1
|
Zhu Q, Wei M, Chen X, Wu X, Chen X. Comparative analysis of differential gene expression in hepatopancreas of Chinese mitten crabs (Eriocheir sinensis) with different carapace colors. Comp Biochem Physiol A Mol Integr Physiol 2025; 305:111851. [PMID: 40164285 DOI: 10.1016/j.cbpa.2025.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The carapace color of the Chinese mitten crab (Eriocheir sinensis) significantly influences consumer preference and market value, yet the underlying molecular mechanisms remain poorly understood. In this study, transcriptome sequencing coupled with weighted gene co-expression network analysis (WGCNA) was employed to elucidate genetic and metabolic pathways involved in three genetically distinct carapace color phenotypes (red, white, and green). Hepatopancreatic transcriptome analyses across these color variants identified 910, 1555, and 1598 differentially expressed genes (DEGs) in pairwise comparisons. Functional enrichment analyses revealed significant activation of oxidoreductase activity, retinol metabolism, and mitochondrial energy metabolism pathways in crabs with red carapaces. Notably, key pigmentation-associated genes, including ninaB (carotenoid isomerase) and sno1 (flavin monooxygenase), were markedly upregulated. Additionally, WGCNA identified a highly correlated (r = 0.97) red-specific gene module enriched predominantly with oxidative phosphorylation-related genes, such as atpsycf6 and ndufb4, emphasizing the energetic investment associated with pigment biosynthesis. Furthermore, retinol metabolism emerged as a pivotal pathway connecting carotenoid processes with immune and antioxidant functions, implying potential physiological trade-offs between pigmentation and stress resilience. Overall, this study advances our understanding of crustacean carapace coloration mechanisms and provides valuable genetic targets for selective breeding aimed at enhancing desirable color traits in E. sinensis.
Collapse
Affiliation(s)
- Qi Zhu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Maolei Wei
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xinxin Chen
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources Certified by the Ministry of Agriculture and Rural Affairs of China, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowu Chen
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources Certified by the Ministry of Agriculture and Rural Affairs of China, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Long J, Xia Y, Qiu H, Xie X, Yan Y. Respiratory substrate preferences in mitochondria isolated from different tissues of three fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1555-1567. [PMID: 36472706 DOI: 10.1007/s10695-022-01137-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Energy requirements of tissues vary greatly and exhibit different mitochondrial respiratory activities with variable participation of both substrates and oxidative phosphorylation. The present study aimed to (1) compare the substrate preferences of mitochondria from different tissues and fish species with different ecological characteristics, (2) identify an appropriate substrate for comparing metabolism by mitochondria from different tissues and species, and (3) explore the relationship between mitochondrial metabolism mechanisms and ecological energetic strategies. Respiration rates and cytochrome c oxidase (CCO) activities of mitochondria isolated from heart, brain, kidney, and other tissues from Silurus meridionalis, Carassius auratus, and Megalobrama amblycephala were measured using succinate (complex II-linked substrate), pyruvate (complex I-linked), glutamate (complex I-linked), or combinations. Mitochondria from all tissues and species exhibited substrate preferences. Mitochondria exhibited greater coupling efficiencies and lower leakage rates using either complex I-linked substrates, whereas an opposite trend was observed for succinate (complex II-linked). Furthermore, maximum mitochondrial respiration rates were higher with the substrate combinations than with individual substrates; therefore, state III respiration rates measured with substrate combinations could be effective indicators of maximum mitochondrial metabolic capacity. Regardless of fish species, both state III respiration rates and CCO activities were the highest in heart mitochondria, followed by red muscle mitochondria. However, differences in substrate preferences were not associated with species feeding habit. The maximum respiration rates of heart mitochondria with substrate combinations could indicate differences in locomotor performances, with higher metabolic rates being associated with greater capacity for sustained swimming.
Collapse
Affiliation(s)
- Jing Long
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Yiguo Xia
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Hanxun Qiu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Xiaojun Xie
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Yulian Yan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Luo J, Ren C, Zhu T, Guo C, Xie S, Zhang Y, Yang Z, Zhao W, Zhang X, Lu J, Jiao L, Zhou Q, Tocher DR, Jin M. High dietary lipid level promotes low salinity adaptation in the marine euryhaline crab (Scylla paramamosain). ANIMAL NUTRITION 2022; 12:297-307. [PMID: 37013080 PMCID: PMC10065990 DOI: 10.1016/j.aninu.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/25/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
Abstract
The physiological processes involved in adaptation to osmotic pressure in euryhaline crustaceans are highly energy demanding, but the effects of dietary lipids (fat) on low salinity adaptations have not been well evaluated. In the present study, a total of 120 mud crabs (Scylla paramamosain, BW = 17.87 ± 1.49 g) were fed control and high-fat (HF) diets, at both medium salinity (23‰) and low salinity (4‰) for 6 wk, and each treatment had 3 replicates with each replicate containing 10 crabs. The results indicated that a HF diet significantly mitigated the reduction in survival rate, percent weight gain and feed efficiency induced by low salinity (P < 0.05). Low salinity lowered lipogenesis and activated lipolysis resulting in lipid depletion in the hepatopancreas of mud crabs (P < 0.05). Thus, HF diets enhanced the process of lipolysis to supply more energy. In the gills, low salinity and the HF diet increased the levels of mitochondrial biogenesis markers, the activity of mitochondrial complexes, and the expression levels of genes related to energy metabolism (P < 0.05). Consequently, the positive effects of the HF diet on energy metabolism in mud crabs at low salinity promoted osmotic pressure regulation. Specifically, significantly higher haemolymph osmotic pressure and inorganic ion content, as well as higher osmotic pressure regulatory enzyme activity in gills, and gene and protein expression levels of NaK-ATPase were observed in crabs fed the HF diet at low salinity (P < 0.05). In summary, high dietary lipid levels improved energy provision to facilitate mitochondrial biogenesis, which increased ATP provision for osmotic pressure regulation of mud crabs. This study also illustrates the importance of dietary lipid nutrition supplementation for low salinity adaptations in mud crabs.
Collapse
|
4
|
Rees BB, Reemeyer JE, Irving BA. Interindividual variation in maximum aerobic metabolism varies with gill morphology and myocardial bioenergetics. J Exp Biol 2022; 225:275636. [DOI: 10.1242/jeb.243680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
This study asked whether interindividual variation in maximum and standard aerobic metabolic rates of the Gulf killifish, Fundulus grandis, correlate with gill morphology and cardiac mitochondrial bioenergetics, traits reflecting critical steps in the O2 transport cascade from the environment to the tissues. Maximum metabolic rate (MMR) was positively related to body mass, total gill filament length, and myocardial oxygen consumption during maximum oxidative phosphorylation (multiple R2=0.836). Standard metabolic rate (SMR) was positively related to body mass, total gill filament length, and myocardial oxygen consumption during maximum electron transport system activity (multiple R2=0.717). After controlling for body mass, individuals with longer gill filaments, summed over all gill arches, or greater cardiac respiratory capacity had higher whole-animal metabolic rates. The overall model fit and the explanatory power of individual predictor variables were better for MMR than for SMR, suggesting that gill morphology and myocardial bioenergetics are more important in determining active rather than resting metabolism. After accounting for body mass, heart ventricle mass was not related to variation in MMR or SMR, indicating that the quality of the heart (i.e., the capacity for mitochondrial metabolism) was more influential than heart size. Finally, the myocardial oxygen consumption required to offset the dissipation of the transmembrane proton gradient in the absence of ATP synthesis was not correlated with either MMR or SMR. The results support the idea that interindividual variation in aerobic metabolism, particularly maximum metabolic rate, is associated with variation in specific steps in the O2 transport cascade.
Collapse
Affiliation(s)
- Bernard B. Rees
- 1 Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Jessica E. Reemeyer
- 2 Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Brian A. Irving
- 3 School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA
- 4 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| |
Collapse
|
5
|
Cadete VJJ, Vasam G, Menzies KJ, Burelle Y. Mitochondrial quality control in the cardiac system: An integrative view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:782-796. [PMID: 30472159 DOI: 10.1016/j.bbadis.2018.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 01/26/2023]
Abstract
Recent studies have led to the discovery of multiple mitochondrial quality control (mQC) processes that operate at various scales, ranging from the degradation of proteins by mitochondrial proteases to the degradation of selected cargos or entire organelles in lysosomes. While the mechanisms governing these mQC processes are progressively being delineated, their role and importance remain unclear. Converging evidence however point to a complex system whereby multiple and partly overlapping processes are recruited to orchestrate a cell type specific mQC response that is adapted to the physiological state and level of stress encountered. Knowledge gained from basic model systems of mQC therefore need to be integrated within organ-specific (patho)physiological frameworks. Building on this notion, this article focuses on mQC in the heart, where developmental metabolic reprogramming, sustained contraction, and multiple pathophysiological conditions pose broadly different constraints. We provide an overview of current knowledge of mQC processes, and discuss their implication in cardiac mQC under normal and diseased conditions.
