1
|
Ontiveros I, Diaz-Pendón JA, López-Moya JJ. Experimental Transmission of Plant Viruses by Aphids or Whiteflies. Methods Mol Biol 2024; 2724:165-179. [PMID: 37987905 DOI: 10.1007/978-1-0716-3485-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Numerous species of plant viruses are naturally transmitted by insect vectors, mainly homopterans like aphids and whiteflies. Depending on the vector specificity and the mode of transmission, different durations of the periods for acquisition, retention, and inoculation are required for a successful transmission. Therefore, the experimental setup to perform controlled transmission experiments under laboratory conditions involves handling the vector organisms and managing the times for the different steps of the process to optimize and standardize the results. This chapter describes some basic procedures that can be applied to vector-mediated transmission experiments with selected viruses using aphids or whiteflies and different host plants.
Collapse
Affiliation(s)
- Irene Ontiveros
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, Málaga, Spain
| | - Juan Antonio Diaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, Málaga, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, Málaga, Spain.
| |
Collapse
|
2
|
Norberg A, Susi H, Sallinen S, Baran P, Clark NJ, Laine AL. Direct and indirect viral associations predict coexistence in wild plant virus communities. Curr Biol 2023; 33:1665-1676.e4. [PMID: 37019108 DOI: 10.1016/j.cub.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
Viruses are a vastly underestimated component of biodiversity that occur as diverse communities across hierarchical scales from the landscape level to individual hosts. The integration of community ecology with disease biology is a powerful, novel approach that can yield unprecedented insights into the abiotic and biotic drivers of pathogen community assembly. Here, we sampled wild plant populations to characterize and analyze the diversity and co-occurrence structure of within-host virus communities and their predictors. Our results show that these virus communities are characterized by diverse, non-random coinfections. Using a novel graphical network modeling framework, we demonstrate how environmental heterogeneity influences the network of virus taxa and how the virus co-occurrence patterns can be attributed to non-random, direct statistical virus-virus associations. Moreover, we show that environmental heterogeneity changed virus association networks, especially through their indirect effects. Our results highlight a previously underestimated mechanism of how environmental variability can influence disease risks by changing associations between viruses that are conditional on their environment.
Collapse
Affiliation(s)
- Anna Norberg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7034 Trondheim, Norway.
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Pezhman Baran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Nicholas J Clark
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, QL 4343, Australia
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| |
Collapse
|
3
|
Verdier M, Chesnais Q, Pirolles E, Blanc S, Drucker M. The cauliflower mosaic virus transmission helper protein P2 modifies directly the probing behavior of the aphid vector Myzus persicae to facilitate transmission. PLoS Pathog 2023; 19:e1011161. [PMID: 36745680 PMCID: PMC9934384 DOI: 10.1371/journal.ppat.1011161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that plant viruses manipulate their hosts and vectors in ways that increase transmission. However, to date only few viral components underlying these phenomena have been identified. Here we show that cauliflower mosaic virus (CaMV) protein P2 modifies the feeding behavior of its aphid vector. P2 is necessary for CaMV transmission because it mediates binding of virus particles to the aphid mouthparts. We compared aphid feeding behavior on plants infected with the wild-type CaMV strain Cabb B-JI or with a deletion mutant strain, Cabb B-JIΔP2, which does not produce P2. Only aphids probing Cabb B-JI infected plants doubled the number of test punctures during the first contact with the plant, indicating a role of P2. Membrane feeding assays with purified P2 and virus particles confirmed that these viral products alone are sufficient to cause the changes in aphid probing. The behavior modifications were not observed on plants infected with a CaMV mutant expressing P2Rev5, unable to bind to the mouthparts. These results are in favor of a virus manipulation, where attachment of P2 to a specific region in the aphid stylets-the acrostyle-exercises a direct effect on vector behavior at a crucial moment, the first vector contact with the infected plant, which is essential for virus acquisition.
Collapse
Affiliation(s)
- Maxime Verdier
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France
| | - Quentin Chesnais
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| | - Elodie Pirolles
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Stéphane Blanc
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Martin Drucker
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| |
Collapse
|
4
|
Hong SF, Fang RY, Wei WL, Jirawitchalert S, Pan ZJ, Hung YL, Pham TH, Chiu YH, Shen TL, Huang CK, Lin SS. Development of an assay system for the analysis of host RISC activity in the presence of a potyvirus RNA silencing suppressor, HC-Pro. Virol J 2023; 20:10. [PMID: 36650505 PMCID: PMC9844029 DOI: 10.1186/s12985-022-01956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND To investigate the mechanism of RNA silencing suppression, the genetic transformation of viral suppressors of RNA silencing (VSRs) in Arabidopsis integrates ectopic VSR expression at steady state, which overcomes the VSR variations caused by different virus infections or limitations of host range. Moreover, identifying the insertion of the transgenic VSR gene is necessary to establish a model transgenic plant for the functional study of VSR. METHODS Developing an endogenous AGO1-based in vitro RNA-inducing silencing complex (RISC) assay prompts further investigation into VSR-mediated suppression. Three P1/HC-Pro plants from turnip mosaic virus (TuMV) (P1/HC-ProTu), zucchini yellow mosaic virus (ZYMV) (P1/HC-ProZy), and tobacco etch virus (TEV) (P1/HC-ProTe) were identified by T-DNA Finder and used as materials for investigations of the RISC cleavage efficiency. RESULTS Our results indicated that the P1/HC-ProTu plant has slightly lower RISC activity than P1/HC-ProZy plants. In addition, the phenomena are consistent with those observed in TuMV-infected Arabidopsis plants, which implies that HC-ProTu could directly interfere with RISC activity. CONCLUSIONS In this study, we demonstrated the application of various plant materials in an in vitro RISC assay of VSR-mediated RNA silencing suppression.
Collapse
Affiliation(s)
- Syuan-Fei Hong
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Ru-Ying Fang
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Wei-Lun Wei
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Supidcha Jirawitchalert
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Zhao-Jun Pan
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Yu-Ling Hung
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Thanh Ha Pham
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Yen-Hsin Chiu
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan ,grid.453140.70000 0001 1957 0060Seed Improvement and Propagation Station, Council of Agriculture, Taichung, 427 Taiwan
| | - Tang-Long Shen
- grid.19188.390000 0004 0546 0241Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106 Taiwan ,grid.19188.390000 0004 0546 0241Center of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Chien-Kang Huang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan. .,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
5
|
Lu C, Jin D, Zhang L, Lu G, Ji Y, Zhou Y, Wang Y, Li S. A rice plant expressing viral glycoprotein NSvc2-N S reduces the transmission of rice stripe virus by the small brown planthopper. PEST MANAGEMENT SCIENCE 2022; 78:5325-5333. [PMID: 36039706 DOI: 10.1002/ps.7155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plant viruses transmitted by arthropod vectors threaten crop health worldwide. Rice stripe virus (RSV) is one of the most important rice viruses in East Asia and is transmitted by the small brown planthopper (SBPH). Previously, it was demonstrated that the viral glycoprotein NSvs2-N could mediate RSV infection of the vector midgut. Therefore, NSvc2-N protein could potentially be used to reduce RSV transmission by competitively blocking midgut receptors. RESULTS Here, we report that transgenic rice plants expressing viral glycoprotein can interfere with RSV acquisition and transmission by SBPH. The soluble fraction (30-268 amino acids, designated NSvs2-NS ) of NSvs2-N was transformed into rice calli, which produced plants harboring the exogenous gene. When SBPH was fed on transgenic plants prior to RSV-infected rice (sequential feeding) and when insects were fed on RSV-infected transgenic plants (concomitant feeding), virus acquisition by the insect vector was inhibited, and subsequent viral titers were reduced. Immunofluorescence labeling also indicated that viral infection of the insect midgut was inhibited after SBPH was fed on transgenic plants. The system by which RSV infected insect cells in vitro was used to corroborate the role of NSvc2-NS in reducing viral infection. After the cells were incubated with transgenic rice sap, the virus infection rate of the cells decreased significantly, and viral accumulation in the cells was lower than that in the control group. CONCLUSION These results demonstrated the negative effect of NSvs2-NS transgenic plants on RSV transmission by insect vectors, which provides a novel and effective way to control plant viral diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengye Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, P. R. China
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Daoran Jin
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Lujie Zhang
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, P. R. China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| |
Collapse
|
6
|
Tran TTY, Lin TT, Chang CP, Chen CH, Nguyen VH, Yeh SD. Generation of Mild Recombinants of Papaya Ringspot Virus to Minimize the Problem of Strain-Specific Cross-Protection. PHYTOPATHOLOGY 2022; 112:708-719. [PMID: 34384243 DOI: 10.1094/phyto-06-21-0272-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Papaya ringspot virus (PRSV) causes severe damage to papaya (Carica papaya L.) and is the primary limiting factor for papaya production worldwide. A nitrous acid-induced mild strain, PRSV HA 5-1, derived from Hawaii strain HA, has been applied to control PRSV by cross-protection for decades. However, the problem of strain-specific protection hampers its application in Taiwan and other geographic regions outside Hawaii. Here, sequence comparison of the genomic sequence of HA 5-1 with that of HA revealed 69 nucleotide changes, resulting in 31 aa changes, of which 16 aa are structurally different. The multiple mutations of HA 5-1 are considered to result from nitrous acid induction because 86% of nucleotide changes are transition mutations. The stable HA 5-1 was used as a backbone to generate recombinants carrying individual 3' fragments of Vietnam severe strain TG5, including NIa, NIb, and CP3' regions, individually or in combination. Our results indicated that the best heterologous fragment for the recombinant is the region of CP3', with which symptom attenuation of the recombinant is like that of HA 5-1. This mild recombinant HA51/TG5-CP3' retained high levels of protection against the homologous HA in papaya plants and significantly increased the protection against the heterologous TG-5. Similarly, HA 5-1 recombinants carrying individual CP3' fragments from Thailand SMK, Taiwan YK, and Vietnam ST2 severe strains also significantly increase protection against the corresponding heterologous strains in papaya plants. Thus, our recombinant approach for mild strain generation is a fast and effective way to minimize the problem of strain-specific protection.
