1
|
Zhu Y, Liu T, Chen J, Wen L, Zhang J, Zheng D. Prediction of therapeutic response to transarterial chemoembolization plus systemic therapy regimen in hepatocellular carcinoma using pretreatment contrast-enhanced MRI based habitat analysis and Crossformer model. Abdom Radiol (NY) 2025; 50:2464-2475. [PMID: 39586897 DOI: 10.1007/s00261-024-04709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE To develop habitat and deep learning (DL) models from multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI) habitat images categorized using the K-means clustering algorithm. Additionally, we aim to assess the predictive value of identified regions for early evaluation of the responsiveness of hepatocellular carcinoma (HCC) patients to treatment with transarterial chemoembolization (TACE) plus molecular targeted therapies (MTT) and anti-PD-(L)1. METHODS A total of 102 patients with HCC from two institutions (A, n = 63 and B, n = 39) who received TACE plus systemic therapy were enrolled from September 2020 to January 2024. Multiple CE-MRI sequences were used to outline 3D volumes of interest (VOI) of the lesion. Subsequently, K-means clustering was applied to categorize intratumoral voxels into three distinct subgroups, based on signal intensity values of images. Using data from institution A, the habitat model was built with the ExtraTrees classifier after extracting radiomics features from intratumoral habitats. Similarly, the Crossformer model and ResNet50 model were trained on multi-channel data in institution A, and a DL model with Transformer-based aggregation was constructed to predict the response. Finally, all models underwent validation at institution B. RESULTS The Crossformer model and the habitat model both showed high area under the receiver operating characteristic curves (AUCs) of 0.869 and 0.877 (training cohort). In validation, AUC was 0.762 for the Crossformer model and 0.721 for the habitat model. CONCLUSION The habitat model and DL model based on CE-MRI possesses the capability to non-invasively predict the efficacy of TACE plus systemic therapy in HCC patients, which is critical for precision treatment and patient outcomes.
Collapse
Affiliation(s)
- Yuemin Zhu
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Tao Liu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, and Chongqing Cancer Hospital, Chongqing, China
| | - Jianwei Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Liting Wen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, and Chongqing Cancer Hospital, Chongqing, China.
| | - Dechun Zheng
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Chilaca-Rosas MF, Contreras-Aguilar MT, Pallach-Loose F, Altamirano-Bustamante NF, Salazar-Calderon DR, Revilla-Monsalve C, Heredia-Gutiérrez JC, Conde-Castro B, Medrano-Guzmán R, Altamirano-Bustamante MM. Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management. Sci Rep 2025; 15:16113. [PMID: 40341184 PMCID: PMC12062216 DOI: 10.1038/s41598-025-98058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/09/2025] [Indexed: 05/10/2025] Open
Abstract
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis explore the integration of Artificial Intelligence (AI) and Radiomics Inter-field (AIRI) to enhance predictive modeling for tumor progression. A comprehensive literature search identified 19 high-quality studies, which were analyzed to evaluate radiomic features and machine learning models in predicting overall survival (OS) and progression-free survival (PFS). Key findings highlight the predictive strength of specific MRI-derived radiomic features such as log-filter and Gabor textures and the superior performance of Support Vector Machines (SVM) and Random Forest (RF) models, achieving high accuracy and AUC scores (e.g., 98% AUC and 98.7% accuracy for OS). This research demonstrates the current state of the AIRI field and shows that current articles report their results with different performance indicators and metrics, making outcomes heterogenous and hard to integrate knowledge. Additionally, it was explored that today some articles use biased methodologies. This study proposes a structured AIRI development roadmap and guidelines, to avoid bias and make results comparable, emphasizing standardized feature extraction and AI model training to improve reproducibility across clinical settings. By advancing precision medicine, AIRI integration has the potential to refine clinical decision-making and enhance patient outcomes.
