1
|
Karasan E, Chen J, Maravilla J, Zhang Z, Liu C, Lustig M. MR perfusion source mapping depicts venous territories and reveals perfusion modulation during neural activation. Nat Commun 2025; 16:3890. [PMID: 40274782 PMCID: PMC12022259 DOI: 10.1038/s41467-025-59108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
The cerebral venous system plays a crucial role in neurological and vascular conditions, yet its hemodynamics remain underexplored due to its complexity and variability across individuals. To address this, we develop a venous perfusion source mapping method using Displacement Spectrum MRI, a non-contrast technique that leverages blood water as an endogenous tracer. Our technique encodes spatial information into the magnetization of blood water spins during tagging and detects it once the tagged blood reaches the brain's surface, where the signal-to-noise ratio is 3-4 times higher. We resolve the sources of blood entering the imaging slice across short (10 ms) to long (3 s) evolution times, effectively capturing perfusion sources in reverse. This approach enables the measurement of slow venous blood flow, including potential contributions from capillary beds and surrounding tissue. We demonstrate perfusion source mapping in the superior cerebral veins, verify its sensitivity to global perfusion modulation induced by caffeine, and establish its specificity by showing repeatable local perfusion modulation during neural activation. From all blood within the imaging slice, our method localizes the portion originating from an activated region upstream.
Collapse
Affiliation(s)
- Ekin Karasan
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA.
| | - Jingjia Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Julian Maravilla
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Feng C, Zhang L, Zhou X, Lu S, Guo R, Song C, Zhang X. Redox imbalance drives magnetic property and function changes in mice. Redox Biol 2025; 81:103561. [PMID: 40020452 PMCID: PMC11910372 DOI: 10.1016/j.redox.2025.103561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
The magnetic properties of substances directly determine their response to an externally applied magnetic field, which are closely associated with magnetoreception, magnetic resonance imaging (MRI), and magnetic bioeffects. However, people's understanding of the magnetic properties of living organisms remains limited. In this study, we utilized NRF2 (nuclear factor erythroid 2-related factor 2) deficient mice to investigate the contribution of redox (oxidation-reduction) homeostasis, in which the key process is the transfer of electron, a direct target of magnetic field and origin of paramagnetism. Our results show that the NRF2-/- mice exhibit significantly altered systemic redox state, accompanied by increased magnetic susceptibility, particularly in the liver and spleen. Further analyses reveal that the levels of paramagnetic reactive oxygen species (ROS) in these tissues are markedly elevated compared to wild-type mice. Moreover, the concentrations of Fe2+ and Fe3+ are significantly elevated in NRF2-/- mice, which are directly correlated with the increased magnetic susceptibility. The disrupted redox balance in NRF2-/- mice not only exacerbates oxidative stress and iron deposition, but also induces impairment to the liver and spleen. The findings highlight the combined effects of ROS and iron metabolism in driving magnetic susceptibility changes, providing valuable theoretical insights for further research into magnetic bioeffects and organ-specific sensitivity to magnetic fields.
Collapse
Affiliation(s)
- Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoyuan Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China
| | - Shiyu Lu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China.
| |
Collapse
|
3
|
Kan H, Nakashima M, Tsuchiya T, Yamada M, Hiwatashi A. Water/fat separate reconstruction for body quantitative susceptibility mapping in MRI. Radiol Phys Technol 2025; 18:320-328. [PMID: 39760974 DOI: 10.1007/s12194-024-00878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
This study aimed to investigate the cause of susceptibility underestimation in body quantitative susceptibility mapping (QSM) and propose a water/fat separate reconstruction to address this issue. A numerical simulation was conducted using conventional QSM with/without body masking. The conventional method with body masking underestimated the susceptibility across all regions, whereas the method without body masking estimated an equivalent value to the ground truth. Additional numerical simulations and human experiments were conducted to compare the water/fat separate reconstruction, which separately reconstructs water and fat susceptibility maps based on the water/fat separation, with conventional QSM with body masking. The proposed method improved susceptibility estimation specifically in only the water tissue. The results of the human experiments were consistent with those of the numerical simulations. The lack of phase information outside the body contributed to susceptibility underestimation in conventional QSM. The developed method addressed susceptibility underestimation only in water tissue in body QSM.
Collapse
Affiliation(s)
- Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daiko-Minami, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Tsuchiya
- Department of Radiology, Nagoya City University Hospital, Nagoya, Japan
| | - Masato Yamada
- Department of Radiology, Nagoya City University Hospital, Nagoya, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Wang S, Spincemaille P, Selim M, Hasan D, Thomas AJ, Filippidis A, Wen Y, Wang Y, Soman S. CSF Susceptibility Variation in Patient With Intracranial Hemorrhage: Implications for Quantitative Susceptibility Mapping Reference Selection. J Comput Assist Tomogr 2025; 49:332-341. [PMID: 39284122 DOI: 10.1097/rct.0000000000001660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is an emerging MRI technique with multiple clinical applications. As tissue susceptibility cannot be directly measured using MRI, QSM imaging techniques must indirectly compute susceptibility values, requiring regularization methods. CSF is a popular choice for regularization due to its near water susceptibility in healthy controls. However, the impact of pus, elevated protein, or blood dissolved in CSF on QSM regularization is not well defined. OBJECTIVE This study aimed to investigate the effects of intracranial hemorrhage (ICH) on selecting CSF as reference for QSM imaging. MATERIALS AND METHODS A total of 87 subjects, 53 with ICH (5 intraventricular, 19 subarachnoid, 27 both, and 2 intraparenchymal only) and 37 without hemorrhage (27 with MS, 10 without MS), were included in this study. Imaging was performed using 3D multiecho gradient echo, FLAIR, and multiecho complex total field inversion (mcTFI) at 3 T. McTFI with and without CSF zero-referencing regularization was generated from the 3DMEGRE data and reviewed with FLAIR images. Regions of hemorrhagic (H+) and nonhemorrhagic (H-) CSF were manually selected in reference to head CT and FLAIR images by a PGY III diagnostic radiology resident and Certificate of Added Qualification-certified neuroradiologist with 10 years' experience. Paired Student t test and one-way ANOVA were used with post hoc multicomparisons. A P value <0.05 was considered statistically significant. RESULTS Areas of H- CSF were noted to have higher regularized QSM values in subjects with ICH relative to subjects without. Unregularized H- QSM values were also noted to have a systematically higher value in ICH subjects relative to subjects without blood. Subjects with MS and without ICH did not show significant difference in H- CSF regularized or unregularized QSM values. CONCLUSIONS QSM values of areas suggested to not have hemorrhage on other imaging showed significantly higher QSM values in ICH subjects relative to subjects without ICH. Additionally, areas of hemorrhage did not show significant QSM value difference between regularized and unregularized QSM images. These findings suggest that, in subjects with any area of ICH, QSM values for no-hemorrhagic areas may be significantly altered using CSF regularization relative to subjects without ICH, with implications for intra- and intersubject QSM value analysis.
Collapse
Affiliation(s)
- Shutao Wang
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Magdy Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - David Hasan
- Department of Neurological Surgery, Duke University School of Medicine, Durham, NC
| | - Ajith J Thomas
- Cooper University Healthcare/Cooper Medical School of Rowan University, Camden, NJ
| | - Aristotelis Filippidis
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yan Wen
- GE Healthcare, Lincoln Medical Center, New York, NY
| | - Yi Wang
- Weill Cornell Medicine, New York, NY
| | - Salil Soman
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Sakurama A, Fushimi Y, Nakajima S, Sakata A, Okuchi S, Yamamoto T, Otani S, Wicaksono KP, Ikeda S, Ito S, Maki T, Liu W, Nakamoto Y. Comparison study of quantitative susceptibility mapping with GRAPPA and wave-CAIPI: reproducibility, consistency, and microbleeds detection. Jpn J Radiol 2025; 43:379-388. [PMID: 39467931 PMCID: PMC11868234 DOI: 10.1007/s11604-024-01683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE We compared quantitative susceptibility mapping (QSM) with wave-CAIPI 9 × (QSM_WC9 ×) with reference standard QSM with GRAPPA 2 × (QSM_G2 ×) in two MR scanners. We also compared detectability of microbleeds in both QSMs to demonstrate clinical feasibility of both QSMs. MATERIALS AND METHODS This prospective study was approved by the institutional review board and written informed consent was obtained from each subject. Healthy subjects were recruited to evaluate intra-scanner reproducibility, inter-scanner consistency, and inter-sequence consistency of QSM_G2 × and QSM_WC9 × at 2 MR scanners. Susceptibility values measured with volume of interests (VOIs) were evaluated. Patients who were requested for susceptibility weighted imaging were also recruited in this study to measure microbleeds on QSM_G2 × and QSM_WC9 × . The number of microbleeds was compared between two QSMs. RESULTS Total 55 healthy subjects (male 34, female 21, 38.3 years [23-79]) were included in this study. We investigated reproducibility and consistency of QSM_WC9 × by comparing reference standard QSM_G2 × in two MR scanners in this study, and high correlation (ρ, 0.93-0.97) and high intraclass correlation coefficient (ICC) (0.97-0.99) were obtained. Sixty patients (male 30, female 30; age, 55.4 years [21-85]) were finally enrolled in this prospective study. The ICC of the detected number of microbleeds between QSM_G2 × and QSM_WC9 × was 0.99 (0.98-0.99). CONCLUSION QSM_WC9 × and reference standard QSM_G2 × in two MR scanners showed good reproducibility and consistency in estimating magnetic susceptibilities. QSM_WC9 × and QSM_G2 × were also comparable in terms of microbleeds detection with good agreement of raters and high ICC.