Collapse
Affiliation(s)
- Thi-Thu-Yen Tran
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Southern Horticultural Research Institute, TienGiang, Vietnam
| | - Tzu-Tung Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chung-Ping Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chun-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Van-Hoa Nguyen
- Southern Horticultural Research Institute, TienGiang, Vietnam
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Vietnam Overseas Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
7
|
Xu XJ, Zhu Q, Jiang SY, Yan ZY, Geng C, Tian YP, Li XD. Development and Evaluation of Stable Sugarcane Mosaic Virus Mild Mutants for Cross-Protection Against Infection by Severe Strain. FRONTIERS IN PLANT SCIENCE 2021; 12:788963. [PMID: 34975975 PMCID: PMC8718998 DOI: 10.3389/fpls.2021.788963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 05/26/2023]
Abstract
Sugarcane mosaic virus (SCMV; genus Potyvirus) induces maize dwarf mosaic disease that has caused serious yield losses of maize in China. Cross-protection is one of the efficient strategies to fight against severe virus strains. Although many mild strains have been identified, the spontaneous mutation is one of the challenging problems affecting their application in cross-protection. In this study, we found that the substitution of cysteine (C) at positions 57 or 60 in the zinc finger-like motif of HC-Pro with alanine (A; C57A or C60A) significantly reduced its RNA silencing suppression activity and SCMV virulence. To reduce the risk of mild strains mutating to virulent ones by reverse or complementary mutations, we obtained attenuated SCMV mutants with double-mutations in the zinc finger-like and FRNK motifs of HC-Pro and evaluated their potential application in cross-protection. The results showed that the maize plants infected with FKNK/C60A double-mutant showed symptomless until 95 days post-inoculation and FKNK/C60A cross-protected plants displayed high resistance to severe SCMV strain. This study provides theoretical and material bases for the control of SCMV through cross-protection.
Collapse
|
8
|
Mondal S, Wintermantel WM, Gray SM. Virus and helper component interactions favour the transmission of recombinant potato virus Y strains. J Gen Virol 2021; 102. [PMID: 34161221 DOI: 10.1099/jgv.0.001620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, several recombinant strains of potato virus Y, notably PVYNTN and PVYN:O have displaced the ordinary strain, PVYO, and emerged as the predominant strains affecting the USA potato crop. Previously we reported that recombinant strains were transmitted more efficiently than PVYO when they were acquired sequentially, regardless of acquisition order. In another recent study, we showed that PVYNTN binds preferentially to the aphid stylet over PVYO when aphids feed on a mixture of PVYO and PVYNTN. To understand the mechanism of this transmission bias as well as preferential virus binding, we separated virus and active helper component proteins (HC), mixed them in homologous and heterologous combinations, and then fed them to aphids using Parafilm sachets. Mixtures of PVYO HC with either PVYN:O or PVYNTN resulted in efficient transmission. PVYN:O HC also facilitated the transmission of PVYO and PVYNTN, albeit with reduced efficiency. PVYNTN HC failed to facilitate transmission of either PVYO or PVYN:O. When PVYO HC or PVYN:O HC was mixed with equal amounts of the two viruses, both viruses in all combinations were transmitted at high efficiencies. In contrast, no transmission occurred when combinations of viruses were mixed with PVYNTN HC. Further study evaluated transmission using serial dilutions of purified virus mixed with HCs. While PVYNTN HC only facilitated the transmission of the homologous virus, the HCs of PVYO and PVYN:O facilitated the transmission of all strains tested. This phenomenon has likely contributed to the increase in the recombinant strains affecting the USA potato crop.
Collapse
Affiliation(s)
- Shaonpius Mondal
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
- Present address: USDA-ARS, Crop Improvement and Protection Research Unit, CA 93905, Salinas, USA
| | | | - Stewart M Gray
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
- USDA-ARS, Emerging Pests and Pathogen Research Unit, Ithaca, NY 14853-5904, USA
| |
Collapse
|
9
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Jiménez J, Moreno A, Fereres A. Semipersistently Transmitted, Phloem Limited Plant Viruses Are Inoculated during the First Subphase of Intracellular Stylet Penetrations in Phloem Cells. Viruses 2021; 13:v13010137. [PMID: 33478068 PMCID: PMC7835983 DOI: 10.3390/v13010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
The green peach aphid Myzus persicae Sulzer is the main vector of the semipersistently transmitted and phloem-limited Beet yellows virus (BYV, Closterovirus). Studies monitoring the M. persicae probing behavior by using the Electrical penetration graphs (EPG) technique revealed that inoculation of BYV occurs during unique brief intracellular punctures (phloem-pds) produced in companion and/or sieve element cells. Intracellular stylet punctures (or pds) are subdivided in three subphases (II-1, II-2 and II-3), which have been related to the delivery or uptake of non-phloem limited viruses transmitted in a non-persistent or semipersistent manner. As opposed to non-phloem limited viruses, the specific pd subphase(s) involved in the successful delivery of phloem limited viruses by aphids remain unknown. Therefore, we monitored the feeding process of BYV-carrying M. persicae individuals in sugar beet plants by the EPG technique and the feeding process was artificially terminated at each phloem-pd subphase. Results revealed that aphids that only performed the subphase II-1 of the phloem-pd transmitted BYV at similar efficiency than those allowed to perform subphase II-2 or the complete phloem-pd. This result suggests that BYV inoculation occurs during the first subphase of the phloem-pd. The specific transmission mechanisms involved in BYV delivery in phloem cells are discussed.
Collapse
|
11
|
Agranovsky A. Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission. Cells 2021; 10:cells10010090. [PMID: 33430410 PMCID: PMC7827187 DOI: 10.3390/cells10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/02/2022] Open
Abstract
Vector transmission of plant viruses is basically of two types that depend on the virus helper component proteins or the capsid proteins. A number of plant viruses belonging to disparate groups have developed unusual capsid proteins providing for interactions with the vector. Thus, cauliflower mosaic virus, a plant pararetrovirus, employs a virion associated p3 protein, the major capsid protein, and a helper component for the semi-persistent transmission by aphids. Benyviruses encode a capsid protein readthrough domain (CP-RTD) located at one end of the rod-like helical particle, which serves for the virus transmission by soil fungal zoospores. Likewise, the CP-RTD, being a minor component of the luteovirus icosahedral virions, provides for persistent, circulative aphid transmission. Closteroviruses encode several CPs and virion-associated proteins that form the filamentous helical particles and mediate transmission by aphid, whitefly, or mealybug vectors. The variable strategies of transmission and evolutionary ‘inventions’ of the unusual capsid proteins of plant RNA viruses are discussed.
