1
|
Chen GL, Li J, Zhang J, Zeng B. To Be or Not to Be an Ion Channel: Cryo-EM Structures Have a Say. Cells 2023; 12:1870. [PMID: 37508534 PMCID: PMC10378246 DOI: 10.3390/cells12141870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Ion channels are the second largest class of drug targets after G protein-coupled receptors. In addition to well-recognized ones like voltage-gated Na/K/Ca channels in the heart and neurons, novel ion channels are continuously discovered in both excitable and non-excitable cells and demonstrated to play important roles in many physiological processes and diseases such as developmental disorders, neurodegenerative diseases, and cancer. However, in the field of ion channel discovery, there are an unignorable number of published studies that are unsolid and misleading. Despite being the gold standard of a functional assay for ion channels, electrophysiological recordings are often accompanied by electrical noise, leak conductance, and background currents of the membrane system. These unwanted signals, if not treated properly, lead to the mischaracterization of proteins with seemingly unusual ion-conducting properties. In the recent ten years, the technical revolution of cryo-electron microscopy (cryo-EM) has greatly advanced our understanding of the structures and gating mechanisms of various ion channels and also raised concerns about the pore-forming ability of some previously identified channel proteins. In this review, we summarize cryo-EM findings on ion channels with molecular identities recognized or disputed in recent ten years and discuss current knowledge of proposed channel proteins awaiting cryo-EM analyses. We also present a classification of ion channels according to their architectures and evolutionary relationships and discuss the possibility and strategy of identifying more ion channels by analyzing structures of transmembrane proteins of unknown function. We propose that cross-validation by electrophysiological and structural analyses should be essentially required for determining molecular identities of novel ion channels.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Expression profile of genes related to pregnancy maintenance in Dromedary Camel during the first trimester. Anim Reprod Sci 2023; 251:107211. [PMID: 36990016 DOI: 10.1016/j.anireprosci.2023.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
So far, few signals involved in embryo-maternal dialogue have been identified in pregnant she-camel. Our objective was to investigate expression profiles of genes relevant to uterine extracellular matrix remodeling (ITGB4, SLCO2A1, FOS, and JUN), uterine tissue vascularization, and placental formation (VEGFA, PGF, and PDGFA), embryonic growth and development (IGF1 and PTEN), plus cell death of uterine tissue (BCL2) in early pregnant versus non-pregnant she-camels. Forty genital tracts (20 pregnant and 20 non-pregnant) and blood samples were collected from abattoirs. Total RNA was extracted from uterine tissues and qRT-PCR was conducted for candidate genes. Serum concentrations of progesterone (P4) and estradiol17-β (E2) were measured. Expression of ITGB4, FOS, and PGF genes increased (P < 0.001) in the right uterine horn of pregnant versus non-pregnant she-camels. Moreover, JUN, SLCO2A1, VEGFA, and PTEN mRNAs were up-regulated (P < 0.001) in various segments of uterine tissues in pregnant groups. The PDGFA transcript was over-expressed (P < 0.001) in both uterine horns of pregnant groups. Additionally, IGF1 was higher (P < 0.001) in the right horn and the uterine body of pregnant groups, and expression of BCL2 was increased (P < 0.001) in the pregnant uterine body. Moreover, serum concentrations of P4 were higher (P < 0.001) and E2 lower (P < 0.05) in pregnant she-camels. Taken together, the fine-tuning of genes related to implantation, matrix formation, vascularization, and placental formation is highly required for successful pregnancy in she-camels.
Collapse
|
3
|
De Lorenzis E, Natalello G, Simon D, Schett G, D'Agostino MA. Concepts of Entheseal Pain. Arthritis Rheumatol 2022; 75:493-498. [PMID: 35818681 DOI: 10.1002/art.42299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 01/17/2023]
Abstract
Pain is the main symptom in entheseal diseases (enthesopathies) despite a paucity of nerve endings in the enthesis itself. Eicosanoids, cytokines, and neuropeptides released during inflammation and repeated nonphysiologic mechanical challenge not only stimulate or sensitize primary afferent neurons present in structures adjacent to the enthesis, but also trigger a "neurovascular invasion" that allows the spreading of nerves and blood vessels into the enthesis. Nociceptive pseudounipolar neurons support this process by releasing neurotransmitters from peripheral endings that induce neovascularization and peripheral pain sensitization. This process may explain the frequently observed dissociation between subjective symptoms such as pain and the structural findings on imaging in entheseal disease.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gerlando Natalello
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nurnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nurnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria Antonietta D'Agostino
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Kratz D, Wilken-Schmitz A, Sens A, Hahnefeld L, Scholich K, Geisslinger G, Gurke R, Thomas D. Post-mortem changes of prostanoid concentrations in tissues of mice: Impact of fast cervical dislocation and dissection delay. Prostaglandins Other Lipid Mediat 2022; 162:106660. [PMID: 35714920 DOI: 10.1016/j.prostaglandins.2022.106660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Prostanoids are potent lipid mediators involved in a wide variety of physiological functions like blood pressure regulation or inflammation as well as cardiovascular and malign diseases. Elucidation of their modes of action is mainly carried out in pre-clinical animal models by quantifying prostanoids in tissues of interest. Unfortunately, prostanoids are prone to post-mortem artifact formation and de novo synthesis can already be caused by external stimuli during the euthanasia of animals like prolonged hypercapnia or ischemia. Therefore, this study investigates the suitability and impact of fast cervical dislocation for the determination of prostanoids (6-keto-PGF1α, TXB2, PGF2α, PGD2, PGE2) in seven tissues of mice (spinal cord, brain, sciatic nerve, kidney, liver, lung, and spleen) to minimize time-dependent effects and approximate physiological concentrations. Tissues were dissected in a standardized sequence directly or after 10 min to investigate the influence of dissection delays. The enzyme inhibitor indomethacin (10 µM) in combination with low processing temperatures was employed to preserve prostanoid concentrations during sample preparation. Quantification of prostanoids was performed via LC-MS/MS. This study shows, that prostanoids are differentially susceptible to post-mortem artifact formation which is closely connected to their physiological function and metabolic stability in the respective tissues. Prostanoids in the brain, spinal cord, and kidney that are not involved in the regulatory response post-mortem, i.e. blood flow regulation (6-keto-PGF1α, PGE2, PGF2α) showed high reproducibility even after dissection delay and could be assessed after fast cervical dislocation if prerequisites like standardized pre-analytical workflows with immediate dissection and inhibition of residual enzymatic activity are in place. However, in tissues with high metabolic activity (liver, lung) more stable prostanoid metabolites should be used. Moreover, prostanoids in the spleen were strongly affected by dissection delays and presumably the method of euthanasia itself.
Collapse
Affiliation(s)
- D Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - A Wilken-Schmitz
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - A Sens
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - L Hahnefeld
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - K Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - R Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - D Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
6
|
Sabirov RZ, Islam MR, Okada T, Merzlyak PG, Kurbannazarova RS, Tsiferova NA, Okada Y. The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners and Physiological/Pathophysiological Implications. Life (Basel) 2021; 11:life11060509. [PMID: 34073084 PMCID: PMC8229958 DOI: 10.3390/life11060509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large-conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300-400 pS, linear current-to-voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Maxi-Cl channel. Its identification as a complex with SLCO2A1 as a core pore-forming component and two auxiliary regulatory proteins, annexin A2 and S100A10 (p11), explains the activation mechanism as Tyr23 dephosphorylation at ANXA2 in parallel with calcium binding at S100A10. In the resting state, SLCO2A1 functions as a prostaglandin transporter whereas upon activation it turns to an anion channel. As an efficient pathway for chloride, Maxi-Cl is implicated in a number of physiologically and pathophysiologically important processes, such as cell volume regulation, fluid secretion, apoptosis, and charge transfer. Maxi-Cl is permeable for ATP and other small signaling molecules serving as an electrogenic pathway in cell-to-cell signal transduction. Mutations at the SLCO2A1 gene cause inherited bone and gut pathologies and malignancies, signifying the Maxi-Cl channel as a perspective pharmacological target.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| | - Md. Rafiqul Islam
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Toshiaki Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Veneno Technologies Co. Ltd., Tsukuba 305-0031, Japan
| | - Petr G. Merzlyak
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Ranokhon S. Kurbannazarova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Nargiza A. Tsiferova
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Yasunobu Okada
- Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; (M.R.I.); (T.O.); (P.G.M.); (R.S.K.); (N.A.T.)
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Correspondence: (R.Z.S.); (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.)
| |
Collapse
|
7
|
Nakanishi T, Nakamura Y, Umeno J. Recent advances in studies of SLCO2A1 as a key regulator of the delivery of prostaglandins to their sites of action. Pharmacol Ther 2021; 223:107803. [PMID: 33465398 DOI: 10.1016/j.pharmthera.2021.107803] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (SLCO2A1, also known as PGT, OATP2A1, PHOAR2, or SLC21A2) is a plasma membrane transporter consisting of 12 transmembrane domains. It is ubiquitously expressed in tissues, and mediates the membrane transport of prostaglandins (PGs, mainly PGE2, PGF2α, PGD2) and thromboxanes (e.g., TxB2). SLCO2A1-mediated transport is electrogenic and is facilitated by an outwardly directed gradient of lactate. PGs imported by SLCO2A1 are rapidly oxidized by cytoplasmic 15-hydroxyprostaglandin dehydrogenase (15-PGDH, encoded by HPGD). Accumulated evidence suggests that SLCO2A1 plays critical roles in many physiological processes in mammals, and it is considered a potential pharmacological target for diabetic foot ulcer treatment, antipyresis, and non-hormonal contraception. Furthermore, whole-exome analyses suggest that recessive inheritance of SLCO2A1 mutations is associated with two refractory diseases, primary hypertrophic osteoarthropathy (PHO) and chronic enteropathy associated with SLCO2A1 (CEAS). Intriguingly, SLCO2A1 is also a key component of the Maxi-Cl channel, which regulates fluxes of inorganic and organic anions, including ATP. Further study of the bimodal function of SLCO2A1 as a transporter and ion channel is expected to throw new light on the complex pathology of human diseases. Here, we review and summarize recent information on the molecular functions of SLCO2A1, and we discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan.