Collapse
Affiliation(s)
- María Fátima Chilaca-Rosas
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Manuel Tadeo Contreras-Aguilar
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Federico Pallach-Loose
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | | | - David Rafael Salazar-Calderon
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Juan Carlos Heredia-Gutiérrez
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Benjamin Conde-Castro
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Rafael Medrano-Guzmán
- Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico
| | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720, Mexico City, Mexico.
| |
Collapse
|
3
|
Chen X, Jiang H, Pan M, Feng C, Li Y, Chen L, Luo Y, Liu L, Peng J, Hu G. Habitat radiomics predicts occult lymph node metastasis and uncovers immune microenvironment of head and neck cancer. J Transl Med 2025; 23:498. [PMID: 40312725 PMCID: PMC12046905 DOI: 10.1186/s12967-025-06474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Occult lymph node metastasis (LNM) is a key prognostic factor for patients with head and neck squamous cell carcinoma (HNSCC). This study was to establish radiomics models derived from intratumoral, peritumoral, and habitat regions for identifying occult LNM in HNSCC. METHODS Patients with pathologically confirmed HNSCC from three medical Centers (from March 2014 to April 2024) and The Cancer Genome Atlas (TCGA) were enrolled. Center 1 was split into training (n = 330) and internal test sets (n = 154), while Center 2 and Center 3 served as the external test set (n = 183). Genomic set (n = 50) from TCGA and single-cell RNA sequencing set (n = 6) from Center 1 were used for biological analysis. We used the intratumoral, peritumoral, and habitat volumes of interest (VOIs) to extract radiomics features, respectively. Based on Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) classifiers, nine radiomics models were built to confirm the optimal predictive performance. The best-performing model, along with clinical-radiologic data, was combined to develop a hybrid model. The log-rank test was used to evaluate the model's prognostic performance. Additionally, bulk and single-cell RNA sequencing were applied for investigating the biological mechanisms underlying the optimal model. RESULTS The RF-habitat radiomics model showed the best performance, achieving AUCs of 0.835-0.919 across all datasets. Survival analysis further confirmed the prognostic value of the RF-habitat radiomics model. The RF-habitat radiomics model and the hybrid model notably surpassed the clinical model in predictive performance. Moreover, the RF-habitat radiomics model was associated with the abundance level of exhaustion-associated CD8 + T cells, uncovering the immune microenvironment characteristics contributing to occult LNM in HNSCC. CONCLUSIONS The RF-habitat radiomics model demonstrated excellent performance for predicting occult LNM in HNSCC across three cohorts, providing a non-invasive solution for occult LNM. Furthermore, radiogenomic analysis further revealed the biological associations of the model, primarily related to T cell dysfunction.
Collapse
Affiliation(s)
- Xinwei Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Jiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengmin Feng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxi Luo
- Department of Radiology, Zigong Fourth People's Hospital, Zigong, China
| | - Long Liu
- Department of Radiology, The People's Hospital of Hechuan, Chongqing, China
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Wang X, Wang S, Zhao X, Chen L, Yuan M, Yan Y, Sun X, Liu Y, Sun S. Prediction of early recurrence in primary central nervous system lymphoma based on multimodal MRI-based radiomics: A preliminary study. Eur J Radiol 2025; 188:112125. [PMID: 40311274 DOI: 10.1016/j.ejrad.2025.112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES To evaluate the role of multimodal magnetic resonance imaging radiomics features in predicting early recurrence of primary central nervous system lymphoma (PCNSL) and to investigate their correlation with patient prognosis. MATERIALS AND METHODS A retrospective analysis was conducted on 145 patients with PCNSL who were treated with high-dose methotrexate-based chemotherapy. Clinical data and MRI images were collected, with tumor regions segmented using ITK-SNAP software. Radiomics features were extracted via Pyradiomics, and predictive models were developed using various machine learning algorithms. The predictive performance of these models was assessed using receiver operating characteristic (ROC) curves. Additionally, Cox regression analysis was employed to identify risk factors associated with progression-free survival (PFS). RESULTS In the cohort of 145 PCNSL patients (72 recurrence, 73 non-recurrence), clinical characteristics were comparable between groups except for multiple lesion frequency (61.1% vs. 39.7%, p < 0.05) and not receiving consolidation therapy (44.4% vs. 13.7%, p < 0.05). A total of 2392 radiomics features were extracted from CET1 and T2WI MRI sequence. Combining clinical variables, 10 features were retained after the feature selection process. The logistic regression (LR) model exhibited superior predictive performance in the test set to predict PCNSL early relapse, with an area under the curve (AUC) of 0.887 (95 % confidence interval: 0.785-0.988). Multivariate Cox regression identified the Cli-Rad score as an independent prognostic factor for PFS. Significant difference in PFS was observed between high- and low-risk groups defined by Cli-Rad score (8.24 months vs. 24.17 months, p < 0.001). CONCLUSIONS The LR model based on multimodal MRI radiomics and clinical features, can effectively predict early recurrence of PCNSL, while the Cli-Rad score could independently forecast PFS among PCNSL patients.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing, China.
