1
|
Chen R, Fan R, Bedzhov I. Protocol for induction, maintenance, and exit from embryo dormancy in mice. STAR Protoc 2025; 6:103813. [PMID: 40333191 DOI: 10.1016/j.xpro.2025.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Embryonic dormancy (diapause) is a reproductive adaptation that allows some mammalian species to prolong pregnancy and delay birth by temporarily suspending embryonic development just before implantation. Here, we present a step-by-step protocol for inducing and maintaining embryonic diapause in mice by tamoxifen administration or ovariectomy. We describe steps for setting up mouse matings, the administration of pharmacological compounds, the surgical procedure for the removal of the ovaries, postoperative care, and the isolation of dormant embryos. We then describe procedures for triggering exit from diapause by administration of β-estradiol and the subsequent isolation of reactivated embryos. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
2
|
Izadi H. Endocrine and enzymatic shifts during insect diapause: a review of regulatory mechanisms. Front Physiol 2025; 16:1544198. [PMID: 40161974 PMCID: PMC11949959 DOI: 10.3389/fphys.2025.1544198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Insect diapause is a vital survival strategy that enables insects to enter a state of suspended development, allowing them to withstand unfavorable environmental conditions. During diapause, insects significantly lower their metabolic rate and build up energy reserves, which they gradually utilize throughout this period. The regulation of diapause involves a complex interaction of hormones and enzymes. Juvenile hormones (JHs) affect adults and larvae differently; in adults, the absence of JH typically triggers diapause, while in larvae, the presence of JH encourages this state. Ecdysteroids, which regulate molting and metamorphosis, are carefully controlled to prevent premature development. Reduced signaling of insulin-like peptides enhances stress resistance and promotes energy storage. Several enzymes play crucial roles in the metabolic adjustments necessary for diapause. These adjustments include the degradation of JH, the ecdysteroidogenic pathway, and the metabolism of fatty acids, glycogen, cryoprotectants, and stress responses. Understanding diapause's molecular and biochemical mechanisms is essential for fundamental entomological research and practical applications. Despite recent advances, many aspects of diapause regulation, especially the interactions among hormonal pathways and the role of enzymes, remain poorly understood. This review analyzes approximately 250 papers to consolidate current knowledge on the enzymatic and hormonal regulation of diapause. It offers a comprehensive overview of key processes based on recent studies and suggests future research directions to fill gaps in our understanding of this significant biological phenomenon. The review also lays the groundwork for enhancing pest control strategies and ecological conservation by deepening our understanding of diapause mechanisms.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
3
|
Minder JL, Winokur SB, Stephens J, Tong J, Cassel NL, Schuster L, Issa HA, Cammer M, Khatri L, Moisan G, Alvarado-Torres M, Aristizábal O, Wadghiri YZ, Kim SY, Valtcheva S, Lu CPJ, Chao MV, Froemke RC. Oxytocin induces embryonic diapause. SCIENCE ADVANCES 2025; 11:eadt1763. [PMID: 40043121 PMCID: PMC11881891 DOI: 10.1126/sciadv.adt1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Embryonic development in many species, including case reports in humans, can be temporarily halted before implantation during a process called diapause. Facultative diapause occurs under conditions of maternal metabolic stress such as nursing. While molecular mechanisms of diapause have been studied, a natural inducing factor has yet to be identified. Here, we show that oxytocin induces embryonic diapause in mice. We show that gestational delays were triggered during nursing or optogenetic stimulation of oxytocin neurons simulating nursing patterns. Mouse blastocysts express oxytocin receptors, and oxytocin induced delayed implantation-like dispersion in cultured embryos. Last, oxytocin receptor-knockout embryos transferred into wild-type surrogates had low survival rates during diapause. Our results indicate that oxytocin coordinates timing of embryonic development with uterine progression through pregnancy, providing an evolutionarily conserved mechanism for ensuring successful reproduction.
Collapse
Affiliation(s)
- Jessica L. Minder
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sarah B. Winokur
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Janaye Stephens
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jie Tong
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Hansjorg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Naomi L. Cassel
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Barnard College, New York, NY 10027, USA
| | - Luisa Schuster
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Habon A. Issa
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY 10016, USA
| | - Latika Khatri
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Gaia Moisan
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Maria Alvarado-Torres
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Orlando Aristizábal
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Youssef Z. Wadghiri
- Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sang Yong Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Silvana Valtcheva
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Catherine Pei-ju Lu
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Hansjorg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Moses V. Chao
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Robert C. Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
4
|
Wang B, He Z, Zhang M, Zhang R, Song Z, Li A, Hao T. Transcriptional Regulatory Network of the Embryonic Diapause Termination Process in Artemia. Genes (Basel) 2025; 16:175. [PMID: 40004504 PMCID: PMC11855619 DOI: 10.3390/genes16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Artemia is a typical animal used for the study of the diapause mechanism. The research on the regulation mechanism of diapause mainly focuses on the occurrence and maintenance of diapause. There are few studies on the mechanism of embryonic pause termination (EDT), especially for its transcriptional regulation mechanism. This study integrated transcriptional regulatory data from ATAC-seq and gene expression data from RNA-seq to explore the transcriptional regulatory mechanisms involved in the EDT process. Through integrated analysis, four important transcription factors (TFs), SVP, MYC, RXR, and SMAD6, were found to play a role in the EDT process, in which SVP, MYC, and RXR were upregulated, while SMAD6 was downregulated in the EDT stage. Through co-expression analysis, a transcription regulatory network for these four TFs was constructed and the functions of the TFs were analyzed. The expression of the TFs was further verified by RT-qPCR. Through functional analysis, SVP was found to be predominantly involved in cell adhesion and signal transduction. MYC probably played a role in protein binding. RXR may function in the process of RNA binding and the transfer of phosphorus-containing groups. Smad6 regulated the signal transduction, cell adhesion, and oxidation-reduction processes. The expression of the key TFs was verified by RT-qPCR. The results of this work provide important clues for the mechanism of transcriptional regulation in the EDT process of Artemia.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhen He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Mingzhi Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ruiqi Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhentao Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Anqi Li
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
5
|
Elsafadi S, Hankele AK, Giesbertz P, Ulbrich SE. Roe deer uterine fluid metabolome reveals elevated glycolysis, fatty acid breakdown, and spermidine synthesis upon reactivation from diapause†. Biol Reprod 2025; 112:70-85. [PMID: 39673258 PMCID: PMC11736431 DOI: 10.1093/biolre/ioae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
The blastocyst of the European roe deer (Capreolus capreolus) undergoes a period of decelerated growth and limited metabolism. During this period known as embryonic diapause, it floats freely in the uterus encircled by the histotroph. Prior to implantation, reactivation is marked by rapid embryonic growth and conceptus elongation. We hypothesized that the uterine fluid, which is known to undergo changes in its composition to support early embryonic development, contributes to controlling embryonic growth during diapause and elongation. We therefore characterized the pre-implantation uterine fluid metabolome during diapause and at elongation by mass spectrometry and particularly assessed nonpolar lipids, polar metabolites, acylcarnitines, and polyamines. Our results show that triglycerides and diglycerides levels decreased at elongation, likely serving as a source for membrane synthesis rather than for energy production. A functional analysis identified glycolysis as a key pathway during elongation, which may compensate for the energy requirements during this phase. We also observed an increase of sphingomyelin; prostaglandin precursors; and the amino acids asparagine, glutamine, and methionine upon elongation. The sphingolipid and glycerophospholipid metabolism pathways were implicated during elongation. Particularly, spermidine, and to some extent spermine but not putrescine-levels significantly increased in the uterine fluid during elongation, indicating their significance for reactivation and/or proliferation at embryo elongation. We conclude that the roe deer uterine fluid sustained dynamic compositional changes necessary to support the energy- and resource-intensive conceptus elongation. However, it remains to be determined whether these changes are the cause or a consequence of embryo elongation. Studying the metabolic changes and molecular interactions in the roe deer during diapause and elongation not only reveals insights into aspects of its reproductive strategy, but also deepens our knowledge of embryo metabolic demands and developmental velocities across species.
Collapse
Affiliation(s)
- Sara Elsafadi
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| | - Pieter Giesbertz
- Else Kröner-Fresenius-Center of Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Susanne E Ulbrich
- ETH Zürich, Animal Physiology, Institute of Agricultural Sciences, Universtitätstr. 2, CH-8092 Zurich, Switzerland
| |
Collapse
|
6
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
7
|
He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, Yuan Q, Yu W, Cheng F. Lactylation in cancer: Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med 2024; 14:e70070. [PMID: 39456119 PMCID: PMC11511673 DOI: 10.1002/ctm2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Lactylation, a recently identified form of protein post-translational modification (PTM), has emerged as a key player in cancer biology. The Warburg effect, a hallmark of tumour metabolism, underscores the significance of lactylation in cancer progression. By regulating gene transcription and protein function, lactylation facilitates metabolic reprogramming, enabling tumours to adapt to nutrient limitations and sustain rapid growth. Over the past decade, extensive research has revealed the intricate regulatory network underlying lactylation in tumours. Large-scale sequencing and machine learning have confirmed the widespread occurrence of lactylation sites across the tumour proteome. Targeting lactylation enzymes or metabolic pathways has demonstrated promising anti-tumour effects, highlighting the therapeutic potential of this modification. This review comprehensively explores the mechanisms of lactylation in cancer cells and the tumour microenvironment. We expound on the application of advanced omics technologies for target identification and data modelling within the lactylation field. Additionally, we summarise existing anti-lactylation drugs and discuss their clinical implications. By providing a comprehensive overview of recent advancements, this review aims to stimulate innovative research and accelerate the translation of lactylation-based therapies into clinical practice. KEY POINTS: Lactylation significantly influences tumour metabolism and gene regulation, contributing to cancer progression. Advanced sequencing and machine learning reveal widespread lactylation sites in tumours. Targeting lactylation enzymes shows promise in enhancing anti-tumour drug efficacy and overcoming chemotherapy resistance. This review outlines the clinical implications and future research directions of lactylation in oncology.