| | - Yoshinobu Nakamura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
A novel mutation in the SLCO2A1 gene, encoding a prostaglandin transporter, induces chronic enteropathy. PLoS One 2020; 15:e0241869. [PMID: 33166338 PMCID: PMC7652309 DOI: 10.1371/journal.pone.0241869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic enteropathy associated with SLCO2A1 gene (CEAS) is caused by loss-of-function mutations in SLCO2A1, which encodes a prostaglandin (PG) transporter. In this study, we report a sibling case of CEAS with a novel pathogenic variant of the SLCO2A1 gene. Compound heterozygous variants in SLCO2A1 were identified in an 8-year-old boy and 12-year-old girl, and multiple chronic nonspecific ulcers were observed in the patients using capsule endoscopy. The splice site mutation (c.940 + 1G>A) of the paternal allele was previously reported to be pathogenic, whereas the missense variant (c.1688T>C) of the maternal allele was novel and had not yet been reported. The affected residue (p.Leu563Pro) is located in the 11th transmembrane domain (helix 11) of SLCO2A1. Because SLCO2A1 mediates the uptake and clearance of PGs, the urinary PG metabolites were measured by liquid chromatography coupled to tandem mass spectrometry. The urinary tetranor-prostaglandin E metabolite levels in the patients were significantly higher than those in unaffected individuals. We established cell lines with doxycycline-inducible expression of wild type SLCO2A1 (WT-SLCO2A1) and the L563P mutant. Immunofluorescence staining showed that WT-SLCO2A1 and the L563P mutant were dominantly expressed on the plasma membranes of these cells. Cells expressing WT-SLCO2A1 exhibited time- and dose-dependent uptake of PGE2, while the mutant did not show any uptake activity. Residue L563 is very close to the putative substrate-binding site in SLCO2A1, R561 in helix 11. However, in a molecular model of SLCO2A1, the side chain of L563 projected outside of helix 11, indicating that L563 is likely not directly involved in substrate binding. Instead, the substitution of Pro may twist the helix and impair the transporter function. In summary, we identified a novel pathogenic variant of SLCO2A1 that caused loss-of-function and induced CEAS.
Collapse
|
9
|
Lopes FR, Silva LM, Zimpel R, Munhoz AK, Vieira-Neto A, Pereira MHC, Poindexter M, Gambarini ML, Thatcher WW, Vasconcelos JLM, Santos JEP. Prostaglandin F 2α influences pre-ovulatory follicle characteristics and pregnancy per AI in anovular dairy cows. Theriogenology 2020; 153:122-132. [PMID: 32454318 DOI: 10.1016/j.theriogenology.2020.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/08/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022]
Abstract
Objectives were to determine the effects of a dose of PGF2α administered 2 days before timed artificial insemination (AI) on LH pulsatility, characteristics of the pre-ovulatory follicle, and pregnancy per artificial insemination (P/AI) in anovular dairy cows, particularly in cows not subjected to hyperthermia. In experiment 1, 2,011 lactating Holstein cows had ovaries scanned by ultrasound to determine corpus luteum (CL) presence and only those without a CL in two consecutive exams were enrolled (n = 437). Cows had the estrous cycle synchronized with an estradiol-progesterone based protocol starting on experiment Day -11 and timed AI on Day 0. Cows were assigned randomly to receive a single dose of 25 mg of PGF2α as dinoprost on Day -4 (1PGF, n = 222) or two doses of 25 mg each of PGF2α, one on Day -4 and one on Day -2 (2PGF, n = 215). Rectal temperatures were evaluated on the day of AI and 7 days later and cows were classified as being normothermic (<39.1 °C) or hyperthermic (≥39.1 °C). Ovulatory responses and P/AI were determined. In experiment 2, cows with regressed CL were exposed to low concentrations of progesterone and then randomly assigned to the same estrous synchronization protocol and treatments, 1PGF (n = 28) and 2PGF (n = 28). Blood was sampled and analyzed for concentrations of progesterone, and for concentrations of LH and 13,14-dihydro-15-keto-PGF2α metabolite (PGFM) every 15 min starting 1 h before to 6 h after treatments and then every 2 h from 12 to 59 h after treatments. The pre-ovulatory follicle was aspirated 44 h after treatments and concentrations of estradiol quantified. In experiment 1, treatment of anovular cows with a second dose of PGF2α increased P/AI in normothermic cows (19.8 [18/91] vs. 38.8% [31/80]), but not in hyperthermic cows. Synchronization was not affected by treatment, but it was greater for normothermic than hyperthermic cows (87.1 [149/171] vs. 77.8% [207/266]). When only synchronized cows were evaluated, the same responses were observed; treatment with 2PGF increased P/AI compared with 1PGF in normothermic cows (23.1 [18/78] vs. 43.7% [31/71]), but not in hyperthermic cows. In experiment 2, administration of 25 mg of dinoprost in 2PGF resulted in concentrations of PGFM 26-fold greater than 1PGF in the first 6 h after treatment (48 vs. 1,242 pg/mL). Cows receiving 2PGF had smaller basal LH concentration (0.57 vs. 0.46 ng/mL) and less frequent LH pulses (4.5 vs. 3.9 pulses/6 h), but duration of the LH surge was longer for 2PGF than 1PGF (13.1 vs. 15.5 h). Treatment with 2PGF increased the diameter and volume of the pre-ovulatory follicle, and concentration of estradiol (115 vs. 262 ng/mL) and total follicular estradiol content (124 vs. 505 ng) compared with 1PGF. Collectively, these results suggest that PGF2α has a role in fertility of anovular cows that is unrelated to its luteolytic effect.
Collapse
Affiliation(s)
- F R Lopes
- Departamento de Produção Animal, UNESP, Botucatu, São Paulo, 18618-000, Brazil; Department of Animal Sciences, University of Florida, United States
| | - L M Silva
- Department of Animal Sciences, University of Florida, United States
| | - R Zimpel
- Department of Animal Sciences, University of Florida, United States
| | - A K Munhoz
- Departamento de Produção Animal, UNESP, Botucatu, São Paulo, 18618-000, Brazil
| | - A Vieira-Neto
- Department of Animal Sciences, University of Florida, United States
| | - M H C Pereira
- Departamento de Produção Animal, UNESP, Botucatu, São Paulo, 18618-000, Brazil
| | - M Poindexter
- Department of Animal Sciences, University of Florida, United States
| | - M L Gambarini
- Department of Animal Sciences, University of Florida, United States
| | - W W Thatcher
- Department of Animal Sciences, University of Florida, United States; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, 32611-0910, United States
| | - J L M Vasconcelos
- Departamento de Produção Animal, UNESP, Botucatu, São Paulo, 18618-000, Brazil
| | - J E P Santos
- Department of Animal Sciences, University of Florida, United States; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, 32611-0910, United States.
| |
Collapse
|
10
|
Slco2a1 deficiency exacerbates experimental colitis via inflammasome activation in macrophages: a possible mechanism of chronic enteropathy associated with SLCO2A1 gene. Sci Rep 2020; 10:4883. [PMID: 32184453 PMCID: PMC7078201 DOI: 10.1038/s41598-020-61775-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Loss-of-function mutations in the solute carrier organic anion transporter family, member 2a1 gene (SLCO2A1), which encodes a prostaglandin (PG) transporter, have been identified as causes of chronic nonspecific multiple ulcers in the small intestine; however, the underlying mechanisms have not been revealed. We, therefore, evaluated the effects of systemic knockout of Slco2a1 (Slco2a1−/−) and conditional knockout in intestinal epithelial cells (Slco2a1ΔIEC) and macrophages (Slco2a1ΔMP) in mice with dextran sodium sulphate (DSS)-induced acute colitis. Slco2a−/− mice were more susceptible to DSS-induced colitis than wild-type (WT) mice, but did not spontaneously develop enteritis or colitis. The nucleotide-binding domain, leucine-rich repeats containing family, pyrin domain-containing-3 (NLRP3) inflammasome was more strongly upregulated in colon tissues of Slco2a−/− mice administered DSS and in macrophages isolated from Slco2a1−/− mice than in the WT counterparts. Slco2a1ΔMP, but not Slco2a1ΔIEC mice, were more susceptible to DSS-induced colitis than WT mice, partly phenocopying Slco2a−/− mice. Concentrations of PGE2 in colon tissues and macrophages from Slco2a1−/− mice were significantly higher than those of WT mice. Blockade of inflammasome activation suppressed the exacerbation of colitis. These results indicated that Slco2a1-deficiency increases the PGE2 concentration, resulting in NLRP3 inflammasome activation in macrophages, thus exacerbating intestinal inflammation.
Collapse
|
11
|
Jones RS, Parker MD, Morris ME. Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F 2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model. Pharmaceutics 2020; 12:pharmaceutics12030201. [PMID: 32110957 PMCID: PMC7150767 DOI: 10.3390/pharmaceutics12030201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Monocarboxylate transporter 6 (MCT6; SLC16A5) is a recently studied drug transporter that currently has no annotated endogenous function. Currently, only a handful of compounds have been characterized as substrates for MCT6 (e.g., bumetanide, nateglinide, probenecid, and prostaglandin F2α (PGF2α)). The objective of our research was to characterize the MCT6-specific transporter kinetic parameters and MCT6-specific in vitro and in vivo interactions of PGF2α. Murine and human MCT6-mediated transport of PGF2α was assessed in MCT6-transfected oocytes. Additionally, endogenous PGF2α and a primary PGF2α metabolite (PGFM) were measured in plasma and urine in Mct6 knockout (Mct6−/−) and wild-type (Mct6+/+) mice. Results demonstrated that the affinity was approximately 40.1 and 246 µM respectively, for mouse and human, at pH 7.4. In vivo, plasma PGF2α concentrations in Mct6−/− mice were significantly decreased, compared to Mct6+/+ mice (3.3-fold). Mct6-/- mice demonstrated a significant increase in urinary PGF2α concentrations (1.7-fold). A similar trend was observed with plasma PGFM concentrations. However, overnight fasting resulted in significantly increased plasma PGF2α concentrations, suggesting a diet-dependent role of Mct6 regulation on the homeostasis of systemic PGF2α. Overall, these results are the first to suggest the potential regulatory role of MCT6 in PGF2α homeostasis, and potentially other PGs, in distribution and metabolism.