Collapse
|
12
|
Abstract
Of the approximately 1,200 plant virus species that have been described to date, nearly one-third are single-stranded DNA (ssDNA) viruses, and all are transmitted by insect vectors. However, most studies of vector transmission of plant viruses have focused on RNA viruses. All known plant ssDNA viruses belong to two economically important families, Geminiviridae and Nanoviridae, and in recent years, there have been increased efforts to understand whether they have evolved similar relationships with their respective insect vectors. This review describes the current understanding of ssDNA virus-vector interactions, including how these viruses cross insect vector cellular barriers, the responses of vectors to virus circulation, the possible existence of viral replication within insect vectors, and the three-way virus-vector-plant interactions. Despite recent breakthroughs in our understanding of these viruses, many aspects of plant ssDNA virus transmission remain elusive. More effort is needed to identify insect proteins that mediate the transmission of plant ssDNA viruses and to understand the complex virus-insect-plant three-way interactions in the field during natural infection.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Stéphane Blanc
- Plant Health Institute of Montpellier, Univ Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, Montpellier, France;
| |
Collapse
|
13
|
Zhao J, Lei T, Zhang XJ, Yin TY, Wang XW, Liu SS. A vector whitefly endocytic receptor facilitates the entry of begomoviruses into its midgut cells via binding to virion capsid proteins. PLoS Pathog 2020; 16:e1009053. [PMID: 33270808 PMCID: PMC7714154 DOI: 10.1371/journal.ppat.1009053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Many circulative plant viruses transmitted by insect vectors are devastating to agriculture worldwide. The midgut wall of vector insects represents a major barrier and at the same time the key gate a circulative plant virus must cross for productive transmission. However, how these viruses enter insect midgut cells remains poorly understood. Here, we identified an endocytic receptor complex for begomoviruses in the midgut cells of their whitefly vector. Our results show that two whitefly proteins, BtCUBN and BtAMN, compose a receptor complex BtCubam, for which BtCUBN contributes a viral-binding region and BtAMN contributes to membrane anchorage. Begomoviruses appear to be internalized together with BtCubam via its interaction with the 12–19 CUB domains of BtCUBN via clathrin-dependent endocytosis. Functional analysis indicates that interruption of BtCUBN and BtAMN lead to reduction of virus acquisition and transmission by whitefly. In contrast, CUBN-begomovirus interaction was not observed in two non-competent whitefly-begomovirus combinations. These observations suggest a major role of the specific endocytic receptor in facilitating viral entry into vector midgut cells. Many viruses depend on insect vectors for transmission and spread. Following ingestion by insect vectors, many viruses need to circulate in the vector via a sequential path of stylet-midgut-haemolymph-salivary glands and are finally inoculated into plants with saliva secretion. To complete this journey, virions have to cross many physical/physiological barriers, of which the insect midgut wall represents the first and one of the major challenges. While this route of virus circulation has been known for a long time, the physiological and molecular mechanisms underlying the crossing of these barriers by viruses are poorly understood. Working with begomoviruses, a group of plant viruses of economic significance worldwide, and their insect vectors, the whiteflies of the Bemisia tabaci complex, we found that upon virus infection, two vector proteins, cubilin (CUBN) and amnionless (AMN), form a virus receptor complex to uptake the virions and assist them to move through the apical membrane of whitefly midgut cells via clathrin-dependent endocytosis. These novel findings contribute to a better understanding on the molecular mechanisms of insect transmission of circulative viruses.
Collapse
Affiliation(s)
- Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Teng Lei
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Jia Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Tian-Yan Yin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
14
|
Pollari M, De S, Wang A, Mäkinen K. The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathog 2020; 16:e1008965. [PMID: 33031436 PMCID: PMC7575100 DOI: 10.1371/journal.ppat.1008965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 09/04/2020] [Indexed: 11/19/2022] Open
Abstract
In this study, we demonstrate a novel pro-viral role for the Nicotiana benthamiana ARGONAUTE 1 (AGO1) in potyvirus infection. AGO1 strongly enhanced potato virus A (PVA) particle production and benefited the infection when supplied in excess. We subsequently identified the potyviral silencing suppressor, helper-component protease (HCPro), as the recruiter of host AGO1. After the identification of a conserved AGO1-binding GW/WG motif in potyviral HCPros, we used site-directed mutagenesis to introduce a tryptophan-to-alanine change into the HCPro (HCProAG) of PVA (PVAAG) and turnip mosaic virus (TuMVAG). AGO1 co-localization and co-immunoprecipitation with PVA HCPro was significantly reduced by the mutation suggesting the interaction was compromised. Although the mutation did not interfere with HCPro's complementation or silencing suppression capacity, it nevertheless impaired virus particle accumulation and the systemic spread of both PVA and TuMV. Furthermore, we found that the HCPro-AGO1 interaction was important for AGO1's association with the PVA coat protein. The coat protein was also more stable in wild type PVA infection than in PVAAG infection. Based on these findings we suggest that potyviral HCPro recruits host AGO1 through its WG motif and engages AGO1 in the production of stable virus particles, which are required for an efficient systemic infection.
Collapse
Affiliation(s)
- Maija Pollari
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Swarnalok De
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| |
Collapse
|
15
|
Di Mattia J, Vernerey MS, Yvon M, Pirolles E, Villegas M, Gaafar Y, Ziebell H, Michalakis Y, Zeddam JL, Blanc S. Route of a Multipartite Nanovirus across the Body of Its Aphid Vector. J Virol 2020; 94:e01998-19. [PMID: 32102876 PMCID: PMC7163135 DOI: 10.1128/jvi.01998-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/16/2020] [Indexed: 01/20/2023] Open
Abstract
Vector transmission plays a primary role in the life cycle of viruses, and insects are the most common vectors. An important mode of vector transmission, reported only for plant viruses, is circulative nonpropagative transmission whereby the virus cycles within the body of its insect vector, from gut to salivary glands and saliva, without replicating. This mode of transmission has been extensively studied in the viral families Luteoviridae and Geminiviridae and is also reported for Nanoviridae The biology of viruses within these three families is different, and whether the viruses have evolved similar molecular/cellular virus-vector interactions is unclear. In particular, nanoviruses have a multipartite genome organization, and how the distinct genome segments encapsidated individually transit through the insect body is unknown. Here, using a combination of fluorescent in situ hybridization and immunofluorescence, we monitor distinct proteins and genome segments of the nanovirus Faba bean necrotic stunt virus (FBNSV) during transcytosis through the gut and salivary gland cells of its aphid vector Acyrthosiphon pisum FBNSV specifically transits through cells of the anterior midgut and principal salivary gland cells, a route similar to that of geminiviruses but distinct from that of luteoviruses. Our results further demonstrate that a large number of virus particles enter every single susceptible cell so that distinct genome segments always remain together. Finally, we confirm that the success of nanovirus-vector interaction depends on a nonstructural helper component, the viral protein nuclear shuttle protein (NSP), which is shown to be mandatory for viral accumulation within gut cells.IMPORTANCE An intriguing mode of vector transmission described only for plant viruses is circulative nonpropagative transmission, whereby the virus passes through the gut and salivary glands of the insect vector without replicating. Three plant virus families are transmitted this way, but details of the molecular/cellular mechanisms of the virus-vector interaction are missing. This is striking for nanoviruses that are believed to interact with aphid vectors in ways similar to those of luteoviruses or geminiviruses but for which empirical evidence is scarce. We here confirm that nanoviruses follow a within-vector route similar to that of geminiviruses but distinct from that of luteoviruses. We show that they produce a nonstructural protein mandatory for viral entry into gut cells, a unique phenomenon for this mode of transmission. Finally, noting that nanoviruses are multipartite viruses, we demonstrate that a large number of viral particles penetrate susceptible cells of the vector, allowing distinct genome segments to remain together.
Collapse
Affiliation(s)
- Jérémy Di Mattia
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michel Yvon
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Elodie Pirolles
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Mathilde Villegas
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | | | | | - Jean-Louis Zeddam
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- UMR IPME, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Stéphane Blanc
- UMR BGPI, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
16
|
Deshoux M, Masson V, Arafah K, Voisin S, Guschinskaya N, van Munster M, Cayrol B, Webster CG, Rahbé Y, Blanc S, Bulet P, Uzest M. Cuticular Structure Proteomics in the Pea Aphid Acyrthosiphon pisum Reveals New Plant Virus Receptor Candidates at the Tip of Maxillary Stylets. J Proteome Res 2020; 19:1319-1337. [PMID: 31991085 PMCID: PMC7063574 DOI: 10.1021/acs.jproteome.9b00851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Aphids are phloem-feeding insects known as major pests in agriculture that are able to transmit hundreds of plant viruses. The majority of these viruses, classified as noncirculative, are retained and transported on the inner surface of the cuticle of the needle-like mouthparts while the aphids move from plant to plant. Identification of receptors of viruses within insect vectors is a key challenge because they are promising targets for alternative control strategies. The acrostyle, an organ discovered earlier within the common food/salivary canal at the tip of aphid maxillary stylets, displays proteins at the cuticle-fluid interface, some of which are receptors of noncirculative viruses. To assess the presence of stylet- and acrostyle-specific proteins and identify putative receptors, we have developed a comprehensive comparative analysis of the proteomes of four cuticular anatomical structures of the pea aphid, stylets, antennae, legs, and wings. In addition, we performed systematic immunolabeling detection of the cuticular proteins identified by mass spectrometry in dissected stylets. We thereby establish the first proteome of stylets of an insect and determine the minimal repertoire of the cuticular proteins composing the acrostyle. Most importantly, we propose a short list of plant virus receptor candidates, among which RR-1 proteins are remarkably predominant. The data are available via ProteomeXchange (PXD016517).
Collapse
Affiliation(s)
- Maëlle Deshoux
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Victor Masson
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
- CR
University of Grenoble-Alpes, Institute
for Advances Biosciences, Inserm U1209, CNRS UMR 5309, 38058 Grenoble, France
| | - Karim Arafah
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
| | | | | | - Manuella van Munster
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Bastien Cayrol
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Craig G. Webster
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Yvan Rahbé
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
- INRAE,
INSA Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France
- University
of Lyon, 69007 Lyon, France
| | - Stéphane Blanc
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Philippe Bulet
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
- CR
University of Grenoble-Alpes, Institute
for Advances Biosciences, Inserm U1209, CNRS UMR 5309, 38058 Grenoble, France
| | - Marilyne Uzest
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| |
Collapse
|
17
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
18
|
Khelifa M. Detection and Quantification of Potato virus Y Genomes in Single Aphid Stylets. PLANT DISEASE 2019; 103:2315-2321. [PMID: 31322977 DOI: 10.1094/pdis-02-19-0398-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Typically, the detection of a plant virus within its vector is carried out on the entire insect body. This process can be a possible source of confusion in the quantification of transmissible virus particles for styletborne viruses such as Potato virus Y (PVY), since the transmissible virus fraction is the one only retained in the aphid vector's mouthparts. The objective of this study was to develop and validate the quantitative PCR method for the detection and quantification of PVY in the vector's stylet. Using a specific method based on TaqMan chemistry with higher sensitivity than conventional reverse transcription PCR, this study reveals that a significant amount of the virus is enclosed within the dissected stylets of Myzus persicae. Because this quantification only concerns the portion of the virus attached to the stylets, uniformity was observed in the recorded numbers of virus targets. This novel assay is applicable to several PVY strains as a rapid and sensitive detection method for use in PVY research and offers a convenient tool for deciphering the mechanism of Potyvirus acquisition.