Collapse
Affiliation(s)
- Azusa Sakurama
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takayuki Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Krishna Pandu Wicaksono
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Radiology, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Satoshi Ikeda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shuichi Ito
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
6
|
Kawabata K, Banno F, Mizutani Y, Maeda T, Nagao R, Shima S, Murayama K, Ohno Y, Maeda T, Sasaki M, Ueda A, Ito M, Watanabe H. Flattened red nucleus in progressive supranuclear palsy detected by quantitative susceptibility mapping. Parkinsonism Relat Disord 2025; 131:107251. [PMID: 39721339 DOI: 10.1016/j.parkreldis.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) involves midbrain structures, including the red nucleus (RN), an iron-rich region that appears as a high-contrast area on quantitative susceptibility mapping (QSM). RN may serve as a promising biomarker for differentiating parkinsonism. However, RN deformation in PSP remains elusive. This study aimed to evaluate RN deformation in PSP using coronal QSM images and compare them with those of Parkinson's disease (PD) and healthy controls (HC). METHODS We evaluated the QSM images of 22 patients with PSP, 37 patients with PD, and 43 HC. We developed a grading system to assess RN deformation on coronal QSM images and classified them into three grades. The midbrain and RN volumes were extracted using distinct approaches, and their relationship with grading was investigated. For validation, coronal QSM images of 16 PSP patients from a different institution were assessed. RESULTS In PSP, 59 % of the patients displayed a flattened RN of grade 3, which we termed a Rice-Grain Appearance. The volume reductions in midbrain and RN were associated with deformation. Differentiation based on the presence of this appearance yielded a specificity of 1.000 (CI: 1.000-1.000) and sensitivity of 0.591 (0.385-0.796) for distinguishing PSP from others. Secondary dataset also showed that 56 % of patients with PSP were classified as grade 3. CONCLUSION In coronal QSM images, the flattened RN shape appears to be specific to PSP compared to PD and HC and may serve as a marker to help differentiate PSP in future clinical settings.
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan; Division of BrainTheraInformatics, International Center for Brain Science, Fujita Health University, Toyoake, Japan.
| | - Fumihiko Banno
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryunosuke Nagao
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan; Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan; Department of Neurology, Fujita Health University Okazaki Medical Center, Okazaki, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan; Department of Neurology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
7
|
Guo Y, Mao H, Chen K, Dou W, Wang X. Impaired iron metabolism and cerebral perfusion patterns in unilateral middle cerebral artery stenosis or occlusion: Insights from quantitative susceptibility mapping. J Neuroradiol 2025; 52:101233. [PMID: 39547329 DOI: 10.1016/j.neurad.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND PURPOSE Cerebral hypoperfusion caused by stenosis or occlusion of the middle cerebral artery (MCA) may be followed by impaired iron metabolism. We explored the association between iron changes of gray matter (GM) nuclei subregions and different cerebral perfusion patterns in patients with chronic unilateral middle cerebral artery (MCA) stenosis or occlusion using quantitative susceptibility imaging (QSM). METHODS Sixty-one patients with unilateral MCA stenosis or occlusion were recruited and scored with Alberta-Stroke-Program-Early-CT-Score (ASPECTS) based on relative cerebral blood flow (rCBF) measurements to calculate the number of corresponding hypoperfusion subregions, and then divided into an extensive-hypoperfusion group (EH group), regional-hypoperfusion group (RH group), and normal-perfusion group (Control group) accordingly. The measured magnetic susceptibility of GM nuclei subregions was compared between the lesion and contralateral side for each group and among the three groups. Correlation analysis was performed to assess the relationships of magnetic susceptibility of GM nuclei with mean rCBF, National-Institutes-of-Health-stroke-scale (NIHSS) and modified-Rankin-scale (mRS) scores. RESULTS Magnetic susceptibility in the putamen (PU) and globus pallidus (GP) at the lesion side was higher in the EH and RH groups compared with the contralateral side (all P < 0.05). Susceptibility in the lesion side PU and GP showed negative correlations with mean rCBF and positive correlations with NIHSS and mRS scores (all P < 0.05). CONCLUSION Our findings demonstrate that chronic cerebral hypoperfusion might be one cause of cerebral abnormal iron metabolism. In addition, magnetic susceptibility of PU and GP seems to be correlated with stroke scale scores, suggesting that iron deposition may play an important role in neurologic deficits after ischemic stroke.
Collapse
Affiliation(s)
- Yu Guo
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No.16766, Jingshi Rd, Jinan 250014, Shandong Province, PR China
| | - Huimin Mao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Kunjian Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No.16766, Jingshi Rd, Jinan 250014, Shandong Province, PR China
| | - Weiqiang Dou
- MR Research, GE Healthcare, Beijing 10076, PR China.
| | - Xinyi Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No.16766, Jingshi Rd, Jinan 250014, Shandong Province, PR China.
| |
Collapse
|
8
|
Xiao Y, Liu Z, Wan X. Oxygen extraction fraction change in M1-M6 brain regions of patients with unilateral or bilateral middle cerebral artery occlusion. J Cereb Blood Flow Metab 2025; 45:319-327. [PMID: 39161251 PMCID: PMC11572168 DOI: 10.1177/0271678x241276386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) can be measured using arterial spin labeling (ASL) and quantitative susceptibility mapping (QSM) sequences, respectively. ASL and QSM sequences were performed on 13 healthy participants and 46 patients with unilateral or bilateral Middle cerebral artery (MCA) occlusion. M1-M3 and M4-M6 correspond to anterior, lateral, and posterior MCA territories within the insular ribbon and centrum semiovale, respectively. In patients with unilateral MCA occlusion, significant decreases in CBF were observed in the lesions in M1, M3, M5 and M6 regions, as well as in the contralateral M3 and M5 regions. The OEF of the lesion in the M1-M4 and M6 regions, and the contralateral M1-M3 regions were significantly higher. Additionally, the cerebral metabolic rate of oxygen (CMRO2) in the lesions of the M3 and M6 regions, and the contralateral M3 region, were significantly lower compared to the corresponding regions of healthy participants. For patients with bilateral MCA occlusion, the CMRO2 in the left M5 region and the right M3 and M6 regions were significantly lower than that in the corresponding regions of healthy participants. In conclusion, abnormal hemodynamics occur in the contralateral hemisphere of patients with unilateral MCA occlusion.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University; Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang city, China
| | - Zhenghua Liu
- The Department of Radiology, The Dongguan Maternal and Child Health Care Hospital, Guangdong, China
| | - Xinghua Wan
- The Department of Radiology, The People’s Hospital of Nanchang County, Nanchang city, China
| |
Collapse
|
9
|
Zha T, Zhang Z, Pan L, Peng L, Du Y, Wu P, Chen J, Xing W. Evaluating the Potential of Quantitative Susceptibility Mapping for Detecting Iron Deposition of Renal Fibrosis in a Rabbit Model. J Magn Reson Imaging 2025. [PMID: 39874142 DOI: 10.1002/jmri.29722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND As ferroptosis is a key factor in renal fibrosis (RF), iron deposition monitoring may help evaluating RF. The capability of quantitative susceptibility mapping (QSM) for detecting iron deposition in RF remains uncertain. PURPOSE To investigate the potential of QSM to detect iron deposition in RF. STUDY TYPE Animal model. ANIMAL MODEL Eighty New Zealand rabbits were randomly divided into control (N = 10) and RF (N = 70) groups, consisting of baseline, 7, 14, 21, and 28 days (N = 12 in each), and longitudinal (N = 10) subgroups. RF was induced via unilateral renal arteria stenosis. FIELD STRENGTH/SEQUENCE 3 T, QSM with gradient echo, arterial spin labeling with gradient spin echo. ASSESSMENT Bilateral kidney QSM values (χ) in the cortex (χCO) and outer medulla (χOM) were evaluated with histopathology. STATISTICAL TESTS Analysis of variance, Kruskal-Wallis, Spearman's correlation, and the area under the receiver operating characteristic curve (AUC). P < 0.05 was significant. RESULTS In fibrotic kidneys, χCO decreased at 7 days ([-6.69 ± 0.98] × 10-2 ppm) and increased during 14-28 days ([-1.85 ± 2.11], [0.14 ± 0.58], and [1.99 ± 0.60] × 10-2 ppm, respectively), while the χOM had the opposite trend. Both significantly correlated with histopathology (|r| = 0.674-0.849). AUC of QSM for distinguishing RF degrees was 0.692-0.993. In contralateral kidneys, the χCO initially decreased ([-6.67 ± 0.84] × 10-2 ppm) then recovered to baseline ([-4.81 ± 0.89] × 10-2 ppm), while the χOM at 7-28 days ([2.58 ± 1.40], [2.25 ± 1.83], [2.49 ± 2.11], [2.43 ± 1.32] × 10-2 ppm, respectively) were significantly higher than baseline ([0.54 ± 0.18] × 10-2 ppm). DATA CONCLUSION Different iron deposition patterns were observed in RF with QSM values, suggesting the potential of QSM for iron deposition monitoring in RF. PLAIN LANGUAGE SUMMARY Renal fibrosis (RF) is a common outcome in most kidney diseases, leading to scarring and loss of kidney function. Increasing evidence suggests that abnormal iron metabolism plays an important role in RF. This study used a technique called quantitative susceptibility mapping (QSM) to measure kidney iron levels in rabbits with RF. Specifically, rabbits with advanced RF exhibited higher kidney iron concentrations, and moderate to strong correlations between QSM values and histopathology demonstrated that QSM could accurately detect changes in iron levels and assess RF severity. Overall, QSM shows promise as a tool for monitoring iron deposition in RF progression. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Tingting Zha