Collapse
Affiliation(s)
- Robert S. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
- Current Address Is Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA;
| | - Marilyn E. Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
- Correspondence: ; Tel.: +1-(716)-645-4839
| |
Collapse
|
12
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
13
|
Nakanishi T, Takashima H, Uetoko Y, Komori H, Tamai I. Experimental Evidence for Resecretion of PGE 2 across Rat Alveolar Epithelium by OATP2A1/S LCO2A1-Mediated Transcellular Transport. J Pharmacol Exp Ther 2019; 368:317-325. [PMID: 30420359 DOI: 10.1124/jpet.118.249789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/08/2018] [Indexed: 03/08/2025] Open
Abstract
Prostaglandin transporter Oatp2a1/Slco2a1 is expressed at the apical (AP) membranes of type-1 alveolar epithelial (AT1) cells. To investigate the role of OATP2A1 in prostaglandin E2 (PGE2) handling by alveolar epithelium, we studied PGE2 transport across and secretion from monolayers of rat AT1-like (AT1-L) cells obtained by trans-differentiation of type-2 alveolar epithelial cells isolated from male Wistar rats. Rat AT1-L cells expressed Oatp2a1/Slco2a1, together with smaller amounts of Mrp4/Abcc4 and Oct1/Slc22a1 PGE2 uptake was saturable with Km 43.9 ± 21.9 nM. Transcellular transport of PGE2 across AT1-L cells grown on permeable filters in the AP-to-basolateral (BL) direction was 5-fold greater than that in the reverse direction and was saturable with Km 118 ± 26.8 nM; it was significantly inhibited by OATP inhibitors bromosulfophthalein (BSP) and suramin, and an MRP4 inhibitor, Ceefourin 1. We simultaneously monitored the effects of BSP on the distribution of PGE2 produced by bradykinin-treated AT1-L cells and PGE2-d4 externally added on the AP side of the cells. In the presence of BSP, PGE2 increased more rapidly on the AP side, whereas PGE2-d4 decreased more slowly on the AP side. The decrease in PGE2-d4 from the AP side corresponded well to the increase on the BL side, indicating that intracellular metabolism did not occur. These results suggest that Oatp2a1 and Mrp4 mediate transepithelial transport of PGE2 in the AP-to-BL direction. Therefore, OATP2A1 may be an important regulator of PGE2 in alveolar epithelium by reducing secretion of PGE2 and facilitating "resecretion" of PGE2 present in the alveolar lumen to the interstitial space or blood.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroki Takashima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuka Uetoko
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisakazu Komori
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Yuan L, Chen X, Liu Z, Wu D, Lu J, Bao G, Zhang S, Wang L, Wu Y. Novel SLCO2A1 mutations cause gender differentiated pachydermoperiostosis. Endocr Connect 2018; 7:/journals/ec/aop/ec-18-0326.xml. [PMID: 30352415 PMCID: PMC6223238 DOI: 10.1530/ec-18-0326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
Primary hypertrophic osteoarthropathy (PHO) is a rare familial disorder with reduced penetrance for females. The genetic mutations associated with PHO have been identified in HPGD and SLCO2A1 which involved in prostaglandin E2 metabolism. Here we report 5 PHO patients from 4 non-consanguineous families. Two heterozygous mutations in solute carrier organic anion transporter family member 2A1 (SLCO2A1) were identified in two brothers by whole-exome sequencing. Three heterozygous mutations and 1 homozygous mutation were identified in other 3 PHO families by Sanger sequencing. However, there was no mutation in HPGD. These findings confirmed that homozygous or compound heterozygous mutations of SLCO2A1 were the pathogenic cause of PHO. A female individual shared the same mutations in SLCO2A1 with her PHO brother but did not have any typical PHO symptoms. The influence of sex hormones on the pathogenesis of PHO and its implication were discussed.
Collapse
Affiliation(s)
- Lijuan Yuan
- Department of Biochemistry and Molecular BiologyCenter for DNA Typing, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
- Department of General SurgeryTangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Xihui Chen
- Department of Biochemistry and Molecular BiologyCenter for DNA Typing, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Ziyu Liu
- Department of MicrobiologyAir Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Dan Wu
- Department of Biochemistry and Molecular BiologyCenter for DNA Typing, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Jianguo Lu
- Department of General SurgeryTangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Guoqiang Bao
- Department of General SurgeryTangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Sijia Zhang
- Department of Biochemistry and Molecular BiologyCenter for DNA Typing, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Lifeng Wang
- Department of Biochemistry and Molecular BiologyAir Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuanming Wu
- Department of Biochemistry and Molecular BiologyCenter for DNA Typing, Air Force Medical University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
15
|
Verma AD, Panigrahi M, Baba NA, Sulabh S, Sadam A, Parida S, Narayanan K, Sonwane AA, Bhushan B. Differential expression of ten candidate genes regulating prostaglandin action in reproductive tissues of buffalo during estrous cycle and pregnancy. Theriogenology 2018; 105:7-14. [DOI: 10.1016/j.theriogenology.2017.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
|
16
|
Nakanishi T, Tamai I. Roles of Organic Anion Transporting Polypeptide 2A1 (OATP2A1/SLCO2A1) in Regulating the Pathophysiological Actions of Prostaglandins. AAPS JOURNAL 2017; 20:13. [PMID: 29204966 DOI: 10.1208/s12248-017-0163-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
Solute carrier organic anion transporter family member 2A1 (OATP2A1, encoded by the SLCO2A1 gene), which was initially identified as prostaglandin transporter (PGT), is expressed ubiquitously in tissues and mediates the distribution of prostanoids, such as PGE2, PGF2α, PGD2 and TxB2. It is well known to play a key role in the metabolic clearance of prostaglandins, which are taken up into the cell by OATP2A1 and then oxidatively inactivated by 15-ketoprostaglandin dehydrogenase (encoded by HPGD); indeed, OATP2A1-mediated uptake is the rate-limiting step of PGE2 catabolism. Consequently, since OATP2A1 activity is required for termination of prostaglandin signaling via prostanoid receptors, its inhibition can enhance such signaling. On the other hand, OATP2A1 can also function as an organic anion exchanger, mediating efflux of prostaglandins in exchange for import of anions such as lactate, and in this context, it plays a role in the release of newly synthesized prostaglandins from cells. These different functions likely operate in different compartments within the cell. OATP2A1 is reported to function at cytoplasmic vesicle/organelle membranes. As a regulator of the levels of physiologically active prostaglandins, OATP2A1 is implicated in diverse physiological and pathophysiological processes in many organs. Recently, whole exome analysis has revealed that recessive mutations in SLCO2A1 cause refractory diseases in humans, including primary hypertrophic osteoarthropathy (PHO) and chronic non-specific ulcers in small intestine (CNSU). Here, we review and summarize recent information on the molecular functions of OATP2A1 and on its physiological and pathological significance.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
17
|
Sabirov RZ, Merzlyak PG, Okada T, Islam MR, Uramoto H, Mori T, Makino Y, Matsuura H, Xie Y, Okada Y. The organic anion transporter SLCO2A1 constitutes the core component of the Maxi-Cl channel. EMBO J 2017; 36:3309-3324. [PMID: 29046334 DOI: 10.15252/embj.201796685] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 11/09/2022] Open
Abstract
The maxi-anion channels (MACs) are expressed in cells from mammals to amphibians with ~60% exhibiting a phenotype called Maxi-Cl. Maxi-Cl serves as the most efficient pathway for regulated fluxes of inorganic and organic anions including ATP However, its molecular entity has long been elusive. By subjecting proteins isolated from bleb membranes rich in Maxi-Cl activity to LC-MS/MS combined with targeted siRNA screening, CRISPR/Cas9-mediated knockout, and heterologous overexpression, we identified the organic anion transporter SLCO2A1, known as a prostaglandin transporter (PGT), as a key component of Maxi-Cl. Recombinant SLCO2A1 exhibited Maxi-Cl activity in reconstituted proteoliposomes. When SLCO2A1, but not its two disease-causing mutants, was heterologously expressed in cells which lack endogenous SLCO2A1 expression and Maxi-Cl activity, Maxi-Cl currents became activated. The charge-neutralized mutant became weakly cation-selective with exhibiting a smaller single-channel conductance. Slco2a1 silencing in vitro and in vivo, respectively, suppressed the release of ATP from swollen C127 cells and from Langendorff-perfused mouse hearts subjected to ischemia-reperfusion. These findings indicate that SLCO2A1 is an essential core component of the ATP-conductive Maxi-Cl channel.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- International Collaborative Research Project, National Institute for Physiological Sciences, Okazaki, Japan.,Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- International Collaborative Research Project, National Institute for Physiological Sciences, Okazaki, Japan.,Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Toshiaki Okada
- International Collaborative Research Project, National Institute for Physiological Sciences, Okazaki, Japan.,Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan
| | - Md Rafiqul Islam
- International Collaborative Research Project, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hiromi Uramoto
- Department of Health and Nutrition, Jin-ai University, Echizen, Japan
| | - Tomoko Mori
- Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Yumiko Makino
- Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Yu Xie
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Yasunobu Okada
- International Collaborative Research Project, National Institute for Physiological Sciences, Okazaki, Japan .,Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
18
|
MRP4 regulates ENaC-dependent CREB/COX-2/PGE 2 signaling during embryo implantation. Oncotarget 2017; 8:78520-78529. [PMID: 29108246 PMCID: PMC5667979 DOI: 10.18632/oncotarget.19676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023] Open
Abstract
Multi-drug resistance protein 4 (MRP4), a potential chemotherapeutic target as well as a transporter for endogenous signaling molecules (e.g. prostaglandins), is known to be expressed in the endometrium, although its possible role(s) in the physiology of the endometrium remains unknown. Here, we show that MRP4 is upregulated at implantation window and localized to the basolateral membrane of the endometrial epithelium, the interface between the epithelium and stroma in mice. In human endometrial epithelial cells, MRP4 expression is upregulated by ENaC activation and the inhibition of MRP4 blocks ENaC-dependent PGE2 release as well as phosphorylation of CREB. Intrauterine injection of MRP4 inhibitor in mice prior to implantation significantly downregulated implantation markers COX-2, Claudin4 and Lif, and reduced implantation rate. These results in together have revealed a previously undefined role of MRP4 in mediating ENaC-dependent CREB/COX-2/PGE2 signaling essential to embryo implantation with implication in cancer progression as well.