Collapse
Affiliation(s)
- Yipeng He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Tianbao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zefeng Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zhen Yin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Pengcheng Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qin Yuan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
8
|
Kamieniarz R, Szymański M, Woźna-Wysocka M, Jaśkowski BM, Dyderski MK, Pers-Kamczyc E, Skorupski M. Roe Deer Reproduction in Western Poland: The Late Autumn Rut Phenomenon. Animals (Basel) 2024; 14:3078. [PMID: 39518800 PMCID: PMC11544897 DOI: 10.3390/ani14213078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Roe deer (Capreolus capreolus L.) populations in Poland are characterized by low productivity, which is why their reproductive potential was investigated. The presence of corpora lutea (CL) on the ovaries of females hunted in autumn and winter in the years 2015 and 2016 was assessed. Most animals were post-rut and most often had multiple ovulations. However, in early autumn 2015, 60% of the females had no CL. Therefore, they did not participate in mating at the turn of July/August. Those that did ovulate were found to have one CL. In late autumn, 97% of the females were post-rut, mostly with twin ovulations. This confirmed the occurrence of a late autumn rut. This phenomenon had been suggested in studies but not confirmed. In contrast, almost 100% of roe deer ovulated in summer in 2016. It was hypothesized that the reason for the low mating activity of roe deer in the summer of 2015 was heat stress and limited food resources. The summer was exceptionally hot, with many days in July and August when temperatures exceeded 30 °C. The heat combined with low rainfall led to extreme drought. Meanwhile, July and August are the months of mating activity for roe deer. The late autumn rut allowed the roe deer-a monoestrous species-to limit the consequences of a decrease in mating activity or fertility during the hot summer. Global warming may affect roe deer reproduction, so climatic conditions should be considered in population studies, not only in terms of food availability.
Collapse
Affiliation(s)
- Robert Kamieniarz
- Department of Game Management and Forest Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland;
| | - Michał Szymański
- Forest District Łopuchówko, Łopuchowko 1, 62-095 Murowana Goslina, Poland;
| | - Magdalena Woźna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Bartłomiej M. Jaśkowski
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 49, 50-366 Wroclaw, Poland;
| | - Marcin K. Dyderski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland; (M.K.D.); (E.P.-K.)
| | - Emilia Pers-Kamczyc
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland; (M.K.D.); (E.P.-K.)
| | - Maciej Skorupski
- Department of Game Management and Forest Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland;
| |
Collapse
|
9
|
Dudley JS, Renfree MB, Wagner GP, Griffith OW. The extension of mammalian pregnancy required taming inflammation: Independent evolution of extended placentation in the tammar wallaby. Proc Natl Acad Sci U S A 2024; 121:e2310047121. [PMID: 39378090 PMCID: PMC11494332 DOI: 10.1073/pnas.2310047121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2024] [Indexed: 10/10/2024] Open
Abstract
In the first live-bearing mammals, pregnancy was likely short and ended with a brief period of inflammatory maternal-fetal interaction. This mode of reproduction has been retained in many marsupials. While inflammation is key to successful implantation in eutherians, a key innovation in eutherians is the ability to switch off this inflammation after it has been initiated. This extended period, in which inflammation is suppressed, likely allowed for an extended period of placentation. Extended placentation has evolved independently in one lineage of marsupials, the macropodids (wallabies and kangaroos), with placentation lasting beyond the 2 to 4 d seen in other marsupial taxa, which allows us to investigate the role of inflammation response after attachment in the extension of placentation in mammals. By comparing gene expression changes at attachment in three marsupial species, the tammar wallaby, opossum, and fat-tailed dunnart, we show that inflammatory attachment is an ancestral feature of marsupial implantation. In contrast to eutherians, where attachment-related (quasi-) inflammatory reaction is even involved in epitheliochorial placentation (e.g., pig), this study found no evidence of a distinct attachment-related reaction in wallabies. Instead, only a small number of inflammatory genes are expressed at distinct points of gestation, including IL6 before attachment, LIF throughout placentation, and prostaglandins before birth. During parturition, a more distinct inflammatory reaction is detectable, likely involved in precipitating the parturition cascade similar to eutherians. We suggest that in wallaby, extended gestation became possible by avoiding an inflammatory attachment reaction, which is a different strategy than seen in eutherians.
Collapse
Affiliation(s)
- Jessica S. Dudley
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW2109, Australia
| | - Marilyn B. Renfree
- School of BioSciences, University of Melbourne, Melbourne, VIC3010, Australia
| | - Günter P. Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06520
- Yale Systems Biology Institute, Yale University, West Haven, CT06520
- Department of Evolutionary Biology, University of Vienna, ViennaA-1030, Austria
| | - Oliver W. Griffith
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW2109, Australia
| |
Collapse
|
10
|
Chen R, Fan R, Chen F, Govindasamy N, Brinkmann H, Stehling M, Adams RH, Jeong HW, Bedzhov I. Analyzing embryo dormancy at single-cell resolution reveals dynamic transcriptional responses and activation of integrin-Yap/Taz prosurvival signaling. Cell Stem Cell 2024; 31:1262-1279.e8. [PMID: 39047740 PMCID: PMC7617458 DOI: 10.1016/j.stem.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Embryonic diapause is a reproductive adaptation that enables some mammalian species to halt the otherwise continuous pace of embryonic development. In this dormant state, the embryo exploits poorly understood regulatory mechanisms to preserve its developmental potential for prolonged periods of time. Here, using mouse embryos and single-cell RNA sequencing, we molecularly defined embryonic diapause at single-cell resolution, revealing transcriptional dynamics while the embryo seemingly resides in a state of suspended animation. Additionally, we found that the dormant pluripotent cells rely on integrin receptors to sense their microenvironment and preserve their viability via Yap/Taz-mediated prosurvival signaling.
Collapse
Affiliation(s)
- Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Fei Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Niraimathi Govindasamy
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Single Cell Multi-Omics Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
11
|
Kim H, Choe J, Ko M. Reproductive Strategies and Embryonic Development of Autumn-Spawning Bitterling ( Acheilognathus rhombeus) within the Mussel Host. BIOLOGY 2024; 13:664. [PMID: 39336092 PMCID: PMC11444138 DOI: 10.3390/biology13090664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
We investigated the reproductive strategies and embryonic development of Acheilognathus rhombeus (a bitterling species that spawns in autumn) within its freshwater mussel host in the Bongseo Stream, South Korea. By focusing on survival mechanisms during critical stages of embryonic development, the selective use of mussel gill demibranchs by the bitterlings and associated adaptive traits were observed over 1 year. A significant diapause phase occurs at developmental stage D, which lasts for approximately 7 months, allowing embryos to survive winter. Development resumes when the temperature exceeds 10 °C. Minute tubercles on the embryos (crucial for anchoring within the host gill demibranchs and preventing premature ejection) exhibit the largest height during diapause, and the height decreases when developmental stage E is reached, when growth resumes. Acheilognathus rhombeus embryos were observed in 30.5% of the mussels, mostly within the inner gills, thereby maximizing spatial use and oxygen access to enhance survival. These results highlight the intricate relationship between A. rhombeus and its mussel hosts, demonstrating the evolutionary adaptations that enhance reproductive success and survival. This study provides valuable insights into the ecological dynamics and conservation requirements of such symbiotic relationships.
Collapse
Affiliation(s)
- Hyeongsu Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 48513, Republic of Korea
| | - Jongryeol Choe
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 48513, Republic of Korea
| | - Myeonghun Ko
- Kosoo Biology Institute, Seoul 07955, Republic of Korea
| |
Collapse
|
12
|
Li A, Song Z, Zhang M, Duan H, Sui L, Wang B, Hao T. Integrating ATAC-Seq and RNA-Seq Reveals the Signal Regulation Involved in the Artemia Embryonic Reactivation Process. Genes (Basel) 2024; 15:1083. [PMID: 39202442 PMCID: PMC11353689 DOI: 10.3390/genes15081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Embryonic diapause is a common evolutionary adaptation observed across a wide range of organisms. Artemia is one of the classic animal models for diapause research. The current studies of Artemia diapause mainly focus on the induction and maintenance of the embryonic diapause, with little research on the molecular regulatory mechanism of Artemia embryonic reactivation. The first 5 h after embryonic diapause breaking has been proved to be most important for embryonic reactivation in Artemia. In this work, two high-throughput sequencing methods, ATAC-seq and RNA-seq, were integrated to study the signal regulation process in embryonic reactivation of Artemia at 5 h after diapause breaking. Through the GO and KEGG enrichment analysis of the high-throughput datasets, it was showed that after 5 h of diapause breaking, the metabolism and regulation of Artemia cyst were quite active. Several signal transduction pathways were identified in the embryonic reactivation process, such as G-protein-coupled receptor (GPCR) signaling pathway, cell surface receptor signaling pathway, hormone-mediated signaling pathway, Wnt, Notch, mTOR signaling pathways, etc. It indicates that embryonic reactivation is a complex process regulated by multiple signaling pathways. With the further protein structure analysis and RT-qPCR verification, 11 GPCR genes were identified, in which 5 genes function in the embryonic reactivation stage and the other 6 genes contribute to the diapause stage. The results of this work reveal the signal transduction pathways and GPCRs involved in the embryonic reactivation process of Artemia cysts. These findings offer significant clues for in-depth research on the signal regulatory mechanisms of the embryonic reactivation process and valuable insights into the mechanism of animal embryonic diapause.
