van den Berg VJ, Akkerhuis KM, Baart SJ, Caliskan K, Brugts JJ, Mouthaan H, van Ramshorst J, Germans T, Umans VAWM, Boersma E, Kardys I. Circulating Biomarkers of Cell Adhesion Predict Clinical Outcome in Patients with Chronic Heart Failure. J Clin Med 2020; 9:E195. [PMID: 31936828 PMCID: PMC7020068 DOI: 10.3390/jcm9010195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular inflammation and vascular endothelial dysfunction are involved in chronic heart failure (CHF), and cellular adhesion molecules are considered to play a key role in these mechanisms. We evaluated temporal patterns of 12 blood biomarkers of cell adhesion in patients with CHF. In 263 ambulant patients, serial, tri-monthly blood samples were collected during a median follow-up of 2.2 (1.4-2.5) years. The primary endpoint (PE) was a composite of cardiovascular mortality, HF hospitalization, heart transplantation and implantation of a left ventricular assist device and was reached in 70 patients. We selected the baseline blood samples in all patients, the two samples closest to a PE, or, for event-free patients, the last sample available. In these 567 samples, associations between biomarkers and PE were investigated by joint modelling. The median age was 68 (59-76) years, with 72% men and 74% New York Heart Association class I-II. Repeatedly measured levels of Complement component C1q receptor (C1qR), Cadherin 5 (CDH5), Chitinase-3-like protein 1 (CHI3L1), Ephrin type-B receptor 4 (EPHB4), Intercellular adhesion molecule-2 (ICAM-2) and Junctional adhesion molecule A (JAM-A) were independently associated with the PE. Their rates of change also predicted clinical outcome. Level of CHI3L1 was numerically the strongest predictor with a hazard ratio (HR) (95% confidence interval) of 2.27 (1.66-3.16) per SD difference in level, followed by JAM-A (2.10, 1.42-3.23) and C1qR (1.90, 1.36-2.72), adjusted for clinical characteristics. In conclusion, temporal patterns of C1qR, CDH5, CHI3L1, EPHB4, ICAM2 and JAM-A are strongly and independently associated with clinical outcome in CHF patients.
Collapse
|
37
|
Single Nucleotide Polymorphism rs6942067 Is a Risk Factor in Young and in Non-Smoking Patients with HPV Negative Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 12:cancers12010055. [PMID: 31878157 PMCID: PMC7017251 DOI: 10.3390/cancers12010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic factors behind the increasing incidence of human papillomavirus (HPV) negative head and neck squamous cell carcinoma (HNSCC) in young non-smokers are suspected, but have not been identified. Recently, rs6942067, a single nucleotide polymorphism (SNP) located upstream of the DCBLD1 gene, was found associated with non-smoking lung adenocarcinoma. To validate if this SNP is also implicated in HNSCC, participants of The Cancer Genome Atlas HNSCC cohort were investigated for rs6942067 status, associated DCBLD1 expression, and clinical characteristics. Occurrence of the rs6942067 GG genotype is significantly higher in young and in HPV negative non-smoking HNSCC than in other HNSCC. Additionally, rs6942067 GG is associated with higher DCBLD1 expression in HNSCC and patients with high DCBLD1 expression have a worse overall survival at three years, both in univariate and multivariate analysis. Furthermore, high DCBLD1 expression is associated with activation of the integrin signaling pathway and its phosphorylation with EGFR and MET. Collectively, these findings suggest that DCBLD1 plays a critical role in HNSCC and demonstrate an association between rs6942067 and clinical characteristics of young age and HPV negative non-smoking status in HNSCC patients.
Collapse
|
38
|
The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells 2019; 8:cells8121503. [PMID: 31771248 PMCID: PMC6952767 DOI: 10.3390/cells8121503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Fibrogenesis is a progressive scarring event resulting from disrupted regular wound healing due to repeated tissue injury and can end in organ failure, like in liver cirrhosis. The protagonists in this process, either liver-resident cells or patrolling leukocytes attracted to the site of tissue damage, interact with each other by soluble factors but also by direct cell–cell contact mediated by cell adhesion molecules. Since cell adhesion molecules also support binding to the extracellular matrix, they represent excellent biosensors, which allow cells to modulate their behavior based on changes in the surrounding microenvironment. In this review, we focus on selectins, cadherins, integrins and members of the immunoglobulin superfamily of adhesion molecules as well as some non-classical cell adhesion molecules in the context of hepatic fibrosis. We describe their liver-specific contributions to leukocyte recruitment, cell differentiation and survival, matrix remodeling or angiogenesis and touch on their suitability as targets in antifibrotic therapies.