Collapse
Affiliation(s)
- M Khelifa
- Fédération Nationale des Producteurs de Plants de Pomme de Terre/ Recherche, Développement et Promotion du Plant de Pomme de Terre (FN3PT/RD3PT), 75008 Paris, France
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens Cedex 1, France
| |
Collapse
|
19
|
Pharmacological analysis of transmission activation of two aphid-vectored plant viruses, turnip mosaic virus and cauliflower mosaic virus. Sci Rep 2019; 9:9374. [PMID: 31253881 PMCID: PMC6599202 DOI: 10.1038/s41598-019-45904-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 12/30/2022] Open
Abstract
Turnip mosaic virus (TuMV, family Potyviridae) and cauliflower mosaic virus (CaMV, family Caulimoviridae) are transmitted by aphid vectors. They are the only viruses shown so far to undergo transmission activation (TA) immediately preceding plant-to-plant propagation. TA is a recently described phenomenon where viruses respond to the presence of vectors on the host by rapidly and transiently forming transmissible complexes that are efficiently acquired and transmitted. Very little is known about the mechanisms of TA and on whether such mechanisms are alike or distinct in different viral species. We use here a pharmacological approach to initiate the comparison of TA of TuMV and CaMV. Our results show that both viruses rely on calcium signaling and reactive oxygen species (ROS) for TA. However, whereas application of the thiol-reactive compound N-ethylmaleimide (NEM) inhibited, as previously shown, TuMV transmission it did not alter CaMV transmission. On the other hand, sodium azide, which boosts CaMV transmission, strongly inhibited TuMV transmission. Finally, wounding stress inhibited CaMV transmission and increased TuMV transmission. Taken together, the results suggest that transmission activation of TuMV and CaMV depends on initial calcium and ROS signaling that are generated during the plant's immediate responses to aphid manifestation. Interestingly, downstream events in TA of each virus appear to diverge, as shown by the differential effects of NEM, azide and wounding on TuMV and CaMV transmission, suggesting that these two viruses have evolved analogous TA mechanisms.
Collapse
|
20
|
McLeish M, Sacristán S, Fraile A, García-Arenal F. Coinfection Organizes Epidemiological Networks of Viruses and Hosts and Reveals Hubs of Transmission. PHYTOPATHOLOGY 2019; 109:1003-1010. [PMID: 30540552 DOI: 10.1094/phyto-08-18-0293-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multiple virus infections affect the competence of host plants to transmit disease. The effects of coinfection on transmission are expected to produce ecologically complex pathogen and host-pathogen interactions. However, the prediction of disease risk will rely on untangling nonrandom from random patterns of infection to identify underlying processes that drive these interactions. Are the spatial distributions of infections in complex multispecies systems random or not? For the first time, we use an empirical evaluation of this basic but nontrivial question to test the hypothesis that coinfection contributes to (i) nonrandom ecological interactions between hosts and viruses and (ii) structuring infection distributions. We use a novel approach that decomposed the ecological interactions of 11 generalist viruses in 47 host species in four habitats of an agroecosystem into single-infection and coinfection "modes." Then, we relate ecological structuring in infection networks to the distribution of infection using generalized regression models. The network analyses of coinfection showed that virus-host interactions occurred more often than expected at random in one of the four habitats, Edge. A pattern of specific interactions was shared between Edge and the ecosystem, indicating scale invariance. The regression modeling also showed that the plant community characteristics of Edge were unique in explaining infection distributions. The results showed that the spatial distribution of infection at the ecosystem level was not only a species-specific phenomenon but also, strongly structured by specific virus-virus and host-virus interactions. The evidence of scale invariance and the special role of Edge as a reservoir suggest that ecological interactions were less strongly structured by community differences among habitats than by wider-scale processes and traits underlying the interactions. Addressing whether reservoir communities significantly contribute to epidemiological processes at the ecosystem scale is a promising avenue for future research.
Collapse
Affiliation(s)
- Michael McLeish
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain
| |
Collapse
|
21
|
Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathog 2019; 15:e1007655. [PMID: 30921434 PMCID: PMC6456217 DOI: 10.1371/journal.ppat.1007655] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022] Open
Abstract
Many persistent transmitted plant viruses, including rice stripe virus (RSV), cause serious damage to crop production worldwide. Although many reports have indicated that a successful insect-mediated virus transmission depends on a proper interaction between the virus and its insect vector, the mechanism(s) controlling this interaction remained poorly understood. In this study, we used RSV and its small brown planthopper (SBPH) vector as a working model to elucidate the molecular mechanisms underlying the entrance of RSV virions into SBPH midgut cells for virus circulative and propagative transmission. We have determined that this non-enveloped tenuivirus uses its non-structural glycoprotein NSvc2 as a helper component to overcome the midgut barrier(s) for RSV replication and transmission. In the absence of this glycoprotein, purified RSV virions were unable to enter SBPH midgut cells. In the RSV-infected cells, this glycoprotein was processed into two mature proteins: an amino-terminal protein (NSvc2-N) and a carboxyl-terminal protein (NSvc2-C). Both NSvc2-N and NSvc2-C interact with RSV virions. Our results showed that the NSvc2-N could bind directly to the surface of midgut lumen via its N-glycosylation sites. Upon recognition, the midgut cells underwent endocytosis followed by compartmentalization of RSV virions and NSvc2 into early and then late endosomes. The NSvc2-C triggered cell membrane fusion via its highly conserved fusion loop motifs under the acidic condition inside the late endosomes, leading to the release of RSV virions from endosomes into cytosol. In summary, our results showed for the first time that a rice tenuivirus utilized its glycoprotein NSvc2 as a helper component to ensure a proper interaction between its virions and SBPH midgut cells for its circulative and propagative transmission. Over 75% of the known plant viruses are insect transmitted. Understanding how plant viruses interact with their insect vectors during virus transmission is a key step towards the successful management of plant viruses worldwide. Several models for the direct or indirect virus–insect vector interactions have been proposed for the non-persistent or semi-persistent virus transmissions. However, the mechanisms controlling the interactions between viruses and their insect vector midgut barriers are poorly understood. In this study, we demonstrated that the circulative and propagative transmitted rice stripe virus (RSV) utilized its glycoprotein NSvc2 as a helper component to ensure a specific interaction between its virions and SBPH midgut cells to overcome the midgut barriers inside this vector. This is the first report of a viral helper component mediated mechanism for persistent-propagative virus transmission. Our new findings and working model should expand our knowledge on the molecular mechanism(s) controlling the interaction between virus and its insect vector during virus circulative and propagative transmission in nature.
Collapse
|
22
|
Del Toro FJ, Mencía E, Aguilar E, Tenllado F, Canto T. HCPro-mediated transmission by aphids of purified virions does not require its silencing suppression function and correlates with its ability to coat cell microtubules in loss-of-function mutant studies. Virology 2018; 525:10-18. [PMID: 30212731 DOI: 10.1016/j.virol.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
Abstract
Native and amino acid (aa) substitution mutants of HCPro from potato virus Y (PVY) were transiently expressed in Nicotiana benthamiana leaves. Properties of those HCPro variants with regard to silencing suppression activities, mediation of viral transmission by aphids, and subcellular localization dynamics, were determined. One mutant failed to suppress silencing in agropatch assays, but could efficiently mediate the transmission by aphids of purified virions. This mutant also retained the ability to translocate to microtubules (MTs) in stressed cells. By contrast, another single aa substitution mutant displayed native-like silencing suppression activity in agropatch assays, but could not mediate transmission of PVY virions by aphids, and could not relocate to MTs. Our data show that silencing suppression by HCPro is not required in the aphid-mediated transmission of purified virions. In addition, since the same single aa alteration compromised both, viral transmission and coating of MTs, those two properties could be functionally related.