Collapse
Affiliation(s)
- Anqi Li
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China;
| | - Zhentao Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (Z.S.); (M.Z.); (B.W.)
| | - Mingzhi Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (Z.S.); (M.Z.); (B.W.)
| | - Hu Duan
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300222, China; (H.D.); (L.S.)
| | - Liying Sui
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300222, China; (H.D.); (L.S.)
| | - Bin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (Z.S.); (M.Z.); (B.W.)
| | - Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (Z.S.); (M.Z.); (B.W.)
| |
Collapse
|
13
|
Katsura Y, Shigenobu S, Satta Y. Adaptive Evolution and Functional Differentiation of Testis-Expressed Genes in Theria. Animals (Basel) 2024; 14:2316. [PMID: 39199849 PMCID: PMC11350913 DOI: 10.3390/ani14162316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Gene expression patterns differ in different tissues, and the expression pattern of genes in the mammalian testis is known to be extremely variable in different species. To clarify how the testis transcriptomic pattern has evolved in particular species, we examined the evolution of the adult testis transcriptome in Theria using 10 species: two marsupials (opossum and Tasmanian devil), six eutherian (placental) mammals (human, chimpanzee, bonobo, gorilla, rhesus macaque, and mouse), and two outgroup species (platypus and chicken). We show that 22 testis-expressed genes are marsupial-specific, suggesting their acquisition in the stem lineage of marsupials after the divergence from eutherians. Despite the time length of the eutherian stem lineage being similar to that of the marsupial lineage, acquisition of testis-expressed genes was not found in the stem lineage of eutherians; rather, their expression patterns differed by species, suggesting rapid gene evolution in the eutherian ancestors. Fifteen testis-expressed genes are therian-specific, and for three of these genes, the evolutionary tempo is markedly faster in eutherians than in marsupials. Our phylogenetic analysis of Rho GTPase-activating protein 28 (ARHGAP28) suggests the adaptive evolution of this gene in the eutherians, probably together with the expression pattern differentiation.
Collapse
Affiliation(s)
- Yukako Katsura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-0867, Japan;
| | - Yoko Satta
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan;
| |
Collapse
|
14
|
Derbala MK, Sargious MAN, Hagag NM, Pycock JF, Abu-Seida AM. A case of a twin surviving to term following the abortion of its co-twin at 9 months in an Arabian mare. J Equine Vet Sci 2024; 139:105132. [PMID: 38897332 DOI: 10.1016/j.jevs.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Twin pregnancy in mares is one of the leading causes of abortions. Abortion invariably impacts both fetuses. This report describes an unusual case of a twin surviving to term following the abortion of its co-twin at 9 months in a 7-year-old Egyptian Arabian mare. At the time of abortion at 9 months of gestation, the size of the aborted fetus was equivalent to one of approximately 5 months of age while the age of the live co-twin was 9 months. Both fetuses were males. A skin sample was collected from the aborted fetus and hair samples were collected from the dam, sire and live foal for parentage analysis. The parentage analysis confirmed that both fetuses were by the same dam and sire stallion. The authors suggest several scenarios to explain this condition. This report describes a unique case of a twin surviving to term following the abortion of its co-twin at 9 months in a mare.
Collapse
Affiliation(s)
- M K Derbala
- Animal Reproduction Research Institute, Diagnostic Imaging and Endoscopy Unit, ARC, Giza, Egypt
| | - M A N Sargious
- Animal Health Research Institute, Genome Research Unit, ARC, Giza, Egypt
| | - N M Hagag
- Animal Health Research Institute, Genome Research Unit, ARC, Giza, Egypt
| | - J F Pycock
- Diplomate in Equine Stud Medicine, Messenger Farm, United Kingdom
| | - A M Abu-Seida
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, PO: 12211, Egypt..
| |
Collapse
|
15
|
Zhang YK, Zhang HX, An HM, Wang K, Zhu F, Liu W, Wang XP. Key roles of insulin receptor InR1 in initiating reproductive diapause in males of the cabbage beetle Colaphellus bowringi (Coleoptera: Chrysomelidae). PEST MANAGEMENT SCIENCE 2024; 80:3852-3860. [PMID: 38511626 DOI: 10.1002/ps.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Reproductive diapause serves as a valuable strategy enabling insects to survive unfavorable seasonal conditions. However, forcing insects into diapause when the environment is conducive to their well-being can cause them to miss out on seasonal opportunities for reproduction. This outcome not only reduces insect populations but also minimizes crop losses caused by insect feeding. Therefore, altering the timing of diapause initiation presents a potential strategy for managing pests. In this study, we examined the possible role of the Insulin Receptor 1 (InR1) in controlling reproductive diapause entry in the male cabbage beetle, Colaphellus bowringi. RESULTS Compared to short-day (SD) conditions, long-day (LD) conditions led to reproductive diapause of C. bowringi males, characterized by arrested gonad development, increased Triglyceride (TG) accumulation, and upregulated expression of diapause protein 1 and genes associated with lipogenesis and stress tolerance. Upon employing RNA interference to knock down InR1 under SD conditions, males destined for reproduction were compelled into diapause, evidenced by arrested gonadal development, accumulation of TG, and elevated expression of diapause-related genes. Intriguingly, despite the common association of the absence of juvenile hormone (JH) with reproductive diapause in females, the knockdown of InR1 in males did not significant affect the expression of JH biosynthesis and JH response gene. CONCLUSION The study highlight InR1 is a key factor involved in regulating male reproductive diapause in C. bowringi. Consequently, targeting insulin signaling could be a viable approach to perturb diapause timing, offering a promising strategy for managing pests with reproductive diapause capabilities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Ke Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han-Xue Zhang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Min An
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Braz HB, Barreto RDSN, da Silva-Júnior LN, Horvath-Pereira BDO, da Silva TS, da Silva MD, Acuña F, Miglino MA. Evolutionary Patterns of Maternal Recognition of Pregnancy and Implantation in Eutherian Mammals. Animals (Basel) 2024; 14:2077. [PMID: 39061539 PMCID: PMC11274353 DOI: 10.3390/ani14142077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The implantation of the embryo into the maternal endometrium is a complex process associated with the evolution of viviparity and placentation in mammals. In this review, we provide an overview of maternal recognition of pregnancy signals and implantation modes in eutherians, focusing on their diverse mechanisms and evolutionary patterns. Different pregnancy recognition signals and implantation modes have evolved in eutherian mammals, reflecting the remarkable diversity of specializations in mammals following the evolution of viviparity. Superficial implantation is the ancestral implantation mode in Eutheria and its major clades. The other modes, secondary, partially, and primary interstitial implantation have each independently evolved multiple times in the evolutionary history of eutherians. Although significant progress has been made in understanding pregnancy recognition signals and implantation modes, there is still much to uncover. Rodents and chiropterans (especially Phyllostomidae) offer valuable opportunities for studying the transitions among implantation modes, but data is still scarce for these diverse orders. Further research should focus on unstudied taxa so we can establish robust patterns of evolutionary changes in pregnancy recognition signaling and implantation modes.
Collapse
Affiliation(s)
| | - Rodrigo da Silva Nunes Barreto
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - Leandro Norberto da Silva-Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
- Department of Veterinary Medicine, University of Marília, Marília 17525-902, SP, Brazil
| | - Bianca de Oliveira Horvath-Pereira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
| | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
| | - Mônica Duarte da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Francisco Acuña
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata B1900, Argentina;
| | | |
Collapse
|
17
|
Hao T, Song Z, Zhang M, Zhang L. Signaling Transduction Pathways and G-Protein-Coupled Receptors in Different Stages of the Embryonic Diapause Termination Process in Artemia. Curr Issues Mol Biol 2024; 46:3676-3693. [PMID: 38666959 PMCID: PMC11049050 DOI: 10.3390/cimb46040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Artemia is a widely distributed small aquatic crustacean, renowned for its ability to enter a state of embryonic diapause. The embryonic diapause termination (EDT) is closely linked to environmental cues, but the precise underlying mechanisms remain elusive. In this study, ATAC-seq and RNA-seq sequencing techniques were employed to explore the gene expression profiles in Artemia cysts 30 min after EDT. These profiles were compared with those during diapause and 5 h after EDT. The regulatory mechanisms governing the EDT process were analyzed through Gene Ontology (GO) enrichment analysis of differentially expressed genes. Furthermore, the active G-protein-coupled receptors (GPCRs) were identified through structural analysis. The results unveiled that the signaling transduction during EDT primarily hinges on GPCRs and the cell surface receptor signaling pathway, but distinct genes are involved across different stages. Hormone-mediated signaling pathways and the tachykinin receptor signaling pathway exhibited heightened activity in the '0-30 min' group, whereas the Wnt signaling pathway manifested its function solely in the '30 min-5 h' group. These results imply a complete divergence in the mechanisms of signal regulation during these two stages. Moreover, through structural analysis, five GPCRs operating at different stages of EDT were identified. These findings provide valuable insights into the signal regulation mechanisms governing Artemia diapause.
