1
|
Panfilov I, Vilkovyskiy I, Sadyrin E, Aizikovich S, Beskopylny AN, Meskhi B. Stress-Strain State Investigation and Ultimate Load on Femoral Implants Based on S-Type Ti6Al4V Titanium Alloy. J Funct Biomater 2025; 16:187. [PMID: 40422851 DOI: 10.3390/jfb16050187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Hip replacement is a widespread surgical procedure that eliminates pain and restores motor functions of the pathologically altered hip joint. The issue lies in the lack of pre-operative strength calculations for implant shapes. So, they tend to break after surgery or damage the bone due to the complex stress-strain state. In the present paper, we studied the stress-strain state and ultimate load of S-type canine femoral implants based on titanium alloy Ti6Al4V using finite element analysis for static and cyclic loads. X-ray computed micro tomography data were used to construct the models. Re-engineering and restoration of the 3D geometry of the product were conducted. Strength analysis was performed in the finite element analysis software package Ansys Mechanical was used for various types of implant support. Locations with stress concentrators were identified, and ultimate loads on the implant were obtained. The influence of the rigidity of the support on the prosthesis stem was also studied. For the case of rigid support, the stress-strain state of the prosthesis was studied and the ultimate load was found to be 30.1 kg.
Collapse
Affiliation(s)
- Ivan Panfilov
- Department of Theoretical and Applied Mechanics, Agribusiness Faculty, Don State Technical University, Gagarin Square, 344003 Rostov-on-Don, Russia
| | - Ilya Vilkovyskiy
- Department of Veterinary Medicine, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Evgeniy Sadyrin
- Department of Theoretical and Applied Mechanics, Agribusiness Faculty, Don State Technical University, Gagarin Square, 344003 Rostov-on-Don, Russia
| | - Sergei Aizikovich
- Department of Theoretical and Applied Mechanics, Agribusiness Faculty, Don State Technical University, Gagarin Square, 344003 Rostov-on-Don, Russia
| | - Alexey N Beskopylny
- Department of Transport Systems, Faculty of Roads and Transport Systems, Don State Technical University, Gagarin, 1, 344003 Rostov-on-Don, Russia
| | - Besarion Meskhi
- Department of Life Safety and Environmental Protection, Faculty of Life Safety and Environmental Engineering, Don State Technical University, Gagarin, 1, 344003 Rostov-on-Don, Russia
| |
Collapse
|
2
|
Sass JO, Saemann M, Kebbach M, Soodmand E, Wree A, Bader R, Kluess D. The Morphology of the Femur Influences the Fracture Risk during Stumbling and Falls on the Hip-A Computational Biomechanical Study. Life (Basel) 2024; 14:841. [PMID: 39063595 PMCID: PMC11277570 DOI: 10.3390/life14070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Proximal femur fracture risk depends on subject-specific factors such as bone mineral density and morphological parameters. Here, we aim to analyze the dependency of the femoral strength on sixteen morphological parameters. Therefore, finite-element analyses of 20 human femurs during stumbling and lateral falls on the hip were conducted. Pearson correlation coefficients were calculated and morphological parameters with significant correlations were examined in principal component analysis and linear regression analysis. The dependency of the fracture strength on morphological parameters was more pronounced during lateral falls on the hip compared to stumbling. Significant correlations were observed between the neck shaft angle (r = -0.474), neck diameter (r = 0.507), the true distance between the femoral head center and femoral shaft axis (r = 0.459), and its projected distance on the frontal plane (r = 0.511), greater trochanter height (r = 0.497), and distance between the femoral head center and a plane parallel to the frontal plane containing the projection of the femoral head center to the femoral neck axis (r = 0.669). Principal component analysis was strongly weighted by parameters defining the lever arm during a lateral fall as well as the loaded cross-section in the femoral neck.
Collapse
Affiliation(s)
- Jan-Oliver Sass
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Michael Saemann
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Maeruan Kebbach
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Ehsan Soodmand
- Julius Wolff Institut, Center for Musculoskeletal Biomechanics and Regeneration, Berlin Institute of Health—Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Andreas Wree
- Institute for Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Daniel Kluess
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| |
Collapse
|
3
|
Cong B, Han Z, Zhang H. Exploring the displacement characteristics of Garden III femoral neck fractures and the reliability, validity, and value of the anteroposterior Garden Index in assessing displacement severity. J Orthop Surg Res 2023; 18:797. [PMID: 37875945 PMCID: PMC10594693 DOI: 10.1186/s13018-023-04269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Femoral neck fractures represent a significant public health concern, particularly in the elderly population. A thorough understanding and assessment of these fractures are deemed essential for optimal treatment and management. Displacement characteristics of Garden III femoral neck fractures were explored in this study, and the reliability, validity, and clinical utility of the anteroposterior Garden Index in evaluating displacement severity were investigated. METHODS Patients diagnosed with Garden III femoral neck fractures were included in this study. The anteroposterior Garden Index was computed from X-ray images by three experienced orthopedic doctors. Additionally, the contact area of the fracture endpoint and displacement of the femoral neck were evaluated using 128-slice 3D CT scans. Inter-observer and retest reliability of the Garden Index measurements were assessed, along with its correlation with CT measurements. RESULTS In this study, a total of 110 patients with Garden III femoral neck fractures were analyzed, showcasing an almost equal gender distribution and an age range spanning from 20 to 88 years. An average Garden Index of 135° (± 16°) was observed. The intra-observer repeatability of the Garden Index was found to exceed 90%. A significant positive correlation was identified between the Garden Index and the contact surface area of the fracture endpoint (r = 0.82, P < 0.001), while a significant negative correlation was noted with the upward displacement of the femoral neck (r = - 0.79, P < 0.001). CONCLUSIONS The anteroposterior Garden Index has been demonstrated to have promising potential as a reliable and valid tool for assessing the displacement severity of Garden III femoral neck fractures. Nonetheless, further research is needed to elucidate its relationship with other fracture characteristics and to enhance its criterion and construct validity.