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| | - Zhiping Zhang
- Department of Radiology, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Liang Pan
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| | - Lei Peng
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanan Du
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| | - Peng Wu
- Philips Healthcare, Shanghai, China
| | - Jie Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| |
Collapse
|
10
|
Chen Y, Ming Y, Ye C, Jiang S, Wu J, Wang H, Wu K, Zhang S, Wu B, Sun J, Wang D. Association between iron content in grey matter nuclei and functional outcome in patients with acute ischaemic stroke: A quantitative susceptibility mapping study. Eur J Neurol 2025; 32:e16531. [PMID: 39460712 PMCID: PMC11622281 DOI: 10.1111/ene.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND AND PURPOSE This study aimed to investigate the association between iron content in grey matter (GM) nuclei and functional outcome in acute ischaemic stroke (AIS) patients utilizing quantitative susceptibility mapping. METHODS Forty AIS patients and 40 age-, sex- and education-matched healthy controls underwent quantitative susceptibility mapping to assess susceptibility values, which are positively correlated with iron content, in the caudate nucleus, putamen, globus pallidus, thalamus, red nucleus and substantia nigra. The nuclei on the contralateral side were measured in AIS patients to minimize confounding due to oedema or haemorrhage. Functional outcome was determined by the modified Rankin Scale (mRS) score at 3 months after stroke. Poor outcome was defined as mRS >2, whilst a good outcome was defined as ≤2. RESULTS Susceptibility values were significantly higher in most contralateral GM nuclei in AIS patients than in the corresponding left or right nuclei in healthy controls. AIS patients with poor outcome showed significantly lower susceptibility value than those with good outcome in the contralateral caudate nucleus, but no significant differences were observed in other GM nuclei. Binary logistic regression analysis revealed a significant association between the susceptibility value of the contralateral caudate nucleus and poor outcome after adjustment for confounders (adjusted odds ratio 0.692, 95% confidence interval 0.486-0.986, p = 0.042). Receiver operating characteristic curve analysis showed an acceptable ability of the susceptibility value of the contralateral caudate nucleus to predict poor outcome (area under the curve 0.740, p = 0.013). CONCLUSIONS Lower iron content in the contralateral caudate nucleus was associated with poor functional outcome in AIS patients.
Collapse
Affiliation(s)
- Yaqi Chen
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Yue Ming
- Department of Radiology, West China HospitalSichuan UniversityChengduChina
| | - Chen Ye
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Shuai Jiang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Jiongxing Wu
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Huan Wang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Keying Wu
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Shihong Zhang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Bo Wu
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Jiayu Sun
- Department of Radiology, West China HospitalSichuan UniversityChengduChina
| | - Deren Wang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Sun Z, Li C, Muccio M, Jiang L, Masurkar A, Buch S, Chen Y, Zhang J, Haacke EM, Wisniewski T, Ge Y. Vascular Aging in the Choroid Plexus: A 7T Ultrasmall Superparamagnetic Iron Oxide (USPIO)-MRI Study. J Magn Reson Imaging 2024; 60:2564-2575. [PMID: 38587279 PMCID: PMC11458823 DOI: 10.1002/jmri.29381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE Prospective. SUBJECTS Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Chenyang Li
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Arjun Masurkar
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Departments of Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Sekiya H, Satoh R, Ali F, Dickson DW, Whitwell JL, Josephs KA. Utilizing quantitative susceptibility mapping to differentiate primary lateral sclerosis from progressive supranuclear palsy: A case report. Neuropathology 2024. [PMID: 39557402 DOI: 10.1111/neup.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
We report a patient who presented clinically with progressive supranuclear palsy (PSP) but was pathologically diagnosed as having primary lateral sclerosis (PLS) with magnetic resonance imaging (MRI) with a quantitative susceptibility mapping (QSM) protocol. A 70-year-old man was clinically diagnosed with PSP due to early falls and unresponsiveness to levodopa therapy. Postmortem pathological examination revealed mild loss of Betz cells, gliosis, and transactive response DNA binding protein of 43 kDa (TDP-43)-positive inclusions in the motor cortex, leading to the pathological diagnosis of PLS. To explore methods for differentiating PLS from PSP, ante-mortem QSM images were visually and quantitatively assessed for abnormal increases in magnetic susceptibility in the motor cortex. Prussian blue and Luxol fast blue combined with periodic acid-Schiff staining were also performed to understand the source of the susceptibility increases. QSM showed clear hyperintense signals in the motor cortex. Magnetic susceptibility in the motor cortex was higher in the PLS patient (Z = 4.7, p < 0.001) compared to normal controls and pathologically diagnosed PSP patients. Pathological examination of the region showed intracortical myelin loss, as well as iron deposition. Underlying pathological processes for the increased magnetic susceptibility include not only iron deposition but also intracortical myelin. Our case suggests that QSM is a potential tool to differentiate PLS from PSP, providing insights for accurate diagnosis and enhancing clinical decision-making.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Ryota Satoh
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
McKenna MC, Kleinerova J, Power A, Garcia-Gallardo A, Tan EL, Bede P. Quantitative and Computational Spinal Imaging in Neurodegenerative Conditions and Acquired Spinal Disorders: Academic Advances and Clinical Prospects. BIOLOGY 2024; 13:909. [PMID: 39596864 PMCID: PMC11592215 DOI: 10.3390/biology13110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Introduction: Quantitative spinal cord imaging has facilitated the objective appraisal of spinal cord pathology in a range of neurological conditions both in the academic and clinical setting. Diverse methodological approaches have been implemented, encompassing a range of morphometric, diffusivity, susceptibility, magnetization transfer, and spectroscopy techniques. Advances have been fueled both by new MRI platforms and acquisition protocols as well as novel analysis pipelines. The quantitative evaluation of specific spinal tracts and grey matter indices has the potential to be used in diagnostic and monitoring applications. The comprehensive characterization of spinal disease burden in pre-symptomatic cohorts, in carriers of specific genetic mutations, and in conditions primarily associated with cerebral disease, has contributed important academic insights. Methods: A narrative review was conducted to examine the clinical and academic role of quantitative spinal cord imaging in a range of neurodegenerative and acquired spinal cord disorders, including hereditary spastic paraparesis, hereditary ataxias, motor neuron diseases, Huntington's disease, and post-infectious or vascular disorders. Results: The clinical utility of specific methods, sample size considerations, academic role of spinal imaging, key radiological findings, and relevant clinical correlates are presented in each disease group. Conclusions: Quantitative spinal cord imaging studies have demonstrated the feasibility to reliably appraise structural, microstructural, diffusivity, and metabolic spinal cord alterations. Despite the notable academic advances, novel acquisition protocols and analysis pipelines are yet to be implemented in the clinical setting.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Alan Power
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Angela Garcia-Gallardo
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| |
Collapse
|
14
|