Collapse
Affiliation(s)
- Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (Z.S.); (M.Z.); (L.Z.)
| | | | | | | |
Collapse
|
18
|
Ye J, Xu Y, Ren Q, Liu L, Sun Q. Nutrient deprivation induces mouse embryonic diapause mediated by Gator1 and Tsc2. Development 2024; 151:dev202091. [PMID: 38603796 DOI: 10.1242/dev.202091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.
Collapse
Affiliation(s)
- Jiajia Ye
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Xu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Ren
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
19
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
20
|
Santos JL, Ebert D. The limits of stress-tolerance for zooplankton resting stages in freshwater ponds. Oecologia 2023; 203:453-465. [PMID: 37971560 PMCID: PMC10684647 DOI: 10.1007/s00442-023-05478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
In seasonal environments, many organisms evolve strategies such as diapause to survive stressful periods. Understanding the link between habitat stability and diapause strategy can help predict a population's survival in a changing world. Indeed, resting stages may be an important way freshwater organisms can survive periods of drought or freezing, and as the frequency and extent of drought or freezing vary strongly among habitats and are predicted to change with climate change, it raises questions about how organisms cope with, and survive, environmental stress. Using Daphnia magna as a model system, we tested the ability of resting stages from different populations to cope with stress during diapause. The combination of elevated temperatures and wet conditions during diapause shows to prevent hatching altogether. In contrast, hatching is relatively higher after a dry and warm diapause, but declines with rising temperatures, while time to hatch increases. Resting stages produced by populations from summer-dry habitats perform slightly, but consistently, better at higher temperatures and dryness, supporting the local adaptation hypothesis. A higher trehalose content in resting eggs from summer-dry habitat might explain such pattern. Considering that temperatures and summer droughts are projected to increase in upcoming years, it is fundamental to know how resting stages resist stressful conditions so as to predict and protect the ecological functioning of freshwater ecosystems.
Collapse
Affiliation(s)
- Joana L Santos
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
21
|
Arora B, Pei KJC, Chin SC. New horizons in the reproductive biology of Chinese pangolin (Manis pentadactyla) using the gonadal hormonal profile. Sci Rep 2023; 13:16630. [PMID: 37789068 PMCID: PMC10547839 DOI: 10.1038/s41598-023-43237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
The reproductive uniqueness of pangolins has been documented through diverse biological reports with discernible data discrepancies in gestation, copulation, and pregnancy. These mechanistic reproductive differences have yet to be endocrinologically quantified, which could assist in optimizing natural breeding in zoos to recover endangered species. The present research characterizes the Chinese pangolin's annual seasonal reproductive pattern by measuring immunoreactive estrogens and progestagens in 34 captive females and testosterone in 29 captive males. Our results showed that Chinese pangolins are seasonal breeders, with most births witnessed during Sept-Dec, overlapping with the field records. Females exhibited spontaneous ovulation and post-partum ovulation. Pregnant females exhibited a higher P4 level for ~ 9 months (Jan-Sept) and decreased before parturition (Oct-Dec). The circulating E2 is maintained at the baseline in pregnant females year-round. Contrastingly, in non-pregnant females, P4 is maintained at the baseline, apart from a slight elevation in January, and E2 demonstrates a sudden hike from November and remains elevated until February, suggesting the onset of ovulation. The serum testosterone concentration in males peaked during October, which is in sync with the female ovulation period. As a result that their major reproductive events, ovulation, mating, and parturition, all transpire in November-March. Evidence also supports that Chinese pangolins exhibit signs of postimplantation (pregnancy) ranging only from 5 to 6 months (May-Oct), preceded by possible facultative delay implantation triggered by lactation. The provided data not only fill in the knowledge gap for this critically endangered species but can also assist in making informed decisions, which can directly affect the successful breeding of this species in captivity.
Collapse
Affiliation(s)
- Bharti Arora
- Department of Natural Resources and Environmental Science, National Dong Hwa University, Hualien, 974301, Taiwan.
| | - Kurtis Jai-Chyi Pei
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Taiwan Wildlife Society, 900, Pingtung, Taiwan
| | - Shih-Chien Chin
- Taipei Zoo, Taipei, 11656, Taiwan
- Chin's Animal Hospital, Taipei, 11656, Taiwan
| |
Collapse
|
22
|
Sun X, He L, Liu H, Thorne RF, Zeng T, Liu L, Zhang B, He M, Huang Y, Li M, Gao E, Ma M, Cheng C, Meng F, Lang C, Li H, Xiong W, Pan S, Ren D, Dang B, Yang Y, Wu M, Liu L. The diapause-like colorectal cancer cells induced by SMC4 attenuation are characterized by low proliferation and chemotherapy insensitivity. Cell Metab 2023; 35:1563-1579.e8. [PMID: 37543034 DOI: 10.1016/j.cmet.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
In response to adverse environmental conditions, embryonic development may reversibly cease, a process termed diapause. Recent reports connect this phenomenon with the non-genetic responses of tumors to chemotherapy, but the mechanisms involved are poorly understood. Here, we establish a multifarious role for SMC4 in the switching of colorectal cancer cells to a diapause-like state. SMC4 attenuation promotes the expression of three investment phase glycolysis enzymes increasing lactate production while also suppressing PGAM1. Resultant high lactate levels increase ABC transporter expression via histone lactylation, rendering tumor cells insensitive to chemotherapy. SMC4 acts as co-activator of PGAM1 transcription, and the coordinate loss of SMC4 and PGAM1 affects F-actin assembly, inducing cytokinesis failure and polyploidy, thereby inhibiting cell proliferation. These insights into the mechanisms underlying non-genetic chemotherapy resistance may have significant implications for the field, advancing our understanding of aerobic glycolysis functions in tumor and potentially informing future therapeutic strategies.
Collapse
Affiliation(s)
- Xuedan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Lifang He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Hong Liu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Liu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Bo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Miao He
- Anhui Huaheng Biotechnology Co., Ltd., Hefei, 230001 Anhui, China
| | - Yabin Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Mingyue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Enyi Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan, China
| | - Mengyao Ma
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Chuandong Lang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Hairui Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Wanxiang Xiong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Shixiang Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Delong Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Bingyi Dang
- Henan Wild Animals Rescue Center, Henan Forestry Administration, Zhengzhou, 450040 Henan, China
| | - Yi Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Mian Wu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 Anhui, China.
| |
Collapse
|
23
|
Chen X, Lu Y, Wang L, Ma X, Pu J, Lin L, Deng Q, Li Y, Wang W, Jin Y, Hu Z, Zhou Z, Chen G, Jiang L, Wang H, Zhao X, He X, Fu J, Russ HA, Li W, Zhu S. A fast chemical reprogramming system promotes cell identity transition through a diapause-like state. Nat Cell Biol 2023; 25:1146-1156. [PMID: 37550515 DOI: 10.1038/s41556-023-01193-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/21/2023] [Indexed: 08/09/2023]
Abstract
Cellular reprogramming by only small molecules holds enormous potentials for regenerative medicine. However, chemical reprogramming remains a slow process and labour intensive, hindering its broad applications and the investigation of underlying molecular mechanisms. Here, through screening of over 21,000 conditions, we develop a fast chemical reprogramming (FCR) system, which significantly improves the kinetics of cell identity rewiring. We find that FCR rapidly goes through an interesting route for pluripotent reprogramming, uniquely transitioning through a developmentally diapause-like state. Furthermore, FCR critically enables comprehensive characterizations using multi-omics technologies, and has revealed unexpected important features including key regulatory factors and epigenetic dynamics. Particularly, activation of pluripotency-related endogenous retroviruses via inhibition of heterochromatin significantly enhances reprogramming. Our studies provide critical insights into how only environmental cues are sufficient to rapidly reinstate pluripotency in somatic cells, and make notable technical and conceptual advances for solving the puzzle of regeneration.