Collapse
Affiliation(s)
- Bo Cong
- Yantai Key Laboratory for Repair and Reconstruction of Bone and Joint, Yantaishan Hospital Affiliated to Binzhou Medical University, 10087 Keji Avenue, Laishan District, Yantai, 264003 China
| | - Ziyin Han
- Yantai Key Laboratory for Repair and Reconstruction of Bone and Joint, Yantaishan Hospital Affiliated to Binzhou Medical University, 10087 Keji Avenue, Laishan District, Yantai, 264003 China
| | - Haiguang Zhang
- Yantai Key Laboratory for Repair and Reconstruction of Bone and Joint, Yantaishan Hospital Affiliated to Binzhou Medical University, 10087 Keji Avenue, Laishan District, Yantai, 264003 China
| |
Collapse
|
4
|
Zhang L, Zhu B, Chen L, Wang W, Zhang X, Zhang J. The Impact of Coronal Configuration of the Proximal Femur on its Mechanical Properties and the Validation of a New Theoretical Model: Finite Element Analysis and Biomechanical Examination. Orthop Surg 2023; 15:62-69. [PMID: 36250538 PMCID: PMC9837247 DOI: 10.1111/os.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE This study aims to establish the coronal configuration of the proximal femur as an independent factor for its mechanical properties and provide validation for the theoretical model "fulcrum-balance-reconstruction." METHODS The digital 3D femur model constructed with the lower extremity high-resolution computed tomography of a senior subject was applied with the axial compression of 2100N under 5 different α angles of 10°, 5°, 0°, -5°, -10°. The equivalent stress distribution of the femoral geometric model under each angle were calculated. Under the same five α angles, fatigue test was performed on 15 composite artificial left femurs (three specimens in each angle group) to obtain the failure cycle and fracture site. The statistical analysis was accomplished using One-Way ANOVA. RESULTS The maximum stress of the entire femur in physiological angle (α = 10°) occurred below femoral neck with a value of 63.91 MPa. When the proximal femur is in extreme abducted angle (α = -10°), the maximum stress shift to the lower medial cortex of femoral shaft with a value of 105.2 MPa. As the α angle changed from 10° to -10°, the greater trochanteric region had the largest increment in maximum stress (2.78 times for cortex and 1.67 times for cancellous bone) locally at the proximal femur. The failure cycles of the artificial femurs with a variety of abduction angle were averagely 9126 ± 2453.87 (α = -10°), 58,112.33 ± 1293.84 (α = -5°), 92,879.67 ± 2398.54 (α = 0°), 172,045.3 ± 11011.11 (α = 5°), and 264,949.3 ± 35,067.26 (α = 10°), and the statistical analysis revealed that the α angle of the group of concern is proportional to the P value of the corresponding group compared to the 10° group(α = 5° & α = 10°, P = 0.01; α = 0 & α = 10°, P = 0.001; α = -5°, -10° & α = 10°, P < 0.001). In fatigue test, the fracture appeared on femoral neck for the α angles of 10° (three subcapital), 5° (two basal; one transcervical), and 0° (one transcervical). Fracture sites located at trochanteric region were observed with the more abducted angles including 0° (two subtrochanteric) and -5° (two intertrochanteric; one subtrochanteric). The fracture line was only found on femoral shaft in the -10° group. CONCLUSION With increasing hip abduction, the proximal femur shows declining mechanical properties, which suggests higher risk of hip fracture and increasement in the fraction of trochanteric fracture subtype. Furthermore, the hypothesis of "fulcrum-balance-reconstruction" was validated by our study to a certain extent.
Collapse
Affiliation(s)
- Lijia Zhang
- 4+4 Medical Doctor ProgramChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
- Department of OrthopaedicsPeiking Union Medical College HospitalBeijingChina
| | - Baozhang Zhu
- Beijing Naton Medical Institute Co., Ltd, Haidian DistrictBeijingChina
| | - Liwan Chen
- Beijing Naton Medical Institute Co., Ltd, Haidian DistrictBeijingChina
| | - Wenqing Wang
- Beijing Naton Medical Institute Co., Ltd, Haidian DistrictBeijingChina
| | - Xiaoyong Zhang
- Beijing Naton Medical Institute Co., Ltd, Haidian DistrictBeijingChina
| | - Jianguo Zhang
- Department of OrthopaedicsPeiking Union Medical College HospitalBeijingChina
| |
Collapse
|
5
|
Endo D, Saiki K, Yoneda M, Ishida H, Ogami-Takamura K, Sakai R, Murai K, Imamura T, Naito Y, Wakebe T, Tsurumoto T. Application of Methods for a Morphological Analysis of the Femoral Diaphysis Based on Clinical CT Images to Prehistoric Human Bone: Comparison of Modern Japanese and Jomon Populations from Hegi Cave, Oita, Japan. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2069063. [PMID: 35711519 PMCID: PMC9197615 DOI: 10.1155/2022/2069063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
A morphological analysis of ancient human bones is essential for understanding life history, medical history, and genetic characteristics. In addition to external measurements, a three-dimensional structural analysis using CT will provide more detailed information. The present study examined adult male human skeletons excavated from Hegi cave, Nakatsu city, Oita Prefecture. CT images were taken from the femurs of adult males (Initial/Early Jomon Period (n = 10) and Late Jomon Period (n = 5)). Cross-sectional images of the diaphysis from below the lesser trochanter to above the adductor tubercle were obtained using the method established by Imamura et al. (2019) and Imamura et al. (2021). Using Excel formulas and macros, the area of cortical bone, thickness, and degree of curvature were quantitatively analyzed. The results were compared with data on modern Japanese. The maximum thickness of cortical bone in the diaphysis and the degree of the anterior curvature were significantly greater in Late Jomon humans than in the other groups. In contrast to modern humans, the majority of Jomon femurs showed the S-shaped curvature with the medial side at the top position and the lateral side at the lower position. The present results demonstrate that Late Jomon humans had a wider range of activity than the other groups and also provide insights into diseases in the hip and knee joints of Jomon humans.
Collapse
Affiliation(s)
- Daisuke Endo
- Department of Macroscopic Anatomy, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Kazunobu Saiki
- Department of Macroscopic Anatomy, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Keiko Ogami-Takamura
- Department of Macroscopic Anatomy, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
- Center of Cadaver Surgical Training, School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan
| | - Rina Sakai
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Kiyohito Murai
- Department of Macroscopic Anatomy, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Takeshi Imamura
- Department of Macroscopic Anatomy, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Yoshiatsu Naito
- Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Tetsuaki Wakebe
- Department of Macroscopic Anatomy, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
- Nagasaki Medical College, 36-59 Atago, Nagasaki, Nagasaki 850-0822, Japan
| | - Toshiyuki Tsurumoto
- Department of Macroscopic Anatomy, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
- Center of Cadaver Surgical Training, School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| |
Collapse
|
6
|
In Silico Finite Element Modeling of Stress Distribution in Osteosynthesis after Pertrochanteric Fractures. J Clin Med 2022; 11:jcm11071885. [PMID: 35407491 PMCID: PMC8999495 DOI: 10.3390/jcm11071885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
A stabilization method of pertrochanteric femur fractures is a contentious issue. Here, we assess the feasibility of rapid in silico 2D finite element modeling (FEM) to predict the distribution of stresses arising during the two most often used stabilization methods: gamma nail fixation (GNF) and dynamic hip screw (DHS). The modeling was based on standard pre-surgery radiographs of hip joints of 15 patients with pertrochanteric fractures of type A1, A2, and A3 according to the AO/OTA classification. The FEM showed that the stresses were similar for both GNF and DHS, with the medians ranging between 53-60 MPa and consistently lower for A1 than A3 fractures. Stresses also appeared in the fixation materials being about two-fold higher for GNF. Given similar bone stresses caused by both GNF and DHS but shorter surgery time, less extensive dissection, and faster patient mobilization, we submit that the GNF stabilization appears to be the most optimal system for pertrochanteric fractures. In silico FEM appears a viable perioperative method that helps predict the distribution of compressive stresses after osteosynthesis of pertrochanteric fractures. The promptness of modeling fits well into the rigid time framework of hip fracture surgery and may help optimize the fixation procedure for the best outcome. The study extends the use of FEM in complex orthopedic management. However, further datasets are required to firmly position the FEM in the treatment of pertrochanteric fractures.