Nakashima M, Kan H, Kawai T, Matsumoto K, Kawaguchi T, Uchida Y, Matsukawa N, Hiwatashi A. Quantitative susceptibility mapping analyses of white matter in Parkinson's disease using susceptibility separation technique. Parkinsonism Relat Disord 2024; 128:107135. [PMID: 39278120 DOI: 10.1016/j.parkreldis.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION To apply susceptibility separation on quantitative susceptibility mapping (QSM) images of Parkinson's disease (PD) patients to obtain more accurate images and gain pathophysiological insights. METHODS This retrospective study included subjects who underwent head MRI, including QSM between March 2016 and March 2018. Patients with PD were categorized as having mild cognitive impairment (PD-MCI), or normal cognition (PD-CN); healthy controls (HC) were also enrolled. Susceptibility separation generated positive (QSM+) and negative susceptibility (QSM-) labels. Voxel-based whole-brain susceptibility and atlas-based susceptibility were compared among groups on white matter. Correlations between susceptibility and Montreal Cognitive Assessment (MoCA) scores were analyzed. RESULTS Overall, 65 subjects (mean age 72 years ±6, 35 men) were included. White-matter regions with significant (P < 0.05) group differences were found for QSM+ (HC > PD-MCI, PD-CN > PD-MCI) and QSM- (PD-MCI > HC, PD-MCI > PD-CN). In the atlas-based analyses, PD-MCI exhibited lower QSM + values (vs. HC; P = 0.002, vs. PD-CN; P = 0.001), and higher QSM-values (vs. HC; P = 0.02, vs. PD-CN; P = 0.03) in the genu of corpus callosum (gCC). QSM+ and QSM-showed significant positive and negative correlations with MoCA (P < 0.05). In the gCC, partial correlation analyses revealed a positive correlation between QSM+ and MoCA (R = 0.458, P < 0.001) and a negative correlation between QSM- and MoCA (R = -0.316, P = 0.01). CONCLUSION QSM utilizing susceptibility separation is valuable for assessing white matter in PD patients, where nerve fiber loss potentially influences cognitive function.
Collapse
Affiliation(s)
- Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan.
| | - Tatsuya Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Kazuhisa Matsumoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takatsune Kawaguchi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Japan; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
15
|
Li R, Fan YR, Wang YZ, Lu HY, Li PX, Dong Q, Jiang YF, Chen XD, Cui M. Brain Iron in signature regions relating to cognitive aging in older adults: the Taizhou Imaging Study. Alzheimers Res Ther 2024; 16:211. [PMID: 39358805 PMCID: PMC11448274 DOI: 10.1186/s13195-024-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Recent magnetic resonance imaging (MRI) studies have established that brain iron accumulation might accelerate cognitive decline in Alzheimer's disease (AD) patients. Both normal aging and AD are associated with cerebral atrophy in specific regions. However, no studies have investigated aging- and AD-selective iron deposition-related cognitive changes during normal aging. Here, we applied quantitative susceptibility mapping (QSM) to detect iron levels in cortical signature regions and assessed the relationships among iron, atrophy, and cognitive changes in older adults. METHODS In this Taizhou Imaging Study, 770 older adults (mean age 62.0 ± 4.93 years, 57.5% women) underwent brain MRI to measure brain iron and atrophy, of whom 219 underwent neuropsychological tests nearly every 12 months for up to a mean follow-up of 2.68 years. Global cognition was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Domain-specific cognitive scores were obtained from MoCA subscore components. Regional analyses were performed for cortical regions and 2 signature regions where atrophy affected by aging and AD only: Aging (AG) -specific and AD signature meta-ROIs. The QSM and cortical morphometry means of the above ROIs were also computed. RESULTS Significant associations were found between QSM levels and cognitive scores. In particular, after adjusting for cortical thickness of regions of interest (ROIs), participants in the upper tertile of the cortical and AG-specific signature QSM exhibited worse ZMMSE than did those in the lower tertile [β = -0.104, p = 0.026;β = -0.118, p = 0.021, respectively]. Longitudinal analysis suggested that QSM values in all ROIs might predict decline in ZMoCA and key domains such as attention and visuospatial function (all p < 0.05). Furthermore, iron levels were negatively correlated with classic MRI markers of cortical atrophy (cortical thickness, gray matter volume, and local gyrification index) in total, AG-specific signature and AD signature regions (all p < 0.05). CONCLUSION AG- and AD-selective iron deposition was associated with atrophy and cognitive decline in elderly people, highlighting its potential as a neuroimaging marker for cognitive aging.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yi-Ren Fan
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Ying-Zhe Wang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - He-Yang Lu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Pei-Xi Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yan-Feng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xing-Dong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| | - Mei Cui
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
16
|
Mohammadi S, Ghaderi S, Fatehi F. Quantitative Susceptibility Mapping Values Quantification in Deep Gray Matter Structures for Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis. Brain Behav 2024; 14:e70093. [PMID: 39415615 PMCID: PMC11483550 DOI: 10.1002/brb3.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND/OBJECTIVES This systematic review and meta-analysis aimed to investigate the role of magnetic susceptibility (χ) in deep gray matter (DGM) structures, including the putamen (PUT), globus pallidus (GP), caudate nucleus (CN), and thalamus, in the most common types of multiple sclerosis (MS) and relapsing-remitting MS (RRMS), using quantitative susceptibility mapping (QSM). METHODS The literature was systematically reviewed up to November 2023, adhering to PRISMA guidelines. This study was conducted using a random-effects model to calculate the standardized mean difference (SMD) in QSM values between patients with RRMS and healthy controls (HCs). Publication bias and risk of bias were also assessed. RESULTS Nine studies involving 1074 RRMS patients with RRMS and 640 HCs were included in the meta-analysis. The results showed significantly higher QSM (χ) values in the PUT (SMD = 0.40, 95% confidence interval [CI] = 0.22-0.59, p = .000), GP (SMD = 0.60, 95% CI = 0.50-0.70, p = .00), and CN (SMD = 0.40, 95% CI = 0.15-0.66, p = .005) of RRMS patients compared to HCs. However, there were no significant differences in the QSM values in the thalamus between patients with RRMS and HCs (SMD = -0.33, 95% CI -0.67-0.01, p = .026). Age- and sex-based subgroup analysis demonstrated that younger patients (< 40 years) in the PUT, GP, and CN groups and larger male populations (> 25%) in the PUT and GP groups had more significant χ. Interestingly, thalamic QSM values were found to decrease in RRMS patients over 40 years of age and in higher male populations. Sex-based subgroup analysis indicated higher iron levels in the PUT and GP of RRMS patients regardless of sex. QSM values were higher in certain brain regions (PUT, GP, and CN) during the early stages (disease duration < 9.6 years) of RRMS, but lower in the thalamus during the later stages (disease duration > 9.6 years) than HCs. DISCUSSION/CONCLUSION QSM may serve as a biomarker for understanding χ value alterations such as iron dysregulation and its contribution to neurodegeneration in RRMS, especially in the basal ganglia nuclei including PUT, GP, and CN.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
17
|
Fujita S, Hagiwara A, Kimura K, Taniguchi Y, Ito K, Nagao H, Takizawa M, Uchida W, Kamagata K, Tateishi U, Aoki S. Three-dimensional simultaneous T1 and T2* relaxation times and quantitative susceptibility mapping at 3 T: A multicenter validation study. Magn Reson Imaging 2024; 112:100-106. [PMID: 38971266 DOI: 10.1016/j.mri.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
We aimed to determine the intra-site repeatability and cross-site reproducibility of T1 and T2* relaxation times and quantitative susceptibility (χ) values obtained through quantitative parameter mapping (QPM) at 3 T. This prospective study included three 3-T scanners with the same hardware and software platform at three sites. The brains of twelve healthy volunteers were scanned three times using QPM at three sites. Intra-site repeatability and cross-site reproducibility were evaluated based on voxel-wise and region-of-interest analyses. The within-subject coefficient of variation (wCV), within-subject standard deviation (wSD), linear regression, Bland-Altman plot, and intraclass correlation coefficient (ICC) were used for evaluation. The intra-site repeatability wCV was 11.9 ± 6.86% for T1 and 3.15 ± 0.03% for T2*, and wSD of χ at 3.35 ± 0.10 parts per billion (ppb). Intra-site ICC(1,k) values for T1, T2*, and χ were 0.878-0.904, 0.972-0.976, and 0.966-0.972, respectively, indicating high consistency within the same scanner. Linear regression analysis revealed a strong agreement between measurements from each site and the site-average measurement, with R-squared values ranging from 0.79 to 0.83 for T1, 0.94-0.95 for T2*, and 0.95-0.96 for χ. The cross-site wCV was 13.4 ± 5.47% for T1 and 3.69 ± 2.25% for T2*, and cross-site wSD of χ at 4.08 ± 3.22 ppb. The cross-site ICC(2,1) was 0.707, 0.913, and 0.902 for T1, T2*, and χ, respectively. QPM provides T1, T2*, and χ values with an intra-site repeatability of <12% and cross-site reproducibility of <14%. These findings may contribute to the development of multisite studies.