Collapse
Affiliation(s)
- Xi Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Yunkun Lu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Ma
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Jiaqi Pu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Childhealth, Hangzhou, China
| | - Lianyu Lin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Yuhan Li
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Weiyun Wang
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Yan Jin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Liling Jiang
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Hangzhou Women's Hospital, Prenatal Diagnosis Center, Hangzhou, China
| | - Xiaoyang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiangwei He
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Childhealth, Hangzhou, China
| | - Holger A Russ
- Department of Pharmacology and Therapeutics, School of Medicine, University of Florida, Gainesville, FL, USA
- Diabetes Institute, School of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Saiyong Zhu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Lysiak NSJ, Ferguson SH, Hornby CA, Heide-Jørgensen MP, Matthews CJD. Prolonged baleen hormone cycles suggest atypical reproductive endocrinology of female bowhead whales. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230365. [PMID: 37501659 PMCID: PMC10369022 DOI: 10.1098/rsos.230365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Serial measurements of hormone concentrations along baleen plates allow for reconstructions of mysticete whale reproductive histories. We assessed gestation and calving interval in bowhead whales (Balaena mysticetus) by measuring progesterone, oestradiol, corticosterone and nitrogen stable isotope ratios (δ15N) along baleen of 10 females from the eastern Canada-west Greenland population. Three immature females (body size < 14.32 m) had uniformly low progesterone concentrations across their baleen, while seven mature females (body size ≥ 14.35 m) had repeated, sustained elevations of progesterone indicative of pregnancies. The mean duration of progesterone elevations (23.6 ± 1.50 months) was considerably longer than the approximately 14 month gestation previously estimated for this species. We consider several possible explanations for this observation, including delayed implantation or sequential ovulations prior to gestation, strategies that would allow females to maximize their fitness in variable Arctic conditions, as well as suggest modified criteria defining gestation as a shorter component of the entire progesterone peak. Calving intervals varied within and among individuals (mean = 3.7 years; range = range 2.8-5.7 years), providing population-specific reproductive estimates for growth models used in bowhead whale management and conservation.
Collapse
Affiliation(s)
- N. S. J. Lysiak
- Biology Department, Suffolk University, Boston, 02108, MA, USA
| | - S. H. Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| | - C. A. Hornby
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| | | | - C. J. D. Matthews
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| |
Collapse
|
25
|
DNA Methylation and Histone Modification Are the Possible Regulators of Preimplantation Blastocyst Activation in Mice. Reprod Sci 2023; 30:494-525. [PMID: 35641857 DOI: 10.1007/s43032-022-00988-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Under ovarian hormone control, dormant blastocysts obtain implantation capacity (known as blastocyst activation) through their global gene expression. After the activated blastocysts communicate with the receptive uterus, the implantation-competent blastocysts start the implantation. Although dormant and activated blastocysts have different gene expression levels, the regulatory mechanisms underlying these transcriptions remain unclear. Hence, this study aimed to analyze epigenetic marks in dormant and activated blastocysts. In mice, blastocyst dormancy is artificially induced by daily progesterone injection without estrogen supplementation after peri-implantation ovariectomy; when estrogen is administered concomitantly, blastocyst activation and implantation occur. These phenomena demonstrate a mouse model of delayed implantation. We collected dormant and activated blastocysts from a delayed implantation mouse model. RNA-seq, methylated DNA immunoprecipitation (MeDIP)-seq, and chromatin immunoprecipitation (ChIP)-seq for H3K4 me3 and H3K27 me3 were performed using dormant and activated blastocysts. Cell cycle-related transcripts were affected during blastocyst activation. DNA methylations were accumulated in downregulated genes in the activated blastocysts. Histone H3 trimethylations were globally altered between the dormant and activated blastocysts. Dormant and activated blastocysts have unique methylation patterns on DNA and histone H3, with high correlation to gene expression. DNA methylation and histone modification can regulate preimplantation blastocyst activation.
Collapse
|
26
|
Seki M, Takeuchi E, Fukui E, Matsumoto H. Upregulation of iNOS and phosphorylated eNOS in the implantation-induced blastocysts of mice. Reprod Med Biol 2023; 22:e12545. [PMID: 37841392 PMCID: PMC10568119 DOI: 10.1002/rmb2.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose This study aimed to examine expressions of iNOS and phosphorylated eNOS (p-eNOS) in implantation-induced blastocysts. We also examined the upstream of p-eNOS. Methods To address the protein expressions in implantation-induced blastocysts, we performed immunohistochemical analysis using a delayed implantation mouse model. Immunostaining for iNOS, p-eNOS, and p-Akt was done. To address the relationship between p-eNOS and p-Akt, activated blastocysts were treated with an Akt inhibitor, MK-2206. Results iNOS expression was at low levels in dormant blastocysts, whereas the expression was significantly increased in the activated blastocysts. Double staining of p-eNOS and p-Akt in individual blastocysts showed colocalization of p-eNOS and p-Akt of the trophectoderm. p-eNOS and p-Akt expressions were at low levels in dormant blastocysts, whereas both of them were significantly increased in the activated blastocysts. Both dormant and activated blastocysts showed significant positive correlations between p-eNOS and p-Akt. MK-2206 treatment for activated blastocysts showed that blastocysts with lower p-Akt had significantly lower p-eNOS levels. Conclusions iNOS and p-eNOS, Ca2+ independent NOS, are upregulated by E2 in the blastocysts during implantation activation. Furthermore, p-eNOS is upregulated in implantation-induced blastocysts downstream of p-Akt.
Collapse
Affiliation(s)
- Misato Seki
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Eisaku Takeuchi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya, TochigiJapan
| |
Collapse
|
27
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
28
|
Matsuo M, Yuan J, Kim YS, Dewar A, Fujita H, Dey SK, Sun X. Targeted depletion of uterine glandular Foxa2 induces embryonic diapause in mice. eLife 2022; 11:78277. [PMID: 35861728 PMCID: PMC9355561 DOI: 10.7554/elife.78277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Embryonic diapause is a reproductive strategy in which embryo development and growth is temporarily arrested within the uterus to ensure the survival of neonates and mothers during unfavorable conditions. Pregnancy is reinitiated when conditions become favorable for neonatal survival. The mechanism of how the uterus enters diapause in various species remains unclear. Mice with uterine depletion of Foxa2, a transcription factor, are infertile. In this study, we show that dormant blastocysts are recovered from these mice on day 8 of pregnancy with persistent expression of uterine Msx1, a gene critical to maintaining the uterine quiescent state, suggesting that these mice enter embryonic diapause. Leukemia inhibitory factor (LIF) can resume implantation in these mice. Although estrogen is critical for implantation in progesterone-primed uterus, our current model reveals that FOXA2-independent estrogenic effects are detrimental to sustaining uterine quiescence. Interestingly, progesterone and anti-estrogen can prolong uterine quiescence in the absence of FOXA2. Although we find that Msx1 expression persists in the uterus deficient in Foxa2, the complex relationship of FOXA2 with Msx genes and estrogen receptors remains to be explored.
Collapse
Affiliation(s)
- Mitsunori Matsuo
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jia Yuan
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Yeon Sun Kim
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Amanda Dewar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
29
|
Cortasa SA, Inserra PFI, Proietto S, Corso MC, Schmidt AR, Vitullo AD, Dorfman VB, Halperin J. Achieving full-term pregnancy in the vizcacha relies on a reboot of luteal steroidogenesis in mid-gestation (Lagostomus maximus, Rodentia). PLoS One 2022; 17:e0271067. [PMID: 35802690 PMCID: PMC9269958 DOI: 10.1371/journal.pone.0271067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Reactivation of the hypothalamic-pituitary-ovarian (HPO) axis triggered by the decline in serum progesterone in mid-gestation is an uncommon trait that distinguishes the vizcacha from most mammals. Accessory corpora lutea (aCL) developed upon this event have been proposed as guarantors of the restoration of the progesterone levels necessary to mantain gestation. Therefore, the steroidogenic input of primary CL (pCL) vs aCL was evaluated before and after HPO axis-reactivation (BP and AP respectively) and in term pregnancy (TP). Nonpregnant-ovulated females (NP) were considered as the pCL-starting point group. In BP, the ovaries mainly showed pCL, whose LH receptor (LHR), StAR, 3β-HSD, 20α-HSD, and VEGF immunoexpressions were similar or lower than those of NP. In AP, luteal reactivity increased significantly compared to the previous stages, and the pool of aCL developed in this stage represented 20% of the ovarian structures, equaling the percentage of pCL. Both pCL and aCL luteal cells shared similar histological features consistent with secretory activity. Although pCL and aCL showed equivalent labeling intensity for the luteotropic markers, pCL were significantly larger than aCL. Towards TP, both showed structural disorganization and loss of secretory characteristics. No significant DNA fragmentation was detected in luteal cells throughout gestation. Our findings indicate that the LH surge derived from HPO axis-reactivation targets the pCL and boost luteal steroidogenesis and thus progesterone production. Because there are many LHR-expressing antral follicles in BP, they also respond to the LH stimuli and luteinize without extruding the oocyte. These aCL certainly contribute but it is the steroidogenic restart of the pCL that is the main force that restores progesterone levels, ensuring that gestation is carried to term. Most importantly, the results of this work propose luteal steroidogenesis reboot as a key event in the modulation of vizcacha pregnancy and depict yet another distinctive aspect of its reproductive endocrinology.