Collapse
Affiliation(s)
- Francisco Javier Del Toro
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain.
| | - Eva Mencía
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Emmanuel Aguilar
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Francisco Tenllado
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain
| | - Tomas Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid 28040, Spain.
| |
Collapse
|
23
|
Gallet R, Michalakis Y, Blanc S. Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol 2018; 33:144-150. [DOI: 10.1016/j.coviro.2018.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
|
24
|
Kannan M, Ismail I, Bunawan H. Maize Dwarf Mosaic Virus: From Genome to Disease Management. Viruses 2018; 10:E492. [PMID: 30217014 PMCID: PMC6164272 DOI: 10.3390/v10090492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/29/2022] Open
Abstract
Maize dwarf mosaic virus (MDMV) is a serious maize pathogen, epidemic worldwide, and one of the most common virus diseases for monocotyledonous plants, causing up to 70% loss in corn yield globally since 1960. MDMV belongs to the genus Potyvirus (Potyviridae) and was first identified in 1964 in Illinois in corn and Johnsongrass. MDMV is a single stranded positive sense RNA virus and is transmitted in a non-persistent manner by several aphid species. MDMV is amongst the most important virus diseases in maize worldwide. This review will discuss its genome, transmission, symptomatology, diagnosis and management. Particular emphasis will be given to the current state of knowledge on the diagnosis and control of MDMV, due to its importance in reducing the impact of maize dwarf mosaic disease, to produce an enhanced quality and quantity of maize.
Collapse
Affiliation(s)
- Maathavi Kannan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia.
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia.
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia.
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia.
| |
Collapse
|
25
|
Tatineni S, Hein GL. Genetics and mechanisms underlying transmission of Wheat streak mosaic virus by the wheat curl mite. Curr Opin Virol 2018; 33:47-54. [PMID: 30077887 DOI: 10.1016/j.coviro.2018.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) is the most economically important virus of wheat in the Great Plains region of the USA. WSMV is transmitted by the eriophyid wheat curl mite (WCM), Aceria tosichella Keifer. In contrast to Hemipteran-borne plant viruses, the mode and mechanism of eriophyid mite transmission of viruses have remained poorly understood, mostly due to difficulty of working with these ∼200 μm long microscopic creatures. Among eriophyid-transmitted plant viruses, relatively extensive work has been performed on population genetics of WCMs, WSMV determinants involved in WCM transmission, and localization of WSMV virions and inclusion bodies in WCMs. The main focus of this review is to appraise readers on WCM, WSMV encoded proteins required for WCM transmission and further details and questions on the mode of WSMV transmission by WCMs, and potential advances in management strategies for WCMs and WSMV with increased understanding of transmission.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, NE 68583, United States.
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
26
|
Webster CG, Pichon E, van Munster M, Monsion B, Deshoux M, Gargani D, Calevro F, Jimenez J, Moreno A, Krenz B, Thompson JR, Perry KL, Fereres A, Blanc S, Uzest M. Identification of Plant Virus Receptor Candidates in the Stylets of Their Aphid Vectors. J Virol 2018; 92:e00432-18. [PMID: 29769332 PMCID: PMC6026765 DOI: 10.1128/jvi.00432-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/25/2018] [Indexed: 12/23/2022] Open
Abstract
Plant viruses transmitted by insects cause tremendous losses in most important crops around the world. The identification of receptors of plant viruses within their insect vectors is a key challenge to understanding the mechanisms of transmission and offers an avenue for future alternative control strategies to limit viral spread. We here report the identification of two cuticular proteins within aphid mouthparts, and we provide experimental support for the role of one of them in the transmission of a noncirculative virus. These two proteins, named Stylin-01 and Stylin-02, belong to the RR-1 cuticular protein subfamily and are highly conserved among aphid species. Using an immunolabeling approach, they were localized in the maxillary stylets of the pea aphid Acyrthosiphon pisum and the green peach aphid Myzus persicae, in the acrostyle, an organ earlier shown to harbor receptors of a noncirculative virus. A peptide motif present at the C termini of both Stylin-01 and Stylin-02 is readily accessible all over the surface of the acrostyle. Competition for in vitro binding to the acrostyle was observed between an antibody targeting this peptide and the helper component protein P2 of Cauliflower mosaic virus Furthermore, silencing the stylin-01 but not stylin-02 gene through RNA interference decreased the efficiency of Cauliflower mosaic virus transmission by Myzus persicae These results identify the first cuticular proteins ever reported within arthropod mouthparts and distinguish Stylin-01 as the best candidate receptor for the aphid transmission of noncirculative plant viruses.IMPORTANCE Most noncirculative plant viruses transmitted by insect vectors bind to their mouthparts. They are acquired and inoculated within seconds when insects hop from plant to plant. The receptors involved remain totally elusive due to a long-standing technical bottleneck in working with insect cuticle. Here we characterize the role of the two first cuticular proteins ever identified in arthropod mouthparts. A domain of these proteins is directly accessible at the surface of the cuticle of the acrostyle, an organ at the tip of aphid stylets. The acrostyle has been shown to bind a plant virus, and we consistently demonstrated that one of the identified proteins is involved in viral transmission. Our findings provide an approach to identify proteins in insect mouthparts and point at an unprecedented gene candidate for a plant virus receptor.
Collapse
Affiliation(s)
- Craig G Webster
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Elodie Pichon
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Manuella van Munster
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Baptiste Monsion
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Maëlle Deshoux
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Daniel Gargani
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Federica Calevro
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, Villeurbanne, France
| | - Jaime Jimenez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Aranzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Björn Krenz
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Stéphane Blanc
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marilyne Uzest
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
27
|
Maghamnia HR, Hajizadeh M, Azizi A. Complete Genome Sequence of Zucchini Yellow Mosaic Virus Strain Kurdistan, Iran. 3 Biotech 2018; 8:147. [PMID: 29487776 DOI: 10.1007/s13205-018-1177-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022] Open
Abstract
The complete genome sequence of Zucchini yellow mosaic virus strain Kurdistan (ZYMV-Kurdistan) infecting squash from Iran was determined from 13 overlapping fragments. Excluding the poly (A) tail, ZYMV-Kurdistan genome consisted of 9593 nucleotides (nt), with 138 and 211 nt at the 5' and 3' non-translated regions, respectively. It contained two open-reading frames (ORFs), the large ORF encoding a polyprotein of 3080 amino acids (aa) and the small overlapping ORF encoding a P3N-PIPO protein of 74 aa. This isolate had six unique aa differences compared to other ZYMV isolates and shared 79.6-98.8% identities with other ZYMV genome sequences at the nt level and 90.1-99% identities at the aa level. A phylogenetic tree of ZYMV complete genomic sequences showed that Iranian and Central European isolates are closely related and form a phylogenetically homogenous group. All values in the ratio of substitution rates at non-synonymous and synonymous sites (dN/dS) were below 1, suggestive of strong negative selection forces during ZYMV protein history. This is the first report of complete genome sequence information of the most prevalent virus in the west of Iran. This study helps our understanding of the genetic diversity of ZYMV isolates infecting cucurbit plants in Iran, virus evolution and epidemiology and can assist in designing better diagnostic tools.
Collapse
|
28
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
29
|
Xia WQ, Liang Y, Chi Y, Pan LL, Zhao J, Liu SS, Wang XW. Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathog 2018; 14:e1006866. [PMID: 29370296 PMCID: PMC5800681 DOI: 10.1371/journal.ppat.1006866] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/06/2018] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Begomoviruses are exclusively transmitted by whiteflies in a persistent circulative manner and cause considerable economic losses to crop production worldwide. Previous studies have shown that begomoviruses accumulate in vesicle-like structures in whitefly midgut cells and that clathrin-mediated endocytosis is responsible for their internalization. However, the process by which begomoviruses are trafficked within whitefly midgut cells remains largely unknown. In this study, we investigated the roles of vesicle trafficking in the transport of Tomato yellow leaf curl virus (TYLCV), a begomovirus that has spread to over 50 countries and caused extensive damage to a range of important crops, within midgut cells of whitefly (Bemisia tabaci). By disrupting vesicle trafficking using RNA silencing and inhibitors, we demonstrated that the early steps of endosomal trafficking are important for the intracellular transport of TYLCV in the whitefly midgut. In addition, our data show that, unlike many animal viruses, TYCLV is trafficked within cells in a manner independent of recycling endosomes, late endosomes, lysosomes, the Golgi apparatus and the endoplasmic reticulum. Instead, our results suggest that TYLCV might be transported directly from early endosomes to the basal plasma membrane and released into the hemolymph. Silencing of the sorting nexin Snx12, which may be involved in membrane tubulation, resulted in fewer viral particles in hemolymph; this suggests that the tubular endosomal network may be involved in the transport of TYLCV. Our results also support a role for the endo-lysosomal system in viral degradation. We further showed that the functions of vector early endosomes and sorting nexin Snx12 are conserved in the transmission of several other begomoviruses. Overall, our data indicate the importance of early endosomes and the tubular endosomal network in begomovirus transmission.