Collapse
|
7
|
Luo Y. On challenges in clinical assessment of hip fracture risk using image-based biomechanical modelling: a critical review. J Bone Miner Metab 2021; 39:523-533. [PMID: 33423096 DOI: 10.1007/s00774-020-01198-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Hip fracture is a common health risk among elderly people, due to the prevalence of osteoporosis and accidental fall in the population. Accurate assessment of fracture risk is a crucial step for clinicians to consider patient-by-patient optimal treatments for effective prevention of fractures. Image-based biomechanical modeling has shown promising progress in assessment of fracture risk, and there is still a great possibility for improvement. The purpose of this paper is to identify key issues that need be addressed to improve image-based biomechanical modeling. MATERIALS AND METHODS We critically examined issues in consideration and determination of the four biomechanical variables, i.e., risk of fall, fall-induced impact force, bone geometry and bone material quality, which are essential for prediction of hip fracture risk. We closely inspected: limitations introduced by assumptions that are adopted in existing models; deficiencies in methods for construction of biomechanical models, especially for determination of bone material properties from bone images; problems caused by separate use of the variables in clinical study of hip fracture risk; availability of clinical information that are required for validation of biomechanical models. RESULTS AND CONCLUSIONS A number of critical issues and gaps were identified. Strategies for effectively addressing the issues were discussed.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada.
- Department of Biomedical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Oliviero S, Roberts M, Owen R, Reilly GC, Bellantuono I, Dall'Ara E. Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models. Biomech Model Mechanobiol 2021; 20:941-955. [PMID: 33523337 PMCID: PMC8154847 DOI: 10.1007/s10237-021-01422-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023]
Abstract
New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load-displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53-0.65, average error of 13-17%). A lower correlation was found for failure load (R2 = 0.21-0.48, average error of 9-15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75-0.80 for stiffness, R2 = 0.55-0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia.
Collapse
Affiliation(s)
- S Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - M Roberts
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - R Owen
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, UK
| | - G C Reilly
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - I Bellantuono
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, The Medical School, University of Sheffield, Sheffield, UK
| | - E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.
- Healthy Lifespan Institute, The Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
Altai Z, Montefiori E, van Veen B, A. Paggiosi M, McCloskey EV, Viceconti M, Mazzà C, Li X. Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach. PLoS One 2021; 16:e0245121. [PMID: 33524024 PMCID: PMC7850486 DOI: 10.1371/journal.pone.0245121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/22/2020] [Indexed: 01/19/2023] Open
Abstract
Recently, coupled musculoskeletal-finite element modelling approaches have emerged as a way to investigate femoral neck loading during various daily activities. Combining personalised gait data with finite element models will not only allow us to study changes in motion/movement, but also their effects on critical internal structures, such as the femur. However, previous studies have been hampered by the small sample size and the lack of fully personalised data in order to construct the coupled model. Therefore, the aim of this study was to build a pipeline for a fully personalised multiscale (body-organ level) model to investigate the strain levels at the femoral neck during a normal gait cycle. Five postmenopausal women were included in this study. The CT and MRI scans of the lower limb, and gait data were collected for all participants. Muscle forces derived from the body level musculoskeletal models were used as boundary constraints on the finite element femur models. Principal strains were estimated at the femoral neck region during a full gait cycle. Considerable variation was found in the predicted peak strain among individuals with mean peak first principal strain of 0.24% ± 0.11% and mean third principal strain of -0.29% ± 0.24%. For four individuals, two overall peaks of the maximum strains were found to occur when both feet were in contact with the floor, while one individual had one peak at the toe-off phase. Both the joint contact forces and the muscular forces were found to substantially influence the loading at the femoral neck. A higher correlation was found between the predicted peak strains and the gluteus medius (R2 ranged between 0.95 and 0.99) than the hip joint contact forces (R2 ranged between 0.63 and 0.96). Therefore, the current findings suggest that personal variations are substantial, and hence it is important to consider multiple subjects before deriving general conclusions for a target population.
Collapse
Affiliation(s)
- Zainab Altai
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Erica Montefiori
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Bart van Veen
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Margaret A. Paggiosi
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Eugene V. McCloskey
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudia Mazzà
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Xinshan Li
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Oliviero S, Owen R, Reilly GC, Bellantuono I, Dall'Ara E. Optimization of the failure criterion in micro-Finite Element models of the mouse tibia for the non-invasive prediction of its failure load in preclinical applications. J Mech Behav Biomed Mater 2020; 113:104190. [PMID: 33191174 DOI: 10.1016/j.jmbbm.2020.104190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023]
Abstract
New treatments against osteoporosis require testing in animal models and the mouse tibia is among the most common studied anatomical sites. In vivo micro-Computed Tomography (microCT) based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experiments. The aim of this study was to evaluate the ability of different microCT-based bone parameters and microFE models to predict tibial structural mechanical properties in compression. Twenty tibiae were scanned at 10.4 μm voxel size and subsequently tested in uniaxial compression at 0.03 mm/s until failure. Stiffness and failure load were measured from the load-displacement curves. Standard morphometric parameters were measured from the microCT images. The spatial distribution of bone mineral content (BMC) was evaluated by dividing the tibia into 40 regions. MicroFE models were generated by converting each microCT image into a voxel-based mesh with homogeneous isotropic material properties. Failure load was estimated by using different failure criteria, and the optimized parameters were selected by minimising the errors with respect to experimental measurements. Experimental and predicted stiffness were moderately correlated (R2 = 0.65, error = 14% ± 8%). Normalized failure load was best predicted by microFE models (R2 = 0.81, error = 9% ± 6%). Failure load was not correlated to the morphometric parameters and weakly correlated with some geometrical parameters (R2 < 0.37). In conclusion, microFE models can improve the current estimation of the mouse tibia structural properties and in this study an optimal failure criterion has been defined. Since it is a non-invasive method, this approach can be applied longitudinally for evaluating temporal changes in the bone strength.
Collapse
Affiliation(s)
- S Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK
| | - R Owen
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Department of Materials Science and Engineering, University of Sheffield, UK; Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, UK
| | - G C Reilly
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Department of Materials Science and Engineering, University of Sheffield, UK
| | - I Bellantuono
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, UK
| | - E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK.