| | - Sihui Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xuening Zhao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lingxu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Mengyuan Yuan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ying Yan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Shengjun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing, China.
| |
Collapse
|
5
|
Wu LX, Ding N, Ji YD, Zhang YC, Li MJ, Shen JC, Hu HT, Jin L, Yin SN. Habitat Analysis in Tumor Imaging: Advancing Precision Medicine Through Radiomic Subregion Segmentation. Cancer Manag Res 2025; 17:731-741. [PMID: 40190416 PMCID: PMC11971994 DOI: 10.2147/cmar.s511796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Radiomics received a lot of attention because of its potential to provide personalized medicine in a non-invasive manner, usually focusing on the analysis of the entire lesion. A new method called habitat can identify subregional phenotypic changes within the lesion, thereby improving the ability to distinguish heterogeneity. The clustering method can be applied to multiple measurement parameters to separate different tumor habitats by segmentation. A data-driven repeatable voxel clustering method to identify subregions reflecting live tumors will be valuable for clinical diagnosis and further treatment. In this review, we aim to briefly summarize the widely used cluster analysis algorithms in subregion segmentation and the application of habitat analysis in tumor imaging. By analyzing many literatures, the commonly used K-means algorithm and other algorithms such as hierarchical clustering and consensus clustering are summarized. By identifying intratumoral heterogeneity, the key findings of habitat analysis in oncology are described, such as tumor differentiation, grading, and gene expression status. The latest progress and innovations in predicting tumor therapeutic effects and prognosis using habitat analysis are reviewed, including multimodal imaging data fusion, integration with artificial intelligence technologies, and non-invasive diagnostic methods. The limitations and challenges of habitat analysis in tumor imaging are also discussed, such as dependence on image quality and imaging techniques, insufficient automation and standardization, difficulties in biological interpretation, and lack of clinical validation. Finally, future directions for increasing the level of automation and standardization of habitat analysis to improve its accuracy and efficiency and reduce reliance on expert intervention are proposed. Habitat analysis represents a significant advancement in radiomics, offering a nuanced understanding of tumor heterogeneity. By leveraging sophisticated clustering algorithms and integrating multimodal imaging data, habitat analysis has the potential to transform clinical decision-making, enabling more precise diagnostics and personalized treatment strategies, ultimately advancing the field of precision medicine.
Collapse
Affiliation(s)
- Ling Xiao Wu
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| | - Ning Ding
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| | - Yi Ding Ji
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| | - Yi Chi Zhang
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| | - Meng Juan Li
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| | - Jia Cheng Shen
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| | - Hai Tao Hu
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| | - Long Jin
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| | - Sheng Nan Yin
- Department of Medical Imaging, Suzhou Ninth People’s Hospital, Wujiang, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Hu Z, Wang H. The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors. Insights Imaging 2025; 16:77. [PMID: 40159380 PMCID: PMC11955438 DOI: 10.1186/s13244-025-01950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Radiomics has widespread applications in the field of brain tumor research. However, radiomic analyses often function as a 'black box' due to their use of complex algorithms, which hinders the translation of brain tumor radiomics into clinical applications. In this review, we will elaborate extensively on the application of radiomics in brain tumors. Additionally, we will address the interpretability of handcrafted-feature radiomics and deep learning-based radiomics by integrating biological domain knowledge of brain tumors with interpretability methods. Furthermore, we will discuss the current challenges and prospects concerning the interpretability of brain tumor radiomics. Enhancing the interpretability of radiomics may make it more understandable for physicians, ultimately facilitating its translation into clinical practice. CRITICAL RELEVANCE STATEMENT: The interpretability of brain tumor radiomics empowers neuro-oncologists to make well-informed decisions from radiomic models. KEY POINTS: Radiomics makes a significant impact on the management of brain tumors in several key clinical areas. Transparent models, habitat analysis, and feature attribute explanations can enhance the interpretability of traditional handcrafted-feature radiomics in brain tumors. Various interpretability methods have been applied to explain deep learning-based models; however, there is a lack of biological mechanisms underlying these models.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Brain Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Zongtao Hu
- Department of Brain Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Hongzhi Wang
- Department of Brain Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China.