Collapse
Affiliation(s)
- Shohei Fujita
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Radiology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koichiro Kimura
- Department of Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yo Taniguchi
- Medical Systems Research & Development Center, FUJIFILM Corporation
| | - Kosuke Ito
- Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation
| | - Hisako Nagao
- Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation
| | - Masahiro Takizawa
- Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation
| | - Wataru Uchida
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Health Data Science, Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ukihide Tateishi
- Department of Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Health Data Science, Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan
| |
Collapse
|
18
|
Sun Y, Hu W, Hu Y, Qiu Y, Chen Y, Xu Q, Wei H, Dai Y, Zhou Y. Exploring cognitive related microstructural alterations in normal appearing white matter and deep grey matter for small vessel disease: A quantitative susceptibility mapping study. Neuroimage 2024; 298:120790. [PMID: 39147292 DOI: 10.1016/j.neuroimage.2024.120790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
Brain microstructural alterations possibly occur in the normal-appearing white matter (NAWM) and grey matter of small vessel disease (SVD) patients, and may contribute to cognitive impairment. The aim of this study was to explore cognitive related microstructural alterations in white matter and deep grey matter nuclei in SVD patients using magnetic resonance (MR) quantitative susceptibility mapping (QSM). 170 SVD patients, including 103 vascular mild cognitive impairment (VaMCI) and 67 no cognitive impairment (NCI), and 21 healthy control (HC) subjects were included, all underwent a whole-brain QSM scanning. Using a white matter and a deep grey matter atlas, subregion-based QSM analysis was conducted to identify and characterize microstructural alterations occurring within white matter and subcortical nuclei. Significantly different susceptibility values were revealed in NAWM and in several specific white matter tracts including anterior limb of internal capsule, corticospinal tract, medial lemniscus, middle frontal blade, superior corona radiata and tapetum among VaMCI, NCI and HC groups. However, no difference was found in white matter hyperintensities between VaMCI and NCI. A trend toward higher susceptibility in the caudate nucleus and globus pallidus of VaMCI patients compared to HC, indicating elevated iron deposition in these areas. Interestingly, some of these QSM parameters were closely correlated with both global and specific cognitive function scores, controlling age, gender and education level. Our study suggested that QSM may serve as a useful imaging tool for monitoring cognitive related microstructural alterations in brain. This is especially meaningful for white matter which previously lacks of attention.
Collapse
Affiliation(s)
- Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Hu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Hu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yage Qiu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuewei Chen
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Xu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Health Manage Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Dai
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Cagol A, Tsagkas C, Granziera C. Advanced Brain Imaging in Central Nervous System Demyelinating Diseases. Neuroimaging Clin N Am 2024; 34:335-357. [PMID: 38942520 DOI: 10.1016/j.nic.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In recent decades, advances in neuroimaging have profoundly transformed our comprehension of central nervous system demyelinating diseases. Remarkable technological progress has enabled the integration of cutting-edge acquisition and postprocessing techniques, proving instrumental in characterizing subtle focal changes, diffuse microstructural alterations, and macroscopic pathologic processes. This review delves into state-of-the-art modalities applied to multiple sclerosis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody-associated disease. Furthermore, it explores how this dynamic landscape holds significant promise for the development of effective and personalized clinical management strategies, encompassing support for differential diagnosis, prognosis, monitoring treatment response, and patient stratification.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland; Department of Health Sciences, University of Genova, Via A. Pastore, 1 16132 Genova, Italy. https://twitter.com/CagolAlessandr0
| | - Charidimos Tsagkas
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland.
| |
Collapse
|
20
|
Schumacher K, Prince MR, Blumenfeld JD, Rennert H, Hu Z, Dev H, Wang Y, Dimov AV. Quantitative susceptibility mapping for detection of kidney stones, hemorrhage differentiation, and cyst classification in ADPKD. Abdom Radiol (NY) 2024; 49:2285-2295. [PMID: 38530430 DOI: 10.1007/s00261-024-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND PURPOSE The objective is to demonstrate feasibility of quantitative susceptibility mapping (QSM) in autosomal dominant polycystic kidney disease (ADPKD) patients and to compare imaging findings with traditional T1/T2w magnetic resonance imaging (MRI). METHODS Thirty-three consecutive patients (11 male, 22 female) diagnosed with ADPKD were initially selected. QSM images were reconstructed from the multiecho gradient echo data and compared to co-registered T2w, T1w, and CT images. Complex cysts were identified and classified into distinct subclasses based on their imaging features. Prevalence of each subclass was estimated. RESULTS QSM visualized two renal calcifications measuring 9 and 10 mm and three pelvic phleboliths measuring 2 mm but missed 24 calcifications measuring 1 mm or less and 1 larger calcification at the edge of the field of view. A total of 121 complex T1 hyperintense/T2 hypointense renal cysts were detected. 52 (43%) Cysts appeared hyperintense on QSM consistent with hemorrhage; 60 (49%) cysts were isointense with respect to simple cysts and normal kidney parenchyma, while the remaining 9 (7%) were hypointense. The presentation of the latter two complex cyst subtypes is likely indicative of proteinaceous composition without hemorrhage. CONCLUSION Our results indicate that QSM of ADPKD kidneys is possible and uniquely suited to detect large renal calculi without ionizing radiation and able to identify properties of complex cysts unattainable with traditional approaches.
Collapse
Affiliation(s)
- Karl Schumacher
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Martin R Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jon D Blumenfeld
- The Rogosin Institute, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hanna Rennert
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongxiu Hu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Hreedi Dev
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Rimkus CDM, Otsuka FS, Nunes DM, Chaim KT, Otaduy MCG. Central Vein Sign and Paramagnetic Rim Lesions: Susceptibility Changes in Brain Tissues and Their Implications for the Study of Multiple Sclerosis Pathology. Diagnostics (Basel) 2024; 14:1362. [PMID: 39001252 PMCID: PMC11240827 DOI: 10.3390/diagnostics14131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands
- Instituto D'Or de Ensino e Pesquisa (IDOR), Sao Paulo 01401-002, SP, Brazil
| | - Fábio Seiji Otsuka
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Douglas Mendes Nunes
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Grupo Fleury, Sao Paulo 04701-200, SP, Brazil
| | - Khallil Taverna Chaim
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Maria Concepción Garcia Otaduy
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| |
Collapse
|
22
|
Fiscone C, Sighinolfi G, Manners DN, Motta L, Venturi G, Panzera I, Zaccagna F, Rundo L, Lugaresi A, Lodi R, Tonon C, Castelli M. Multiparametric MRI dataset for susceptibility-based radiomic feature extraction and analysis. Sci Data 2024; 11:575. [PMID: 38834674 DOI: 10.1038/s41597-024-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Multiple sclerosis (MS) is a progressive demyelinating disease impacting the central nervous system. Conventional Magnetic Resonance Imaging (MRI) techniques (e.g., T2w images) help diagnose MS, although they sometimes reveal non-specific lesions. Quantitative MRI techniques are capable of quantifying imaging biomarkers in vivo, offering the potential to identify specific signs related to pre-clinical inflammation. Among those techniques, Quantitative Susceptibility Mapping (QSM) is particularly useful for studying processes that influence the magnetic properties of brain tissue, such as alterations in myelin concentration. Because of its intrinsic quantitative nature, it is particularly well-suited to be analyzed through radiomics, including techniques that extract a high number of complex and multi-dimensional features from radiological images. The dataset presented in this work provides information about normal-appearing white matter (NAWM) in a cohort of MS patients and healthy controls. It includes QSM-based radiomic features from NAWM and its tracts, and MR sequences necessary to implement the pipeline: T1w, T2w, QSM, DWI. The workflow is outlined in this article, along with an application showing feature reliability assessment.