| |
Collapse
|
11
|
Keyak JH, Kaneko TS, Khosla S, Amin S, Atkinson EJ, Lang TF, Sibonga JD. Hip load capacity and yield load in men and women of all ages. Bone 2020; 137:115321. [PMID: 32184195 PMCID: PMC7354222 DOI: 10.1016/j.bone.2020.115321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 02/02/2023]
Abstract
Quantitative computed tomography (QCT) based finite element (FE) models can compute subject-specific proximal femoral strengths, or fracture loads, that are associated with hip fracture risk. These fracture loads are more strongly associated with measured fracture loads than are DXA and QCT measures and are predictive of hip fracture independently of DXA bone mineral density (BMD). However, interpreting FE-computed fracture loads of younger subjects for the purpose of evaluating hip fracture risk in old age is challenging due to limited reference data. The goal of this study was to address this issue by providing reference data for male and female adult subjects of all ages. QCT-based FE models of the left proximal femur of 216 women and 181 men, age 27 to 90 years, from a cohort of Rochester, MN residents were used to compute proximal femoral load capacities, i.e. the maximum loads that can be supported, in single-limb stance and posterolateral fall loading (Stance_LC and Fall_LC, respectively) [US Patent No. 9,245,069] and yield load under fall loading (Fall_yield). To relate these measures to information about hip fracture, the CT scanner and calibration phantom were cross-calibrated with those from our previous prospective study of hip fracture in older fracture and control subjects, the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. We then plotted Stance_LC, Fall_LC and Fall_yield versus age for the two cohorts on the same graphs. Thus, proximal femoral strengths in individuals above 70 years of age can be assessed through direct comparison with the FE data from the AGES cohort which were analyzed using identical methods. To evaluate younger individuals, reductions in Stance_LC, Fall_LC and Fall_yield from the time of evaluation to age 70 years can be cautiously estimated from the average yearly cross-sectional decreases found in this study (108 N, 19.4 N and 14.4 N, respectively, in men and 120 N, 19.4 N and 21.6 N, respectively, in women), and the projected fracture loads can be compared with data from the AGES cohort. Although we did not set specific thresholds for identifying individuals at risk of hip fracture, these data provide some guidance and may be used to help establish diagnostic criteria in future. Additionally, given that these data were nearly entirely from Caucasian subjects, future research involving subjects of other races/ethnicities is necessary.
Collapse
Affiliation(s)
- J H Keyak
- Department of Radiological Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA.
| | - T S Kaneko
- Department of Radiological Sciences, University of California, Irvine, CA, USA
| | - S Khosla
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - S Amin
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - E J Atkinson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - T F Lang
- Department of Radiology and Biomedical Imaging and School of Dentistry, University of California, San Francisco, CA, USA
| | - J D Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX, USA
| |
Collapse
|
12
|
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020; 23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fracture is considered a critical clinical endpoint in skeletal pathologies including osteoporosis and bone metastases. However, current clinical guidelines are limited with respect to identifying cases at high risk of fracture, as they do not account for many mechanical determinants that contribute to bone fracture. Improving fracture risk assessment is an important area of research with clear clinical relevance. Patient-specific numerical musculoskeletal models generated from diagnostic images are widely used in biomechanics research and may provide the foundation for clinical tools used to quantify fracture risk. However, prior to clinical translation, in vitro validation of predictions generated from such numerical models is necessary. Despite adopting radically different models, in vitro validation of image-based finite element (FE) models of the proximal femur (predicting strains and failure loads) have shown very similar, encouraging levels of accuracy. The accuracy of such in vitro models has motivated their application to clinical studies of osteoporotic and metastatic fractures. Such models have demonstrated promising but heterogeneous results, which may be explained by the lack of a uniform strategy with respect to FE modeling of the human femur. This review aims to critically discuss the state of the art of image-based femoral FE modeling strategies, highlighting principal features and differences among current approaches. Quantitative results are also reported with respect to the level of accuracy achieved from in vitro evaluations and clinical applications and are used to motivate the adoption of a standardized approach/workflow for image-based FE modeling of the femur.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
13
|
Rajapakse CS, Farid AR, Kargilis DC, Jones BC, Lee JS, Johncola AJ, Batzdorf AS, Shetye SS, Hast MW, Chang G. MRI-based assessment of proximal femur strength compared to mechanical testing. Bone 2020; 133:115227. [PMID: 31926345 PMCID: PMC7096175 DOI: 10.1016/j.bone.2020.115227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Half of the women who sustain a hip fracture would not qualify for osteoporosis treatment based on current DXA-estimated bone mineral density criteria. Therefore, a better approach is needed to determine if an individual is at risk of hip fracture from a fall. The objective of this study was to determine the association between radiation-free MRI-derived bone strength and strain simulations compared to results from direct mechanical testing of cadaveric femora. Imaging was conducted on a 3-Tesla MRI scanner using two sequences: one balanced steady-state free precession sequence with 300 μm isotropic voxel size and one spoiled gradient echo with anisotropic voxel size of 234 × 234 × 1500 μm. Femora were dissected free of soft-tissue and 4350-ohm strain-gauges were securely applied to surfaces at the femoral shaft, inferior neck, greater trochanter, and superior neck. Cadavers were mechanically tested with a hydraulic universal test frame to simulate loading in a sideways fall orientation. Sideways fall forces were simulated on MRI-based finite element meshes and bone stiffness, failure force, and force for plastic deformation were computed. Simulated bone strength metrics from the 300 μm isotropic sequence showed strong agreement with experimentally obtained values of bone strength, with stiffness (r = 0.88, p = 0.0002), plastic deformation point (r = 0.89, p < 0.0001), and failure force (r = 0.92, p < 0.0001). The anisotropic sequence showed similar trends for stiffness, plastic deformation point, and failure force (r = 0.68, 0.70, 0.84; p = 0.02, 0.01, 0.0006, respectively). Surface strain-gauge measurements showed moderate to strong agreement with simulated magnitude strain values at the greater trochanter, superior neck, and inferior neck (r = -0.97, -0.86, 0.80; p ≤0.0001, 0.003, 0.03, respectively). The findings from this study support the use of MRI-based FE analysis of the hip to reliably predict the mechanical competence of the human femur in clinical settings.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, United States of America; Department of Orthopaedic Surgery, University of Pennsylvania, United States of America.
| | - Alexander R Farid
- Department of Radiology, University of Pennsylvania, United States of America
| | - Daniel C Kargilis
- Department of Radiology, University of Pennsylvania, United States of America
| | - Brandon C Jones
- Department of Radiology, University of Pennsylvania, United States of America
| | - Jae S Lee
- Department of Radiology, University of Pennsylvania, United States of America
| | - Alyssa J Johncola
- Department of Radiology, University of Pennsylvania, United States of America
| | | | - Snehal S Shetye
- Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| | - Michael W Hast
- Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| | - Gregory Chang
- Department of Radiology, New York University, United States of America
| |
Collapse
|
14
|
Bouxsein ML, Zysset P, Glüer CC, McClung M, Biver E, Pierroz DD, Ferrari SL. Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk. Osteoporos Int 2020; 31:393-408. [PMID: 31900541 DOI: 10.1007/s00198-019-05195-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED We reviewed the experimental and clinical evidence that hip bone strength estimated by BMD and/or finite element analysis (FEA) reflects the actual strength of the proximal femur and is associated with hip fracture risk and its changes upon treatment. INTRODUCTION The risk of hip fractures increases exponentially with age due to a progressive loss of bone mass, deterioration of bone structure, and increased incidence of falls. Areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), is the most used surrogate marker of bone strength. However, age-related declines in bone strength exceed those of aBMD, and the majority of fractures occur in those who are not identified as osteoporotic by BMD testing. With hip fracture incidence increasing worldwide, the development of accurate methods to estimate bone strength in vivo would be very useful to predict the risk of hip fracture and to monitor the effects of osteoporosis therapies. METHODS We reviewed experimental and clinical evidence regarding the association between aBMD and/orCT-finite element analysis (FEA) estimated femoral strength and hip fracture risk as well as their changes with treatment. RESULTS Femoral aBMD and bone strength estimates by CT-FEA explain a large proportion of femoral strength ex vivo and predict hip fracture risk in vivo. Changes in femoral aBMD are strongly associated with anti-fracture efficacy of osteoporosis treatments, though comparable data for FEA are currently not available. CONCLUSIONS Hip aBMD and estimated femoral strength are good predictors of fracture risk and could potentially be used as surrogate endpoints for fracture in clinical trials. Further improvements of FEA may be achieved by incorporating trabecular orientations, enhanced cortical modeling, effects of aging on bone tissue ductility, and multiple sideway fall loading conditions.