Collapse
|
19
|
Karna S. In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant. Pharmacogn Mag 2017; 13:S122-S126. [PMID: 28479736 PMCID: PMC5407103 DOI: 10.4103/0973-1296.203971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prostaglandins (PGs) have short existence in vivo because they are rapidly metabolized by NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE2 in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE2 levels, like wound healing. OBJECTIVE Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE2 release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in vitro wound healing effect on HaCaT scratch model. METHOD The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE2 release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 μL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitor. RESULTS 15-PGDH inhibitors elevated PGE2 levels in concentration-dependent manner. Ethanol extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC50 = 0.62 µg/mL) with least cytotoxicity (IC50 = 670 µg/ml), elevated both intracellular and extracellular PGE2 levels. EEAH facilitated in-vitro wound healing in a HaCaT (Keratinocyte cell line) scratch model. CONCLUSION EEAH might apply to treat dermal wounds by elevating PGE2 levels via COX-1 induction and 15-PGDH inhibition. SUMMARY Biological inactivation of 15-PGDH causes elevated level of PGE2 which will be useful for the management of disease that requires elevated level of PGE2. Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco's modified Eagle's media, EEAH: Ethanol extract of Artocarpus heterophyllus, MRP4: Multidrug resistance 4, PGs: Prostaglandins, PGT: Prostaglandin transporter, SDS: Sodium dodecylsulfate.
Collapse
Affiliation(s)
- Sandeep Karna
- National Institute of Horticultural and Herbal Science, Nongsaengmyeong-ro, Iseo-myeon, Wangju-gun, Jeollabuk-do, Korea
| |
Collapse
|
20
|
Jang H, Choi Y, Yoo I, Han J, Kim M, Ka H. Expression and regulation of prostaglandin transporters, ATP-binding cassette, subfamily C, member 1 and 9, and solute carrier organic anion transporter family, member 2A1 and 5A1 in the uterine endometrium during the estrous cycle and pregnancy in pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:643-652. [PMID: 27764917 PMCID: PMC5411823 DOI: 10.5713/ajas.16.0637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/13/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
Objective Prostaglandins (PGs) function in various reproductive processes, including luteolysis, maternal pregnancy recognition, conceptus development, and parturition. Our earlier study has shown that PG transporters ATP-binding cassette, subfamily C, member 4 (ABCC4) and solute carrier organic anion transporter family, member 2A1 (SLCO2A1) are expressed in the uterine endometrium in pigs. Since several other PG transporters such as ABCC1, ABCC9, SLCO4C1, and SLCO5A1 are known to be present in the uterine endometrium, this study investigated the expression of these PG transporters in the porcine uterine endometrium and placenta. Methods Uterine endometrial tissues were obtained from gilts on day (D) 12 and D15 of the estrous cycle and days 12, 15, 30, 60, 90, and 114 of pregnancy. Results ABCC1, ABCC9, SLCO4C1, and SLCO5A1 mRNAs were expressed in the uterine endometrium, and levels of expression changed during the estrous cycle and pregnancy. Expression of ABCC1 and ABCC9 mRNAs was localized mainly to luminal and glandular epithelial cells in the uterine endometrium, and chorionic epithelial cells during pregnancy. Conceptuses during early pregnancy and chorioallantoic tissues from mid to late pregnancy also expressed these PG transporters. Estradiol-17β increased the expression of ABCC1 and SLCO5A1, but not ABCC9 and SLCO4C1 mRNAs and increasing doses of interleukin-1β induced the expression of ABCC9, SLCO4C1, and SLCO5A1 mRNAs in endometrial explant tissues. Conclusion These data showed that several PG transporters such as ABCC1, ABCC9, SLCO4C1, and SLCO5A1 were expressed at the maternal-conceptus interface, suggesting that these PG transporters may play an important role in the establishment and maintenance of pregnancy by regulating PG transport in the uterine endometrium and placenta in pigs.
Collapse
Affiliation(s)
- Hwanhee Jang
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Yohan Choi
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Inkyu Yoo
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jisoo Han
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Minjeong Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Hakhyun Ka
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
21
|
Arosh JA, Banu SK, McCracken JA. Novel concepts on the role of prostaglandins on luteal maintenance and maternal recognition and establishment of pregnancy in ruminants. J Dairy Sci 2016; 99:5926-5940. [PMID: 27179861 DOI: 10.3168/jds.2015-10335] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/03/2016] [Indexed: 11/19/2022]
Abstract
In ruminants, the corpus luteum (CL) of early pregnancy is resistant to luteolysis. Prostaglandin (PG)E2 is considered a luteoprotective mediator. Early studies indicate that during maternal recognition of pregnancy (MRP) in ruminants, a factor(s) from the conceptus or gravid uterus reaches the ovary locally through the utero-ovarian plexus (UOP) and protects the CL from luteolysis. The local nature of the embryonic antiluteolytic or luteoprotective effect precludes any direct effect of a protein transported or acting between the gravid uterus and CL in ruminants. During MRP, interferon tau (IFNT) secreted by the trophoblast of the conceptus inhibits endometrial pulsatile release of PGF2α and increases endometrial PGE2. Our recent studies indicate that (1) luteal PG biosynthesis is selectively directed toward PGF2α at the time of luteolysis and toward PGE2 at the time of establishment of pregnancy (ESP); (2) the ability of the CL of early pregnancy to resist luteolysis is likely due to increased intraluteal biosynthesis and signaling of PGE2; and (3) endometrial PGE2 is transported from the uterus to the CL through the UOP vascular route during ESP in sheep. Intrauterine co-administration of IFNT and prostaglandin E2 synthase 1 (PGES-1) inhibitor reestablishes endometrial PGF2α pulses and regresses the CL. In contrast, intrauterine co-administration of IFNT and PGES-1 inhibitor along with intraovarian administration of PGE2 rescues the CL. Together, the accumulating information provides compelling evidence that PGE2 produced by the CL in response to endometrial PGE2 induced by pregnancy may counteract the luteolytic effect of PGF2α as an additional luteoprotective mechanism during MRP or ESP in ruminants. Targeting PGE2 biosynthesis and signaling selectively in the endometrium or CL may provide luteoprotective therapy to improve reproductive efficiency in ruminants.
Collapse
Affiliation(s)
- Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77483.
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77483
| | - John A McCracken
- Department of Animal Science, University of Connecticut, Storrs 06269
| |
Collapse
|
22
|
Umeno J, Hisamatsu T, Esaki M, Hirano A, Kubokura N, Asano K, Kochi S, Yanai S, Fuyuno Y, Shimamura K, Hosoe N, Ogata H, Watanabe T, Aoyagi K, Ooi H, Watanabe K, Yasukawa S, Hirai F, Matsui T, Iida M, Yao T, Hibi T, Kosaki K, Kanai T, Kitazono T, Matsumoto T. A Hereditary Enteropathy Caused by Mutations in the SLCO2A1 Gene, Encoding a Prostaglandin Transporter. PLoS Genet 2015; 11:e1005581. [PMID: 26539716 PMCID: PMC4634957 DOI: 10.1371/journal.pgen.1005581] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/16/2015] [Indexed: 12/17/2022] Open
Abstract
Previously, we proposed a rare autosomal recessive inherited enteropathy characterized by persistent blood and protein loss from the small intestine as chronic nonspecific multiple ulcers of the small intestine (CNSU). By whole-exome sequencing in five Japanese patients with CNSU and one unaffected individual, we found four candidate mutations in the SLCO2A1 gene, encoding a prostaglandin transporter. The pathogenicity of the mutations was supported by segregation analysis and genotyping data in controls. By Sanger sequencing of the coding regions, 11 of 12 other CNSU patients and 2 of 603 patients with a diagnosis of Crohn's disease were found to have homozygous or compound heterozygous SLCO2A1 mutations. In total, we identified recessive SLCO2A1 mutations located at seven sites. Using RT-PCR, we demonstrated that the identified splice-site mutations altered the RNA splicing, and introduced a premature stop codon. Tracer prostaglandin E2 uptake analysis showed that the mutant SLCO2A1 protein for each mutation exhibited impaired prostaglandin transport. Immunohistochemistry and immunofluorescence analyses revealed that SLCO2A1 protein was expressed on the cellular membrane of vascular endothelial cells in the small intestinal mucosa in control subjects, but was not detected in affected individuals. These findings indicate that loss-of-function mutations in the SLCO2A1 gene encoding a prostaglandin transporter cause the hereditary enteropathy CNSU. We suggest a more appropriate nomenclature of "chronic enteropathy associated with SLCO2A1 gene" (CEAS).
Collapse
Affiliation(s)
- Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadakazu Hisamatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- The Third Department of Internal Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Motohiro Esaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Hirano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Kubokura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kouichi Asano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuji Kochi
- Department of Gastroenterology, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Shunichi Yanai
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuyoshi Shimamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Watanabe
- Department of Gastroenterology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kunihiko Aoyagi
- Department of Gastroenterology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hidehisa Ooi
- Division of Gastroenterology, Imamura Hospital, Kagoshima, Japan
| | - Kenji Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shigeyoshi Yasukawa
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Fumihito Hirai
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Toshiyuki Matsui
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Mitsuo Iida
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu Central Hospital, Fukuoka, Japan
| | - Tsuneyoshi Yao
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
- Sada Hospital, Fukuoka, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Matsumoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
23
|
Kowalczyk-Zieba I, Boruszewska D, Sinderewicz E, Grycmacher K, Woclawek-Potocka I. Lysophosphatidic acid modulates prostaglandin signalling in bovine steroidogenic luteal cells. Prostaglandins Other Lipid Mediat 2015; 121:218-26. [PMID: 26482178 DOI: 10.1016/j.prostaglandins.2015.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
We examined whether lysophosphatidic acid affects prostaglandin biosynthesis, transport, and signalling in bovine steroidogenic luteal cells. The aim of the present study was to determine the influence of LPA on PGE2 and PGF2α synthesis and on the expression of enzymes involved in PG biosynthesis (PTGS2, mPGES-1, cPGES, mPGES-2, PGFS and 9-KPR), prostaglandin transporter (PGT), and prostaglandin receptors (EP1, EP2, EP3, EP4 and FP) in bovine steroidogenic luteal cells. We found that LPA inhibited PGF2α synthesis in steroidogenic luteal cells. Moreover, LPA increased mPGES1 and cPGES and decreased PGFS expression in cultured bovine steroidogenic luteal cells. Additionally, LPA stimulated EP2 and EP4 receptor and PGT expression. This study suggests that LPA activity in the bovine CL directs the physiological intraluteal balance between the two main prostanoids towards luteotropic PGE2.