Collapse
Affiliation(s)
- Virgilio J J Cadete
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Žagar A, Holmstrup M, Simčič T, Debeljak B, Slotsbo S. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity. Comp Biochem Physiol A Mol Integr Physiol 2018; 224:35-41. [DOI: 10.1016/j.cbpa.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
|
7
|
Abstract
The spatial density of mitochondria was studied by thin-section electron microscopy in
smooth muscles of bladder, iris and gut in mice, rats, guinea-pigs and sheep. Morphometric
data included areas of muscle cell profiles (~6,000 muscle cells were measured) and areas
of their mitochondria (more than three times as many). The visual method delivers accurate
estimates of the extent of the chondrioma (the ensemble of mitochondria in a cell),
measuring all and only the mitochondria in each muscle cell and no other cells. The
digital records obtained can be used again for checks and new searches. Spatial density of
mitochondria varies between about 2 and 10% in different muscles in different species. In
contrast, there is consistency of mitochondrial density within a given muscle in a given
species. For each muscle in each species there is a characteristic mitochondrial density
with modest variation between experiments. On the basis of data from serial sections in
the rat detrusor muscle, mitochondrial density varies very little between the muscle
cells, each cell having a value close to that for the whole muscle. Mitochondrial density
is different in a given muscle, e.g., ileal circular muscle, from the four mammalian
species, with highest values in mouse and lowest in sheep; in mice the mitochondrial
density is nearly three time higher that in sheep. In a given species there are
characteristic variations between different muscles. For example, the bladder detrusor
muscle has markedly fewer mitochondria than the ileum, and the iris has markedly more.
Collapse
|
8
|
Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal 2017; 26:445-461. [PMID: 27302002 DOI: 10.1089/ars.2016.6756] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Metabolic syndrome (MetS) is associated with a greater risk of diabetes and cardiovascular diseases. It is estimated that this multifactorial condition affects 20%-30% of the world's population. A detailed understanding of MetS mechanisms is crucial for the development of effective prevention strategies and adequate intervention tools that could curb its increasing prevalence and limit its comorbidities, particularly in younger age groups. With advances in basic redox biology, oxidative stress (OxS) involvement in the complex pathophysiology of MetS has become widely accepted. Nevertheless, its clear association with and causative effects on MetS require further elucidation. Recent Advances: Although a better understanding of the causes, risks, and effects of MetS is essential, studies suggest that oxidant/antioxidant imbalance is a key contributor to this condition. OxS is now understood to be a major underlying mechanism for mitochondrial dysfunction, ectopic lipid accumulation, and gut microbiota impairment. CRITICAL ISSUES Further studies, particularly in the field of translational research, are clearly required to understand and control the production of reactive oxygen species (ROS) levels, especially in the mitochondria, since the various therapeutic trials conducted to date have not targeted this major ROS-generating system, aimed to delay MetS onset, or prevent its progression. FUTURE DIRECTIONS Multiple relevant markers need to be identified to clarify the role of ROS in the etiology of MetS. Future clinical trials should provide important proof of concept for the effectiveness of antioxidants as useful therapeutic approaches to simultaneously counteract mitochondrial OxS, alleviate MetS symptoms, and prevent complications. Antioxid. Redox Signal. 26, 445-461.
Collapse
Affiliation(s)
- Schohraya Spahis
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada
| | | | - Emile Levy
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada .,3 EPODE International Network , Paris, France
| |
Collapse
|
9
|
Havird JC, Whitehill NS, Snow CD, Sloan DB. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution. Evolution 2015; 69:3069-81. [PMID: 26514987 DOI: 10.1111/evo.12808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
Abstract
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| | - Nicholas S Whitehill
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, 80523
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| |
Collapse
|
10
|
Mitochondria: A Therapeutic Target for Parkinson's Disease? Int J Mol Sci 2015; 16:20704-30. [PMID: 26340618 PMCID: PMC4613227 DOI: 10.3390/ijms160920704] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. The exact causes of neuronal damage are unknown, but mounting evidence indicates that mitochondrial-mediated pathways contribute to the underlying mechanisms of dopaminergic neuronal cell death both in PD patients and in PD animal models. Mitochondria are organized in a highly dynamic tubular network that is continuously reshaped by opposing processes of fusion and fission. Defects in either fusion or fission, leading to mitochondrial fragmentation, limit mitochondrial motility, decrease energy production and increase oxidative stress, thereby promoting cell dysfunction and death. Thus, the regulation of mitochondrial dynamics processes, such as fusion, fission and mitophagy, represents important mechanisms controlling neuronal cell fate. In this review, we summarize some of the recent evidence supporting that impairment of mitochondrial dynamics, mitophagy and mitochondrial import occurs in cellular and animal PD models and disruption of these processes is a contributing mechanism to cell death in dopaminergic neurons. We also summarize mitochondria-targeting therapeutics in models of PD, proposing that modulation of mitochondrial impairment might be beneficial for drug development toward treatment of PD.
Collapse
|
11
|
Bremer K, Kocha K, Snider T, Moyes C. Energy metabolism and cytochrome oxidase activity: linking metabolism to gene expression. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modification of mitochondrial content demands the synthesis of hundreds of proteins encoded by nuclear and mitochondrial genomes. The responsibility for coordination of this process falls to nuclear-encoded master regulators of transcription. DNA-binding proteins and coactivators integrate information from energy-sensing pathways and hormones to alter mitochondrial gene expression. In mammals, the signaling cascade for mitochondrial biogenesis can be described as follows: hormonal signals and energetic information are sensed by protein-modifying enzymes that in turn regulate the post-translational modification of transcription factors. Once activated, transcription-factor complexes form on promoter elements of many of the nuclear-encoded mitochondrial genes, recruiting proteins that remodel chromatin and initiate transcription. One master regulator in mammals, PGC-1α, is well studied because of its role in determining the metabolic phenotype of muscles, but also due to its importance in mitochondria-related metabolic diseases. However, relatively little is known about the role of this pathway in other vertebrates. These uncertainties raise broader questions about the evolutionary origins of the pathway and its role in generating the diversity in muscle metabolic phenotypes seen in nature.
Collapse
Affiliation(s)
- K. Bremer
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - K.M. Kocha
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - T. Snider
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - C.D. Moyes
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
12
|
Riley LG, Menezes MJ, Rudinger-Thirion J, Duff R, de Lonlay P, Rotig A, Tchan MC, Davis M, Cooper ST, Christodoulou J. Phenotypic variability and identification of novel YARS2 mutations in YARS2 mitochondrial myopathy, lactic acidosis and sideroblastic anaemia. Orphanet J Rare Dis 2013; 8:193. [PMID: 24344687 PMCID: PMC3878580 DOI: 10.1186/1750-1172-8-193] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/13/2013] [Indexed: 12/21/2022] Open
Abstract
Background Mutations in the mitochondrial tyrosyl-tRNA synthetase (YARS2) gene have previously been identified as a cause of the tissue specific mitochondrial respiratory chain (RC) disorder, Myopathy, Lactic Acidosis, Sideroblastic Anaemia (MLASA). In this study, a cohort of patients with a mitochondrial RC disorder for who anaemia was a feature, were screened for mutations in YARS2. Methods Twelve patients were screened for YARS2 mutations by Sanger sequencing. Clinical data were compared. Functional assays were performed to confirm the pathogenicity of the novel mutations and to investigate tissue specific effects. Results PathogenicYARS2 mutations were identified in three of twelve patients screened. Two patients were found to be homozygous for the previously reported p.Phe52Leu mutation, one severely and one mildly affected. These patients had different mtDNA haplogroups which may contribute to the observed phenotypic variability. A mildly affected patient was a compound heterozygote for two novel YARS2 mutations, p.Gly191Asp and p.Arg360X. The p.Gly191Asp mutation resulted in a 38-fold loss in YARS2 catalytic efficiency and the p.Arg360X mutation did not produce a stable protein. The p.Phe52Leu and p.Gly191Asp/p.Arg360X mutations resulted in more severe RC deficiency of complexes I, III and IV in muscle cells compared to fibroblasts, but had relatively normal YARS2 protein levels. The muscle-specific RC deficiency can be related to the increased requirement for RC complexes in muscle. There was also a failure of mtDNA proliferation upon myogenesis in patient cells which may compound the RC defect. Patient muscle had increased levels of PGC1-α and TFAM suggesting mitochondrial biogenesis was activated as a potential compensatory mechanism. Conclusion In this study we have identified novel YARS2 mutations and noted marked phenotypic variability among YARS2 MLASA patients, with phenotypes ranging from mild to lethal, and we suggest that the background mtDNA haplotype may be contributing to the phenotypic variability. These findings have implications for diagnosis and prognostication of the MLASA and related phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Kids Research Institute, Children's Hospital at Westmead 2145, Sydney, Australia.