| |
Collapse
|
7
|
Huang Y, Shi Z, Zhu T, Zhou T, Li Y, Li W, Qiu H, Wang S, He L, Wu Z, Lin Y, Wang Q, Gu W, Gu C, Song X, Zhou Y, Guan D, Wang K. Longitudinal MRI-Driven Multi-Modality Approach for Predicting Pathological Complete Response and B Cell Infiltration in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413702. [PMID: 39921294 PMCID: PMC11948082 DOI: 10.1002/advs.202413702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/30/2024] [Indexed: 02/10/2025]
Abstract
Accurately predicting pathological complete response (pCR) to neoadjuvant treatment (NAT) in breast cancer remains challenging due to tumor heterogeneity. This study enrolled 2279 patients across 12 centers and develops a novel multi-modality model integrating longitudinal magnetic resonance imaging (MRI) spatial habitat radiomics, transcriptomics, and single-cell RNA sequencing for predicting pCR. By analyzing tumor subregions on multi-timepoint MRI, the model captures dynamic intra-tumoral heterogeneity during NAT. It shows superior performance over traditional radiomics, with areas under the curve of 0.863, 0.813, and 0.888 in the external validation, immunotherapy, and multi-omics cohorts, respectively. Subgroup analysis shows its robustness across varying molecular subtypes and clinical stages. Transcriptomic and single-cell RNA sequencing analysis reveals that high model scores correlate with increased immune activity, notably elevated B cell infiltration, indicating the biological basis of the imaging model. The integration of imaging and molecular data demonstrates promise in spatial habitat radiomics to monitor dynamic changes in tumor heterogeneity during NAT. In clinical practice, this study provides a noninvasive tool to accurately predict pCR, with the potential to guide treatment planning and improve breast-conserving surgery rates. Despite promising results, the model requires prospective validation to confirm its utility across diverse patient populations and clinical settings.
Collapse
Affiliation(s)
- Yu‐Hong Huang
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityNo. 106 Zhongshan Second Road, Yuexiu DistrictGuangzhouGuangdong Province510080China
| | - Zhen‐Yi Shi
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong Province510515China
- Guangdong Key Laboratory of Single Cell Technology and ApplicationSouthern Medical University, GuangzhouGuangdong Province510515China
| | - Teng Zhu
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityNo. 106 Zhongshan Second Road, Yuexiu DistrictGuangzhouGuangdong Province510080China
| | - Tian‐Han Zhou
- The Department of General SurgeryHangzhou TCM HospitalAffiliated to Zhejiang Chinese Medical UniversityXihu DistrictHangzhouZhejiang Province310000China
| | - Yi Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong Province510515China
- Guangdong Key Laboratory of Single Cell Technology and ApplicationSouthern Medical University, GuangzhouGuangdong Province510515China
| | - Wei Li
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityNo. 106 Zhongshan Second Road, Yuexiu DistrictGuangzhouGuangdong Province510080China
| | - Han Qiu
- Galactophore DepartmentJingzhou Hospital Affiliated to Yangtze UniversityShashi DistrictJingzhou434000China
| | - Si‐Qi Wang
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMA02115USA
| | - Li‐Fang He
- Breast CenterCancer Hospital of Shantou University Medical CollegeJinping DistrictShantouGuangdong Province515000China
| | - Zhi‐Yong Wu
- Clinical research center & Breast disease diagnosis and treatment centerShantou Central HospitalNo. 114 Waima Road, Jinping DistrictShantouGuangdong Province515000China
| | - Ying Lin
- Breast Disease Center, The First Affiliated HospitalSun Yat‐sen UniversityNo. 58 Zhongshan Second Road, Yuexiu DistrictGuangzhouGuangdong Province510080China
| | - Qian Wang
- Department of RadiologyThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuaiyin DistrictHuaianJiangsu Province223001China
| | - Wen‐Chao Gu
- Department of Artificial Intelligence MedicineGraduate School of MedicineChiba UniversityChiba263‐8522Japan
| | - Chang‐Cong Gu
- Department of Medical ImagingThe First Hospital of QinhuangdaoHaigang DistrictQinhuangdaoHebei Province066000China
| | - Xin‐Yang Song
- Department of RadiologyThe First Affiliated Hospital of Jinan UniversityNo. 613 Huangpu West Road, Tianhe DistrictGuangzhouGuangdong510627China
| | - Yang Zhou
- Department of PathologyThe Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical UniversityNo. 29 Xinglong LaneChangzhouJiangsu Province213164China
| | - Dao‐Gang Guan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong Province510515China
- Guangdong Key Laboratory of Single Cell Technology and ApplicationSouthern Medical University, GuangzhouGuangdong Province510515China