Collapse
Affiliation(s)
- Cristiana Fiscone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Sighinolfi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David Neil Manners
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
- Department for Life Quality Sciences, University of Bologna, Bologna, Italy.
| | - Lorenzo Motta
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Greta Venturi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Ivan Panzera
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fulvio Zaccagna
- Department of Imaging, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Investigative Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Fisciano, Italy
| | - Alessandra Lugaresi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Mauro Castelli
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal
| |
Collapse
|
23
|
Taleb S, Varela-Mattatall G, Allen A, Haast R, Khan AR, Kalia V, Howard JL, MacDonald SJ, Menon RS, Lanting BA, Teeter MG. Assessing brain integrity in patients with long-term and well-functioning metal-based hip implants. J Orthop Res 2024; 42:1292-1302. [PMID: 38235918 DOI: 10.1002/jor.25785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Production of metal debris from implant wear and corrosion processes is now a well understood occurrence following hip arthroplasty. Evidence has shown that metal ions can enter the bloodstream and travel to distant organs including the brain, and in extreme cases, can induce sensorial and neurological diseases. Our objective was tosimultaneously analyze brain anatomy and physiology in patients with long-term and well-functioning implants. Included were subjects who had received total hip or hip resurfacing arthroplastywith an implantation time of a minimum of 7 years (n = 28) and age- and sex-matched controls (n = 32). Blood samples were obtained to measure ion concentrations of cobalt and chromium, and the Montreal Cognitive Assessment was performed. 3T MRI brain scans were completed with an MPRAGE sequence for ROI segmentation and multiecho gradient echo sequences to generate QSM and R2* maps. Mean QSM and R2* values were recorded for five deep brain and four middle and cortical brain structures on both hemispheres: pallidum, putamen, caudate, amygdala, hippocampus, anterior cingulate, inferior temporal, and cerebellum. No differences in QSM or R2* or cognition scores were found between both groups (p > 0.6654). No correlation was found between susceptibility and blood ion levels for cobalt or chromium in any region of the brain. No correlation was found between blood ion levels and cognition scores. Clinical significance: Results suggest that metal ions released by long-term and well-functioning implants do not affect brain integrity.
Collapse
Affiliation(s)
- Shahnaz Taleb
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Gabriel Varela-Mattatall
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Abbigail Allen
- Department of Surgery, London Health Sciences Centre, Division of Orthopaedic Surgery, London, Ontario, Canada
| | - Roy Haast
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Ali R Khan
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Vishal Kalia
- Department of Medical Imaging, Schulich School of Medicine & Dentistry, Division of Musculoskeletal Imaging, Western University, London, Ontario, Canada
| | - James L Howard
- Department of Surgery, London Health Sciences Centre, Division of Orthopaedic Surgery, London, Ontario, Canada
| | - Steven J MacDonald
- Department of Surgery, London Health Sciences Centre, Division of Orthopaedic Surgery, London, Ontario, Canada
| | - Ravi S Menon
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brent A Lanting
- Department of Surgery, London Health Sciences Centre, Division of Orthopaedic Surgery, London, Ontario, Canada
| | - Matthew G Teeter
- Schulich School of Medicine & Dentistry, Imaging Group, Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
24
|
Fushimi Y, Nakajima S, Sakata A, Okuchi S, Otani S, Nakamoto Y. Value of Quantitative Susceptibility Mapping in Clinical Neuroradiology. J Magn Reson Imaging 2024; 59:1914-1929. [PMID: 37681441 DOI: 10.1002/jmri.29010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a unique technique for providing quantitative information on tissue magnetic susceptibility using phase image data. QSM can provide valuable information regarding physiological and pathological processes such as iron deposition, hemorrhage, calcification, and myelin. QSM has been considered for use as an imaging biomarker to investigate physiological status and pathological changes. Although various studies have investigated the clinical applications of QSM, particularly regarding the use of QSM in clinical practice, have not been examined well. This review provides on an overview of the basics of QSM and its clinical applications in neuroradiology. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Pujol A, Sanchis P, Tamayo MI, Nicolau J, Grases F, Espino A, Estremera A, Rigo E, Amengual GJ, Rodríguez M, Ribes JL, Gomila I, Simó-Servat O, Masmiquel L. Oral phytate supplementation on the progression of mild cognitive impairment, brain iron deposition and diabetic retinopathy in patients with type 2 diabetes: a concept paper for a randomized double blind placebo controlled trial (the PHYND trial). Front Endocrinol (Lausanne) 2024; 15:1332237. [PMID: 38872972 PMCID: PMC11169791 DOI: 10.3389/fendo.2024.1332237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Type 2 diabetes mellitus has a worldwide prevalence of 10.5% in the adult population (20-79 years), and by 2045, the prevalence is expected to keep rising to one in eight adults living with diabetes. Mild cognitive impairment has a global prevalence of 19.7% in adults aged 50 years. Both conditions have shown a concerning increase in prevalence rates over the past 10 years, highlighting a growing public health challenge. Future forecasts indicate that the prevalence of dementia (no estimations done for individuals with mild cognitive impairment) is expected to nearly triple by 2050. Type 2 diabetes mellitus is a risk factor for the development of cognitive impairment, and such impairment increase the likelihood of poor glycemic/metabolic control. High phytate intake has been shown to be a protective factor against the development of cognitive impairment in observational studies. Diary phytate intake might reduce the micro- and macrovascular complications of patients with type 2 diabetes mellitus through different mechanisms. We describe the protocol of the first trial (the PHYND trial) that evaluate the effect of daily phytate supplementation over 56 weeks with a two-arm double-blind placebo-controlled study on the progression of mild cognitive impairment, cerebral iron deposition, and retinal involvement in patients with type 2 diabetes mellitus. Our hypothesis proposes that phytate, by inhibiting advanced glycation end product formation and chelating transition metals, will improve cognitive function and attenuate the progression from Mild Cognitive Impairment to dementia in individuals with type 2 diabetes mellitus and mild cognitive impairment. Additionally, we predict that phytate will reduce iron accumulation in the central nervous system, mitigate neurodegenerative changes in both the central nervous system and retina, and induce alterations in biochemical markers associated with neurodegeneration.
Collapse
Affiliation(s)
- Antelm Pujol
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Pilar Sanchis
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Health Science (IUNICS) Health Research Institute of Balearic Islands, (IdISBa), Palma de Mallorca, Spain
| | - María I. Tamayo
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Joana Nicolau
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Félix Grases
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Health Science (IUNICS) Health Research Institute of Balearic Islands, (IdISBa), Palma de Mallorca, Spain
| | - Ana Espino
- Neurology Department, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Ana Estremera
- Neuroradiology Unit, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Elena Rigo
- Neuroopthalmology Unit, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | | | - Manuel Rodríguez
- Neuroradiology Unit, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - José L. Ribes
- Biochemistry Department, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Isabel Gomila
- Biochemistry Department, Son Llàtzer University Hospital, Palma de Mallorca, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Masmiquel
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
26
|
Lenkinski RE, Rofsky NM. Contrast Media-driven Anthropogenic Gadolinium: Knowns and Unknowns. Radiology 2024; 311:e240020. [PMID: 38652027 DOI: 10.1148/radiol.240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Gadolinium-based contrast agents (GBCAs) have augmented the capabilities of MRI, which has led to their widespread and increasing use in radiology practice. GBCAs are introduced into the environment through disposal of unused product and elimination after intravenous injection, both primarily via liquid dispersion into the environment. This human introduction of gadolinium into the environment, referred to as anthropogenic gadolinium, is associated with the detection of gadolinium in water systems, raising concerns for potential adverse impact and prompting certain mitigation actions. This article summarizes the existing knowledge and problem scope, conveys the relevant underlying chemical principles of chelate dissociation, and offers an inferred perspective that the magnitude of the problem is most unlikely to cause human harm. The merits and limitations regarding possible mitigation tactics, such as collecting urine after GBCA administration, use of lower-dose high-relaxivity macrocyclic GBCAs, and the option for virtual contrast-enhanced examinations, will be discussed. Finally, the potential for monitoring gadolinium uptake in bone will be presented, and recommendations for future research will be offered. © RSNA, 2024 See also the article by Ibrahim et al in this issue. See also the article by McKee et al in this issue.