| |
Collapse
|
13
|
Wang X, Pickrell AM, Rossi SG, Pinto M, Dillon LM, Hida A, Rotundo RL, Moraes CT. Transient systemic mtDNA damage leads to muscle wasting by reducing the satellite cell pool. Hum Mol Genet 2013; 22:3976-86. [PMID: 23760083 DOI: 10.1093/hmg/ddt251] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With age, muscle mass and integrity are progressively lost leaving the elderly frail, weak and unable to independently care for themselves. Defined as sarcopenia, this age-related muscle atrophy appears to be multifactorial but its definite cause is still unknown. Mitochondrial dysfunction has been implicated in this process. Using a novel transgenic mouse model of mitochondrial DNA (mtDNA) double-strand breaks (DSBs) that presents a premature aging-like phenotype, we studied the role of mtDNA damage in muscle wasting. We caused DSBs in mtDNA of adult mice using a ubiquitously expressed mitochondrial-targeted endonuclease, mito-PstI. We found that a short, transient systemic mtDNA damage led to muscle wasting and a decline in locomotor activity later in life. We found a significant decline in muscle satellite cells, which decreases the muscle's capacity to regenerate and repair during aging. This phenotype was associated with impairment in acetylcholinesterase (AChE) activity and assembly at the neuromuscular junction (NMJ), also associated with muscle aging. Our data suggests that systemic mitochondrial dysfunction plays important roles in age-related muscle wasting by preferentially affecting the myosatellite cell pool.
Collapse
Affiliation(s)
- Xiao Wang
- These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Luo Y, Wang W, Zhang Y, Huang Q. Effect of body size on organ-specific mitochondrial respiration rate of the largemouth bronze gudgeon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:513-21. [PMID: 22995995 DOI: 10.1007/s10695-012-9716-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 09/10/2012] [Indexed: 05/21/2023]
Abstract
The effects of body size on the mitochondrial respiration rate were assessed in the heart, brain, gill, liver, and red muscle of largemouth bronze gudgeon, Coreius guichenoti, from the Yangtze River. Body mass had a significant influence on the state 3 oxygen consumption rate of the mitochondria from the heart, gill, and red muscle. The relationships between body mass (M, g) and state 3 oxygen consumption rate (V(state 3), nmol O min(-1) mg(-1)) of the mitochondria were represented by the following: V(state 3) = 3.56M(0.71) for heart, V(state 3) = 4.64M(0.50) for red muscle, and V(state 3) = 473.73M(-0.82) for gill. There was a significant difference in V(state 3), V(state 4), and respiratory control ratio among organs and all were highest in the heart. Our results suggest that the relationship between mitochondrial respiratory rate and body size varies among organs. The high mitochondrial respiratory rate in the heart of the largemouth gudgeon suggests that it has the highest oxidative capacity.
Collapse
Affiliation(s)
- Yiping Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing 400715, China.
| | | | | | | |
Collapse
|
15
|
Su YC, Qi X. Impairment of mitochondrial dynamics: a target for the treatment of neurological disorders? FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has long been appreciated in the pathogenesis of various neurological disorders. However, the molecular basis underlying the decline in mitochondrial function is not fully understood. Mitochondria are highly dynamic organelles that frequently undergo fusion and fission. In healthy cells, the delicate balance between fusion and fission is required for maintaining normal mitochondrial and cellular function. However, under pathological conditions, the balance is disrupted, resulting in excessive mitochondrial fragmentation and mitochondrial dysfunction. The impaired fusion and fission processes can lead to apoptosis, necrosis and autophagic cell death and seem to play causal roles in the progression of acute and chronic neuronal injuries. In this article, important aspects of what is currently known about the molecular machinery regulating mitochondrial fission and fusion in mammalian cells is summarized. Special emphasis will be given to the consequences of disregulated mitochondrial morphology in the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Yu-Chin Su
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, E516, Cleveland, OH, 44106-44970, USA
| |
Collapse
|
16
|
Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P, Antoshechkin IA, Margulies KB, Maclellan WR. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation 2013; 127:1957-67. [PMID: 23589024 DOI: 10.1161/circulationaha.112.001219] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mitochondria are key players in the development and progression of heart failure (HF). Mitochondrial (mt) dysfunction leads to diminished energy production and increased cell death contributing to the progression of left ventricular failure. The fundamental mechanisms that underlie mt dysfunction in HF have not been fully elucidated. METHODS AND RESULTS To characterize mt morphology, biogenesis, and genomic integrity in human HF, we investigated left ventricular tissue from nonfailing hearts and end-stage ischemic (ICM) or dilated (DCM) cardiomyopathic hearts. Although mt dysfunction was present in both types of cardiomyopathy, mt were smaller and increased in number in DCM compared with ICM or nonfailing hearts. mt volume density and mtDNA copy number was increased by ≈2-fold (P<0.001) in DCM hearts in comparison with ICM hearts. These changes were accompanied by an increase in the expression of mtDNA-encoded genes in DCM versus no change in ICM. mtDNA repair and antioxidant genes were reduced in failing hearts, suggestive of a defective repair and protection system, which may account for the 4.1-fold increase in mtDNA deletion mutations in DCM (P<0.05 versus nonfailing hearts, P<0.05 versus ICM). CONCLUSIONS In DCM, mt dysfunction is associated with mtDNA damage and deletions, which could be a consequence of mutating stress coupled with a peroxisome proliferator-activated receptor γ coactivator 1α-dependent stimulus for mt biogenesis. However, this maladaptive compensatory response contributes to additional oxidative damage. Thus, our findings support further investigations into novel mechanisms and therapeutic strategies for mt dysfunction in DCM.
Collapse
Affiliation(s)
- Preeti Ahuja
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-569 CHS, BOX 957115, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Little AG, Kunisue T, Kannan K, Seebacher F. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio). BMC Biol 2013; 11:26. [PMID: 23531055 PMCID: PMC3633057 DOI: 10.1186/1741-7007-11-26] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/19/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Thyroid hormone (TH) is best known for its role in development in animals, and for its control of metabolic heat production (thermogenesis) during cold acclimation in mammals. It is unknown whether the regulatory role of TH in thermogenesis is derived in mammals, or whether TH also mediates thermal responses in earlier vertebrates. Ectothermic vertebrates show complex responses to temperature variation, but the mechanisms mediating these are poorly understood. The molecular mechanisms underpinning TH action are very similar across vertebrates, suggesting that TH may also regulate thermal responses in ectotherms. We therefore aimed to determine whether TH regulates thermal acclimation in the zebrafish (Danio rerio). We induced hypothyroidism, followed by supplementation with 3,5-diiodothyronine (T2) or 3,5,3'-triiodothyronine (T3) in zebrafish exposed to different chronic temperatures. We measured whole-animal responses (swimming performance and metabolic rates), tissue-specific regulatory enzyme activities, gene expression, and free levels of T2 and T3. RESULTS We found that both T3 and the lesser-known T2, regulate thermal acclimation in an ectotherm. To our knowledge, this is the first such study to show this. Hypothyroid treatment impaired performance measures in cold-acclimated but not warm-acclimated individuals, whereas supplementation with both TH metabolites restored performance. TH could either induce or repress responses, depending on the actual temperature and thermal history of the animal. CONCLUSIONS The low sensitivity to TH at warm temperatures could mean that increasing temperatures (that is, global warming) will reduce the capacity of animals to regulate their physiologies to match demands. We suggest that the properties that underlie the role of TH in thermal acclimation (temperature sensitivity and metabolic control) may have predisposed this hormone for a regulatory role in the evolution of endothermy.
Collapse
Affiliation(s)
- Alexander G Little
- School of Biological Sciences, A08 University of Sydney, Science Road, Sydney, NSW, 2006, Australia
| | - Tatsuya Kunisue
- School of Public Health, Wadsworth Center, New York State Department of Health, Albany, NY, 12201-0509, USA
| | - Kurunthachalam Kannan
- School of Public Health, Wadsworth Center, New York State Department of Health, Albany, NY, 12201-0509, USA
- State Key Laboratory of Urban Water Resources and Environment, IJRC PTS, Harbin Institute of Technology, Harbin, 150090, China
| | - Frank Seebacher
- School of Biological Sciences, A08 University of Sydney, Science Road, Sydney, NSW, 2006, Australia
| |
Collapse
|
18
|
Issa RI, Griffin TM. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2012; 2. [PMID: 22662293 PMCID: PMC3364606 DOI: 10.3402/pba.v2i0.17470] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity is a significant risk factor for developing osteoarthritis in weight-bearing and non-weight-bearing joints. Although the pathogenesis of obesity-associated osteoarthritis is not completely understood, recent studies indicate that pro-inflammatory metabolic factors contribute to an increase in osteoarthritis risk. Adipose tissue, and in particular infrapatellar fat, is a local source of pro-inflammatory mediators that are increased with obesity and have been shown to increase cartilage degradation in cell and tissue culture models. One adipokine in particular, leptin, may be a critical mediator of obesity-associated osteoarthritis via synergistic actions with other inflammatory cytokines. Biomechanical factors may also increase the risk of osteoarthritis by activating cellular inflammation and promoting oxidative stress. However, some types of biomechanical stimulation, such as physiologic cyclic loading, inhibit inflammation and protect against cartilage degradation. A high percentage of obese individuals with knee osteoarthritis are sedentary, suggesting that a lack of physical activity may increase the susceptibility to inflammation. A more comprehensive approach to understanding how obesity alters daily biomechanical exposures within joint tissues may provide new insight into the protective and damaging effects of biomechanical factors on inflammation in osteoarthritis.