Collapse
|
39
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
40
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
41
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
42
|
Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, Bertorelli R, Papaleo F, Schäfer MK, Piccoli G, Cancedda L. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain 2019; 141:2772-2794. [PMID: 30059965 PMCID: PMC6113639 DOI: 10.1093/brain/awy190] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders are neurodevelopmental conditions with diverse aetiologies, all characterized by common core symptoms such as impaired social skills and communication, as well as repetitive behaviour. Cell adhesion molecules, receptor tyrosine kinases and associated downstream signalling have been strongly implicated in both neurodevelopment and autism spectrum disorders. We found that downregulation of the cell adhesion molecule NEGR1 or the receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) similarly affects neuronal migration and spine density during mouse cortical development in vivo and results in impaired core behaviours related to autism spectrum disorders. Mechanistically, NEGR1 physically interacts with FGFR2 and modulates FGFR2-dependent extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signalling by decreasing FGFR2 degradation from the plasma membrane. Accordingly, FGFR2 overexpression rescues all defects due to Negr1 knockdown in vivo. Negr1 knockout mice present phenotypes similar to Negr1-downregulated animals. These data indicate that NEGR1 and FGFR2 cooperatively regulate cortical development and suggest a role for defective NEGR1-FGFR2 complex and convergent downstream ERK and AKT signalling in autism spectrum disorders.
Collapse
Affiliation(s)
- Joanna Szczurkowska
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Università degli Studi di Genova, Via Balbi, 5, Genoa, Italy
| | - Francesca Pischedda
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Summa
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Rosalia Bertorelli
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Michael K Schäfer
- Department of Anesthesiology and Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Giovanni Piccoli
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| |
Collapse
|
43
|
Wu X, Zhang Y, Chuang KH, Cai X, Ajaz H, Zheng X. The Drosophila Hedgehog receptor component Interference hedgehog (Ihog) mediates cell-cell interactions through trans-homophilic binding. J Biol Chem 2019; 294:12339-12348. [PMID: 31209108 DOI: 10.1074/jbc.ra119.008744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/12/2019] [Indexed: 11/06/2022] Open
Abstract
Hedgehog (Hh) signaling is crucial for establishing complex cellular patterns in embryonic tissues and maintaining homeostasis in adult organs. In Drosophila, Interference hedgehog (Ihog) or its close paralogue Brother of Ihog (Boi) forms a receptor complex with Patched to mediate intracellular Hh signaling. Ihog proteins (Ihog and Boi) also contribute to cell segregation in wing imaginal discs through an unknown mechanism independent of their role in transducing the Hh signal. Here, we report a molecular mechanism by which the Ihog proteins mediate cell-cell interactions. We found that Ihog proteins are enriched at the site of cell-cell contacts and engage in trans-homophilic interactions in a calcium-independent manner. The region that we identified as mediating the trans-Ihog-Ihog interaction overlaps with the Ihog-Hh interface on the first fibronectin repeat of the extracellular domain of Ihog. We further demonstrate that Hh interferes with Ihog-mediated homophilic interactions by competing for Ihog binding. These results, thus, not only reveal a mechanism for Ihog-mediated cell-cell interactions but also suggest a direct Hh-mediated regulation of both intracellular signaling and cell adhesion through Ihog.