Collapse
Affiliation(s)
- Wen-Qiang Xia
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite. Virology 2018; 514:42-49. [DOI: 10.1016/j.virol.2017.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
|
31
|
Dáder B, Then C, Berthelot E, Ducousso M, Ng JCK, Drucker M. Insect transmission of plant viruses: Multilayered interactions optimize viral propagation. INSECT SCIENCE 2017; 24:929-946. [PMID: 28426155 DOI: 10.1111/1744-7917.12470] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 05/15/2023]
Abstract
By serving as vectors of transmission, insects play a key role in the infection cycle of many plant viruses. Viruses use sophisticated transmission strategies to overcome the spatial barrier separating plants and the impediment imposed by the plant cell wall. Interactions among insect vectors, viruses, and host plants mediate transmission by integrating all organizational levels, from molecules to populations. Best-examined on the molecular scale are two basic transmission modes wherein virus-vector interactions have been well characterized. Whereas association of virus particles with specific sites in the vector's mouthparts or in alimentary tract regions immediately posterior to them is required for noncirculative transmission, the cycle of particles through the vector body is necessary for circulative transmission. Virus transmission is also determined by interactions that are associated with changes in vector feeding behaviors and with alterations in plant host's morphology and/or metabolism that favor the attraction or deterrence of vectors. A recent concept in virus-host-vector interactions proposes that when vectors land on infected plants, vector elicitors and effectors "inform" the plants of the confluence of interacting entities and trigger signaling pathways and plant defenses. Simultaneously, the plant responses may also influence virus acquisition and inoculation by vectors. Overall, a picture is emerging where transmission depends on multilayered virus-vector-host interactions that define the route of a virus through the vector, and on the manipulation of the host and the vector. These interactions guarantee virus propagation until one or more of the interactants undergo changes through evolution or are halted by environmental interventions.
Collapse
Affiliation(s)
- Beatriz Dáder
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Montpellier, France
| | - Christiane Then
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Montpellier, France
| | | | - Marie Ducousso
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Montpellier, France
| | - James C K Ng
- Department of Plant Pathology and Microbiology and Center for Disease Vector Research, University of California, Riverside, USA
| | - Martin Drucker
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Montpellier, France
| |
Collapse
|
32
|
Desbiez C, Wipf-Scheibel C, Millot P, Verdin E, Dafalla G, Lecoq H. New species in the papaya ringspot virus cluster: Insights into the evolution of the PRSV lineage. Virus Res 2017; 241:88-94. [PMID: 28669763 DOI: 10.1016/j.virusres.2017.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
The "Papaya ringspot virus (PRSV) cluster" of cucurbit-infecting potyviruses contains five acknowledged species that have similar biological, serological and molecular properties. Additional data suggest there are other uncharacterized species from various locations in the world that likely belong to the PRSV cluster including a new PRSV-like virus reported from Sudan in 2003. Molecular and biological data indicated that the virus from Sudan belongs to a new species, tentatively named wild melon vein banding virus (WMVBV). The complete nucleotide sequence of a second virus from Sudan revealed it was a divergent relative of Moroccan watermelon mosaic virus (MWMV). Based on sequence similarity this virus was determined to be a distinct species and tentatively named Sudan watermelon mosaic virus (SuWMV). Molecular analyses indicate that SuWMV is a recombinant between WMVBV- and MWMV-related viruses. Based on surveys performed in Sudan between 1992 and 2012, SuWMV appeared 10 times more frequent than WMVBV in that country (14.6% vs. 1.5% of the samples tested). The geographic structure and molecular diversity patterns of the putative and acknowledged species suggest that the PRSV-like cluster originated in the Old World about 3600 years ago, with an important diversification in Africa.
Collapse
Affiliation(s)
- C Desbiez
- INRA, UR407, Unité de Pathologie Végétale, 84140 Montfavet, France.
| | - C Wipf-Scheibel
- INRA, UR407, Unité de Pathologie Végétale, 84140 Montfavet, France
| | - P Millot
- INRA, UR407, Unité de Pathologie Végétale, 84140 Montfavet, France
| | - E Verdin
- INRA, UR407, Unité de Pathologie Végétale, 84140 Montfavet, France
| | - G Dafalla
- Plant Pathology Center, University of Gezira, Wad Medani, Sudan
| | - H Lecoq
- INRA, UR407, Unité de Pathologie Végétale, 84140 Montfavet, France
| |
Collapse
|
33
|
Del Toro FJ, Donaire L, Aguilar E, Chung BN, Tenllado F, Canto T. Potato Virus Y HCPro Suppression of Antiviral Silencing in Nicotiana benthamiana Plants Correlates with Its Ability To Bind In Vivo to 21- and 22-Nucleotide Small RNAs of Viral Sequence. J Virol 2017; 91:e00367-17. [PMID: 28381573 PMCID: PMC5446643 DOI: 10.1128/jvi.00367-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
We have investigated short and small RNAs (sRNAs) that were bound to a biologically active hexahistidine-tagged Potato virus Y (PVY) HCPro suppressor of silencing, expressed from a heterologous virus vector in Nicotiana benthamiana plants, and purified under nondenaturing conditions. We found that RNAs in purified preparations were differentially enriched in 21-nucleotide (nt) and, to a much lesser extent, 22-nt sRNAs of viral sequences (viral sRNAs [vsRNAs]) compared to those found in a control plant protein background bound to nickel resin in the absence of HCPro or in a purified HCPro alanine substitution mutant (HCPro mutB) control that lacked suppressor-of-silencing activity. In both controls, sRNAs were composed almost entirely of molecules of plant sequence, indicating that the resin-bound protein background had no affinity for vsRNAs and also that HCPro mutB failed to bind to vsRNAs. Therefore, PVY HCPro suppressor activity correlated with its ability to bind to 21- and 22-nt vsRNAs. HCPro constituted at least 54% of the total protein content in purified preparations, and we were able to calculate its contribution to the 21- and the 22-nt pools of sRNAs present in the purified samples and its binding strength relative to the background. We also found that in the 21-nt vsRNAs of the HCPro preparation, 5'-terminal adenines were overrepresented relative to the controls, but this was not observed in vsRNAs of other sizes or of plant sequences.IMPORTANCE It was previously shown that HCPro can bind to long RNAs and small RNAs (sRNAs) in vitro and, in the case of Turnip mosaic virus HCPro, also in vivo in arabidopsis AGO2-deficient plants. Our data show that PVY HCPro binds in vivo to sRNAs during infection in wild-type Nicotiana benthamiana plants when expressed from a heterologous virus vector. Using a suppression-of-silencing-deficient HCPro mutant that can accumulate in this host when expressed from a virus vector, we also show that sRNA binding correlates with silencing suppression activity. We demonstrate that HCPro binds at least to sRNAs with viral sequences of 21 nucleotides (nt) and, to a much lesser extent, of 22 nt, which were are also differentially enriched in 5'-end adenines relative to the purified controls. Together, our results support the physical binding of HCPro to vsRNAs of 21 and 22 nt as a means to interfere with antiviral silencing.
Collapse
Affiliation(s)
- Francisco J Del Toro
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Livia Donaire
- Universidad Politécnica de Madrid, Centro de Biotecnología y Genómica de Plantas, Campus de Montegancedo, Madrid, Spain
| | - Emmanuel Aguilar
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Bong-Nam Chung
- National Institute of Horticultural & Herbal Science, Agricultural Research Center for Climate Change, Wanju, Republic of Korea
| | - Francisco Tenllado
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
34
|
van Munster M, Yvon M, Vile D, Dader B, Fereres A, Blanc S. Water deficit enhances the transmission of plant viruses by insect vectors. PLoS One 2017; 12:e0174398. [PMID: 28467423 PMCID: PMC5414972 DOI: 10.1371/journal.pone.0174398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/08/2017] [Indexed: 12/02/2022] Open
Abstract
Drought is a major threat to crop production worldwide and is accentuated by global warming. Plant responses to this abiotic stress involve physiological changes overlapping, at least partially, the defense pathways elicited both by viruses and their herbivore vectors. Recently, a number of theoretical and empirical studies anticipated the influence of climate changes on vector-borne viruses of plants and animals, mainly addressing the effects on the virus itself or on the vector population dynamics, and inferring possible consequences on virus transmission. Here, we directly assess the effect of a severe water deficit on the efficiency of aphid-transmission of the Cauliflower mosaic virus (CaMV) or the Turnip mosaic virus (TuMV). For both viruses, our results demonstrate that the rate of vector-transmission is significantly increased from water-deprived source plants: CaMV transmission reproducibly increased by 34% and that of TuMV by 100%. In both cases, the enhanced transmission rate could not be explained by a higher virus accumulation, suggesting a more complex drought-induced process that remains to be elucidated. The evidence that infected plants subjected to drought are much better virus sources for insect vectors may have extensive consequences for viral epidemiology, and should be investigated in a wide range of plant-virus-vector systems.
Collapse
Affiliation(s)
| | | | | | - Beatriz Dader
- BGPI UMR385, INRA Montpellier, France
- Department de Protección Vegetal, Instituto de Ciencias Agrarias, Madrid, Spain
| | - Alberto Fereres
- Department de Protección Vegetal, Instituto de Ciencias Agrarias, Madrid, Spain
| | | |
Collapse
|
35
|
Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida. Appl Environ Microbiol 2016; 82:6294-6302. [PMID: 27520823 DOI: 10.1128/aem.01914-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. IMPORTANCE Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere with the CTV binding to its insect vector to block the transmission.