Collapse
Affiliation(s)
- Rita I Issa
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
19
|
Duggan AT, Kocha KM, Monk CT, Bremer K, Moyes CD. Coordination of cytochrome c oxidase gene expression in the remodelling of skeletal muscle. J Exp Biol 2011; 214:1880-7. [DOI: 10.1242/jeb.053322] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SUMMARY
Many fish species respond to low temperature by inducing mitochondrial biogenesis, reflected in an increase in activity of the mitochondrial enzyme cytochrome c oxidase (COX). COX is composed of 13 subunits, three encoded by mitochondrial (mt)DNA and 10 encoded by nuclear genes. We used real-time PCR to measure mRNA levels for the 10 nuclear-encoded genes that are highly expressed in muscle. We measured mRNA levels in white muscle of three minnow species, each at two temperatures: zebrafish (Danio rerio) acclimated to 11 and 30°C, goldfish (Carassius auratus) acclimated to 4 and 35°C, and northern redbelly dace (Chrosomus eos) collected in winter and summer. We hypothesized that temperature-induced changes in COX activity would be paralleled by COX nuclear-encoded subunit transcript abundance. However, we found mRNA for COX subunits showed pronounced differences in thermal responses. Though zebrafish COX activity did not change in the cold, the transcript levels of four subunits decreased significantly (COX5A1, 60% decrease; COX6A2, 70% decrease; COX6C, 50% decrease; COX7B, 55% decrease). Treatments induced changes in COX activity in both dace (2.9 times in winter fish) and goldfish (2.5 times in cold fish), but the response in transcript levels was highly variable. Some subunits failed to increase in one (goldfish COX7A2, dace COX6A2) or both (COX7B, COX6B2) species. Other transcripts increased 1.7–100 times. The most cold-responsive subunits were COX4-1 (7 and 21.3 times higher in dace and goldfish, respectively), COX5A1 (13.9 and 5 times higher), COX6B1 (6 and 10 times higher), COX6C (11 and 4 times higher) and COX7C (13.3 and 100 times higher). The subunits that most closely paralleled COX increases in the cold were COX5B2 (dace 2.5 times, goldfish 1.7 times) and COX6A2 (dace 4.1 times, goldfish 1.7 times). Collectively, these studies suggest that COX gene expression is not tightly coordinated during cold-induced mitochondrial remodelling in fish muscle. Further, they caution against arguments about the importance of transcriptional regulation based on measurement of mRNA levels of select subunits of multimeric proteins.
Collapse
Affiliation(s)
- Ana T. Duggan
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Katrinka M. Kocha
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | | - Katharina Bremer
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | |
Collapse
|
20
|
Kocha KM, Genge CE, Moyes CD. Origins of interspecies variation in mammalian muscle metabolic enzymes. Physiol Genomics 2011; 43:873-83. [PMID: 21586671 DOI: 10.1152/physiolgenomics.00025.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Do the transcriptional mechanisms that control an individual's mitochondrial content, PGC1α (peroxisome proliferator-activated receptor γ coactivator-1α) and NRF1 (nuclear respiratory factor-1), also cause differences between species? We explored the determinants of cytochrome c oxidase (COX) activities in muscles from 12 rodents differing 1,000-fold in mass. Hindlimb muscles differed in scaling patterns from isometric (soleus, gastrocnemius) to allometric (tibialis anterior, scaling coefficient = -0.16). Consideration of myonuclear domain reduced the differences within species, but interspecies differences remained. For tibialis anterior, there was no significant scaling relationship in mRNA/g for COX4-1, PGC1α, or NRF1, yet COX4-1 mRNA/g was a good predictor of COX activity (r(2) = 0.55), PGC1α and NRF1 mRNA correlated with each other (r(2) = 0.42), and both could predict COX4-1 mRNA (r(2) = 0.48 and 0.52) and COX activity (r(2) = 0.55 and 0.49). This paradox was resolved by multivariate analysis, which explained 90% of interspecies variation, about equally partitioned between mass effects and PGC1α (or NRF1) mRNA levels, independent of mass. To explore the determinants of PGC1α mRNA, we analyzed 52 mammalian PGC1α proximal promoters and found no size dependence in regulatory element distribution. Likewise, the activity of PGC1α promoter reporter genes from 30 mammals showed no significant relationship with body mass. Collectively, these studies suggest that not all muscles scale equivalently, but for those that show allometric scaling, transcriptional regulation of the master regulators, PGC1α and NRF1, does not account for scaling patterns, though it does contribute to interspecies differences in COX activities independent of mass.
Collapse
Affiliation(s)
- K M Kocha
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
21
|
Seebacher F, Brand MD, Else PL, Guderley H, Hulbert AJ, Moyes CD. Plasticity of oxidative metabolism in variable climates: molecular mechanisms. Physiol Biochem Zool 2010; 83:721-32. [PMID: 20586603 DOI: 10.1086/649964] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Converting food to chemical energy (ATP) that is usable by cells is a principal requirement to sustain life. The rate of ATP production has to be sufficient for housekeeping functions, such as protein synthesis and maintaining membrane potentials, as well as for growth and locomotion. Energy metabolism is temperature sensitive, and animals respond to environmental variability at different temporal levels, from within-individual to evolutionary timescales. Here we review principal molecular mechanisms that underlie control of oxidative ATP production in response to climate variability. Nuclear transcription factors and coactivators control expression of mitochondrial proteins and abundance of mitochondria. Fatty acid and phospholipid concentrations of membranes influence the activity of membrane-bound proteins as well as the passive leak of protons across the mitochondrial membrane. Passive proton leak as well as protein-mediated proton leak across the inner mitochondrial membrane determine the efficacy of ATP production but are also instrumental in endothermic heat production and as a defense against reactive oxygen species. Both transcriptional mechanisms and membrane composition interact with environmental temperature and diet, and this interaction between diet and temperature in determining mitochondrial function links the two major environmental variables that are affected by changing climates. The limits to metabolic plasticity could be set by the production of reactive oxygen species leading to cellular damage, limits to substrate availability in mitochondria, and a disproportionally large increase in proton leak over ATP production.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Taylor NL, Howell KA, Heazlewood JL, Tan TYW, Narsai R, Huang S, Whelan J, Millar AH. Analysis of the rice mitochondrial carrier family reveals anaerobic accumulation of a basic amino acid carrier involved in arginine metabolism during seed germination. PLANT PHYSIOLOGY 2010; 154:691-704. [PMID: 20720170 PMCID: PMC2948988 DOI: 10.1104/pp.110.162214] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/17/2010] [Indexed: 05/20/2023]
Abstract
Given the substantial changes in mitochondrial gene expression, the mitochondrial proteome, and respiratory function during rice (Oryza sativa) germination under anaerobic and aerobic conditions, we have attempted to identify changes in mitochondrial membrane transport capacity during these processes. We have assembled a preliminary rice mitochondrial carrier gene family of 50 members, defined its orthology to carriers of known function, and observed significant changes in microarray expression data for these rice genes during germination under aerobic and anaerobic conditions and across rice development. To determine if these transcript changes reflect alteration of the carrier profile itself and to determine which members of the family encode the major mitochondrial carrier proteins, we analyzed mitochondrial integral membrane protein preparations using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and peptide mass spectrometry, identifying seven distinct carrier proteins. We have used mass spectrometry-based quantitative approaches to compare the abundance of these carriers between mitochondria from dry seeds and those from aerobic- or anaerobic-germinated seeds. We highlight an anaerobic-enhanced basic amino acid carrier and show concomitant increases in mitochondrial arginase and the abundance of arginine and ornithine in anaerobic-germinated seeds, consistent with an anaerobic role of this mitochondria carrier. The potential role of this carrier in facilitating mitochondrial involvement in arginine metabolism and the plant urea cycle during the growth of rice coleoptiles and early seed nitrate assimilation under anaerobic conditions are discussed.