Collapse
Affiliation(s)
- Ilona Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dorota Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Emilia Sinderewicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Grycmacher
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
24
|
Hosotani R, Inoue W, Takemiya T, Yamagata K, Kobayashi S, Matsumura K. Prostaglandin transporter in the rat brain: its localization and induction by lipopolysaccharide. Temperature (Austin) 2015; 2:425-34. [PMID: 27227056 PMCID: PMC4843910 DOI: 10.1080/23328940.2015.1062953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 11/25/2022] Open
Abstract
Prostaglandin E2 (PGE2) is produced in the brain during infectious/inflammatory diseases, and it mediates acute-phase responses including fever. In the recovery phase of such diseases, PGE2 disappears from the brain through yet unidentified mechanisms. Rat prostaglandin transporter (PGT), which facilitates transmembrane transport of PGE2, might be involved in the clearance of PGE2 from the brain. Here, we examined the cellular localization of PGT mRNA and its protein in the brains of untreated rats and those injected intraperitoneally with a pyrogen lipopolysaccharide (LPS) or saline. PGT mRNA was weakly expressed in the arachnoid membrane of untreated rats and saline-injected ones, but was induced in blood vessels of the subarachnoidal space and choroid plexus and in arachnoid membrane at 5 h and 12 h after LPS injection. In the same type of cells, PGT-like immunoreactivity was found in the cytosol and cell membrane even under nonstimulated conditions, and its level was also elevated after LPS injection. PGT-positive cells in blood vessels were identified as endothelial cells. In most cases, PGT was not colocalized with cyclooxygenase-2, a marker of prostaglandin-producing cells. The PGE2 level in the cerebrospinal fluid reached its peak at 3 h after LPS, and then dropped over 50% by 5 h, which time point coincides with the maximum PGT mRNA expression and enhanced level of PGT protein. These results suggest that PGT is involved in the clearance of PGE2 from the brain during the recovery phase of LPS-induced acute-phase responses.
Collapse
Affiliation(s)
- Rika Hosotani
- Faculty of Education; Shiga University ; Otsu, Shiga, Japan
| | - Wataru Inoue
- Department of Physiology and Pharmacology; Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario ; London, ON, Canada
| | - Takako Takemiya
- Medical Research Institute; Tokyo Women's Medical University ; Shinjuku, Tokyo, Japan
| | - Kanato Yamagata
- Neural Plasticity Project; Tokyo Metropolitan Institute of Medical Science ; Setagaya-ku, Tokyo, Japan
| | - Shigeo Kobayashi
- Department of Intelligence Science and Technology; Graduate School of Informatics; Kyoto University ; Sakyo-ku, Kyoto, Japan
| | - Kiyoshi Matsumura
- Faculty of Biomedical Engineering; Osaka Institute of Technology ; Asahi-ku, Osaka, Japan
| |
Collapse
|
25
|
Chi Y, Jasmin JF, Seki Y, Lisanti MP, Charron MJ, Lefer DJ, Schuster VL. Inhibition of the Prostaglandin Transporter PGT Lowers Blood Pressure in Hypertensive Rats and Mice. PLoS One 2015; 10:e0131735. [PMID: 26121580 PMCID: PMC4488299 DOI: 10.1371/journal.pone.0131735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023] Open
Abstract
Inhibiting the synthesis of endogenous prostaglandins with nonsteroidal anti-inflammatory drugs exacerbates arterial hypertension. We hypothesized that the converse, i.e., raising the level of endogenous prostaglandins, might have anti-hypertensive effects. To accomplish this, we focused on inhibiting the prostaglandin transporter PGT (SLCO2A1), which is the obligatory first step in the inactivation of several common PGs. We first examined the role of PGT in controlling arterial blood pressure blood pressure using anesthetized rats. The high-affinity PGT inhibitor T26A sensitized the ability of exogenous PGE2 to lower blood pressure, confirming both inhibition of PGT by T26A and the vasodepressor action of PGE2 T26A administered alone to anesthetized rats dose-dependently lowered blood pressure, and did so to a greater degree in spontaneously hypertensive rats than in Wistar-Kyoto control rats. In mice, T26A added chronically to the drinking water increased the urinary excretion and plasma concentration of PGE2 over several days, confirming that T26A is orally active in antagonizing PGT. T26A given orally to hypertensive mice normalized blood pressure. T26A increased urinary sodium excretion in mice and, when added to the medium bathing isolated mouse aortas, T26A increased the net release of PGE2 induced by arachidonic acid, inhibited serotonin-induced vasoconstriction, and potentiated vasodilation induced by exogenous PGE2. We conclude that pharmacologically inhibiting PGT-mediated prostaglandin metabolism lowers blood pressure, probably by prostaglandin-induced natriuresis and vasodilation. PGT is a novel therapeutic target for treating hypertension.
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States of America
| | - Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Michael P. Lisanti
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Maureen J. Charron
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - David J. Lefer
- Department of Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Victor L. Schuster
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, United States of America
- * E-mail:
| |
Collapse
|
26
|
Dingemanse J, Bolli M, Iglarz M. Treatment of obesity and pulmonary arterial hypertension with inhibitors of the prostaglandin transporter: evaluation of patent WO2014/204895A1. Expert Opin Ther Pat 2015; 25:1069-77. [PMID: 26099857 DOI: 10.1517/13543776.2015.1056152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prostaglandins display a wide array of pharmacological effects and prostaglandin analogs are already used in the treatment of pulmonary arterial hypertension (PAH). After synthesis and release from cells, prostaglandins undergo reuptake by the prostaglandin transporter (PGT). WO2014/204895 claims the use of a series of trisubstituted triazine derivatives for the treatment of obesity and PAH. Composition of matter of these triazines has been claimed in WO2011/037610 and the compounds are described as potent inhibitors of the PGT. One compound (nr 146) was shown to improve high fat diet-induced glucose tolerance in a mouse model. In addition, this compound has been explored in the rat monocrotaline model of PAH and reduced characteristic features of the pathology. This class of compounds presents a potential new treatment paradigm in the treatment of obesity-related disorders and PAH.
Collapse
Affiliation(s)
- Jasper Dingemanse
- a 1 Actelion Pharmaceuticals Ltd, Department of Clinical Pharmacology , Gewerbestrasse 16, CH-4123 Allschwil, Switzerland +41 61 565 6463 ; +41 61 565 6200 ;
| | | | | |
Collapse
|
27
|
Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci 2015; 7:104. [PMID: 25628533 PMCID: PMC4292445 DOI: 10.3389/fnmol.2014.00104] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1) exert their actions, (2) potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects.
Collapse
Affiliation(s)
- Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Thomas Schmidt-Glenewinkel
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Peter Serrano
- Department of Psychology, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| |
Collapse
|
28
|
Brenner S, Klameth L, Riha J, Schölm M, Hamilton G, Bajna E, Ausch C, Reiner A, Jäger W, Thalhammer T, Buxhofer-Ausch V. Specific expression of OATPs in primary small cell lung cancer (SCLC) cells as novel biomarkers for diagnosis and therapy. Cancer Lett 2014; 356:517-24. [PMID: 25301452 DOI: 10.1016/j.canlet.2014.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/16/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022]
Abstract
The expression of organic anion transporting polypeptides (OATPs) was elucidated in cell lines from small cell lung cancer (SCLC) and lung carcinoids and in paraffin-embedded samples from primary and metastatic SCLCs. We found a strong relationship between OATP expression and the origin of the cells, as cells from primary or metastatic SCLC and carcinoid tumors differ with respect to OATP levels. OATP4A1 is most prominent in non-malignant lung tissue and in all SCLC and carcinoid cell lines and tissues, OATP5A1 is most prominent in metastatic cells, and OATP6A1 is most prominent in SCLC cell lines and tumors. Treatment with topotecan, etoposide and cisplatin caused significant changes in the expression patterns of OATP4A1, OATP5A1, OATP6A1, chromogranin and synaptophysin. This effect was also evident in GLC-14 cells from an untreated SCLC patient before chemotherapy compared to GLC-16/-19 chemoresistant tumor cells from this patient after therapy. mRNA expression of OATP4A1, 5A1 and 6A1 correlates with protein expression as confirmed by quantitative microscopic image analysis and Western blots. OATPs might be novel biomarkers for tumor progression and the development of metastasis in SCLC patients.
Collapse
Affiliation(s)
- Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Juliane Riha
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Madeleine Schölm
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Ausch
- Department of Surgery, Donauspital, Vienna, Austria; Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Angelika Reiner
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria; Department of Pathology, Donauspital, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Veronika Buxhofer-Ausch
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria; Department of Internal Medicine 2, Donauspital, Vienna, Austria
| |
Collapse
|
29
|
Moon TC, Campos-Alberto E, Yoshimura T, Bredo G, Rieger AM, Puttagunta L, Barreda DR, Befus AD, Cameron L. Expression of DP2 (CRTh2), a prostaglandin D₂ receptor, in human mast cells. PLoS One 2014; 9:e108595. [PMID: 25268140 PMCID: PMC4182489 DOI: 10.1371/journal.pone.0108595] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022] Open
Abstract
PGD₂ has long been implicated in allergic diseases. Recent cloning of a second PGD₂ receptor, DP2 (also known as CRTh2), led to a greater understanding of the physiological and pathophysiological implications of PGD₂. PGD₂ signaling through DP1 and DP2 mediates different and often opposite effects in many cell types of the immune system. Although mast cells (MC) are the largest source of PGD₂ in the body, there is little information about their potential expression of DP2 and its functional significance. In this study, we show that tissue MC in human nasal polyps express DP2 protein, and that human MC lines and primary cultured human MC express mRNA as well as protein of DP2. By immunohistochemistry, we detected that 34% of MC in human nasal polyps expressed DP2. In addition, flow cytometry showed that 87% of the LAD2 human MC line and 98% of primary cultured human MC contained intracellular DP2. However, we could not detect surface expression of DP2 on human MC by single cell analysis using imaging flow cytometry. Blocking of endogenous PGD2 production with aspirin did not induce surface expression of DP2 in human MC. Two DP2 selective agonists, DK-PGD₂ and 15R-15-methyl PGD₂ induced dose-dependent intracellular calcium mobilization that was abrogated by pertussis toxin, but not by three DP2 selective antagonists. MC mediator release including degranulation was not affected by DP2 selective agonists. Thus, human MC express DP2 intracellularly rather than on their surface, and the function of DP2 in human MC is different than in other immune cells such as Th2 cells, eosinophils and basophils where it is expressed on the cell surface and induces Th2 cytokine and/or granule associated mediator release. Further studies to elucidate the role of intracellular DP2 in human MC may expand our understanding of this molecule and provide novel therapeutic opportunities.