Collapse
|
36
|
Hamelin FM, Allen LJS, Prendeville HR, Hajimorad MR, Jeger MJ. The evolution of plant virus transmission pathways. J Theor Biol 2016; 396:75-89. [PMID: 26908348 DOI: 10.1016/j.jtbi.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/30/2015] [Accepted: 02/12/2016] [Indexed: 01/12/2023]
Abstract
The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, or a vector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which reproduction through seed is obligatory. A semi-discrete model with pollen, seed, and vector transmission is formulated to investigate these questions. We assume vector and pollen transmission rates are frequency-dependent and density-dependent, respectively. An ecological stability analysis is performed for the semi-discrete model and used to inform an evolutionary study of trade-offs between pollen and seed versus vector transmission. Evolutionary dynamics critically depend on the shape of the trade-off functions. Assuming a trade-off between pollen and vector transmission, evolution either leads to an evolutionarily stable mix of pollen and vector transmission (concave trade-off) or there is evolutionary bi-stability (convex trade-off); the presence of pollen transmission may prevent evolution of vector transmission. Considering a trade-off between seed and vector transmission, evolutionary branching and the subsequent coexistence of pollen-borne and vector-borne strains is possible. This study contributes to the theory behind the diversity of plant-virus transmission patterns observed in nature.
Collapse
Affiliation(s)
- Frédéric M Hamelin
- Department of Ecology, Agrocampus Ouest, UMR1349 IGEPP, F-35042 Rennes, France.
| | - Linda J S Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA
| | - Holly R Prendeville
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
| | - M Reza Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560, USA
| | - Michael J Jeger
- Division of Ecology and Evolution, Centre for Environmental Policy, Imperial College London, SL5 7PY, UK
| |
Collapse
|
37
|
Ivanov KI, Eskelin K, Bašić M, De S, Lõhmus A, Varjosalo M, Mäkinen K. Molecular insights into the function of the viral RNA silencing suppressor HCPro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:30-45. [PMID: 26611351 DOI: 10.1111/tpj.13088] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 05/23/2023]
Abstract
Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Katri Eskelin
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Marta Bašić
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Swarnalok De
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Andres Lõhmus
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
38
|
Lowery DT, Vickers PM, Bittner LA, Stobbs LW, Foottit RG. Aphid Transmission of the Ontario Isolate of Plum Pox Virus. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2168-2173. [PMID: 26453705 DOI: 10.1093/jee/tov172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/05/2015] [Indexed: 06/05/2023]
Abstract
Utilization of timed virus acquisition access probes in studies of plum pox virus (PPV) transmission by aphids demonstrated that endemic species transmitted the virus readily from plum, Prunus domestica (L.) Batsch; peach, P. persica (L.); or dwarf flowering almond, P. glandulosa Thunberg., to peach seedlings. The green peach aphid, Myzus persicae (Sulzer), was shown to be the most efficient vector. Acquisition of virus by green peach aphids from infected peach leaves resulted in 18-28% infected peach seedlings, while aphids previously fed on infected leaves of plum transferred virus to 36% of peach seedlings. Although the spirea aphid, Aphis spiraecola (Patch), was a less efficient vector than M. persicae it is perhaps more important for the spread of PPV due to its greater abundance and occurrence earlier in the season when peach trees are thought to be more susceptible to infection. Virus transmission rates varied depending on the virus source and healthy test plant species. In contrast to many previous studies, aphid inoculation of the experimental host Nicotiana benthamiana Domin occurred at a low rate, never exceeding 4%. Acquisition of PPV by M. persicae from infected peach fruit was greatly reduced compared with acquisition from leaves. The results of this research indicate that the Ontario isolate of PPV-D is readily transmissible by aphids to peach and natural spread of the virus needs to be considered in future management or eradication programs.
Collapse
Affiliation(s)
- D Thomas Lowery
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Box 5000, 4200 Hwy. 97, Summerland, BC, V0H 1Z0, Canada.
| | - Patricia M Vickers
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 4902 Victoria Ave. N, Box 6000, Vineland Station, ON, L0R 2E0, Canada
| | - Lori A Bittner
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 4902 Victoria Ave. N, Box 6000, Vineland Station, ON, L0R 2E0, Canada
| | - Lorne W Stobbs
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 4902 Victoria Ave. N, Box 6000, Vineland Station, ON, L0R 2E0, Canada
| | - Robert G Foottit
- Agriculture and Agri-Food Canada, National Environmental Health Program, Invertebrate Biodiversity, K. W. Neatby Bldg., 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| |
Collapse
|
39
|
Ng JCK, Zhou JS. Insect vector-plant virus interactions associated with non-circulative, semi-persistent transmission: current perspectives and future challenges. Curr Opin Virol 2015; 15:48-55. [PMID: 26318639 DOI: 10.1016/j.coviro.2015.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
The non-circulative, semi-persistent (NCSP) mode of insect vector-mediated plant virus transmission is shaped by biological, molecular and mechanical interactions that take place across a continuum of processes involved in virion acquisition, retention and inoculation. Our understanding of the interactive roles of virus, insect vector, and plant associated with NCSP transmission is still evolving. Mechanisms exist that determine where and how virion acquisition (from the plant) and retention (in the insect vector) are achieved, with both processes being mediated by strategies involving viral capsid proteins, in some cases aided by non-capsid proteins. By contrast, mechanisms underlying virion inoculation (to the plant) remain poorly understood. Here, we review the established paradigms as well as fresh perspectives on the mechanisms of NCSP transmission.
Collapse
Affiliation(s)
- James C K Ng
- Department of Plant Pathology and Microbiology and Center for Disease Vector Research, University of California, Riverside, CA 92521, USA.
| | - Jaclyn S Zhou
- Department of Plant Pathology and Microbiology and Center for Disease Vector Research, University of California, Riverside, CA 92521, USA
| |
Collapse
|
40
|
Susi H, Vale PF, Laine AL. Host Genotype and Coinfection Modify the Relationship of within and between Host Transmission. Am Nat 2015; 186:252-63. [PMID: 26655153 DOI: 10.1086/682069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Variation in individual-level disease transmission is well documented, but the underlying causes of this variation are challenging to disentangle in natural epidemics. In general, within-host replication is critical in determining the extent to which infected hosts shed transmission propagules, but which factors cause variation in this relationship are poorly understood. Here, using a plant host, Plantago lanceolata, and the powdery mildew fungus Podosphaera plantaginis, we quantify how the distinct stages of within-host spread (autoinfection), spore release, and successful transmission to new hosts (alloinfection) are influenced by host genotype, pathogen genotype, and the coinfection status of the host. We find that within-host spread alone fails to predict transmission rates, as this relationship is modified by genetic variation in hosts and pathogens. Their contributions change throughout the course of the epidemic. Host genotype and coinfection had particularly pronounced effects on the dynamics of spore release from infected hosts. Confidently predicting disease spread from local levels of individual transmission, therefore, requires a more nuanced understanding of genotype-specific infection outcomes. This knowledge is key to better understanding the drivers of epidemiological dynamics and the resulting evolutionary trajectories of infectious disease.
Collapse
Affiliation(s)
- Hanna Susi
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
41
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
42
|
Abstract
Viruses are common agents of plant infectious diseases. During last decades, worldwide agriculture production has been compromised by a series of epidemics caused by new viruses that spilled over from reservoir species or by new variants of classic viruses that show new pathogenic and epidemiological properties. Virus emergence has been generally associated with ecological change or with intensive agronomical practices. However, the complete picture is much more complex since the viral populations constantly evolve and adapt to their new hosts and vectors. This chapter puts emergence of plant viruses into the framework of evolutionary ecology, genetics, and epidemiology. We will stress that viral emergence begins with the stochastic transmission of preexisting genetic variants from the reservoir to the new host, whose fate depends on their fitness on each hosts, followed by adaptation to new hosts or vectors, and finalizes with an efficient epidemiological spread.
Collapse
Affiliation(s)
- Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Campus UPV, València, Spain; The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and ETSI Agrónomos, UPM, Campus de Montegancedo, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and ETSI Agrónomos, UPM, Campus de Montegancedo, Madrid, Spain.
| |
Collapse
|
43
|
Syller J. Biological and molecular events associated with simultaneous transmission of plant viruses by invertebrate and fungal vectors. MOLECULAR PLANT PATHOLOGY 2014; 15:417-26. [PMID: 24341556 PMCID: PMC6638794 DOI: 10.1111/mpp.12101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Viruses are likely to be the most dangerous parasites of living organisms because of their widespread occurrence, possible deleterious effects on their hosts and high rates of evolution. Virus host-to-host transmission is a critical step in the virus life cycle, because it enables survival in a given environment and efficient dissemination. As hosts of plant viruses are not mobile, these pathogens have adopted diverse transmission strategies involving various vector organisms, mainly arthropods, nematodes, fungi and protists. In nature, plants are often infected with more than one virus at a time, thereby creating potential sources for vectors to acquire and transmit simultaneously two or more viruses. Simultaneous transmission can result in multiple infections of new host plants, which become subsequent potential sources of the viruses, thus enhancing the spread of the diseases caused by these pathogens. Moreover, it can contribute to the maintenance of viral genetic diversity in the host communities. However, despite its possible significance, the problem of the simultaneous transmission of plant viruses by vectors has not been investigated in detail. In this review, the current knowledge on multiple viral transmissions by aphids, whiteflies, leafhoppers, planthoppers, nematodes and fungi is outlined.