Collapse
Affiliation(s)
- Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Felipe Ignacio Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
30
|
Thiem LR, Gienger CM. Hold on for one more day: Energetic costs of oviductal egg retention in Eastern Musk Turtles (Sternotherus odoratus). Physiol Biochem Zool 2022; 95:279-287. [DOI: 10.1086/720159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Delayed Implantation Induced by Letrozole in Mice. Reprod Sci 2022; 29:2864-2875. [PMID: 35257352 DOI: 10.1007/s43032-022-00902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
Implantation timing is critical for a successful pregnancy. A short delay in embryo implantation caused by targeted gene ablation produced a cascading problem in the later stages of the pregnancy. Although several delayed implantation models have been established in wild mice, almost none of them is suitable for investigating the early delay's effects on the late events of pregnancy. Here, we report a new delayed implantation model established by the intraperitoneal administration of letrozole at 5 mg/kg body weight on day 3 of pregnancy. In these mice, initiation of implantation was induced at will by the injection of estradiol (E2). When the estradiol (3 ng) was injected on day 4 of pregnancy (i.e., without delay), the embryo implantation restarted, and the pregnancy continued normally. However, 25 ng estrogen caused compromised implantation. We also found that 67% of the female mice could be pregnant normally and finally gave birth when the estradiol injection (3 ng) was on day 5 of pregnancy (i.e., 1-day delay). Most failed pregnancies had impaired decidualization, decreased serum progesterone levels, and compromised angiogenesis. Progesterone supplementation could rescue decidualization failure in the mice. Collectively, we established a new model of delayed implantation by letrozole, which can be easily applied to study the effect and mechanisms of delay of embryo implantation on the progression of late pregnancy events.
Collapse
|
32
|
Renfree MB, Shaw G. Placentation in Marsupials. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2022; 234:41-60. [PMID: 34694477 DOI: 10.1007/978-3-030-77360-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It is sometimes implied that marsupials are "aplacental," on the presumption that the only mammals that have a placenta are the eponymous "placental" mammals. This misconception has persisted despite the interest in and descriptions of the marsupial placenta, even in Amoroso's definitive chapter. It was also said that marsupials had no maternal recognition of pregnancy and no placental hormone production. In addition, it was thought that genomic imprinting could not exist in marsupials because pregnancy was so short. We now know that none of these ideas have held true with extensive studies over the last four decades definitively showing that they are indeed mammals with a fully functional placenta, and with their own specializations.
Collapse
Affiliation(s)
- Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Cao LJ, Song W, Chen JC, Fan XL, Hoffmann AA, Wei SJ. Population genomic signatures of the oriental fruit moth related to the Pleistocene climates. Commun Biol 2022; 5:142. [PMID: 35177826 PMCID: PMC8854661 DOI: 10.1038/s42003-022-03097-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
The Quaternary climatic oscillations are expected to have had strong impacts on the evolution of species. Although legacies of the Quaternary climates on population processes have been widely identified in diverse groups of species, adaptive genetic changes shaped during the Quaternary have been harder to decipher. Here, we assembled a chromosome-level genome of the oriental fruit moth and compared genomic variation among refugial and colonized populations of this species that diverged in the Pleistocene. High genomic diversity was maintained in refugial populations. Demographic analysis showed that the effective population size of refugial populations declined during the penultimate glacial maximum (PGM) but remained stable during the last glacial maximum (LGM), indicating a strong impact of the PGM rather than the LGM on this pest species. Genome scans identified one chromosomal inversion and a mutation of the circadian gene Clk on the neo-Z chromosome potentially related to the endemicity of a refugial population. In the colonized populations, genes in pathways of energy metabolism and wing development showed signatures of selection. These different genomic signatures of refugial and colonized populations point to multiple impacts of Quaternary climates on adaptation in an extant species.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, 100083, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Xu-Lei Fan
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China.
| |
Collapse
|
34
|
Santos JL, Ebert D. Trehalose provisioning in Daphnia resting stages reflects local adaptation to the harshness of diapause conditions. Biol Lett 2022; 18:20210615. [PMID: 35135311 PMCID: PMC8826299 DOI: 10.1098/rsbl.2021.0615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental fluctuations often select for adaptations such as diapause states, allowing species to outlive harsh conditions. The natural sugar trehalose which provides both cryo- and desiccation-protection, has been found in diapause stages of diverse taxa. Here, we hypothesize that trehalose deposition in resting stages is a locally adapted trait, with higher concentrations produced in harsher habitats. We used resting stages, produced under standardized conditions, by 37 genotypes of Daphnia magna collected from Western Palaearctic habitats varying in their propensity to dry in summer and freeze in winter. Resting eggs produced by D. magna from populations from summer-dry habitats showed significantly higher trehalose than those from summer-wet habitats, suggesting that trehalose has a protective function during desiccation. By contrast, winter-freezing did not explain variation in trehalose content. Adaptations to droughts are important, as summer dryness of water bodies is foreseen to increase with ongoing climate change.
Collapse
Affiliation(s)
- Joana L. Santos
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
35
|
Chovsepian A, Berchtold D, Winek K, Mamrak U, Ramírez Álvarez I, Dening Y, Golubczyk D, Weitbrecht L, Dames C, Aillery M, Fernandez‐Sanz C, Gajewski Z, Dieterich M, Janowski M, Falkai P, Walczak P, Plesnila N, Meisel A, Pan‐Montojo F. A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium-Mediated Excitotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103265. [PMID: 34904402 PMCID: PMC8811841 DOI: 10.1002/advs.202103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Indexed: 06/09/2023]
Abstract
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Collapse
Affiliation(s)
- Alexandra Chovsepian
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Daniel Berchtold
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Katarzyna Winek
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: Edmond and Lily Safra Center for Brain SciencesHebrew University of JerusalemJerusalem9190401Israel
| | - Uta Mamrak
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
| | - Inés Ramírez Álvarez
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Yanina Dening
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
| | | | - Luis Weitbrecht
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Claudia Dames
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Marine Aillery
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: SeppicÎle‐de‐FranceLa Garenne‐Colombes92250France
| | - Celia Fernandez‐Sanz
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
- Present address:
Present address: Center for Translational MedicineDepartment of MedicineThomas Jefferson UniversityPhiladelphiaPA19107USA
| | - Zdzislaw Gajewski
- Center for Translational MedicineWarsaw University of Life SciencesWarsaw02‐787Poland
| | - Marianne Dieterich
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Miroslaw Janowski
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Peter Falkai
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Piotr Walczak
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Andreas Meisel
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Francisco Pan‐Montojo
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| |
Collapse
|
36
|
Halley AC. The Tempo of Mammalian Embryogenesis: Variation in the Pace of Brain and Body Development. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:96-107. [PMID: 35189619 PMCID: PMC9187598 DOI: 10.1159/000523715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022]
Abstract
Why do some species develop rapidly, while others develop slowly? Mammals are highly variable in the pace of growth and development over every stage of ontogeny, and this basic variable - the pace of ontogeny - is strongly associated with a wide range of phenotypes in adults, including allometric patterns of brain and body size, as well as the pace of neurodevelopment. This analysis describes variation in the pace of embryonic development in eutherian mammals, drawing on a collected dataset of embryogenesis in fifteen species representing rodents, carnivores, ungulates, and primates. Mammals vary in the pace of every stage of embryogenesis, including stages of early zygote differentiation, blastulation and implantation, gastrulation, neurulation, somitogenesis, and later stages of basic limb, facial, and brain development. This comparative review focuses on the general variation of rapid vs. slow mammalian embryogenesis, with a focus on the pace of somite formation, brain vs. somatic development, and how embryonic pacing predicts later features of ontogeny.
Collapse
Affiliation(s)
- Andrew C Halley
- Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
37
|
Sugianto NA, Heistermann M, Newman C, Macdonald DW, Buesching CD. Alternative reproductive strategies provide a flexible mechanism for assuring mating success in the European badgers (Meles meles): An investigation from hormonal measures. Gen Comp Endocrinol 2021; 310:113823. [PMID: 34044013 DOI: 10.1016/j.ygcen.2021.113823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/19/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Selection-pressures differ with population density, but few studies investigate how this can affect reproductive physiology. European badger (Meles meles) density varies from solitary to group-living across their range, with reported mating periods throughout the entire year to specific seasonal periods. Badger reproduction is evolutionarily distinct, interrupting the direct progression from conception to gestation with delayed implantation (DI), allowing for superfecundation (SF). To establish the tactical mating flexibility afforded by DI*SF, we used cross-sectional population-level seasonal variation of circulating sex-steroids for 97 females from a high-density population. Oestradiol was highest in spring among non-parous females, then lower in summer, and remained low during following seasons, suggesting that the mating period was restricted to just spring. Oestrone was consistently higher than oestradiol; it was elevated in spring, lowest during summer, peaked in autumn, and remained elevated for pregnant females in winter. This suggests that oestrone sustains pre-implanted blastocysts throughout DI. Progesterone was low throughout, except during winter pregnancy, associated with implantation and luteal development. In contrast to multiple mating periods reported by lower-density studies, our oestradiol data suggest that, at high-density, females exhibit only one mating period (congruent with testosterone patterns in males studied previously in this same population). While additional mating periods during DI enhance fertility assurance at low-density, at high-density, we propose that when coitus is frequent, fertilisation is assured, precluding the need for further cycles and associated mating risks. This endocrinologically flexible DI*SF mating strategy likely represents a form of balancing selection, allowing badgers to succeed at a range of regional densities.
Collapse
Affiliation(s)
- Nadine Adrianna Sugianto
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK; School of Biosciences, University of Birmingham, Birmingham, UK.