Collapse
|
23
|
Guderley H, Seebacher F. Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator mississippiensis). J Comp Physiol B 2010; 181:53-64. [DOI: 10.1007/s00360-010-0499-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/11/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022]
|
24
|
Scaling with body mass of mitochondrial respiration from the white muscle of three phylogenetically, morphologically and behaviorally disparate teleost fishes. J Comp Physiol B 2010; 180:967-77. [PMID: 20461388 DOI: 10.1007/s00360-010-0474-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
White muscle (WM) fibers in many fishes often increase in size from <50 μm in juveniles to >250 μm in adults. This leads to increases in intracellular diffusion distances that may impact the scaling with body mass of muscle metabolism. We have previously found similar negative scaling of aerobic capacity (mitochondrial volume density, V(mt)) and the rate of an aerobic process (post-contractile phosphocreatine recovery) in fish WM. In the present study, we examined the scaling with body mass of oxygen consumption rates of isolated mitochondria (VO(2mt)) from WM in three species from different families that vary in morphology and behavior: an active, pelagic species (bluefish, Pomatomus saltatrix), a relatively inactive demersal species (black sea bass, Centropristis striata), and a sedentary, benthic species (southern flounder, Paralichthys lethostigma). In contrast to our prior studies, the measurement of respiration in isolated mitochondria is not influenced by the diffusion of oxygen or metabolites. V(mt) was measured in WM and in high-density isolates used for VO(2mt) measurements. WM V(mt) was significantly higher in the bluefish than in the other two species and VO(2mt) was independent of body mass when expressed per milligram protein or per milliliter mitochondria. The size-independence of VO(2mt) indicates that differences in WM aerobic function result from variation in V(mt) and not to changes in VO(2mt). This is consistent with our prior work that indicated that while diffusion constraints influence mitochondrial distribution, the negative scaling of aerobic processes like post-contractile PCr recovery can largely be attributed to the body size dependence of V(mt).
Collapse
|
25
|
Seebacher F, Murray S, Else P. Thermal Acclimation and Regulation of Metabolism in a Reptile (Crocodylus porosus): The Importance of Transcriptional Mechanisms and Membrane Composition. Physiol Biochem Zool 2009; 82:766-75. [DOI: 10.1086/605955] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
de Sousa MEC, Wanderley-Teixeira V, Teixeira ÁA, de Siqueira HA, Santos FA, Alves LC. Ultrastructure of the Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) midgut. Micron 2009; 40:743-9. [PMID: 19497756 DOI: 10.1016/j.micron.2009.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/16/2009] [Accepted: 04/18/2009] [Indexed: 11/25/2022]
|
27
|
Abstract
Mitochondrial toxicity results from pyrimidine nucleoside reverse transcriptase inhibitors (NRTIs) for HIV/AIDS. In the heart, this can deplete mitochondrial (mt) DNA and cause cardiac dysfunction (eg, left ventricle hypertrophy, LVH). Four unique transgenic, cardiac-targeted overexpressors (TGs) were generated to determine their individual impact on native mitochondrial biogenesis and effects of NRTI administration on development of mitochondrial toxicity. TGs included cardiac-specific overexpression of native thymidine kinase 2 (TK2), two pathogenic TK2 mutants (H121N and I212N), and a mutant of mtDNA polymerase, pol-gamma (Y955C). Each was treated with antiretrovirals (AZT-HAART, 3 or 10 weeks, zidovudine (AZT) + lamivudine (3TC) + indinavir, or vehicle control). Parameters included left ventricle (LV) performance (echocardiography), LV mtDNA abundance (real-time PCR), and mitochondrial fine structure (electron microscopy, EM) as a function of duration of treatment and presence of TG. mtDNA abundance significantly decreased in Y955C TG, increased in TK2 native and I212N TGs, and was unchanged in H121N TGs at 10 weeks regardless of treatment. Y955C and I212N TGs exhibited LVH during growth irrespective of treatment. Y955C TGs exhibited cardiomyopathy (CM) at 3 and 10 weeks irrespective of treatment, whereas H121N and I212N TGs exhibited CM only after 10 weeks AZT-HAART. EM features were consistent with cardiac dysfunction. mtDNA abundance and cardiac functional changes were related to TG expression of mitochondrially related genes, mutations thereof, and NRTIs.
Collapse
|
28
|
YAN YL. EFFECTS OF TEMPERATURE ON OXYGEN CONSUMPTION RATE IN METABOLISM OF MITOCHONDRIA ISOLATED FROM LIVER OF THE SOUTHERN CATFISH, SILURUS MERIDIONALIS CHEN. ACTA ACUST UNITED AC 2008. [DOI: 10.3724/sp.j.1035.2008.00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Green HJ, Bombardier E, Burnett M, Iqbal S, D'Arsigny CL, O'Donnell DE, Ouyang J, Webb KA. Organization of metabolic pathways in vastus lateralis of patients with chronic obstructive pulmonary disease. Am J Physiol Regul Integr Comp Physiol 2008; 295:R935-41. [DOI: 10.1152/ajpregu.00167.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine whether patients with chronic obstructive lung disease (COPD) display differences in organization of the metabolic pathways and segments involved in energy supply compared with healthy control subjects. Metabolic pathway potential, based on the measurement of the maximal activity (Vmax) of representative enzymes, was assessed in tissue extracted from the vastus lateralis in seven patients with COPD (age 67 ± 4 yr; FEV1/FVC = 44 ± 3%, where FEV1is forced expiratory volume in 1 s and FVC is forced vital capacity; means ± SE) and nine healthy age-matched controls (age 68 ± 2 yr; FEV1/FVC = 75 ± 2%). Compared with control, the COPD patients displayed lower ( P < 0.05) Vmax(mol·kg protein−1·h−1) for cytochrome c oxidase (COX; 21.2 ± 2.0 vs. 28.7 ± 2.2) and 3-hydroxyacyl-CoA dehydrogenase (HADH; 2.54 ± 0.14 vs. 3.74 ± 0.12) but not citrate synthase (CS; 2.20 ± 0.16 vs. 3.19 ± 0.5). While no differences between groups were observed in Vmaxfor creatine phosphokinase, phosphorylase (PHOSPH), phosphofructokinase (PFK), pyruvate kinase, and lactate dehydrogenase, hexokinase (HEX) was elevated in COPD ( P < 0.05). Enzyme activity ratios were higher ( P < 0.05) for HEX/CS, HEX/COX, PHOSPH/HADH and PFK/HADH in COPD compared with control. It is concluded that COPD patients exhibit a reduced potential for both the electron transport system and fat oxidation and an increased potential for glucose phosphorylation while the potential for glycogenolysis and glycolysis remains normal. A comparison of enzyme ratios indicated greater potentials for glucose phosphorylation relative to the citric acid cycle and the electron transport chain and glycogenolysis and glycolysis relative to β-oxidation.
Collapse
|
30
|
Ultrastructure of the sarcoplasmic reticulum in cardiac myocytes from Pacific bluefin tuna. Cell Tissue Res 2008; 334:121-34. [DOI: 10.1007/s00441-008-0669-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
|
31
|
Fernández-Vizarra E, Enriquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P. Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones. Curr Genet 2008; 54:13-22. [PMID: 18481068 DOI: 10.1007/s00294-008-0194-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 01/17/2023]
Abstract
Biogenesis of the oxidative phosphorylation system (OXPHOS) requires the coordinated expression of the nuclear and the mitochondrial genomes. Thyroid hormones play an important role in cell growth and differentiation and are one of the main effectors in mitochondrial biogenesis. To determine how mtDNA expression is regulated, we have investigated the response of two different tissues, the heart and liver, to the thyroid hormone status in vivo and in vitro. We show here that mtDNA expression is a tightly regulated process and that several levels of control can take place simultaneously. In addition, we show that the mechanisms operating in the control of mtDNA expression and their relevance differ between the two tissues, being gene dosage important only in heart while transcription rate and translation efficiency have more weight in liver cells. Another interesting difference is the lack of a direct effect of thyroid hormones on heart mitochondrial transcription.
Collapse
Affiliation(s)
- Erika Fernández-Vizarra
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
32
|
Yadava N, Potluri P, Scheffler IE. Investigations of the potential effects of phosphorylation of the MWFE and ESSS subunits on complex I activity and assembly. Int J Biochem Cell Biol 2007; 40:447-60. [PMID: 17931954 DOI: 10.1016/j.biocel.2007.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 11/18/2022]
Abstract
There have been several reports on the phosphorylation of various subunits of NADH-ubiquinone oxidoreductase (complex I) in mammalian mitochondria. The effects of phosphorylation on assembly or activity of these subunits have not been investigated directly. The cAMP-dependent phosphorylation of the MWFE and ESSS subunits in isolated bovine heart mitochondria has been recently reported. We have investigated the significance of potential phosphorylation of these two subunits in complex I assembly and function by mutational analysis of the phosphorylation sites. Chinese hamster mutant cell lines missing either the MWFE or the ESSS subunits were transfected and complemented with the corresponding wild type and mutant cDNAs made by site-directed mutagenesis. In MWFE the serine 55 was substituted by alanine, glutamate, glutamine, and aspartate (S55A, S55E, S55Q, and S55D, respectively). The glutamate substitutions might be expected to mimic the phosphorylated state of the protein. With the exception of the MWFE(S55A) mutant protein the assembly of complex I was completely blocked, and no activity could be detected. Various substitutions in the ESSS protein (S2A, S2E, S8A, S8E, T21A, T21E, S30A, S30E) appeared to cause lower levels of mature protein and a significantly reduced complex I activity measured polarographically. The ESSS (S2/8A) double mutant protein caused a complete failure to assemble. These mutational analyses suggest that if phosphorylation occurs in vivo, the effects on complex I activity are significant.