Collapse
Affiliation(s)
- M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - P Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - C C Glüer
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M McClung
- Oregon Osteoporosis Center, Portland, OR, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - E Biver
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - D D Pierroz
- International Osteoporosis Foundation (IOF), Nyon, Switzerland
| | - S L Ferrari
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
15
|
Viceconti M. Predicting bone strength from CT data: Clinical applications. Morphologie 2019; 103:180-186. [PMID: 31630964 DOI: 10.1016/j.morpho.2019.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
In this review we summarise over 15 years of research and development around the prediction of whole bones strength from Computed Tomography data, with particular reference to the prediction of the risk of hip fracture in osteoporotic patients. We briefly discuss the theoretical background, and then provide a summary of the laboratory and clinical validation of these modelling technologies. We then discuss the three current clinical applications: in clinical research, in clinical trials, and in clinical practice. On average the strength predicted with finite element models (QCT-FE) based on computed tomography is 7% more accurate that that predicted with areal bone mineral density from Dual X-ray Absorptiometry (DXA-aBMD), the current standard of care, both in term of laboratory validation on cadaver bones and in terms of stratification accuracy on clinical cohorts of fractured and non-fractured women. This improved accuracy makes QCT-FE superior to DXA-aBMD in clinical research and in clinical trials, where the its use can cut in half the number of patients to be enrolled to get the same statistical power. For routine clinical use to decide who to treat with antiresorptive drugs, QCT-FE is more accurate but less cost-effective than DXA-aBMD, at least when the decision is on first line treatment like bisphosphonates. But the ability to predict skeletal strength from medical imaging is now opening a number of other applications, for example in paediatrics and oncology.
Collapse
Affiliation(s)
- M Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy; Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
16
|
Altai Z, Qasim M, Li X, Viceconti M. The effect of boundary and loading conditions on patient classification using finite element predicted risk of fracture. Clin Biomech (Bristol, Avon) 2019; 68:137-143. [PMID: 31202100 DOI: 10.1016/j.clinbiomech.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteoporotic proximal femoral fractures associated to falls are a major health burden in the ageing society. Recently, bone strength estimated by finite element models emerged as a feasible alternative to areal bone mineral density as a predictor of fracture risk. However, previous studies showed that the accuracy of patients' classification under their risk of fracture using finite element strength when simulating posterolateral falls is only marginally better than that of areal bone mineral density. Patients tend to fall in various directions: since the predicted strength is sensitive to the fall direction, a prediction based on certain fall directions might not be fully representative of the physical event. Hence, side fall boundary conditions may not be completely representing the physical event. METHODS The effect of different side fall boundary and loading conditions on a retrospective cohort of 98 postmenopausal women was evaluated to test models' ability to discriminate fracture and control cases. Three different boundary conditions (Linear, Multi-point constraints and Contact model) were investigated under various anterolateral and posterolateral falls. FINDINGS The stratification power estimated by the area under the receiver operating characteristic curve was highest for Contact model (0.82), followed by Multi-point constraints and Linear models with 0.80. Both Contact and MPC models predicted high strains in various locations of the proximal femur including the greater trochanter, which has rarely reported previously. INTERPRETATION A full range of fall directions and less restrictive displacement constraints can improve the finite element strength ability to classify patients under their risk of fracture.
Collapse
Affiliation(s)
- Zainab Altai
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Muhammad Qasim
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| | - Xinshan Li
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy; Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
17
|
Luo Y, Yang H. Assessment of hip fracture risk by cross-sectional strain-energy derived from image-based beam model. Clin Biomech (Bristol, Avon) 2019; 63:48-53. [PMID: 30831432 DOI: 10.1016/j.clinbiomech.2019.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinicians have been looking for a simple and effective biomechanical tool for the assessment of hip fracture risk. Dual-energy X-ray absorptiometry (DXA) is currently the primary bone imaging modality in clinic, and the engineering beam is the simplest model for a mechanical analysis. Therefore, we developed a DXA-based beam model for the above purpose. METHODS A beam model of the proximal femur was constructed from the subject's hip DXA image and denoted DXA-beam. Femur stiffness was calculated at cross-sections of interest using areal bone-mineral-density profile. Impact force induced in a sideways fall was applied as a critical loading. Fracture risk index at a cross-section was defined as the ratio of strain-energy induced by the impact force to the allowable strain-energy. A clinic cohort was used to study the discriminability of DXA-beam, which was measured by the area under the curve and odds ratio, both with 95% confidential interval. FINDINGS Fracture risk measured by DXA-beam model at the femoral neck [odds ratio 2.23, 95% confidence interval (1.83, 2.57)], inter-trochanter [2.49, (2.14, 3.25)] and sub-trochanter [2.82, (2.38, 3.51)] were strongly associated with hip fracture. The area under the curve by DXA-beam at the femoral neck [0.74, 95% confidence interval (0.70, 0.76)], inter-trochanter [0.77, (0.75, 0.82)] and sub-trochanter [0.76, (0.74, 0.81)] were higher than that by femoral neck bone mineral density [0.71, (0.65, 0.78)]. INTERPRETATION The DXA-beam model is a simple and yet effective mechanical model. It had promising performance in discrimination of fracture cases from controls.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada; Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada.
| | - Huijuan Yang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
18
|
Anitha D, Subburaj K, Kopp FK, Mei K, Foehr P, Burgkart R, Sollmann N, Maegerlein C, Kirschke JS, Noel PB, Baum T. Effect of Statistically Iterative Image Reconstruction on Vertebral Bone Strength Prediction Using Bone Mineral Density and Finite Element Modeling: A Preliminary Study. J Comput Assist Tomogr 2019; 43:61-65. [PMID: 30211797 DOI: 10.1097/rct.0000000000000788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Statistical iterative reconstruction (SIR) using multidetector computed tomography (MDCT) is a promising alternative to standard filtered back projection (FBP), because of lower noise generation while maintaining image quality. Hence, we investigated the feasibility of SIR in predicting MDCT-based bone mineral density (BMD) and vertebral bone strength from finite element (FE) analysis. The BMD and FE-predicted bone strength derived from MDCT images reconstructed using standard FBP (FFBP) and SIR with (FSIR) and without regularization (FSIRB0) were validated against experimental failure loads (Fexp). Statistical iterative reconstruction produced the best quality images with regard to noise, signal-to-noise ratio, and contrast-to-noise ratio. Fexp significantly correlated with FFBP, FSIR, and FSIRB0. FFBP had a significant correlation with FSIRB0 and FSIR. The BMD derived from FBP, SIRB0, and SIR were significantly correlated. Effects of regularization should be further investigated with FE and BMD analysis to allow for an optimal iterative reconstruction algorithm to be implemented in an in vivo scenario.