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK; Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK
| | - Christina D Buesching
- Cook's Lake Farming Forestry and Wildlife Inc (Ecological Consultancy), Queens County, Nova Scotia, Canada; Department of Biology, Irving K. Barber Faculty of Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
38
|
Peffers CS, Pomeroy LW, Meuti ME. Critical Photoperiod and Its Potential to Predict Mosquito Distributions and Control Medically Important Pests. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1610-1618. [PMID: 33835160 DOI: 10.1093/jme/tjab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Diapause, a period of arrested development that allows mosquitoes to survive inhospitable conditions, is triggered by short daylengths in temperate mosquitoes. Different populations of mosquitoes initiate diapause in response to a specific photoperiod, or daylength, resulting in population-specific differences in annual cycles of abundance. The photoperiod that causes approximately 50% of a population to initiate diapause is known as the critical photoperiod (CPP). The autumn daylength corresponding to the CPP in the field likely marks the day beyond which the photoperiods would trigger and maintain 50% or more diapause incidence in a population, although temperature, diet, and other factors can impact diapause initiation. In the Northern Hemisphere, northern populations of mosquitoes experience lower temperatures earlier in the year and must be triggered into diapause by longer daylengths than southern populations. CPP is genetically based, but also adapts over time responding to the population's environment. Therefore, CPP has been shown to lengthen with increasing latitude and altitude. While the positive correlation between CPP and latitude/altitude has been established in a few mosquito species, including Aedes albopictus (Skuse, Diptera: Culicidae), Aedes triseriatus, Aedes sierrensis, and Wyeomyia smithii (Coquillett, Diptera: Culicidae), we do not know when most other species initiate their seasonal responses. As several of these species transmit important diseases, characterizing the CPP of arthropod vectors could improve existing control by ensuring that surveillance efforts align with the vector's seasonally active period. Additionally, better understanding when mosquitoes and other vectors initiate diapause can reduce the frequency of chemical applications, thereby ameliorating the negative impacts to nontarget insects.
Collapse
Affiliation(s)
- Caitlin S Peffers
- Department of Entomology, The Ohio State University, Coffey Road, Kottman Hall, Columbus, OH, USA
| | - Laura W Pomeroy
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Neil Avenue, Cunz Hall, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Neil Avenue, Suite, Pomerene Hall, Columbus, OH, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, Coffey Road, Kottman Hall, Columbus, OH, USA
| |
Collapse
|
39
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
40
|
Ajit K, Murphy BD, Banerjee A. Elucidating evolutionarily conserved mechanisms of diapause regulation using an in silico approach. FEBS Lett 2021; 595:1350-1374. [PMID: 33650678 DOI: 10.1002/1873-3468.14064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Embryonic diapause is an enigmatic phenomenon that appears in diverse species. Although regulatory mechanisms have been established, there is much to be discovered. Herein, we have made the first comprehensive attempt to elucidate diapause regulatory mechanisms using a computational approach. We found transcription factors unique to promoters of genes in diapause species. From pathway analysis and STRING PPI networks, the signaling pathways regulated by these unique transcription factors were identified. The pathways were then consolidated into a model to combine various known mechanisms of diapause regulation. This work also highlighted certain transcription factors that may act as 'master transcription factors' to regulate the phenomenon. Promoter analysis further suggested evidence for independent evolution for some of regulatory elements involved in diapause.
Collapse
Affiliation(s)
- Kamal Ajit
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médicine Vétérinaire, Université Montréal, St-Hyacinthe, QC, Canada
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
41
|
ÇEVİK M, GENÇ MD. Embryonic Diapause. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2021. [DOI: 10.24880/maeuvfd.835288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
42
|
Hernández N, López-Morató M, Perianes MJ, Sánchez-Mateos S, Casas-Rua V, Domínguez-Arroyo JA, Sánchez-Margallo FM, Álvarez IS. 4-Hydroxyestradiol improves mouse embryo quality, epidermal growth factor-binding capability in vitro and implantation rates. Mol Hum Reprod 2021; 27:gaaa075. [PMID: 33237288 DOI: 10.1093/molehr/gaaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/30/2020] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation in the uterus is a critical step to achieve success following ART. Despite favorable uterine conditions, a great number of good quality embryos fail to implant, often for reasons that are unknown. Hence, improving the implantation potential of embryos is a subject of great interest. 4-Hydroxyestradiol (4-OH-E2), a metabolic product of estradiol produced by endometrial cells, plays a key role in endometrial-embryonic interactions that are necessary for implantation. Nonetheless, the effects of 4-OH-E2 on embryos obtained in vitro have not been yet described. This study was designed to determine whether culture media enriched in 4-OH-E2 could improve the quality and implantation rate of embryos obtained in vitro, using both in vitro and in vivo models. We also analyzed its effects on the epidermal growth factor (EGF)-binding capability of the embryos. Our results showed that the presence of 4-OH-E2 in the culture media of embryos during the morula to blastocyst transition increases embryo quality and attachment to endometrial cells in vitro. 4-OH-E2 can also improve viable pregnancy rates of mouse embryos produced in vitro, reaching success rates that are similar to those from embryos obtained directly from the uterus. 4-OH-E2 improved the embryos' ability to bind EGF, which could be responsible for the increased embryo implantation potential observed. Therefore, our results strongly suggest that 4-OH-E2 is a strong candidate molecule to supplement human IVF culture media in order to improve embryo implantation. However, further research is required before these findings can be translated with efficacy and safety to fertility clinics.
Collapse
Affiliation(s)
- Nuria Hernández
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Marta López-Morató
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Mario J Perianes
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
| | - Soledad Sánchez-Mateos
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Vanessa Casas-Rua
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
| | | | | | - Ignacio S Álvarez
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
- Instituto Extremeño de Reproducción Asistida-Quirónsalud, Badajoz, Spain
| |
Collapse
|
43
|
Paulson EE, Comizzoli P. Endometrial receptivity and embryo implantation in carnivores-commonalities and differences with other mammalian species. Biol Reprod 2021; 104:771-783. [PMID: 33412583 DOI: 10.1093/biolre/ioab001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Endometrial receptivity and embryo implantation processes are a major point of pregnancy failure in many mammalian species, including humans. Although reproductive biology in many carnivore species remains enigmatic, the few that have been studied so far are invaluable comparative models. The goals of this review are to (1) summarize current data on the mechanisms involved in uterine receptivity and embryo implantation in carnivores, including commonalities and differences with other mammalian species and (2) identify research priorities to better understand a key phenomenon in a critical group of mammals. Besides unique reproductive traits in some carnivores (induced vs. spontaneous ovulation in cats, ovulation at the germinal vesicle stage in dogs), preimplantation embryo development is comparable with other orders. However, the timing of implantation varies, especially in species having an embryonic diapause. Mechanisms involved in endometrial receptivity and decidualization still remain to be fully understood, but specific markers have already been identified. Importantly, the use of endogenous hormones to control the ovarian activity may impact endometrial receptivity and subsequent embryo implantation. Next, research efforts should take advantage of advanced technologies to further study embryo implantation in carnivores and to provide more relevant models to reproductive medicine or for the conservation of rare and endangered species.
Collapse
Affiliation(s)
- Erika Elinor Paulson
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| |
Collapse
|
44
|
Yang Y, Zheng Y, Sun L, Chen M. Genome-Wide DNA Methylation Signatures of Sea Cucumber Apostichopus japonicus during Environmental Induced Aestivation. Genes (Basel) 2020; 11:genes11091020. [PMID: 32877994 PMCID: PMC7565549 DOI: 10.3390/genes11091020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms respond to severe environmental changes by entering into hypometabolic states, minimizing their metabolic rates, suspending development and reproduction, and surviving critical ecological changes. They come back to an active lifestyle once the environmental conditions are conducive. Marine invertebrates live in the aquatic environment and adapt to environmental changes in their whole life. Sea cucumbers and sponges are only two recently known types of marine organisms that aestivate in response to temperature change. Sea cucumber has become an excellent model organism for studies of environmentally-induced aestivation by marine invertebrates. DNA methylation, the most widely considered epigenetic marks, has been reported to contribute to phenotypic plasticity in response to environmental stress in aquatic organisms. Most of methylation-related enzymes, including DNA methyltransferases, Methyl-CpG binding domain proteins, and DNA demethylases, were up-regulated during aestivation. We conducted high-resolution whole-genome bisulfite sequencing of the intestine from sea cucumber at non-aestivation and deep-aestivation stages. Further DNA methylation profile analysis was also conducted across the distinct genomic features and entire transcriptional units. A different elevation in methylation level at internal exons was observed with clear demarcation of intron/exon boundaries during transcriptional unit scanning. The lowest methylation level occurs in the first exons, followed by the last exons and the internal exons. A significant increase in non-CpG methylation (CHG and CHH) was observed within the intron and mRNA regions in aestivation groups. A total of 1393 genes were annotated within hypermethylated DMRs (differentially methylated regions), and 749 genes were annotated within hypomethylated DMRs. Differentially methylated genes were enriched in the mRNA surveillance pathway, metabolic pathway, and RNA transport. Then, 24 hypermethylated genes and 15 hypomethylated genes were Retrovirus-related Pol polyprotein from transposon (RPPT) genes. This study provides further understanding of epigenetic control on environmental induced hypometabolism in aquatic organisms.
Collapse
Affiliation(s)
- Yujia Yang
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266071, China;
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao 266003, China
- Correspondence: (L.S.); (M.C.)