Collapse
MESH Headings
- Aspirin/pharmacology
- Calcium/metabolism
- Cell Degranulation/drug effects
- Cell Line
- Cytosol/drug effects
- Cytosol/metabolism
- Gene Expression
- Humans
- Ion Transport
- K562 Cells
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Mast Cells/cytology
- Mast Cells/drug effects
- Mast Cells/metabolism
- Nasal Polyps/metabolism
- Pertussis Toxin/pharmacology
- Primary Cell Culture
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/antagonists & inhibitors
- Prostaglandin D2/biosynthesis
- Prostaglandin D2/pharmacology
- RNA, Messenger/agonists
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Eduardo Campos-Alberto
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tsuyoshi Yoshimura
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Graeme Bredo
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Aja M. Rieger
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Lakshmi Puttagunta
- Department of Laboratory Medicine and Pathology, University of Alberta Hospitals, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Lisa Cameron
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
30
|
Ohkura N, Shigetani Y, Yoshiba N, Yoshiba K, Okiji T. Prostaglandin Transporting Protein-mediated Prostaglandin E2 Transport in Lipopolysaccharide-inflamed Rat Dental Pulp. J Endod 2014; 40:1112-7. [DOI: 10.1016/j.joen.2013.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/06/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022]
|
31
|
Alzamil HA, Pawade J, Fortier MA, Bernal AL. Expression of the prostaglandin F synthase AKR1B1 and the prostaglandin transporter SLCO2A1 in human fetal membranes in relation to spontaneous term and preterm labor. Front Physiol 2014; 5:272. [PMID: 25126080 PMCID: PMC4115629 DOI: 10.3389/fphys.2014.00272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/01/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Human labor is a complex series of cellular and molecular events that occur at the materno-fetal and uterine levels. Many hypotheses have been proposed for the initiation of human labor, one hypothesis suggests that maturation of the fetus releases a signal in the amniotic fluid that will be transmitted to myometrium via the fetal membranes and initiate uterine contractions. There is strong evidence that prostaglandins (PGs) play a central role in initiation and progression of human labor. OBJECTIVES In this study we intended to investigate the expression of prostaglandin F synthase and the prostaglandin transporter in the human fetal membranes and to explore the relationship between cytokines and PGs in the mechanism of human labor. METHODS We used fetal membranes obtained before labor at term and after spontaneous labor at term or preterm to identify the changes in prostaglandin F synthase (AKR1B1) and human prostaglandin transporter (SLCO2A1) proteins in relation to parturition. Using fetal membranes explants we tested the effect of cytokines (interleukin-1 and tumor necrosis factor alpha) on PG production and the concomitant changes in cyclooxygenase-2 (PTGS2), AKR1B1 and SLCO2A1 expression. RESULTS Expression of PTGS2 and AKR1B1 was upregulated in the fetal membranes in association with term labor while SLCO2A1 was downregulated with advancing gestation and during term labor. Before labor, IL-1 increased the expression of PTGS2, however during labor TNF upregulated PTGS2 and AKR1B1 proteins. CONCLUSIONS The prostaglandin F synthase AKR1B1 is upregulated while prostaglandin transporter is downregulated during term labor. The amnion is more responsive than choriodecidua to stimulation with pro-inflammatory cytokines. The mechanisms of term and preterm labor are different.
Collapse
Affiliation(s)
- Hana A Alzamil
- Department of Physiology, King Saud University Riyadh, Saudi Arabia
| | - Joya Pawade
- Pathology, University Hospitals Bristol Haemato-Oncology Diagnostic Service, Bristol Royal Infirmary Bristol, UK
| | - Michel A Fortier
- Axe Reproduction, Santé Périnatale et Pédiatrie, Centre Hospitalier Universitaire de Québec, Université Laval QC, Canada
| | - A López Bernal
- Academic Unit of Obstetrics and Gynaecology, School of Clinical Sciences, University of Bristol Bristol, UK
| |
Collapse
|
32
|
Lee J, Stanley JA, McCracken JA, Banu SK, Arosh JA. Intrauterine coadministration of ERK1/2 inhibitor U0126 inhibits interferon TAU action in the endometrium and restores luteolytic PGF2alpha pulses in sheep. Biol Reprod 2014; 91:46. [PMID: 24876409 DOI: 10.1095/biolreprod.113.111872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In ruminants, prostaglandin F2 alpha (PGF2alpha) is synthesized and released in a pulsatile pattern from the endometrial luminal epithelial (LE) cells during the process of luteolysis. Interferon tau (IFNT) is a Type 1 IFN secreted by the trophoblast cells of the developing conceptus. IFNT acts locally on endometrial LE cells to inhibit pulsatile releases of PGF2alpha and thus establish an endocrine environment for recognition of pregnancy. Cell signaling pathways through which IFNT stimulates expression of multiple genes or proteins in endometrial LE are largely unknown. Results of the present investigation indicate that intrauterine administration of IFNT inhibits pulsatile release of PGF2alpha, while coadministration IFNT and ERK 1/2 inhibitor U0126 restores luteolytic PGF2alpha pulses in sheep. IFNT increases phosphorylation of ERK1/2 proteins and increases its interaction with PGT proteins in endometrial LE. Blockade of ERK1/2 pathways inhibits IFNT action, decreases pERK1/2 and PGT protein interactions, and re-establishes the spatial expression of the oxytocin receptor protein completely and the estrogen receptor protein partially without modulating the expression of interferon regulatory factor-2 (IRF-2) protein in endometrial LE. IFNT does not decrease expression of COX-2, PGDH, or PGT protein in endometrial LE. Our results provide important new insights into IFNT signaling and the molecular endocrine control of PGF2alpha release at the time of establishment of pregnancy in ruminants. This novel IFNT-ERK1/2 signaling module needs to be explored in future studies to understand molecular and cellular mechanisms of IFNT action in endometrial LE in ruminants.
Collapse
Affiliation(s)
- JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jone A Stanley
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John A McCracken
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
33
|
Lee J, McCracken JA, Banu SK, Arosh JA. Intrauterine inhibition of prostaglandin transporter protein blocks release of luteolytic PGF2alpha pulses without suppressing endometrial expression of estradiol or oxytocin receptor in ruminants. Biol Reprod 2013; 89:27. [PMID: 23759308 DOI: 10.1095/biolreprod.112.106427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In ruminants, prostaglandin F2 alpha (PGF2(alpha)) is synthesized and released in a pulsatile pattern from the endometria luminal epithelial (LE) cells during the process of luteolysis. Prostaglandin transporter (PGT) is a 12-transmembrane solute carrier organic anion transporter protein that facilitates transport of PGF2(alpha). The present study determined the effects of inhibition of PGT protein on pulsatile release of luteolytic PGF2(alpha) and the underlined cell-signaling mechanisms. The results indicate that intrauterine inhibition of the PGT protein inhibits the pulsatile release of PGF2(alpha) from the endometrium and maintains a functional corpus luteum. Surprisingly, inhibition of PGT-mediated luteolytic pulses is not associated with spatial regulation of estrogen and oxytocin receptors in the LE of the endometrium and is also not accompanied by decreased biosynthesis of PGF2(alpha) or increased catabolism of PGF2(alpha) by the endometrium. Importantly, PGT inhibitor increases expression of pERK1/2 proteins in the LE of the endometrium. Knock down of ERK1/2 genes in LE cells reverses the inhibitory effects of PGT inhibitor on release of PGF2(alpha). In conclusion, intrauterine inhibition of PGT inhibits the pulsatile release of PGF2(alpha) from the endometrium without modulating spatial expressions of estrogen and oxytocin receptor proteins and metabolism of PGF2(alpha) at the time of luteolysis. Activation of ERK1/2 pathways and interactions between ERK1/2 and PGT protein appear to be important cell-signaling mechanisms that control PGT-mediated efflux transport function. PGT emerges as an important final component in the luteolytic machinery that controls the release of luteolytic pulses of PGF2(alpha) from the endometrium in sheep.
Collapse
Affiliation(s)
- JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
34
|
Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:108-20. [PMID: 24140720 DOI: 10.1016/j.bbalip.2013.10.004] [Citation(s) in RCA: 602] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse (CRCT), Team "Sterol Metabolism and Therapeutic Innovation in Oncology", BP3028, CHU Purpan, Toulouse F-31300, France; Institut Claudius Regaud, 20-24 Rue du Pont Saint-Pierre, 31052 Toulouse Cedex, France; Université Paul Sabatier Toulouse 3, 118 Route de Narbonne, Toulouse, France.
| | | | | | | |
Collapse
|
35
|
Lee J, Banu SK, Burghardt RC, Starzinski-Powitz A, Arosh JA. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 inhibits adhesion of human endometriotic epithelial and stromal cells through suppression of integrin-mediated mechanisms. Biol Reprod 2013; 88:77. [PMID: 23242524 DOI: 10.1095/biolreprod.112.100883] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Endometriosis is a chronic gynecological disease of reproductive age women characterized by the presence of functional endometrial tissues outside the uterine cavity. Interactions between the endometriotic cells and the peritoneal extracellular matrix proteins (ECM) are crucial mechanisms that allow adhesion of the endometriotic cells into peritoneal mesothelia. Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. In previous studies, we have reported that selective inhibition of PGE2 receptors PTGER2 and PTGER4 decreases survival and invasion of human endometriotic epithelial and stromal cells through multiple mechanisms. Results of the present study indicates that selective inhibition of PTGER2- and PTGER4-mediated PGE2 signaling 1) decreases the expression and/or activity of specific integrin receptor subunits Itgb1 (beta1) and Itgb3 (beta3) but not Itgb5 (beta5), Itga1 (alpha1), Itga2 (alpha2), Itga5 (alpha5), and Itgav (alphav); 2) decreases integrin-signaling components focal adhesion kinase or protein kinase 2 (PTK2) and talin proteins; 3) inhibits interactions between Itgb1/Itgb3 subunits, PTK2, and talin and PTGER2/PTGER4 proteins through beta-arrestin-1 and Src kinase protein complex in human endometriotic epithelial cells 12Z and stromal cells 22B; and 4) decreases adhesion of 12Z and 22B cells to ECM collagen I, collagen IV, fibronectin, and vitronectin in a substrate-specific manner. These novel findings provide an important molecular framework for further evaluation of selective inhibition of PTGER2 and PTGER4 as potential nonsteroidal therapy to expand the spectrum of currently available treatment options for endometriosis in child-bearing age women.