Collapse
Affiliation(s)
- N Yadava
- Buck Institute for Age Research, Novato, CA 94945, United States
| | | | | |
Collapse
|
33
|
Baryshnikova LM, Croes SA, von Bartheld CS. Classification and Development of Myofiber Types in the Superior Oblique Extraocular Muscle of Chicken. Anat Rec (Hoboken) 2007; 290:1526-41. [DOI: 10.1002/ar.20614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
McClelland GB, Craig PM, Dhekney K, Dipardo S. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J Physiol 2006; 577:739-51. [PMID: 16990399 PMCID: PMC1890438 DOI: 10.1113/jphysiol.2006.119032] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Both exercise training and cold acclimatization induce muscle remodelling in vertebrates, producing a more aerobic phenotype. In ectothermic species exercise training and cold-acclimatization represent distinct stimuli. It is currently unclear if these stimuli act through a common mechanism or if different mechanisms lead to a common phenotype. The goal of this study was to survey responses that represent potential mechanisms responsible for contraction- and temperature-induced muscle remodelling, using an ectothermic vertebrate. Separate groups of adult zebrafish (Danio rerio) were either swim trained or cold acclimatized for 4 weeks. We found that the mitochondrial marker enzyme citrate synthase (CS) was increased by 1.5x in cold and by 1.3x with exercise (P<0.05). Cytochrome c oxidase (COx) was increased by 1.2x following exercise training (P<0.05) and 1.2x (P=0.07) with cold acclimatization. However, only cold acclimatization increased beta-hydroxyacyl-CoA dehydrogenase (HOAD) compared to exercise-trained (by 1.3x) and pyruvate kinase (PK) relative to control zebrafish. We assessed the whole-animal performance outcomes of these treatments. Maximum absolute sustained swimming speed (Ucrit) was increased in the exercise trained group but not in the cold acclimatized group. Real-time PCR analysis indicated that increases in CS are primarily transcriptionally regulated with exercise but not with cold treatments. Both treatments showed increases in nuclear respiratory factor (NRF)-1 mRNA which was increased by 2.3x in cold-acclimatized and 4x in exercise-trained zebrafish above controls. In contrast, peroxisome proliferator-activated receptor (PPAR)-alpha mRNA levels were decreased in both experimental groups while PPAR-beta1 declined in exercise training only. Moreover, PPAR-gamma coactivator (PGC)-1alpha mRNA was not changed by either treatment. In zebrafish, both temperature and exercise produce a more aerobic phenotype, but there are stimulus-dependent responses (i.e. HOAD and PK activities). While similar changes in NRF-1 mRNA suggest that common responses might underlie aerobic muscle remodelling there are distinct changes (i.e. CS and PPAR-beta1 mRNA) that contribute to specific temperature- and exercise-induced phenotypes.
Collapse
Affiliation(s)
- Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | | | | | | |
Collapse
|
35
|
Desquiret V, Loiseau D, Jacques C, Douay O, Malthièry Y, Ritz P, Roussel D. Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:21-30. [PMID: 16375850 DOI: 10.1016/j.bbabio.2005.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/07/2005] [Accepted: 11/09/2005] [Indexed: 12/13/2022]
Abstract
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.
Collapse
Affiliation(s)
- Valérie Desquiret
- Department of Biochemistry and Molecular Biology, INSERM UMR-694, 4 rue Larrey, F-49033 Angers cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Guderley H, Turner N, Else PL, Hulbert AJ. Why are some mitochondria more powerful than others: insights from comparisons of muscle mitochondria from three terrestrial vertebrates. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:172-80. [PMID: 16085440 DOI: 10.1016/j.cbpc.2005.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 06/15/2005] [Accepted: 07/03/2005] [Indexed: 12/13/2022]
Abstract
We studied the molecular composition of muscle mitochondria to evaluate whether the contents of cytochromes or adenine nucleotide translocase (ANT) or phospholipid acyl compositions reflect differences in mitochondrial oxidative capacities. We isolated mitochondria from three vertebrates of similar size and preferred temperature, the rat (Rattus norvegicus), the cane toad (Bufo marinus) and the bearded dragon lizard (Pogona vitticeps). Mitochondrial oxidative capacities were higher in rats and cane toads than in bearded dragon, whether rates were expressed relative to protein, cytochromes or ANT. Inter-specific differences were least pronounced when rates were expressed relative to cytochrome A, a component of cytochrome C oxidase (CCO), or ANT. In mitochondria from rat and cane toad, cytochrome A was more abundant than C followed by B and then C(1), while in bearded dragon mitochondria, the cytochromes were present in roughly equal levels. Analysis of correlations between mitochondrial oxidative capacities and macromolecular components revealed that cytochrome A explained at least half of the intra- and inter-specific variability in substrate oxidation rates. ANT levels were an excellent correlate of state 3 rates while phospholipid contents were correlated with state 4 rates. As the % poly-unsaturation and the % 20:4n-6 in mitochondrial phospholipids were equivalent in toads and rats, and exceeded the levels in lizards, they may contribute to the inter-specific differences in oxidative capacities. We suggest that the numbers of CCO and ANT together with the poly-unsaturation of phospholipids explain the higher oxidative capacities in muscle mitochondria from rats and cane toads.
Collapse
Affiliation(s)
- Helga Guderley
- Helga Guderley, Dép. de biologie, Université Laval, Québec, P.Q. Canada.
| | | | | | | |
Collapse
|
37
|
Lee HC, Wei YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 2005; 37:822-34. [PMID: 15694841 DOI: 10.1016/j.biocel.2004.09.010] [Citation(s) in RCA: 501] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 09/15/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Mitochondrial biogenesis and mitochondrial DNA (mtDNA) maintenance depend on coordinated expression of genes in the nucleus and mitochondria. A variety of intracellular and extracellular signals transmitted by hormones and second messengers have to be integrated to provide mammalian cells with a suitable abundance of mitochondria and mtDNA to meet their energy demand. It has been proposed that reactive oxygen species (ROS) and free radicals generated from respiratory chain are involved in the signaling from mitochondria to the nucleus. Increased oxidative stress may contribute to alterations in the abundance of mitochondria as well as the copy number and integrity of mtDNA in human cells in pathological conditions and in aging process. Within a certain level, ROS may induce stress responses by altering expression of specific nuclear genes to uphold the energy metabolism to rescue the cell. Once beyond the threshold, ROS may cause oxidative damage to mtDNA and other components of the affected cells and to elicit apoptosis by induction of mitochondrial membrane permeability transition and release of pro-apoptotic proteins such as cytochrome c. On the basis of recent findings gathered from this and other laboratories, we review the alterations in the abundance of mitochondria and mtDNA copy number of mammalian cells in response to oxidative stress and the signaling pathways that are involved.
Collapse
Affiliation(s)
- Hsin-Chen Lee
- Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | | |
Collapse
|
38
|
Moyes CD, LeMoine CMR. Control of muscle bioenergetic gene expression: implications for allometric scaling relationships of glycolytic and oxidative enzymes. J Exp Biol 2005; 208:1601-10. [PMID: 15855391 DOI: 10.1242/jeb.01502] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SUMMARY
Muscle metabolic properties vary with body size, with larger animals relying relatively less on oxidative metabolism as a result of lower specific activities of mitochondrial enzymes and greater specific activities of glycolytic enzymes. While many have argued reasons why such relationships might be grounded in physical relationships, an explanation for the regulatory basis of the differences in enzyme levels remains unexplored. Focusing on skeletal muscle, we review potential cellular and genetic explanations for the relationship between bioenergetic enzymes and body mass. Differences in myonuclear domain (the ratio of fiber volume to nuclei number) in conjunction with constitutive expression may explain part of the variation in mitochondrial content among fiber types and species. Superimposed on such constitutive determinants are (1) extrinsic signalling pathways that control the muscle contractile and metabolic phenotype and (2) intrinsic signalling pathways that translate changes in cellular milieu (ions, metabolites, oxygen,redox) arising through the contractile phenotype into changes in enzyme synthesis. These signalling pathways work through transcriptional regulation,as well as post-transcriptional, translational and post-translational regulation, acting via synthesis and degradation.