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266071, China;
- Correspondence: (L.S.); (M.C.)
| |
Collapse
|
45
|
Dean R, Yamaguchi N. Does the combination of embryonic diapause and superfoetation occur in the stoat
Mustela erminea
? A reinterpretation of existing data. Mamm Rev 2020. [DOI: 10.1111/mam.12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development University Malaysia Terengganu Kuala Nerus21030Malaysia
| |
Collapse
|
46
|
A hypoxia-induced Rab pathway regulates embryo implantation by controlled trafficking of secretory granules. Proc Natl Acad Sci U S A 2020; 117:14532-14542. [PMID: 32513733 DOI: 10.1073/pnas.2000810117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Implantation is initiated when an embryo attaches to the uterine luminal epithelium and subsequently penetrates into the underlying stroma to firmly embed in the endometrium. These events are followed by the formation of an extensive vascular network in the stroma that supports embryonic growth and ensures successful implantation. Interestingly, in many mammalian species, these processes of early pregnancy occur in a hypoxic environment. However, the mechanisms underlying maternal adaptation to hypoxia during early pregnancy remain unclear. In this study, using a knockout mouse model, we show that the transcription factor hypoxia-inducible factor 2 alpha (Hif2α), which is induced in subluminal stromal cells at the time of implantation, plays a crucial role during early pregnancy. Indeed, when preimplantation endometrial stromal cells are exposed to hypoxic conditions in vitro, we observed a striking enhancement in HIF2α expression. Further studies revealed that HIF2α regulates the expression of several metabolic and protein trafficking factors, including RAB27B, at the onset of implantation. RAB27B is a member of the Rab family of GTPases that allows controlled release of secretory granules. These granules are involved in trafficking MMP-9 from the stroma to the epithelium to promote luminal epithelial remodeling during embryo invasion. As pregnancy progresses, the HIF2α-RAB27B pathway additionally mediates crosstalk between stromal and endothelial cells via VEGF granules, developing the vascular network critical for establishing pregnancy. Collectively, our study provides insights into the intercellular communication mechanisms that operate during adaptation to hypoxia, which is essential for embryo implantation and establishment of pregnancy.
Collapse
|
47
|
Pokharel K, Peippo J, Weldenegodguad M, Honkatukia M, Li MH, Kantanen J. Gene Expression Profiling of Corpus luteum Reveals Important Insights about Early Pregnancy in Domestic Sheep. Genes (Basel) 2020; 11:genes11040415. [PMID: 32290341 PMCID: PMC7231023 DOI: 10.3390/genes11040415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/10/2023] Open
Abstract
The majority of pregnancy loss in ruminants occurs during the preimplantation stage, which is thus the most critical period determining reproductive success. Here, we performed a comparative transcriptome study by sequencing total mRNA from corpus luteum (CL) collected during the preimplantation stage of pregnancy in Finnsheep, Texel and F1 crosses. A total of 21,287 genes were expressed in our data. Highly expressed autosomal genes in the CL were associated with biological processes such as progesterone formation (STAR, CYP11A1, and HSD3B1) and embryo implantation (e.g., TIMP1, TIMP2 and TCTP). Among the list of differentially expressed genes, sialic acid-binding immunoglobulin (Ig)-like lectins (SIGLEC3, SIGLEC14, SIGLEC8), ribosomal proteins (RPL17, RPL34, RPS3A, MRPS33) and chemokines (CCL5, CCL24, CXCL13, CXCL9) were upregulated in Finnsheep, while four multidrug resistance-associated proteins (MRPs) were upregulated in Texel ewes. A total of 17 known genes and two uncharacterized non-coding RNAs (ncRNAs) were differentially expressed in breed-wise comparisons owing to the flushing diet effect. The significantly upregulated TXNL1 gene indicated potential for embryonic diapause in Finnsheep and F1. Moreover, we report, for the first time in any species, several genes that are active in the CL during early pregnancy (including TXNL1, SIGLEC14, SIGLEC8, MRP4, and CA5A).
Collapse
Affiliation(s)
- Kisun Pokharel
- Natural Resources, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland; (K.P.); (M.W.)
| | - Jaana Peippo
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland;
| | - Melak Weldenegodguad
- Natural Resources, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland; (K.P.); (M.W.)
| | | | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (M.-H.L.); (J.K.); Tel.: +358-295-326-210 (J.K.)
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland;
- Correspondence: (M.-H.L.); (J.K.); Tel.: +358-295-326-210 (J.K.)
| |
Collapse
|
48
|
Abstract
Reproduction in mammals requires distinct cycles of ovulation, fertilization, pregnancy, and lactation often interspersed with periods of anoestrus when breeding does not occur. Macropodids, the largest extant species of marsupials, the kangaroos and wallabies, have a very different reproductive strategy to most eutherian mammals whereby young are born at a highly altricial stage of development with the majority of development occurring over a lengthy lactation period. Furthermore, the timings of ovulation and birth in some species occurs within a very short interval of each other (sometimes hours). Female swamp wallabies have an oestrous cycle shorter than their pregnancy length and were, therefore, speculated to mate and form a new embryo before birth thereby supporting two conceptuses at different stages of pregnancy. To confirm this, we used high-resolution ultrasound to monitor reproduction in swamp wallabies during pregnancy. Here, we show that females ovulate, mate, and form a new embryo prepartum while still carrying a full-term fetus in the contralateral uterus. This embryo enters embryonic diapause until the newborn leaves the pouch 9 mo later. Thus, combined with embryonic diapause, females are continuously pregnant and lactating at the same time throughout their reproductive life, a unique reproductive strategy that completely blurs the normal staged system of reproduction in mammals.
Collapse
|
49
|
Korzekwa AJ, Kotlarczyk AM, Zadroga A. Profiles of maternal origin factors during transition from embryonic diapause to implantation in roe deer. Anim Sci J 2019; 90:1444-1452. [PMID: 31486226 DOI: 10.1111/asj.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
The aim was to evaluate in female roe deer: (a) PAG mRNA relative abundance in endometrial uterine tissue for determination of the duration of embryonic diapause, (b) mRNA relative abundance of progesterone, estradiol, and prolactin (P4, E2, and PRL) receptors (PGR, ESR, and PRLR) during diapause and after implantation in the endometrium; (c) concentration of P4, E2, and PRL in the blood, and (d) a noninvasive method of hormone detection by measurement of P4 and E2 concentrations in feces. A total of fifteen individuals were obtained post mortem during hunting seasons and divided into three experimental groups (November, December, January). The results did not reveal mRNA relative abundance for PAGs in the endometrium or detectable PAG concentrations in the serum of all examined females. Concentration of PRL and mRNA relative abundance for PRLR long isoform in the endometrium was the highest in January (p < .01). mRNA relative abundance for PGR, P4 concentration in the endometrium, serum, and feces was the highest in January (p < .01). Endometrial origin PRL and P4 may be responsible for the termination of this process and pregnancy development after implantation.
Collapse
Affiliation(s)
- Anna J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Olsztyn, Poland
| | - Angelika M Kotlarczyk
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Olsztyn, Poland
| | - Anna Zadroga
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences (IARFR PAS), Olsztyn, Poland
| |
Collapse
|
50
|
van der Weijden VA, Bick JT, Bauersachs S, Arnold GJ, Fröhlich T, Drews B, Ulbrich SE. Uterine fluid proteome changes during diapause and resumption of embryo development in roe deer (Capreolus capreolus). Reproduction 2019; 158:13-24. [PMID: 30933930 PMCID: PMC6499939 DOI: 10.1530/rep-19-0022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
The uterine microenvironment during pre-implantation presents a pro-survival milieu and is essential for embryo elongation in ruminants. The European roe deer (Careolus capreolus) pre-implantation embryo development is characterised by a 4-month period of reduced development, embryonic diapause, after which the embryo rapidly elongates and implants. We investigated the uterine fluid proteome by label-free liquid chromatography tandem mass spectrometry at four defined stages covering the phase of reduced developmental pace (early diapause, mid-diapause and late diapause) and embryo elongation. We hypothesised that embryo development during diapause is halted by the lack of signals that support progression past the blastocyst stage. Three clusters of differentially abundant proteins were identified by a self-organising tree algorithm: (1) gradual reduction over development; (2) stable abundance during diapause, followed by a sharp rise at elongation; and (3) gradual increase over development. Proteins in the different clusters were subjected to gene ontology analysis. 'Cellular detoxification' in cluster 1 was represented by alcohol dehydrogenase, glutathione S-transferase and peroxiredoxin-2. ATP-citrate synthase, nucleolin, lamin A/C, and purine phosphorylase as cell proliferation regulators were found in cluster 2 and 'cortical cytoskeleton', 'regulation of substrate adhesion-dependent cell spreading' and 'melanosome' were present in cluster 3. Cell cycle promoters were higher abundant at elongation than during diapause, and polyamines presence indicates their role in diapause regulation. This study provides a comprehensive overview of proteins in the roe deer uterine fluid during diapause and forms a basis for studies aiming at understanding the impact of the lack of cell cycle promoters during diapause.
Collapse
Affiliation(s)
- V A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - J T Bick
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - S Bauersachs
- Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Zurich, Switzerland
| | - G J Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - B Drews
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - S E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|