Collapse
Affiliation(s)
- Xuefeng Wu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Ya Zhang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Kun-Han Chuang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Xudong Cai
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Humna Ajaz
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037 George Washington Cancer Center, Washington, D. C. 20052.
| |
Collapse
|
44
|
Mahzoon S, Detamore MS. Chondroinductive Peptides: Drawing Inspirations from Cell–Matrix Interactions. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:249-257. [DOI: 10.1089/ten.teb.2018.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salma Mahzoon
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
45
|
Das B, Sinha D. Diallyl disulphide suppresses the cannonical Wnt signaling pathway and reverses the fibronectin-induced epithelial mesenchymal transition of A549 lung cancer cells. Food Funct 2019; 10:191-202. [PMID: 30516195 DOI: 10.1039/c8fo00246k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Globally, non-small cell lung cancer is a leading cause of cancer-related mortality and about 40% of these cancers are detected in the metastatic stage. Epithelial mesenchymal transition (EMT) plays a critical role during malignant transformation, and the extracellular matrix component, fibronectin (FN), is a known inducer of invasion and metastasis. Diallyl disulphide (DADS), a bioactive component of garlic, exhibits a wide spectrum of biological activities including the inhibition of cancer cell migration and invasion. The present study was aimed at deciphering the effect of DADS on the regulation of FN-induced EMT in A549 lung cancer cells. DADS suppressed the FN-induced invasion and migration potential of A549 cells which may be attributed to the reduced activity of gelatinases. DADS suppressed the FN-aggravated EMT of A549 cells by the upregulation of the epithelial markers, E-cadherin and cytokeratin-18, and the downregulation of the mesenchymal markers, N-cadherin and vimentin, and the transcription factors, snail, slug and twist. DADS was effective in inhibiting the nuclear translocation of β-catenin and the phosphorylation of glycogen synthase kinase-3β and in suppressing the activity of dishevelled homolog 2 and T-cell-factor/lymphoid enhancer factor in FN-induced A549 cells. Cumulatively, this study indicated that DADS might be able to reverse FN-induced EMT in A549 cells via the suppression of Wnt signaling.
Collapse
Affiliation(s)
- Bornita Das
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700026, India.
| | | |
Collapse
|
46
|
Ahel J, Hudorović N, Vičić-Hudorović V, Nikles H. TGF-BETA IN THE NATURAL HISTORY OF PROSTATE CANCER. Acta Clin Croat 2019; 58:128-138. [PMID: 31363335 PMCID: PMC6629207 DOI: 10.20471/acc.2019.58.01.17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
All transforming growth factors beta (TGFß) are cytokines that regulate several cellular functions such as cell growth, differentiation and motility. They may also have a role in immunosuppression. Their role is important for normal prostate development. TGFß is active in the regulation of balance between epithelial cell proliferation and apoptosis through stromal epithelia via the androgen receptor action. TGFß protects and maintains prostate stem cells, an important population necessary for prostate tissue regeneration. However, TGFß is shown to have a contrasting role in prostate tumor genesis. In the early stages of tumor development, TGFß acts as a tumor suppressor, whereas in the later stages, TGFß becomes a tumor promoter by inducing proliferation, invasion and metastasis. In this review, we outline complex interactions that TGFß-mediated signaling has on prostate tumor genesis, focusing on the role of these interactions during the course of prostate cancer and, in particular, during disease progression.
Collapse
Affiliation(s)
| | - Narcis Hudorović
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Višnja Vičić-Hudorović
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Hrvoje Nikles
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| |
Collapse
|
47
|
Blockade of integrin α3 attenuates human pancreatic cancer via inhibition of EGFR signalling. Sci Rep 2019; 9:2793. [PMID: 30808960 PMCID: PMC6391393 DOI: 10.1038/s41598-019-39628-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023] Open
Abstract
The prognosis of pancreatic cancer remains dismal despite continuous and considerable efforts. Integrins (ITGs) are highly expressed in various malignant cancers. However, very few studies investigated the role of integrin α3 (ITGα3) in malignant cancers. Here, we determined the functional role of ITGα3 in pancreatic cancer. Analysis of public microarray databases and Western blot analysis indicated a unique expression of ITGα3 in human pancreatic cancer. Silencing ITGα3 expression significantly inhibited the viability and migration of human pancreatic cancer cells. Notably, ablation of ITGα3 expression resulted in a significant decrease of epidermal growth factor receptor (EGFR) expression compared with transfection of control-siRNA through an increased number of leucine-rich repeats and immunoglobulin-like domain protein 1 (LRIG1) expression. In addition, ablating ITGα3 inhibited tumour growth via blockade of EGFR signalling in vivo. Furthermore, the highly expressed ITGα3 led to a poor prognosis of pancreatic cancer patients. Our results provide novel insights into ITGα3-induced aggressive pancreatic cancer.