Collapse
|
39
|
McClelland GB. Fat to the fire: the regulation of lipid oxidation with exercise and environmental stress. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:443-60. [PMID: 15544967 DOI: 10.1016/j.cbpc.2004.07.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 07/20/2004] [Accepted: 07/20/2004] [Indexed: 11/22/2022]
Abstract
Lipids are an important fuel for submaximal aerobic exercise. The ways in which lipid oxidation is regulated during locomotion is an area of active investigation. Indeed, the integration between cellular regulation of lipid metabolism and whole-body exercise performance is a fascinating but often overlooked research area. Additionally, the interaction between environmental stress, exercise, and lipid oxidation has not been sufficiently examined. There are many functional and structural steps as fatty acids are mobilized, transported, and oxidized in working muscle, which may serve either as regulatory points for responding to acute or chronic stimuli or as raw material for natural selection. At the whole-animal level, the partitioning of lipids and carbohydrates across exercise intensities is remarkably similar among mammals, which suggests that there is conservation in regulatory mechanisms. Conversely, the proportions of circulatory and intramuscular fuels differ between species and across exercise intensities. Responses to acute and chronic environmental stress likely involve the interaction of genetic and nongenetic changes in the fatty acid pathway. Determining which of these factors help regulate the fatty acid pathway and what impact they have on whole-animal lipid oxidation and performance is an important area of future research. Using an integrative approach to complete the information loop from gene to physiological function provides the most powerful mode of analysis.
Collapse
Affiliation(s)
- Grant B McClelland
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada L8S 4K1.
| |
Collapse
|
40
|
McClelland GB, Dalziel AC, Fragoso NM, Moyes CD. Muscle remodeling in relation to blood supply: implications for seasonal changes in mitochondrial enzymes. ACTA ACUST UNITED AC 2005; 208:515-22. [PMID: 15671340 DOI: 10.1242/jeb.01423] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated if seasonal changes in rainbow trout muscle energetics arise in response to seasonal changes in erythrocyte properties. We assessed if skeletal muscle mitochondrial enzymes changed (1) acutely in response to changes in erythrocyte abundance, or (2) seasonally when we altered the age profile of erythrocytes. Rainbow trout were treated with pheynylhydrazine, causing a 75% reduction in hematocrit within 4 days. After erythropoiesis had returned hematocrit to normal, treated and control fish were subjected to a seasonal cold acclimation regime to assess the impact of erythrocyte age on skeletal muscle remodeling. Anemia (i.e. phenylhydrazine treatment) did not alter the specific activities (U g(-1) tissue) of mitochondrial enzymes in white or red muscle. Anemic pretreatment did not alter the normal pattern of cold-induced mitochondrial proliferation in skeletal muscle, suggesting erythrocyte age was not an important influence on seasonal remodeling of muscle. Anemia and cold acclimation both induced a 25-30% increase in relative ventricular mass. The increase in relative ventricular mass with phenylhydrazine treatment was accompanied by a 35% increase in DNA content (mg DNA per ventricle), suggesting an increase in number of cells. In contrast, the increase in ventricular mass with cold temperature acclimation occurred without a change in DNA content (mg DNA per ventricle), suggesting an increase in cell size. Despite the major increases in relative ventricular mass, neither anemia nor seasonal acclimation had a major influence on the specific activities of a suite of mitochondrial enzymes in heart. Collectively, these studies argue against a role for erythrocyte dynamics in seasonal adaptive remodeling of skeletal muscle energetics.
Collapse
Affiliation(s)
- G B McClelland
- Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | | | | | | |
Collapse
|
41
|
Koopman WJH, Verkaart S, Visch HJ, van der Westhuizen FH, Murphy MP, van den Heuvel LWPJ, Smeitink JAM, Willems PHGM. Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth. Am J Physiol Cell Physiol 2005; 288:C1440-50. [PMID: 15647387 DOI: 10.1152/ajpcell.00607.2004] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent evidence indicates that oxidative stress is central to the pathogenesis of a wide variety of degenerative diseases, aging, and cancer. Oxidative stress occurs when the delicate balance between production and detoxification of reactive oxygen species is disturbed. Mammalian cells respond to this condition in several ways, among which is a change in mitochondrial morphology. In the present study, we have used rotenone, an inhibitor of complex I of the respiratory chain, which is thought to increase mitochondrial O(2)(-)* production, and mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to investigate the relationship between mitochondrial O(2)(-)* production and morphology in human skin fibroblasts. Video-rate confocal microscopy of cells pulse loaded with the mitochondria-specific cation rhodamine 123, followed by automated analysis of mitochondrial morphology, revealed that chronic rotenone treatment (100 nM, 72 h) significantly increased mitochondrial length and branching without changing the number of mitochondria per cell. In addition, this treatment caused a twofold increase in lipid peroxidation as determined with C11-BODIPY(581/591). Finally, digital imaging microscopy of cells loaded with hydroethidine, which is oxidized by O(2)(-)* to yield fluorescent ethidium, revealed that chronic rotenone treatment caused a twofold increase in the rate of O(2)(-)* production. MitoQ (10 nM, 72 h) did not interfere with rotenone-induced ethidium formation but abolished rotenone-induced outgrowth and lipid peroxidation. These findings show that increased mitochondrial O(2)(-)* production as a consequence of, for instance, complex I inhibition leads to mitochondrial outgrowth and that MitoQ acts downstream of this O(2)(-)* to prevent alterations in mitochondrial morphology.
Collapse
Affiliation(s)
- Werner J H Koopman
- Microscopal Imaging Center, Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
PÖrtner H, Lucassen M, Storch D. Metabolic Biochemistry: Its Role in Thermal Tolerance and in the Capacities of Physiological and Ecological Function. FISH PHYSIOLOGY 2005. [DOI: 10.1016/s1546-5098(04)22003-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
43
|
Dalziel AC, Moore SE, Moyes CD. Mitochondrial enzyme content in the muscles of high-performance fish: evolution and variation among fiber types. Am J Physiol Regul Integr Comp Physiol 2005; 288:R163-72. [PMID: 15374817 DOI: 10.1152/ajpregu.00152.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle mitochondrial content varies widely among fiber types and species. We investigated the origins of variation in the activity of the mitochondrial enzyme citrate synthase (CS), an index of mitochondrial abundance, among fiber types and species of high-performance fish (tunas and billfishes). CS activities varied up to 30-fold among muscles: lowest in billfish white muscle and highest in billfish heater organ. Among species, CS activities of red, white, and cardiac muscles of three tuna species were twofold greater than the homologous muscles of two billfish species. Because comparisons of CS amino acid sequences deduced from a combination of PCR methods argue against clade-specific differences in catalytic properties, CS activity reflects CS content among these five species. To assess the bases of these differences in CS activity, we looked at the relationship between CS activity (U/g muscle), nuclear content (DNA/g muscle), and CS transcript levels (CS mRNA/g RNA). Muscle CS activity differed by 10- to 30-fold when expressed per gram of muscle but only threefold when expressed per milligram of DNA. Thus it is nuclear DNA content, not fiber-type differences, in CS gene expression that may be the main determinant of CS activity in muscle. Conversely, evolutionary (tunas vs. billfishes) differences in CS arise from differences in posttranscriptional regulation, based on relationships between CS enzyme levels and CS mRNA assessed by quantitative competitive RT-PCR. These data argue that fiber-type differences can arise without major differences in fiber-type-specific regulation of the CS gene, whereas evolutionary differences may be largely due to posttranscriptional regulation.
Collapse
Affiliation(s)
- Anne C Dalziel
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
44
|
Moyes CD. Using humans to study the physiological evolution of energy metabolism: a tribute to Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:487-94. [PMID: 15544970 DOI: 10.1016/j.cbpc.2004.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/23/2004] [Accepted: 04/06/2004] [Indexed: 01/01/2023]
Abstract
Comparative physiology traditionally relies on unusual animals to explore the mechanistic basis or evolution of physiological processes. Despite his credentials as a comparative physiologist, much of the recent work by Peter Hochachka relied upon humans as "comparative" models. Technological advances in clinical analyses and expanding databases of genomic diversity have made humans a very "convenient" model to study the evolution of metabolism. For example, a growing number of metabolic diseases have been shown to have a genetic basis. Obesity, type II diabetes, metabolic syndrome X may each have linkages to polymorphisms in genes encoding transcriptional regulators of bioenergetic genes. Genetic polymorphisms and gene families for these important transcription factors inspire questions about the evolution of energy metabolism in other animals. Thus, these biomedical studies provide important direction for researchers interested in exploring the regulatory basis of interspecies variations in bioenergetics.