Collapse
Affiliation(s)
- JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
36
|
MacKintosh SB, Schuberth HJ, Healy LL, Sheldon IM. Polarised bovine endometrial epithelial cells vectorially secrete prostaglandins and chemotactic factors under physiological and pathological conditions. Reproduction 2013; 145:57-72. [PMID: 23115348 DOI: 10.1530/rep-12-0253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells of the endometrium secrete prostaglandins to regulate the bovine oestrous cycle and form a functional barrier to microbes. However, bacterial infection of the endometrium commonly causes infertility in dairy cattle by disrupting endometrial physiology. Epithelial cell cultures are used to study the mechanisms of physiology and pathology, but 2D cultures may not reflect the 3D complexity of the epithelium. In this study, a polarised epithelial cell transwell culture was developed, using transepithelial resistance (TER), to monitor epithelial integrity. Polarised epithelial cells were treated with oxytocin and arachidonic acid to test physiological function and with lipopolysaccharide (LPS) to mimic bacterial infection. Supernatants were analysed for prostaglandin E(2) (PGE), prostaglandin F(2)(α), the chemokine interleukin-8 (IL8) and the ability of supernatants to induce neutrophil migration. Confluent epithelial cells established polarity when TER was >1800 Ω cm(2) and predominantly released prostaglandins basolaterally. In contrast, IL8 from epithelial cells accumulated apically and the supernatants were highly chemotactic for neutrophils. The striking exception was when the epithelial cells were treated with LPS in the apical or basolateral compartment independently, which led to the release of IL8 towards the treated compartment. Although stromal cells also accumulated PGE and IL8 in response to treatment, co-culture of stromal cells in the well below polarised epithelial cells did not influence cellular responses. In conclusion, polarised endometrial epithelial cells vectorially released prostaglandins and chemokines to reflect their respective mechanistic roles in physiology and pathology.
Collapse
Affiliation(s)
- Siân B MacKintosh
- School of Medicine, College of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | | | | | | |
Collapse
|
37
|
|
38
|
Lee J, McCracken JA, Stanley JA, Nithy TK, Banu SK, Arosh JA. Intraluteal Prostaglandin Biosynthesis and Signaling Are Selectively Directed Towards PGF2alpha During Luteolysis but Towards PGE2 During the Establishment of Pregnancy in Sheep1. Biol Reprod 2012; 87:97. [DOI: 10.1095/biolreprod.112.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
39
|
Sasaki T, Niizeki H, Shimizu A, Shiohama A, Hirakiyama A, Okuyama T, Seki A, Kabashima K, Otsuka A, Ishiko A, Tanese K, Miyakawa SI, Sakabe JI, Kuwahara M, Amagai M, Okano H, Suematsu M, Kudoh J. Identification of mutations in the prostaglandin transporter gene SLCO2A1 and its phenotype-genotype correlation in Japanese patients with pachydermoperiostosis. J Dermatol Sci 2012; 68:36-44. [PMID: 22906430 DOI: 10.1016/j.jdermsci.2012.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Pachydermoperiostosis (PDP) is a rare genetic disorder characterized by 3 major symptoms: pachydermia including cutis verticis gyrata (CVG), periostosis, and finger clubbing. Recently, a homozygous mutation in the gene HPGD, which encodes 15-hydroxyprostaglandin dehydrogenase (15-PGDH), was found to be associated with PDP. However, mutations in HPGD have not been identified in Japanese PDP patients. OBJECTIVE We aimed to identify a novel responsible gene for PDP using whole exome sequencing by next-generation DNA sequencer (NGS). METHODS Five patients, including 2 patient-parent trios were enrolled in this study. Entire coding regions were sequenced by NGS to identify candidate mutations associated with PDP. The candidate mutations were subsequently sequenced using the Sanger method. To determine clinical characteristics, we analyzed histological samples, as well as serum and urinary prostaglandin E2 (PGE2) levels for each of the 5 PDP patients, and 1 additional patient with idiopathic CVG. RESULTS From initial analyses of whole exome sequencing data, we identified mutations in the solute carrier organic anion transporter family, member 2A1 (SLCO2A1) gene, encoding prostaglandin transporter, in 3 of the PDP patients. Follow-up Sanger sequencing showed 5 different SLCO2A1 mutations (c.940+1G>A, p.E427_P430del, p.G104*, p.T347I, p.Q556H) in 4 unrelated PDP patients. In addition, the splice-site mutation c.940+1G>A identified in 3 of 4 PDP patients was determined to be a founder mutation in the Japanese population. Furthermore, it is likely that the combination of these SLCO2A1 mutations in PDP patients is also associated with disease severity. CONCLUSION We found that SLCO2A1 is a novel gene responsible for PDP. Although the SLCO2A1 gene is only the second gene discovered to be associated with PDP, it is likely to be a major cause of PDP in the Japanese population.
Collapse
Affiliation(s)
- Takashi Sasaki
- Center for Integrated Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cancer is a disease of aging, and so with the increasing age of the US population, the incidence of cancer is also increasing. Furthermore the global burden of cancer continues to increase largely because of aging and growth of the world population together with increasing smoking rates in economically developing countries. Tumor formation is critically dependent upon two processes--initiation and progression. The initiation step is mediated by DNA damage, which causes activating mutations in proto-oncogenes and inactivation of tumor suppressor genes in many cancers. This is then thought to facilitate tumor progression and metastasis. Cyclooxygenase-2 (COX-2) is upregulated at an early stage in tumorigenesis and has been implicated as an important mediator of proliferation through the increased formation of bioactive arachidonic acid (AA) metabolites such as prostaglandin E(2). Significantly, we have found that COX-2-mediated AA metabolism also results in the formation of heptanone-etheno (Hε)-DNA adducts. Furthermore, we showed that the Hε-DNA adducts arose from the reaction of DNA with the lipid hydroperoxide-derived bifunctional electrophile, 4-oxo-2(E)-nonenal (ONE). Similarly, 5-lipoxoygenase-mediated AA metabolism also results in the formation of ONE-derived DNA adducts. The resulting Hε-DNA adducts are highly mutagenic in mammalian cell lines suggesting that these pathways could be (in part) responsible for the somatic mutations observed in tumorigenesis. As approximately 80% of cancers arise from somatic mutations, this provides an additional link between the upregulation of COX-2 and tumorigenesis.
Collapse
Affiliation(s)
- N Speed
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
41
|
Seifert W, Kühnisch J, Tüysüz B, Specker C, Brouwers A, Horn D. Mutations in the prostaglandin transporter encoding gene SLCO2A1 cause primary hypertrophic osteoarthropathy and isolated digital clubbing. Hum Mutat 2012; 33:660-4. [PMID: 22331663 DOI: 10.1002/humu.22042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/19/2012] [Indexed: 12/17/2022]
Abstract
Digital clubbing is usually secondary to different acquired diseases. Primary hypertrophic osteoarthropathy (PHO) is a rare hereditary disorder with variable digital clubbing as the most prominent feature, subperiosteal new bone formation, and arthropathy. Recently, mutations in the 15-hydroxy-prostaglandin dehydrogenase (15-PGDH) encoding gene HPGD were found to cause PHO. Here, we identified three unrelated families with different mutations in the prostaglandin transporter (PGT) encoding gene SLCO2A1 which presumably result in reduced metabolic clearance by 15-PGDH due to diminished cellular uptake of prostaglandin E(2) (PGE(2)) by mutant PGT. In two consanguineous families, homozygous mutations, an intragenic deletion that results in frameshift and a missense mutation, are associated with a severe PHO phenotype. In a third family, a heterozygous carrier of a stop mutation presents with isolated digital clubbing. Thus, our study further supports the importance of PGE(2) metabolism in the pathogenesis of digital clubbing and PHO.
Collapse
Affiliation(s)
- Wenke Seifert
- Institute for Vegetative Anatomy, Charité-University Medicine of Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Exome sequencing identifies SLCO2A1 mutations as a cause of primary hypertrophic osteoarthropathy. Am J Hum Genet 2012; 90:125-32. [PMID: 22197487 DOI: 10.1016/j.ajhg.2011.11.019] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 10/08/2011] [Accepted: 11/21/2011] [Indexed: 12/17/2022] Open
Abstract
By using whole-exome sequencing, we identified a homozygous guanine-to-adenine transition at the invariant -1 position of the acceptor site of intron 1 (c.97-1G>A) in solute carrier organic anion transporter family member 2A1 (SLCO2A1), which encodes a prostaglandin transporter protein, as the causative mutation in a single individual with primary hypertrophic osteoarthropathy (PHO) from a consanguineous family. In two other affected individuals with PHO from two unrelated nonconsanguineous families, we identified two different compound heterozygous mutations by using Sanger sequencing. These findings confirm that SLCO2A1 mutations inactivate prostaglandin E(2) (PGE(2)) transport, and they indicate that mutations in SLCO2A1 are the pathogenic cause of PHO. Moreover, this study might also help to explain the cause of secondary hypertrophic osteoarthropathy.