Collapse
Affiliation(s)
- Jerzy Syller
- Plant Breeding and Acclimatization Institute-National Research Institute, Centre Młochów, 05-831, Młochów, Poland
| |
Collapse
|
44
|
Azad MAK, Amin L, Sidik NM. Gene technology for papaya ringspot virus disease management. ScientificWorldJournal 2014; 2014:768038. [PMID: 24757435 PMCID: PMC3976845 DOI: 10.1155/2014/768038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/01/2014] [Indexed: 01/19/2023] Open
Abstract
Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- Centre for General Studies, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
- Department of Agricultural Extension, Khamarbari, Farmgate, Dhaka 1215, Bangladesh
| | - Latifah Amin
- Centre for General Studies, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Nik Marzuki Sidik
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
45
|
Abstract
The mechanisms and impacts of the transmission of plant viruses by insect vectors have been studied for more than a century. The virus route within the insect vector is amply documented in many cases, but the identity, the biochemical properties, and the structure of the actual molecules (or molecule domains) ensuring compatibility between them remain obscure. Increased efforts are required both to identify receptors of plant viruses at various sites in the vector body and to design competing compounds capable of hindering transmission. Recent trends in the field are opening questions on the diversity and sophistication of viral adaptations that optimize transmission, from the manipulation of plants and vectors ultimately increasing the chances of acquisition and inoculation, to specific "sensing" of the vector by the virus while still in the host plant and the subsequent transition to a transmission-enhanced state.
Collapse
Affiliation(s)
- Stéphane Blanc
- INRA, UMR BGPI, CIRAD-INRA-SupAgro, CIRAD TA-A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 05, France; , ,
| | | | | |
Collapse
|
46
|
Almeyda CV, Eid SG, Saar D, Samuitiene M, Pappu HR. Comparative analysis of endogenous plant pararetroviruses in cultivated and wild Dahlia spp. Virus Genes 2013; 48:140-52. [PMID: 24353027 DOI: 10.1007/s11262-013-0997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/16/2013] [Indexed: 11/28/2022]
Abstract
Two distinct caulimoviruses, Dahlia mosaic virus (DMV) and Dahlia common mosaic virus, and an endogenous plant pararetroviral sequence (DvEPRS) were reported in Dahlia spp. DvEPRS, previously referred to as DMV-D10, was originally identified in the US from the cultivated Dahlia variabilis, and has also been found in New Zealand, Lithuania and Egypt, as well as in wild dahlia species growing in their natural habitats in Mexico. Sequence analysis of three new EPRSs from cultivated dahlias from Lithuania [D10-LT; 7,159 nucleotide level (nt)], New Zealand (D10-NZ, 7,156 nt), and the wild species, Dahlia rupicola, from Mexico (D10-DR, 7,133 nt) is reported in this study. The three EPRSs have the structure and organization typical of a caulimovirus species and showed identities among various open reading frames (ORFs) ranging between 71 and 97 % at the nt when compared to those or the known DvEPRS from the US. Examination of a dataset of seven full-length EPRSs obtained to date from cultivated and wild Dahlia spp. provided clues into genetic diversity of these EPRSs from diverse sources of dahlia. Phylogenetic analyses, mutation frequencies, potential recombination events, selection, and fitness were evaluated as evolutionary evidences for genetic variation. Assessment of all ORFs using phylogenomic and population genetics approaches suggests a wide genetic diversity of EPRSs occurring in dahlias. Phylogenetic analyses show that the EPRSs from various sources form one clade indicating a lack of clustering by geographical origin. Grouping of various EPRSs into two host taxa (cultivated vs. wild) shows little divergence with respect to their origin. Population genetic parameters demonstrate negative selection for all ORFs, with the reverse transcriptase region more variable than other ORFs. Recombination events were found which provide evolutionary evidence for genetic diversity among dahlia-associated EPRSs. This study contributes to an increased understanding of molecular population genetics and evolutionary pathways of these reverse transcribing viral elements.
Collapse
Affiliation(s)
- C V Almeyda
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | |
Collapse
|
47
|
Wheat streak mosaic virus infects systemically despite extensive coat protein deletions: identification of virion assembly and cell-to-cell movement determinants. J Virol 2013; 88:1366-80. [PMID: 24227854 DOI: 10.1128/jvi.02737-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral coat proteins function in virion assembly and virus biology in a tightly coordinated manner with a role for virtually every amino acid. In this study, we demonstrated that the coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) is unusually tolerant of extensive deletions, with continued virion assembly and/or systemic infection found after extensive deletions are made. A series of deletion and point mutations was created in the CP cistron of wild-type and/or green fluorescent protein-tagged WSMV, and the effects of these mutations on cell-to-cell and systemic transport and virion assembly of WSMV were examined. Mutants with overlapping deletions comprising N-terminal amino acids 6 to 27, 36 to 84, 85 to 100, 48 to 100, and 36 to 100 or the C-terminal 14 or 17 amino acids systemically infected wheat with different efficiencies. However, mutation of conserved amino acids in the core domain, which may be involved in a salt bridge, abolished virion assembly and cell-to-cell movement. N-terminal amino acids 6 to 27 and 85 to 100 are required for efficient virion assembly and cell-to-cell movement, while the C-terminal 65 amino acids are dispensable for virion assembly but are required for cell-to-cell movement, suggesting that the C terminus of CP functions as a dedicated cell-to-cell movement determinant. In contrast, amino acids 36 to 84 are expendable, with their deletion causing no obvious effects on systemic infection or virion assembly. In total, 152 amino acids (amino acids 6 to 27 and 36 to 100 and the 65 amino acids at the C-terminal end) of 349 amino acids of CP are dispensable for systemic infection and/or virion assembly, which is rare for multifunctional viral CPs.
Collapse
|
48
|
Quenouille J, Vassilakos N, Moury B. Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. MOLECULAR PLANT PATHOLOGY 2013; 14:439-52. [PMID: 23480826 PMCID: PMC6638879 DOI: 10.1111/mpp.12024] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
TAXONOMY Potato virus Y (PVY) is the type member of the genus Potyvirus in the family Potyviridae. VIRION AND GENOME PROPERTIES: PVY virions have a filamentous, flexuous form, with a length of 730 nm and a diameter of 12 nm. The genomic RNA is single stranded, messenger sense, with a length of 9.7 kb, covalently linked to a viral-encoded protein (VPg) at the 5' end and to a 3' polyadenylated tail. The genome is expressed as a polyprotein of approximately 3062 amino acid residues, processed by three virus-specific proteases into 11 mature proteins. HOSTS PVY is distributed worldwide and has a broad host range, consisting of cultivated solanaceous species and many solanaceous and nonsolanaceous weeds. It is one of the most economically important plant pathogens and causes severe diseases in cultivated hosts, such as potato, tobacco, tomato and pepper, as well as in ornamental plants. TRANSMISSION PVY is transmitted from plant to plant by more than 40 aphid species in a nonpersistent manner and, in potato, by planting contaminated seed tubers. DIVERSITY: Five major clades, named C1, C2, Chile, N and O, have been described within the PVY species. In recent decades, a strong increase in prevalence of N × O recombinant isolates has been observed worldwide. A correlation has been observed between PVY phylogeny and certain pathogenicity traits. GENETIC CONTROL OF PVY: Resistance genes against PVY have been used widely in breeding programmes and deployed in the field. These resistance genes show a large diversity of spectrum of action, durability and genetic determinism. Notably, recessive and dominant major resistance genes show highly contrasting patterns of interaction with PVY populations, displaying rapid co-evolution or stable relationships, respectively.
Collapse
Affiliation(s)
- Julie Quenouille
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | | | | |
Collapse
|
49
|
Gutiérrez S, Michalakis Y, Munster M, Blanc S. Plant feeding by insect vectors can affect life cycle, population genetics and evolution of plant viruses. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12070] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Serafín Gutiérrez
- UMR BGPI, INRA‐CIRAD‐SupAgro, TA‐A54K Campus International de Baillarguet 34398 Montpellier Cedex 05 France
- UMR MIVEGEC 5290 CNRS‐IRD‐UM1‐UM2, IRD 911 Avenue Agropolis B.P. 64501 34394 Montpellier Cedex 05 France
| | - Yannis Michalakis
- UMR MIVEGEC 5290 CNRS‐IRD‐UM1‐UM2, IRD 911 Avenue Agropolis B.P. 64501 34394 Montpellier Cedex 05 France
| | - Manuella Munster
- UMR BGPI, INRA‐CIRAD‐SupAgro, TA‐A54K Campus International de Baillarguet 34398 Montpellier Cedex 05 France
| | - Stéphane Blanc
- UMR BGPI, INRA‐CIRAD‐SupAgro, TA‐A54K Campus International de Baillarguet 34398 Montpellier Cedex 05 France
| |
Collapse
|
50
|
Li Y, Liu R, Zhou T, Fan Z. Genetic diversity and population structure of Sugarcane mosaic virus. Virus Res 2013; 171:242-6. [DOI: 10.1016/j.virusres.2012.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 11/16/2022]
|