Collapse
Affiliation(s)
| | | | | | | | - Peter Foehr
- Department of Orthopaedic Surgery, Biomechanical Laboratory, and
| | - Rainer Burgkart
- Department of Orthopaedic Surgery, Biomechanical Laboratory, and
| | - Nico Sollmann
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Maegerlein
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Thomas Baum
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
19
|
Abstract
Fractures of the femoral neck can occur in young healthy individuals due to high loads occurring during motor vehicle accidents, impacts, or falls. Failure forces are lower if impacts occur sideways onto the greater trochanter as compared with vertical loading of the hip. Bone density, bone geometry, and thickness of cortical bone at the femoral neck contribute to its mechanical strength. Femoral neck fractures in young adults require accurate reduction and stable internal fixation. The available techniques for fracture fixation at the femoral neck (cannulated screws, hip screw systems, proximal femur plates, and cephallomedullary nails) are reviewed with respect to their competence to provide biomechanical stability. Mechanically unstable fractures require a load-bearing implant, such as hip screws, with antirotational screws or intramedullary nails. Subcapital or transcervical fracture patterns and noncomminuted fractures enable load sharing and can be securely fixed with cannulated screws or solitary hip screw systems without compromising fixation stability.
Collapse
|
20
|
Mechanical Strength of the Proximal Femur After Arthroscopic Osteochondroplasty for Femoroacetabular Impingement: Finite Element Analysis and 3-Dimensional Image Analysis. Arthroscopy 2018; 34:2377-2386. [PMID: 29937343 DOI: 10.1016/j.arthro.2018.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To examine the influence of femoral neck resection on the mechanical strength of the proximal femur in actual surgery. METHODS Eighteen subjects who received arthroscopic cam resection for cam-type femoroacetabular impingement (FAI) were included. Finite element analyses (FEAs) were performed to calculate changes in simulative fracture load between pre- and postoperative femur models. The finite element femur models were constructed from computed tomographic images; thus, the models represented the shape of the original femur, including the bone resection site. Three-dimensional image analysis of the bone resection site was performed to identify morphometric factors that affect strength in the postoperative femur model. Four oblique sagittal planes running perpendicular to the femoral neck axis were used as reference planes to measure the bone resection site. RESULTS At the transcervical reference plane, both the bone resection depth and the cross-sectional area at the resection site correlated strongly with postoperative changes in the simulated fracture load (R2 = 0.6, P = .0001). However, only resection depth was significantly correlated with the simulated fracture load at the reference plane for the head-neck junction. The resected bone volume did not correlate with the postoperative changes in the simulated fracture load. CONCLUSIONS The results of our FEA suggest that the bone resection depth measured at the head-neck junction and transcervical reference plane correlates with fracture risk after osteochondroplasty. By contrast, bone resection at more proximal areas did not have a significant effect on the postoperative femur model strength in our FEA. The total volume of resected bone was also not significantly correlated with postoperative changes in femur model strength. CLINICAL RELEVANCE This biomechanical study using FEA suggest that there is a risk of femoral neck fracture after arthroscopic cam resection, particularly when the resected lesion is located distally.
Collapse
|
21
|
Viceconti M, Qasim M, Bhattacharya P, Li X. Are CT-Based Finite Element Model Predictions of Femoral Bone Strength Clinically Useful? Curr Osteoporos Rep 2018; 16:216-223. [PMID: 29656377 PMCID: PMC5945796 DOI: 10.1007/s11914-018-0438-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW This study reviews the available literature to compare the accuracy of areal bone mineral density derived from dual X-ray absorptiometry (DXA-aBMD) and of subject-specific finite element models derived from quantitative computed tomography (QCT-SSFE) in predicting bone strength measured experimentally on cadaver bones, as well as their clinical accuracy both in terms of discrimination and prediction. Based on this information, some basic cost-effectiveness calculations are performed to explore the use of QCT-SSFE instead of DXA-aBMD in (a) clinical studies with femoral strength as endpoint, (b) predictor of the risk of hip fracture in low bone mass patients. RECENT FINDINGS Recent improvements involving the use of smooth-boundary meshes, better anatomical referencing for proximal-only scans, multiple side-fall directions, and refined boundary conditions increase the predictive accuracy of QCT-SSFE. If these improvements are adopted, QCT-SSFE is always preferable over DXA-aBMD in clinical studies with femoral strength as the endpoint, while it is not yet cost-effective as a hip fracture risk predictor, although pathways that combine both QCT-SSFE and DXA-aBMD are promising.
Collapse
Affiliation(s)
- Marco Viceconti
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
- Insigneo Institute for in silico medicine, University of Sheffield, Pam Liversidge Building, Sheffield, S13JD, UK.
| | - Muhammad Qasim
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Pinaki Bhattacharya
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Xinshan Li
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Luo Y, Ahmed S, Leslie WD. Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 155:75-83. [PMID: 29512506 DOI: 10.1016/j.cmpb.2017.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Finite element analysis of medical images is a promising tool for assessing hip fracture risk. Although a number of finite element models have been developed for this purpose, none of them have been routinely used in clinic. The main reason is that the computer programs that implement the finite element models have not been completely automated, and heavy training is required before clinicians can effectively use them. By using information embedded in clinical dual energy X-ray absorptiometry (DXA), we completely automated a DXA-based finite element (FE) model that we previously developed for predicting hip fracture risk. The automated FE tool can be run as a standalone computer program with the subject's raw hip DXA image as input. The automated FE tool had greatly improved short-term precision compared with the semi-automated version. To validate the automated FE tool, a clinical cohort consisting of 100 prior hip fracture cases and 300 matched controls was obtained from a local community clinical center. Both the automated FE tool and femoral bone mineral density (BMD) were applied to discriminate the fracture cases from the controls. Femoral BMD is the gold standard reference recommended by the World Health Organization for screening osteoporosis and for assessing hip fracture risk. The accuracy was measured by the area under ROC curve (AUC) and odds ratio (OR). Compared with femoral BMD (AUC = 0.71, OR = 2.07), the automated FE tool had a considerably improved accuracy (AUC = 0.78, OR = 2.61 at the trochanter). This work made a large step toward applying our DXA-based FE model as a routine clinical tool for the assessment of hip fracture risk. Furthermore, the automated computer program can be embedded into a web-site as an internet application.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada; Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada.
| | - Sharif Ahmed
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| | - William D Leslie
- Department of Radiology, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
23
|
Ridzwan MIZ, Sukjamsri C, Pal B, van Arkel RJ, Bell A, Khanna M, Baskaradas A, Abel R, Boughton O, Cobb J, Hansen UN. Femoral fracture type can be predicted from femoral structure: A finite element study validated by digital volume correlation experiments. J Orthop Res 2018; 36:993-1001. [PMID: 28762563 DOI: 10.1002/jor.23669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
Abstract
Proximal femoral fractures can be categorized into two main types: Neck and intertrochanteric fractures accounting for 53% and 43% of all proximal femoral fractures, respectively. The possibility to predict the type of fracture a specific patient is predisposed to would allow drug and exercise therapies, hip protector design, and prophylactic surgery to be better targeted for this patient rendering fracture preventing strategies more effective. This study hypothesized that the type of fracture is closely related to the patient-specific femoral structure and predictable by finite element (FE) methods. Fourteen femora were DXA scanned, CT scanned, and mechanically tested to fracture. FE-predicted fracture patterns were compared to experimentally observed fracture patterns. Measurements of strain patterns to explain neck and intertrochanteric fracture patterns were performed using a digital volume correlation (DVC) technique and compared to FE-predicted strains and experimentally observed fracture patterns. Although loaded identically, the femora exhibited different fracture types (six neck and eight intertrochanteric fractures). CT-based FE models matched the experimental observations well (86%) demonstrating that the fracture type can be predicted. DVC-measured and FE-predicted strains showed obvious consistency. Neither DXA-based BMD nor any morphologic characteristics such as neck diameter, femoral neck length, or neck shaft angle were associated with fracture type. In conclusion, patient-specific femoral structure correlates with fracture type and FE analyses were able to predict these fracture types. Also, the demonstration of FE and DVC as metrics of the strains in bones may be of substantial clinical value, informing treatment strategies and device selection and design. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:993-1001, 2018.