Collapse
|
48
|
Zhang S, Lin X. CARMA3: Scaffold Protein Involved in NF-κB Signaling. Front Immunol 2019; 10:176. [PMID: 30814996 PMCID: PMC6381293 DOI: 10.3389/fimmu.2019.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Scaffold proteins are defined as pivotal molecules that connect upstream receptors to specific effector molecules. Caspase recruitment domain protein 10 (CARD10) gene encodes a scaffold protein CARMA3, belongs to the family of CARD and membrane-associated guanylate kinase-like protein (CARMA). During the past decade, investigating the function of CARMA3 has revealed that it forms a complex with BCL10 and MALT1 to mediate different receptors-dependent signaling, including GPCR and EGFR, leading to activation of the transcription factor NF-κB. More recently, CARMA3 and its partners are also reported to be involved in antiviral innate immune response and DNA damage response. In this review, we summarize the biology of CARMA3 in multiple receptor-induced NF-κB signaling. Especially, we focus on discussing the function of CARMA3 in regulating NF-κB activation and antiviral IFN signaling in the context of recent progress in the field.
Collapse
Affiliation(s)
| | - Xin Lin
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
49
|
Niu GJ, Wang S, Xu JD, Yang MC, Sun JJ, He ZH, Zhao XF, Wang JX. The polymeric immunoglobulin receptor-like protein from Marsupenaeus japonicus is a receptor for white spot syndrome virus infection. PLoS Pathog 2019; 15:e1007558. [PMID: 30726286 PMCID: PMC6380602 DOI: 10.1371/journal.ppat.1007558] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 02/19/2019] [Accepted: 01/03/2019] [Indexed: 12/03/2022] Open
Abstract
Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway. White Spot Syndrome Virus (WSSV) is one of the most virulent pathogens in shrimp farming. Several viral candidate receptors, or attachment factors were reported in previous studies, however, most of them are not authentic transmembrane proteins. In particular, the protein receptor(s) required the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a polymeric immunoglobulin receptor (pIgR) like protein, a bona fide transmembrane receptor, was identified in kuruma shrimp, Marsupenaeus japonicus (MjpIgR for short). Knockdown of MjpIgR by RNA interference, and blocking it by its antibody prevented WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further study found that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular cellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis, indicating that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway. This study provides a new target for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ji-Dong Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhong-Hua He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
50
|
Wang J, Zou W, Ma J, Liu J. Biomaterials and Gene Manipulation in Stem Cell-Based Therapies for Spinal Cord Injury. Stem Cells Dev 2019; 28:239-257. [PMID: 30489226 DOI: 10.1089/scd.2018.0169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI), a prominent health issue, represents a substantial portion of the global health care burden. Stem cell-based therapies provide novel solutions for SCI treatment, yet obstacles remain in the form of low survival rate, uncontrolled differentiation, and functional recovery. The application of engineered biomaterials in stem cell therapy provides a physicochemical microenvironment that mimics the stem cell niche, facilitating self-renewal, stem cell differentiation, and tissue reorganization. Nonetheless, external microenvironment support is inadequate, and some obstacles persist, for example, limited sources, gradual aging, and immunogenicity of stem cells. Targeted stem cell gene manipulation could eliminate many of these drawbacks, allowing safer, more effective use under regulation of intrinsic mechanisms. Additionally, through genetic labeling of stem cells, their role in tissue engineering may be elucidated. Therefore, combining stem cell therapy, materials science, and genetic modification technologies may shed light on SCI treatment. Herein, recent advances and advantages of biomaterials and gene manipulation, especially with respect to stem cell-based therapies, are highlighted, and their joint performance in SCI is evaluated. Current technological limitations and perspectives on future directions are then discussed. Although this combination is still in the early stages of development, it is highly likely to substantially contribute to stem cell-based therapies in the foreseeable future.
Collapse
Affiliation(s)
- Jiayi Wang
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Zou
- 3 College of Life Sciences, Liaoning Normal University, Dalian, China.,4 Liaoning Key Laboratories of Biotechnology and Molecular Drug Research & Development, Dalian, China
| | - Jingyun Ma
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|