Collapse
Affiliation(s)
- Robert E Lenkinski
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); and Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine, Mount Sinai Health Systems, One Gustav L. Levy Place, Box 1234, New York, NY 10029 (N.M.R.)
| | - Neil M Rofsky
- From the Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); and Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine, Mount Sinai Health Systems, One Gustav L. Levy Place, Box 1234, New York, NY 10029 (N.M.R.)
| |
Collapse
|
27
|
Shibukawa S, Kan H, Honda S, Wada M, Tarumi R, Tsugawa S, Tobari Y, Maikusa N, Mimura M, Uchida H, Nakamura Y, Nakajima S, Noda Y, Koike S. Alterations in subcortical magnetic susceptibility and disease-specific relationship with brain volume in major depressive disorder and schizophrenia. Transl Psychiatry 2024; 14:164. [PMID: 38531856 DOI: 10.1038/s41398-024-02862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.
Collapse
Affiliation(s)
- Shuhei Shibukawa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.
- The International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.
| |
Collapse
|
28
|
van der Molen AJ, Quattrocchi CC, Mallio CA, Dekkers IA. Ten years of gadolinium retention and deposition: ESMRMB-GREC looks backward and forward. Eur Radiol 2024; 34:600-611. [PMID: 37804341 PMCID: PMC10791848 DOI: 10.1007/s00330-023-10281-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 10/09/2023]
Abstract
In 2014, for the first time, visible hyperintensities on unenhanced T1-weighted images in the nucleus dentatus and globus pallidus of the brain were associated with previous Gadolinium-based contrast agent (GBCA) injections and gadolinium deposition in patients with normal renal function. This led to a frenzy of retrospective studies with varying methodologies that the European Society of Magnetic Resonance in Medicine and Biology Gadolinium Research and Educational Committee (ESMRMB-GREC) summarised in 2019. Now, after 10 years, the members of the ESMRMB-GREC look backward and forward and review the current state of knowledge of gadolinium retention and deposition. CLINICAL RELEVANCE STATEMENT: Gadolinium deposition is associated with the use of linear GBCA but no clinical symptoms have been associated with gadolinium deposition. KEY POINTS : • Traces of Gadolinium-based contrast agent-derived gadolinium can be retained in multiple organs for a prolonged time. • Gadolinium deposition is associated with the use of linear Gadolinium-based contrast agents. • No clinical symptoms have been associated with gadolinium deposition.
Collapse
Affiliation(s)
- Aart J van der Molen
- Department of Radiology, C-2S, Leiden University Medical Center, Albinusdreef 2, NL-2333 ZA, Leiden, The Netherlands.
| | - Carlo C Quattrocchi
- Centre for Medical Sciences CISMed, University of Trento, 38122, Trento, Italy
| | - Carlo A Mallio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Operative Research Unit of Diagnostic Imaging, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Ilona A Dekkers
- Department of Radiology, C-2S, Leiden University Medical Center, Albinusdreef 2, NL-2333 ZA, Leiden, The Netherlands
| |
Collapse
|
29
|
Nakamura Y, Fushimi Y, Hinoda T, Nakajima S, Sakata A, Okuchi S, Otani S, Tagawa H, Wang Y, Ikeda S, Kawashima H, Uemura MT, Nakamoto AY. Hemosiderin Detection inside the Mammillary Bodies Using Quantitative Susceptibility Mapping on Patients with Wernicke-Korsakoff Syndrome. Magn Reson Med Sci 2024; 23:14-17. [PMID: 36517008 PMCID: PMC10838722 DOI: 10.2463/mrms.ici.2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2024] Open
Abstract
Hemorrhage inside the mammillary bodies (MMBs) is known to be one of the findings of Wernicke encephalopathy. Brain MRI of two patients with Wernicke-Korsakoff syndrome (WKS) demonstrated high susceptibility values representing hemosiderin deposition in MMBs by using quantitative susceptibility mapping (QSM). QSM provided additional information of susceptibility values to susceptibility-weighted imaging in diagnosis of WKS.
Collapse
Affiliation(s)
- Yuri Nakamura
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Hiroshi Tagawa
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yang Wang
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Satoshi Ikeda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Hirotsugu Kawashima
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Maiko T Uemura
- Departments of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - and Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
30
|
Guo R, Zhong H, Xing F, Lu F, Qu Z, Tong R, Gan F, Liu M, Fu C, Xu H, Li G, Liu C, Li J, Yang S. Magnetic susceptibility and R2*-based texture analysis for evaluating liver fibrosis in chronic liver disease. Eur J Radiol 2023; 169:111155. [PMID: 38155592 DOI: 10.1016/j.ejrad.2023.111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/30/2023]
Abstract
PURPOSE To explore potential feasibility of texture features in magnetic susceptibility and R2* maps for evaluating liver fibrosis. METHODS Thirty-one patients (median age 46 years; 22 male) with chronic liver disease were prospectively recruited and underwent magnetic resonance imaging (MRI), blood tests, and liver biopsy. Susceptibility and R2* maps were obtained using a 3-dimensional volumetric interpolated breath-hold examination sequence with a 3T MRI scanner. Texture features, including histogram, gray-level co-occurrence matrix (GLCM), gray-level dependence matrix (GLDM), gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), and neighboring gray tone difference matrix (NGTDM) features, were extracted. Texture features and blood test results of non-significant (Ishak-F < 3) and significant fibrosis patients (Ishak-F ≥ 3) were compared, and correlations with Ishak-F stages were analyzed. Areas under the curve (AUCs) were calculated to determine the efficacy for evaluating liver fibrosis. RESULTS Nine texture features of susceptibility maps and 19 features of R2* maps were significantly different between non-significant and significant fibrosis groups (all P < 0.05). Large dependence high gray-level emphasis (LDHGLE) of GLDM and long run high gray-level emphasis (LRHGLE) of GLRLM in R2* maps showed significantly negative and good correlations with Ishak-F stages (r = -0.616, P < 0.001; r = -0.637, P < 0.001). Busyness (NGTDM) in susceptibility maps, LDHGLE of GLDM and LRHGLE of GLRLM in R2* maps yield the highest AUCs (AUC = 0.786, P = 0.007; AUC = 0.807, P = 0.004; AUC = 0.819, P = 0.003). CONCLUSION Texture characteristics of susceptibility and R2* maps revealed possible staging values for liver fibrosis. Susceptibility and R2*-based texture analysis may be a useful and noninvasive method for staging liver fibrosis.
Collapse
Affiliation(s)
- Ran Guo
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Haodong Zhong
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, PR China
| | - Feng Xing
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zheng Qu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, PR China
| | - Rui Tong
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, PR China
| | - Fengling Gan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, PR China
| | - Mengxiao Liu
- MR Scientific Marketing, Diagnostic Imaging, Siemens Healthineers Ltd, Shanghai 201318, PR China
| | - Caixia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen 518057, PR China
| | - Huihui Xu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Gaiying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, PR China
| | - Chenghai Liu
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, PR China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, PR China.
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China.
| |
Collapse
|
31
|
De Lury AD, Bisulca JA, Lee JS, Altaf MD, Coyle PK, Duong TQ. Magnetic resonance imaging detection of deep gray matter iron deposition in multiple sclerosis: A systematic review. J Neurol Sci 2023; 453:120816. [PMID: 37827008 DOI: 10.1016/j.jns.2023.120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease involving immune-mediated damage. Iron deposition in deep gray matter (DGM) structures like the thalamus and basal ganglia have been suggested to play a role in MS pathogenesis. Magnetic Resonance Imaging (MRI) imaging methods like T2 and T2* imaging, susceptibility-weighted imaging, and quantitative susceptibility mapping can track iron deposition storage in the brain primarily from ferritin and hemosiderin (paramagnetic iron storage proteins) with varying levels of tissue contrast and sensitivity. In this systematic review, we evaluated the role of DGM iron deposition as detected by MRI techniques in relation to MS-related neuroinflammation and its potential as a novel therapeutic target. We searched through PubMed, Embase, and Web of Science databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, against predetermined inclusion and exclusion criteria. We included 89 articles (n = 6630 patients), and then grouped them into different categories: i) methodological techniques to measure DGM iron, ii) cross-sectional and group comparison of DGM iron content, iii) longitudinal comparisons of DGM iron, iv) associations between DGM iron and other imaging and neurobiological markers, v) associations with disability, and vi) associations with cognitive impairment. The review revealed that iron deposition in DGM is independent yet concurrent with demyelination, and that these iron deposits contribute to MS-related cognitive impairment and disability. Variability in iron distributions appears to rely on a positive feedback loop between inflammation, and release of iron by oligodendrocytes. DGM iron seems to be a promising prognostic biomarker for MS pathophysiology.