Collapse
Affiliation(s)
- Mohamad Ikhwan Zaini Ridzwan
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.,School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, 14300, Malaysia
| | - Chamaiporn Sukjamsri
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.,Faculty of Engineering, Department of Biomedical Engineering, Srinakharinwirot University, Nakhonnayok, 26120, Thailand
| | - Bidyut Pal
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.,School of Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, United Kingdom
| | - Richard J van Arkel
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Andrew Bell
- MSC Software Ltd., 4 Archipelago, Lyon Way, Frimley, Surrey, GU16 7ER, United Kingdom
| | - Monica Khanna
- Department of Clinical Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aroon Baskaradas
- Trauma and Orthopaedic Surgery, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Richard Abel
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, W6 8RF, United Kingdom
| | - Oliver Boughton
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, W6 8RF, United Kingdom
| | - Justin Cobb
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, W6 8RF, United Kingdom
| | - Ulrich N Hansen
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
Johannesdottir F, Thrall E, Muller J, Keaveny TM, Kopperdahl DL, Bouxsein ML. Comparison of non-invasive assessments of strength of the proximal femur. Bone 2017; 105:93-102. [PMID: 28739416 DOI: 10.1016/j.bone.2017.07.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
It is not clear which non-invasive method is most effective for predicting strength of the proximal femur in those at highest risk of fracture. The primary aim of this study was to compare the abilities of dual energy X-ray absorptiometry (DXA)-derived aBMD, quantitative computed tomography (QCT)-derived density and volume measures, and finite element analysis (FEA)-estimated strength to predict femoral failure load. We also evaluated the contribution of cortical and trabecular bone measurements to proximal femur strength. We obtained 76 human cadaveric proximal femurs (50 women and 26 men; age 74±8.8years), performed imaging with DXA and QCT, and mechanically tested the femurs to failure in a sideways fall configuration at a high loading rate. Linear regression analysis was used to construct the predictive model between imaging outcomes and experimentally-measured femoral strength for each method. To compare the performance of each method we used 3-fold cross validation repeated 10 times. The bone strength estimated by QCT-based FEA predicted femoral failure load (R2adj=0.78, 95%CI 0.76-0.80; RMSE=896N, 95%CI 830-961) significantly better than femoral neck aBMD by DXA (R2adj=0.69, 95%CI 0.66-0.72; RMSE=1011N, 95%CI 952-1069) and the QCT-based model (R2adj=0.73, 95%CI 0.71-0.75; RMSE=932N, 95%CI 879-985). Both cortical and trabecular bone contribute to femoral strength, the contribution of cortical bone being higher in femurs with lower trabecular bone density. These findings have implications for optimizing clinical approaches to assess hip fracture risk. In addition, our findings provide new insights that will assist in interpretation of the effects of osteoporosis treatments that preferentially impact cortical versus trabecular bone.
Collapse
Affiliation(s)
- Fjola Johannesdottir
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.
| | - Erica Thrall
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John Muller
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA
| | | | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Agten CA, Ramme AJ, Kang S, Honig S, Chang G. Cost-effectiveness of Virtual Bone Strength Testing in Osteoporosis Screening Programs for Postmenopausal Women in the United States. Radiology 2017; 285:506-517. [PMID: 28613988 PMCID: PMC5673038 DOI: 10.1148/radiol.2017161259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose To investigate whether assessment of bone strength with quantitative computed tomography (CT) in combination with dual-energy x-ray absorptiometry (DXA) is cost-effective as a screening tool for osteoporosis in postmenopausal women. Materials and Methods A state-transition microsimulation model of osteoporosis for postmenopausal women aged 55 years or older was developed with a lifetime horizon and U.S. societal perspective. All model inputs were derived from published literature. Three strategies were compared: no screening, DXA with T score-dependent rescreening intervals, and a combination of DXA and quantitative CT with different intervals (3, 5, and 10 years) at different screening initiation ages (55-65 years). Oral bisphosphonate therapy was started if DXA hip T scores were less than or equal to -2.5, 10-year risk for hip fracture was greater than 3% (World Health Organization Fracture Risk Assessment Tool score, or FRAX), 10-year risk for major osteoporotic fracture was greater than 20% (FRAX), quantitative CT femur bone strength was less than 3000 N, or occurrence of first fracture (eg, hip, vertebral body, wrist). Outcome measures were incremental cost-effectiveness ratios (ICERs) in 2015 U.S. dollars per quality-adjusted life year (QALY) gained and number of fragility fractures. Probabilistic sensitivity analysis was also performed. Results The most cost-effective strategy was combined DXA and quantitative CT screening starting at age 55 with quantitative CT screening every 5 years (ICER, $2000 per QALY). With this strategy, 12.8% of postmenopausal women sustained hip fractures in their remaining life (no screening, 18.7%; DXA screening, 15.8%). The corresponding percentages of vertebral fractures for DXA and quantitative CT with a 5-year interval, was 7.5%; no screening, 11.1%; DXA screening, 9%; for wrist fractures, 14%, 17.8%, and 16.4%, respectively; for other fractures, 22.6%, 30.8%, and 27.3%, respectively. In probabilistic sensitivity analysis, DXA and quantitative CT at age 55 years with quantitative CT screening every 5 years was the best strategy in more than 90% of all 1000 simulations (for thresholds of $50 000 per QALY and $100 000 per QALY). Conclusion Combined assessment of bone strength and bone mineral density is a cost-effective strategy for osteoporosis screening in postmenopausal women and has the potential to prevent a substantial number of fragility fractures. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Christoph A. Agten
- From the Department of Radiology, Center for Musculoskeletal Care (C.A.A., S.K., G.C.), Department of Orthopedic Surgery, (A.J.R.), and Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU School of Medicine, NYU Langone Medical Center, 333 E 38th St, New York, NY 10016
| | - Austin J. Ramme
- From the Department of Radiology, Center for Musculoskeletal Care (C.A.A., S.K., G.C.), Department of Orthopedic Surgery, (A.J.R.), and Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU School of Medicine, NYU Langone Medical Center, 333 E 38th St, New York, NY 10016
| | - Stella Kang
- From the Department of Radiology, Center for Musculoskeletal Care (C.A.A., S.K., G.C.), Department of Orthopedic Surgery, (A.J.R.), and Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU School of Medicine, NYU Langone Medical Center, 333 E 38th St, New York, NY 10016
| | - Stephen Honig
- From the Department of Radiology, Center for Musculoskeletal Care (C.A.A., S.K., G.C.), Department of Orthopedic Surgery, (A.J.R.), and Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU School of Medicine, NYU Langone Medical Center, 333 E 38th St, New York, NY 10016
| | - Gregory Chang
- From the Department of Radiology, Center for Musculoskeletal Care (C.A.A., S.K., G.C.), Department of Orthopedic Surgery, (A.J.R.), and Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU School of Medicine, NYU Langone Medical Center, 333 E 38th St, New York, NY 10016
| |
Collapse
|
26
|