Collapse
Affiliation(s)
- Christopher D Moyes
- Department of Biology, Queen's University, Bioscience Complex, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
45
|
Suarez RK, Darveau CA, Childress JJ. Metabolic scaling: a many-splendoured thing. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:531-41. [PMID: 15544974 DOI: 10.1016/j.cbpc.2004.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Revised: 04/26/2004] [Accepted: 05/05/2004] [Indexed: 11/21/2022]
Abstract
Animals at rest and during exercise display rates of aerobic metabolism, VO2, that represent mainly the sum of mitochondrial respiration rates in various organs. The relative contributions of these organs change with physiological state such that internal organs such as liver, kidney and brain account for most of the whole-body VO2 at rest, while locomotory muscles account for >90% of the maximum rate, VO2max, during maximal aerobic exercise. Mechanisms that regulate VO2 are complex and the relative importance of each step in a series, estimated by metabolic control analysis, depends upon the level of biological organization under consideration as well as physiological state. Despite this complexity, prominent single-cause models propose that metabolic rates are supply-limited and that the scaling of supply systems provides a sufficient explanation for the allometric scaling of metabolism. We argue that some assumptions, as well as current interpretations of the meaning (or consequences) of these constraints are flawed, i.e., elephants do not have lower mass-specific basal or maximal rates of aerobic metabolism because their mitochondria are more supply-limited than those of shrews. Animals do not violate the laws of physics, and the allometric scaling of supply systems would be expected, to some extent, to be matched by capacities for (and rates of) energy expenditure. But life is not so simple. Animals are so diverse that to do justice to metabolic scaling, it is also necessary to consider the scaling of energy expenditure. It is by doing so that models of metabolic scaling can be consistent with current paradigms in metabolic regulation and accommodate the range of inter- and intraspecific exponents found in nature. The "allometric cascade," a first attempt at such an accounting, was a source of great satisfaction to Peter Hochachka. It was the last door that he helped open to comparative physiologists before he said goodbye.
Collapse
Affiliation(s)
- Raul K Suarez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA.
| | | | | |
Collapse
|
46
|
Abstract
For most fish, body temperature is very close to that of the habitat. The diversity of thermal habitats exploited by fish as well as their capacity to adapt to thermal change makes them excellent organisms in which to examine the evolutionary and phenotypic responses to temperature. An extensive literature links cold temperatures with enhanced oxidative capacities in fish tissues, particularly skeletal muscle. Closer examination of inter-species comparisons (i.e. the evolutionary perspective) indicates that the proportion of muscle fibres occupied by mitochondria increases at low temperatures, most clearly in moderately active demersal species. Isolated muscle mitochondria show no compensation of protein-specific rates of substrate oxidation during evolutionary adaptation to cold temperatures. During phenotypic cold acclimation, mitochondrial volume density increases in oxidative muscle of some species (striped bass Morone saxatilis, crucian carp Carassius carassius), but remains stable in others (rainbow trout Oncorhynchus mykiss). A role for the mitochondrial reticulum in distributing oxygen through the complex architecture of skeletal muscle fibres may explain mitochondrial proliferation. In rainbow trout, compensatory increases in the protein-specific rates of mitochondrial substrate oxidation maintain constant capacities except at winter extremes. Changes in mitochondrial properties (membrane phospholipids, enzymatic complement and cristae densities) can enhance the oxidative capacity of muscle in the absence of changes in mitochondrial volume density. Changes in the unsaturation of membrane phospholipids are a direct response to temperature and occur in isolated cells. This fundamental response maintains the dynamic phase behaviour of the membrane and adjusts the rates of membrane processes. However, these adjustments may have deleterious consequences. For fish living at low temperatures, the increased polyunsaturation of mitochondrial membranes should raise rates of mitochondrial respiration which would in turn enhance the formation of reactive oxygen species (ROS), increase proton leak and favour peroxidation of these membranes. Minimisation of mitochondrial oxidative capacities in organisms living at low temperatures would reduce such damage.
Collapse
Affiliation(s)
- Helga Guderley
- Département de biologie, Université Laval, Québec, P.Q. Canada G1K 7P4
| |
Collapse
|
47
|
Abstract
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus that influences many cellular and organismal activities under both normal and pathophysiological conditions. In yeast it is used as a sensor of mitochondrial dysfunction that initiates readjustments of carbohydrate and nitrogen metabolism. In both yeast and animal cells, retrograde signaling is linked to TOR signaling, but the precise connections are unclear. In mammalian cells, mitochondrial dysfunction sets off signaling cascades through altered Ca(2+) dynamics, which activate factors such as NFkappaB, NFAT, and ATF. Retrograde signaling also induces invasive behavior in otherwise nontumorigenic cells implying a role in tumor progression.
Collapse
Affiliation(s)
- Ronald A Butow
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
48
|
Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 2004; 101:6472-7. [PMID: 15087503 PMCID: PMC404069 DOI: 10.1073/pnas.0308686101] [Citation(s) in RCA: 500] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 03/13/2004] [Indexed: 12/12/2022] Open
Abstract
Estrogen-related receptor alpha (ERRalpha) is one of the first orphan nuclear receptors to be identified, yet its physiological functions are still unclear. We show here that ERRalpha is an effector of the transcriptional coactivator PGC-1alpha [peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha], and that it regulates the expression of genes involved in oxidative phosphorylation and mitochondrial biogenesis. Inhibition of ERRalpha compromises the ability of PGC-1alpha to induce the expression of genes encoding mitochondrial proteins and to increase mitochondrial DNA content. A constitutively active form of ERRalpha is sufficient to elicit both responses. ERRalpha binding sites are present in the transcriptional control regions of ERRalpha/PGC-1alpha-induced genes and contribute to the transcriptional response to PGC-1alpha. The ERRalpha-regulated genes described here have been reported to be expressed at reduced levels in humans that are insulin-resistant. Thus, changes in ERRalpha activity could be linked to pathological changes in metabolic disease, such as diabetes.
Collapse
|
49
|
Abstract
Mitochondrial content, a chief determinant of aerobic capacity, varies widely among muscle types and species. Mitochondrial enzyme levels in vertebrate skeletal muscles vary more than 100-fold, from fish white muscle to bird flight muscles. Recent studies have shed light on the transcriptional regulators that control mitochondrial gene expression in muscle fiber differentiation and development, and in the context of pathological conditions such as neuromuscular disease and obesity. While the transcriptional co-activator PGC-1alpha (peroxisome proliferator-activated receptor gamma co-activator 1) has emerged as a master controller of mitochondrial gene expression, it is important to consider other mechanisms by which coordinated changes in mitochondrial content could arise. These studies, largely using biomedical models, provide important information for comparative biologists interested in the mechanistic basis of inter-species variation in muscle aerobic capacity.
Collapse
Affiliation(s)
- Christopher D Moyes
- Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
50
|
McClelland GB, Kraft CS, Michaud D, Russell JC, Mueller CR, Moyes CD. Leptin and the control of respiratory gene expression in muscle. Biochim Biophys Acta Mol Basis Dis 2004; 1688:86-93. [PMID: 14732484 DOI: 10.1016/j.bbadis.2003.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Leptin plays a central role in the regulation of fatty acid homeostasis, promoting lipid storage in adipose tissue and fatty acid oxidation in peripheral tissues. Loss of leptin signaling leads to accumulation of lipids in muscle and loss of insulin sensitivity secondary to obesity. In this study, we examined the direct and indirect effects of leptin signaling on mitochondrial enzymes including those essential for peripheral fatty acid oxidation. We assessed the impact of leptin using the JCR:LA-cp rat, which lacks functional leptin receptors. The activities of marker mitochondrial enzymes citrate synthase (CS) and cytochrome oxidase (COX) were similar between wild-type (+/?) and corpulent (cp/cp) rats. In contrast, several tissues showed variations in the fatty acid oxidizing enzymes carnitine palmitoyltransferase II (CPT II), long-chain acyl-CoA dehydrogenase (LCAD) and 3-hydroxyacyl-CoA dehydrogenase (HOAD). It was not clear if these changes were due to loss of leptin signaling or to insulin insensitivity. Consequently, we examined the effects of leptin on cultured C(2)C(12) and Sol8 cells. Leptin (3 days at 0, 0.2, or 2.0 nM) had no direct effect on the activities of CS, COX, or fatty acid oxidizing enzymes. Leptin treatment did not affect luciferase-based reporter genes under the control of transcription factors involved in mitochondrial biogenesis (nuclear respiratory factor-1 (NRF-1), nuclear respiratory factor-2 (NRF-2)) or fatty acid enzyme expression (peroxisome proliferator-activated receptors (PPARs)). These studies suggest that leptin exerts only indirect effects on mitochondrial gene expression in muscle, possibly arising from insulin resistance.
Collapse
MESH Headings
- 3-Hydroxyacyl CoA Dehydrogenases/biosynthesis
- Acyl-CoA Dehydrogenase, Long-Chain/biosynthesis
- Animals
- Carnitine O-Palmitoyltransferase/biosynthesis
- Cells, Cultured
- Citrate (si)-Synthase/biosynthesis
- Electron Transport Complex IV/biosynthesis
- Gene Expression Regulation
- In Vitro Techniques
- Leptin/biosynthesis
- Leptin/genetics
- Leptin/pharmacology
- Leptin/physiology
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/enzymology
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Models, Animal
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Myoblasts/drug effects
- Myoblasts/metabolism
- Obesity/enzymology
- Obesity/genetics
- RNA, Messenger/analysis
- Rats
- Transfection
Collapse
Affiliation(s)
- G B McClelland
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|