Collapse
Affiliation(s)
- Amy D De Lury
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Joseph A Bisulca
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Jimmy S Lee
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Muhammad D Altaf
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Patricia K Coyle
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| |
Collapse
|
32
|
Dimov AV, Li J, Nguyen TD, Roberts AG, Spincemaille P, Straub S, Zun Z, Prince MR, Wang Y. QSM Throughout the Body. J Magn Reson Imaging 2023; 57:1621-1640. [PMID: 36748806 PMCID: PMC10192074 DOI: 10.1002/jmri.28624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Magnetic materials in tissue, such as iron, calcium, or collagen, can be studied using quantitative susceptibility mapping (QSM). To date, QSM has been overwhelmingly applied in the brain, but is increasingly utilized outside the brain. QSM relies on the effect of tissue magnetic susceptibility sources on the MR signal phase obtained with gradient echo sequence. However, in the body, the chemical shift of fat present within the region of interest contributes to the MR signal phase as well. Therefore, correcting for the chemical shift effect by means of water-fat separation is essential for body QSM. By employing techniques to compensate for cardiac and respiratory motion artifacts, body QSM has been applied to study liver iron and fibrosis, heart chamber blood and placenta oxygenation, myocardial hemorrhage, atherosclerotic plaque, cartilage, bone, prostate, breast calcification, and kidney stone.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jiahao Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | | | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, United States
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
33
|
Stellingwerff MD, Pouwels PJW, Roosendaal SD, Barkhof F, van der Knaap MS. Quantitative MRI in leukodystrophies. Neuroimage Clin 2023; 38:103427. [PMID: 37150021 PMCID: PMC10193020 DOI: 10.1016/j.nicl.2023.103427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefan D Roosendaal
- Amsterdam UMC Location University of Amsterdam, Department of Radiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, UK
| | - Marjo S van der Knaap
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1105, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Laothamatas I, Al Mubarak H, Reddy A, Wax R, Badani K, Taouli B, Bane O, Lewis S. Multiparametric MRI of Solid Renal Masses: Principles and Applications of Advanced Quantitative and Functional Methods for Tumor Diagnosis and Characterization. J Magn Reson Imaging 2023. [PMID: 37052601 DOI: 10.1002/jmri.28718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Solid renal masses (SRMs) are increasingly detected and encompass both benign and malignant masses, with renal cell carcinoma (RCC) being the most common malignant SRM. Most patients with SRMs will undergo management without a priori pathologic confirmation. There is an unmet need to noninvasively diagnose and characterize RCCs, as significant variability in clinical behavior is observed and a wide range of differing management options exist. Cross-sectional imaging modalities, including magnetic resonance imaging (MRI), are increasingly used for SRM characterization. Multiparametric (mp) MRI techniques can provide insight into tumor biology by probing different physiologic/pathophysiologic processes noninvasively. These include sequences that probe tissue microstructure, including intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and T1 relaxometry; oxygen metabolism (blood oxygen level dependent [BOLD-MRI]); as well as vascular flow and perfusion (dynamic contrast-enhanced MRI [DCE-MRI] and arterial spin labeling [ASL]). In this review, we will discuss each mpMRI method in terms of its principles, roles, and discuss the results of human studies for SRM assessment. Future validation of these methods may help to enable a personalized management approach for patients with SRM in the emerging era of precision medicine. EVIDENCE LEVEL: 5. TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Indira Laothamatas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Haitham Al Mubarak
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arthi Reddy
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rebecca Wax
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
35
|
Yasui M, Koh J, Nakayama Y, Sakata M, Hiwatani Y, Ishiguchi H, Ito H. Diagnostic utility of susceptibility-weighted imaging in amyotrophic lateral sclerosis. J Neurol Sci 2023; 444:120524. [PMID: 36563605 DOI: 10.1016/j.jns.2022.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Susceptibility-weighted imaging (SWI) was developed as a diagnostic tool for amyotrophic lateral sclerosis (ALS). However, its sensitivity and specificity are insufficient for accurate diagnosis. Herein, we investigated a new, simple evaluation method for SWI as a diagnostic marker for ALS. We retrospectively investigated 36 patients with ALS and 19 healthy controls. The low signal intensity was semi-quantitatively evaluated on SWI using the motor cortex low intensity (MCLI) score: the sum score of the visual evaluation for the signal intensity of the bilateral primary motor cortices (orofacial, upper-limb, and lower-limb regions) from 0 (isointense) to 2 (markedly hypointense) with a total of 12 points. The mean MCLI score of two independent raters was significantly higher in ALS (median [interquartile range]; 5 [4-6]) than in controls (0 [0-1]), p < 0.0001. When the cutoff value of the MCLI score was set to 3, the area under the receiver operating characteristic curve was 0.973, and the sensitivity and specificity were 0.92 and 1.00, respectively. The MCLI score was not significantly correlated with age, disease duration, and ALS functional rating scale-revised (FRS-R), but was significantly correlated with the progression rate (∆FRS) (ρ = 0.39, p = 0.021) and upper motor neuron score (ρ = 0.51, p = 0.0014). Therefore, MCLI scoring is a useful diagnostic marker for ALS as the MCLI score was correlated with the UMN and ∆FRS scores.
Collapse
Affiliation(s)
- Masaaki Yasui
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama, Japan
| | - Jinsoo Koh
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama, Japan.
| | - Yoshiaki Nakayama
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama, Japan
| | - Mayumi Sakata
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama, Japan
| | - Yasuhiro Hiwatani
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama, Japan
| | - Hiroshi Ishiguchi
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama, Japan
| |
Collapse
|
36
|
Quantitative Susceptibility Mapping: Translating an Investigative Research Tool into High Volume Clinical Diagnostic Imaging. Diagnostics (Basel) 2022; 12:diagnostics12122962. [PMID: 36552969 PMCID: PMC9776933 DOI: 10.3390/diagnostics12122962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is an MRI-based technique for iron quantification of targeted tissue. QSM provides information relevant to clinicians in a broad range of diagnostic contexts, including sickle cell disease, inflammatory/demyelinating processes, and neoplasms. However, major MRI vendors do not offer QSM post-processing in a form ready for general use. This work describes a vendor-agnostic approach for scaling QSM analysis from a research technique to a routine diagnostic test. We provide the details needed to seamlessly integrate hardware, software, and clinical systems to provide QSM processing for a busy clinical radiology workflow. This approach can be generalized to other advanced MRI acquisitions and analyses with proven diagnostic utility, yet without crucial MR vendor support.
Collapse
|
37
|
Dimov AV, Gillen KM, Nguyen TD, Kang J, Sharma R, Pitt D, Gauthier SA, Wang Y. Magnetic Susceptibility Source Separation Solely from Gradient Echo Data: Histological Validation. Tomography 2022; 8:1544-1551. [PMID: 35736875 PMCID: PMC9228115 DOI: 10.3390/tomography8030127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) facilitates mapping of the bulk magnetic susceptibility of tissue from the phase of complex gradient echo (GRE) MRI data. QSM phase processing combined with an R2* model of magnitude of multiecho gradient echo data (R2*QSM) allows separation of dia- and para-magnetic components (e.g., myelin and iron) that contribute constructively to R2* value but destructively to the QSM value of a voxel. This R2*QSM technique is validated against quantitative histology—optical density of myelin basic protein and Perls’ iron histological stains of rim and core of 10 ex vivo multiple sclerosis lesions, as well as neighboring normal appearing white matter. We found that R2*QSM source maps are in good qualitative agreement with histology, e.g., showing increased iron concentration at the edge of the rim+ lesions and myelin loss in the lesions’ core. Furthermore, our results indicate statistically significant correlation between paramagnetic and diamagnetic tissue components estimated with R2*QSM and optical densities of Perls’ and MPB stains. These findings provide direct support for the use of R2*QSM magnetic source separation based solely on GRE complex data to characterize MS lesion composition.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - Kelly M. Gillen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - Jerry Kang
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - Ria Sharma
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - David Pitt
- Department of Neurology, Yale Medicine, New Haven, CT 06511, USA;
| | - Susan A. Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10022, USA;
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
- Correspondence:
| |
Collapse
|