Mikkola TM, von Bonsdorff MB, Osmond C, Salonen MK, Kajantie E, Cooper C, Välimäki MJ, Eriksson JG. Childhood growth predicts higher bone mass and greater bone area in early old age: findings among a subgroup of women from the Helsinki Birth Cohort Study. Osteoporos Int 2017; 28:2717-2722. [PMID: 28444432 PMCID: PMC5669454 DOI: 10.1007/s00198-017-4048-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/10/2017] [Indexed: 01/04/2023]
Abstract
UNLABELLED We examined the associations between childhood growth and bone properties among women at early old age. Early growth in height predicted greater bone area and higher bone mineral mass. However, information on growth did not improve prediction of bone properties beyond that predicted by body size at early old age. INTRODUCTION We examined the associations between body size at birth and childhood growth with bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) in early old age. METHODS A subgroup of women (n = 178, mean 60.4 years) from the Helsinki Birth Cohort Study, born 1934-1944, participated in dual-energy X-ray absorptiometry (DXA) measurements of the lumbar spine and hip. Height and weight at 0, 2, 7, and 11 years, obtained from health care records, were reconstructed into conditional variables representing growth velocity independent of earlier growth. Weight was adjusted for corresponding height. Linear regression models were adjusted for multiple confounders. RESULTS Birth length and growth in height before 7 years of age were positively associated with femoral neck area (p < 0.05) and growth in height at all age periods studied with spine bone area (p < 0.01). Growth in height before the age of 7 years was associated with BMC in the femoral neck (p < 0.01) and birth length and growth in height before the age of 7 years were associated with BMC in the spine (p < 0.05). After entering adult height into the models, nearly all associations disappeared. Weight gain during childhood was not associated with bone area or BMC, and aBMD was not associated with early growth. CONCLUSIONS Optimal growth in height in girls is important for obtaining larger skeleton and consequently higher bone mass. However, when predicting bone mineral mass among elderly women, information on early growth does not improve prediction beyond that predicted by current height and weight.
Collapse
Affiliation(s)
- T M Mikkola
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland.
- Gerontology Research Center and Department of Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland.
| | - M B von Bonsdorff
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland
- Gerontology Research Center and Department of Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - C Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - M K Salonen
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - E Kajantie
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - C Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
- University of Oxford, Oxford, UK
| | - M J Välimäki
- Division of Endocrinology, Department of Medicine, Helsinki University Hospital, Helsinki, Finland
| | - J G Eriksson
- Folkhälsan Research Center, Topeliuksenkatu 20, 00250, Helsinki, Finland
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Dragomir-Daescu D, Rezaei A, Rossman T, Uthamaraj S, Entwistle R, McEligot S, Lambert V, Giambini H, Jasiuk I, Yaszemski MJ, Lu L. Method and Instrumented Fixture for Femoral Fracture Testing in a Sideways Fall-on-the-Hip Position. J Vis Exp 2017. [PMID: 28872111 DOI: 10.3791/54928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mechanical testing of femora brings valuable insights into understanding the contribution of clinically-measureable variables such as bone mineral density distribution and geometry on the femoral mechanical properties. Currently, there is no standard protocol for mechanical testing of such geometrically complex bones to measure strength, and stiffness. To address this gap we have developed a protocol to test cadaveric femora to fracture and to measure their biomechanical parameters. This protocol describes a set of adaptable fixtures to accommodate the various load magnitudes and directions accounting for possible bone orientations in a fall on the hip configuration, test speed, bone size, and left leg-right leg variations. The femora were prepared for testing by cleaning, cutting, scanning, and potting the distal end and greater trochanter contact surfaces in poly(methyl methacrylate) (PMMA) as presented in a different protocol. The prepared specimens were placed in the testing fixture in a position mimicking a sideways fall on the hip and loaded to fracture. During testing, two load cells measured vertical forces applied to the femoral head and greater trochanter, a six-axis load cell measured forces and moments at the distal femoral shaft, and a displacement sensor measured differential displacement between the femoral head and trochanter contact supports. High speed video cameras were used to synchronously record the sequence of fracture events during testing. The reduction of this data allowed us to characterize the strength, stiffness, and fracture energy for nearly 200 osteoporotic, osteopenic, and normal cadaveric femora for further development of engineering-based diagnostic tools for osteoporosis research.
Collapse
Affiliation(s)
- Dan Dragomir-Daescu
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Division of Engineering, Mayo Clinic;
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Division of Engineering, Mayo Clinic
| | | | | | | | | | | | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | | | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Department of Orthopedic Surgery, Mayo Clinic
| |
Collapse
|
28
|
Tissue mineral density measured at the sub-millimetre scale can provide reliable statistics of elastic properties of bone matrix. Biomech Model Mechanobiol 2017; 16:1885-1910. [DOI: 10.1007/s10237-017-0926-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
|
29
|
Fuchs RK, Kersh ME, Carballido-Gamio J, Thompson WR, Keyak JH, Warden SJ. Physical Activity for Strengthening Fracture Prone Regions of the Proximal Femur. Curr Osteoporos Rep 2017; 15:43-52. [PMID: 28133707 PMCID: PMC5317179 DOI: 10.1007/s11914-017-0343-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Physical activity improves proximal femoral bone health; however, it remains unclear whether changes translate into a reduction in fracture risk. To enhance any fracture-protective effects of physical activity, fracture prone regions within the proximal femur need to be targeted. RECENT FINDINGS The proximal femur is designed to withstand forces in the weight-bearing direction, but less so forces associated with falls in a sideways direction. Sideways falls heighten femoral neck fracture risk by loading the relatively weak superolateral region of femoral neck. Recent studies exploring regional adaptation of the femoral neck to physical activity have identified heterogeneous adaptation, with adaptation principally occurring within inferomedial weight-bearing regions and little to no adaptation occurring in the superolateral femoral neck. There is a need to develop novel physical activities that better target and strengthen the superolateral femoral neck within the proximal femur. Design of these activities may be guided by subject-specific musculoskeletal modeling and finite-element modeling approaches.
Collapse
Affiliation(s)
- Robyn K Fuchs
- Department of Physical Therapy and Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St, Indianapolis, IN, CF-120, USA
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Julio Carballido-Gamio
- Department of Radiology, School of Medicine, University of Colorado Denver, Denver, CO, USA
| | - William R Thompson
- Department of Physical Therapy and Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St, Indianapolis, IN, CF-120, USA
| | - Joyce H Keyak
- Departments of Radiological Sciences, Mechanical and Aerospace Engineering, and Biomedical Engineering, University of California, Irvine, CA, USA
| | - Stuart J Warden
- Department of Physical Therapy and Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St, Indianapolis, IN, CF-120, USA.
| |
Collapse
|