Collapse
|
43
|
Lacroix-Pépin N, Danyod G, Krishnaswamy N, Mondal S, Rong PM, Chapdelaine P, Fortier MA. The multidrug resistance-associated protein 4 (MRP4) appears as a functional carrier of prostaglandins regulated by oxytocin in the bovine endometrium. Endocrinology 2011; 152:4993-5004. [PMID: 21990316 DOI: 10.1210/en.2011-1406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostaglandins (PG) are involved in several female reproductive processes, and their action is regulated at the levels of biosynthesis, catabolism, and signal transduction. Facilitated transport across cell membranes emerges as an additional checkpoint regulating PG action. We have already reported on the influx transporter solute carrier organic anion transporting polypeptide (SLCO2A1) [PG transporter (PGT)] in relation to PG action in the bovine endometrium. In the present study, we report on the functional expression and regulation of multidrug resistance-associated protein 4 (MRP4)/ATP-binding cassette carrier 4, an alternate PG transporter belonging to the ATP-binding cassette carrier (ABC) family. We have found that MRP4 protein was present throughout the estrous cycle and exhibited a pattern of expression similar to that of PGT with maximal expression during early-mid luteal phase in the bovine endometrium. Functional expression and regulation of MRP4 was studied in vitro using the newly developed bovine endometrial epithelial bEEL and stromal CSC cell lines. Oxytocin (OT) stimulated PGF2α production and MRP4 mRNA and protein in a time- and dose-dependent manner but had no effect on PGT. OT induced preferred accumulation of PG outside the cells and secretion toward the basolateral side of polarized bEEL cells grown on membrane inserts. MK-571 and indomethacin, two documented inhibitors of MRP4 activity, blocked preferred accumulation of PG, but interferon-τ and NS-398 had no effect on MRP4 expression or the direction of PG transport. Our results suggest that MRP4 is a functional PG carrier under the regulation of OT in the bovine endometrium.
Collapse
Affiliation(s)
- Nicolas Lacroix-Pépin
- Centre de Recherche du Centre Hospitalier Universitaire Québec, Département d'Obstétrique et Gynécologie, Unité d'Ontogénie et Reproduction, Centre de Recherche en Biologie de la Reproduction, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Chi Y, Min J, Jasmin JF, Lisanti MP, Chang YT, Schuster VL. Development of a high-affinity inhibitor of the prostaglandin transporter. J Pharmacol Exp Ther 2011; 339:633-41. [PMID: 21849625 PMCID: PMC3199986 DOI: 10.1124/jpet.111.181354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/16/2011] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) triggers a vast array of biological signals and physiological events. The prostaglandin transporter (PGT) controls PGE(2) influx and is rate-limiting for PGE(2) metabolism and signaling termination. PGT global knockout mice die on postnatal day 1 from patent ductus arteriosus. A high-affinity PGT inhibitor would thus be a powerful tool for studying PGT function in adult animals. Moreover, such an inhibitor could be potentially developed into a therapeutic drug targeting PGT. Based on structure-activity relationship studies that built on recently identified inhibitors of PGT, we obtained N-(2-(2-(2-azidoethoxy)ethoxy)ethyl)-4-((4-((2-(2-(2-benzamidoethoxy)ethoxy)ethyl)amino)-6-((4-hydroxyphenyl)amino)-1,3,5-triazin-2-yl)amino)benzamide (T26A), a competitive inhibitor of PGT, with a K(i) of 378 nM. T26A seems to be highly selective for PGT, because it neither interacts with a PGT homolog in the organic anion transporter family nor affects PGE(2) synthesis. In Madin-Darby canine kidney cells stably transfected with PGT, T26A blocked PGE(2) metabolism, resulting in retention of PGE(2) in the extracellular compartment and the negligible appearance of PGE(2) metabolites in the intracellular compartment. Compared with vehicle, T26A injected intravenously into rats effectively doubled the amount of endogenous PGE(2) in the circulation and reduced the level of circulating endogenous PGE(2) metabolites to 50%. Intravenous T26A was also able to slow the metabolism of exogenously injected PGE(2). These results confirm that PGT directly regulates PGE(2) metabolism and demonstrate that a high-affinity inhibitor of PGT can effectively prevent PGE(2) metabolism and prolong the half-life of circulating PGE(2).
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 1008, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kobayashi Y, Nojima J, Ohbayashi M, Kohyama N, Yamamoto T. [Molecular cloning and functional characterization of a novel gene encoding human prostaglandin carrier, hPrC]. YAKUGAKU ZASSHI 2011; 131:1493-501. [PMID: 21963977 DOI: 10.1248/yakushi.131.1493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we isolated and determined the pharmacological characteristics of a novel gene encoding the human prostaglandin carrier (hPrC). The isolated cDNA consisted of 1431 base pairs that encoded a 477-amino acid protein, and we found that isolated hPrC does not belong to any drug transporter families. RT-PCR analysis revealed that the hPrC mRNA is expressed in various human tissues ubiquitously. When expressed in Xenopus laevis oocytes, hPrC mediated the transport of [(3)H]prostaglandin E(2) (PGE(2)) in a sodium-independent manner. The uptake of [(3)H] PGE(2) was not trans-stimulated by PG analogous. Although there are several PG transporters such as multidrug resistance-associated protein 4 (MRP4), organic cation transporter 1 (OCT1) [solute carrier (SLC) 22A1], organic anion transporter 1-3 (OAT1-3) [SLC22A6-8], OAT4 [SLC11], OATP-1 (LST-1) [SLCO1B1], OATP2B1 [SLCO2B1], OATP2A1 (PGT) [SLCO2A1], OATP4A1 (OATP-E) [SLCO4A1] have been isolated and well characterized, our findings suggest that hPrC functions as a novel transport peptide responsible for PG uptake. Our results should provide insight into the novel mechanism of the PG transport in the human body.
Collapse
Affiliation(s)
- Yasuna Kobayashi
- Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Stefańczyk-Krzymowska S, Wąsowska B, Gilun P, Muszak J, Grzegorzewski W. Relationship Between Contractions of the Uterus and Concentration of PGF2α in Uterine Venous Blood after Luteolysis in Gilts. Reprod Domest Anim 2011; 47:98-104. [DOI: 10.1111/j.1439-0531.2011.01807.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Friedman E, Voet H, Reznikov D, Dagoni I, Roth Z. Induction of successive follicular waves by gonadotropin-releasing hormone and prostaglandin F2α to improve fertility of high-producing cows during the summer and autumn. J Dairy Sci 2011; 94:2393-402. [DOI: 10.3168/jds.2010-3939] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/02/2011] [Indexed: 11/19/2022]
|
48
|
Lejeune M, Leung P, Beck PL, Chadee K. Role of EP4 receptor and prostaglandin transporter in prostaglandin E2-induced alteration in colonic epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1097-105. [PMID: 20813914 DOI: 10.1152/ajpgi.00280.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prostaglandin E(2) (PGE(2)) is a proinflammatory lipid mediator produced in excess in inflammatory bowel disease (IBD). PGE(2) couples to and signals via four different E-prostanoid (EP) receptors, namely EP1, EP2, EP3, and EP4. In this study, we determined a role for PGE(2) and EP4 receptors in altering colonic epithelial barrier integrity. In healthy colonic mucosa, EP4 receptors were localized on apical plasma membrane of epithelial cells at the tip of mucosal folds, whereas, in patients with IBD and in rats with dextran sodium sulfate (DSS)-induced colitis, they were diffusely overexpressed throughout the mucosa. Similarly, expression of EP4 receptor was polarized in T84 colonic epithelial monolayer and mimics the normal epithelium. Apical exposure of T84 monolayer with high levels of PGE(2) decreased barrier integrity, which was abrogated by an EP4 receptor antagonist. To reveal the mechanism of vectorial transport of basally produced PGE(2) toward apical EP4 receptors, we identified prostaglandin transporters (PGT) in human colonic epithelia. PGT were least expressed on epithelial cells at the colonic mucosal folds of control subjects but overexpressed in epithelial cells of patients with IBD or animals with DSS-induced colitis. T84 monolayer also expressed PGT, which increased twofold following stimulation with TNF-α. Importantly, in T84 monolayer stimulated with TNF-α, there was a corresponding increase in the uptake and vectorial transport of (3)H-PGE(2) to the apical surface. Knockdown or pharmacological inhibition of PGT significantly decreased vectorial transport of (3)H-PGE(2). These studies unravel a mechanism whereby EP4 receptor and PGT play a role in PGE(2)-induced alteration of epithelial barrier integrity in colitis.
Collapse
Affiliation(s)
- Manigandan Lejeune
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
49
|
Lee J, McCracken JA, Banu SK, Rodriguez R, Nithy TK, Arosh JA. Transport of prostaglandin F(2alpha) pulses from the uterus to the ovary at the time of luteolysis in ruminants is regulated by prostaglandin transporter-mediated mechanisms. Endocrinology 2010; 151:3326-35. [PMID: 20410207 DOI: 10.1210/en.2009-0948] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In ruminants, prostaglandin F2alpha (PGF(2alpha)) is the uterine luteolytic hormone. During luteolysis, PGF(2alpha) is synthesized and released from the endometrium in a pulsatile pattern. The unique structure of the vascular utero-ovarian plexus (UOP) allows transport of luteolytic PGF(2alpha) pulses directly from the uterus to the ovary, thus bypassing the systemic circulation. However, the underlying molecular mechanism is not known. The objective of the present study was to determine a role for PG transporter protein (PGT) in the compartmental transport of PGF(2alpha) from uterus to ovary through the UOP at the time of luteolysis using the sheep as a ruminant model. [(3)H]PGF(2alpha), with or without a PGT inhibitor, was infused into UOP, and PGF(2alpha) transport and PGT protein expression were determined. Results indicate that PGT protein is expressed in tunica intima, tunica media, and tunica adventitia of the utero-ovarian vein and the ovarian artery of the UOP, and the expression levels are higher on d 10-15 compared with d 3-6 of the estrous cycle. Pharmacological inhibition of PGT prevented transport of exogenous [(3)H]PGF(2alpha) as well as oxytocin-induced endogenous luteolytic PGF(2alpha) pulse up to 80% from uterine venous blood into ovarian arterial blood through the UOP at the time of luteolysis in sheep. Taken together, these results indicate that at the time of luteolysis, transport of PGF(2alpha) from uterus to ovary through the UOP is regulated by PGT-mediated mechanisms. These findings also suggest that impaired PGT-mediated transport of PGF(2alpha) from the utero-ovarian vein into the ovarian artery could adversely influence luteolysis and thus affect fertility in ruminants.
Collapse
Affiliation(s)
- JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
50
|
Breuiller-Fouché M, Leroy MJ, Dubois O, Reinaud P, Chissey A, Qi H, Germain G, Fortier MA, Charpigny G. Differential Expression of the Enzymatic System Controlling Synthesis, Metabolism, and Transport of PGF2 Alpha in Human Fetal Membranes1. Biol Reprod 2010; 83:155-62. [DOI: 10.1095/biolreprod.109.080390] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|