| | - Kun Wang
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityNo. 106 Zhongshan Second Road, Yuexiu DistrictGuangzhouGuangdong Province510080China
| |
Collapse
|
8
|
Wang Z, Wang L, Wang Y. Radiomics in glioma: emerging trends and challenges. Ann Clin Transl Neurol 2025; 12:460-477. [PMID: 39901654 PMCID: PMC11920724 DOI: 10.1002/acn3.52306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
Radiomics is a promising neuroimaging technique for extracting and analyzing quantitative glioma features. This review discusses the application, emerging trends, and challenges associated with using radiomics in glioma. Integrating deep learning algorithms enhances various radiomics components, including image normalization, region of interest segmentation, feature extraction, feature selection, and model construction and can potentially improve model accuracy and performance. Moreover, investigating specific tumor habitats of glioblastomas aids in a better understanding of glioblastoma aggressiveness and the development of effective treatment strategies. Additionally, advanced imaging techniques, such as diffusion-weighted imaging, perfusion-weighted imaging, magnetic resonance spectroscopy, magnetic resonance fingerprinting, functional MRI, and positron emission tomography, can provide supplementary information for tumor characterization and classification. Furthermore, radiomics analysis helps understand the glioma immune microenvironment by predicting immune-related biomarkers and characterizing immune responses within tumors. Integrating multi-omics data, such as genomics, transcriptomics, proteomics, and pathomics, with radiomics, aids the understanding of the biological significance of the underlying radiomics features and improves the prediction of genetic mutations, prognosis, and treatment response in patients with glioma. Addressing challenges, such as model reproducibility, model generalizability, model interpretability, and multi-omics data integration, is crucial for the clinical translation of radiomics in glioma.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lei Wang
- Department of NeurosurgeryGuiqian International General HospitalGuiyangGuizhouChina
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Zhu Y, Wang J, Xue C, Zhai X, Xiao C, Lu T. Deep Learning and Habitat Radiomics for the Prediction of Glioma Pathology Using Multiparametric MRI: A Multicenter Study. Acad Radiol 2025; 32:963-975. [PMID: 39322536 DOI: 10.1016/j.acra.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
RATIONALE AND OBJECTIVES Recent radiomics studies on predicting pathological outcomes of glioma have shown immense potential. However, the predictive ability remains suboptimal due to the tumor intrinsic heterogeneity. We aimed to achieve better pathological prediction outcomes by combining habitat analysis with deep learning. MATERIALS AND METHODS 387 cases of primary glioma from three hospitals were collected, along with their T1 contrast-enhanced and T2-weighted MR sequences, pathological reports and clinical histories. The training set consisted of 264 patients, 82 patients composed the test set, and 41 patients were used as the validation set for hyperparameter tuning and optimal model selection. All groups were sourced from different centers. Through radiomics, deep learning, habitat analysis and combined analysis, we extracted imaging features separately and jointly modeled them with clinical features. We identified the optimal models for predicting glioma grades, Ki67 expression levels, P53 mutation and IDH1 mutation. RESULTS Using a LightGBM model with DenseNet161 features based on habitat subregions, the best tumor grade prediction model was achieved. A LightGBM model with ResNet50 features based on habitat subregions yielded the best Ki67 expression level prediction model. An SVM model with Radiomics and Inception_v3 features provided the best prediction of P53 mutation. The best model for predicting IDH1 mutation was achieved by an MLP model with Radiomics features based on habitat subregions. Clinical features might be potentially helpful for the prediction with relatively weak evidence. CONCLUSION Habitat+Deep Learning feature extraction methods were optimal for predicting grades and Ki67 levels. Deep Learning is optimal for predicting P53 mutation, while the combination of Habitat+ Radiomics models yielded the best prediction for IDH1 mutation.
Collapse
Affiliation(s)
- Yunyang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China (Y.Z., J.W., T.L.)
| | - Jing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China (Y.Z., J.W., T.L.)
| | - Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China (C.X., C.X.)
| | - Xiaoyang Zhai
- The First Affiliated Hospital of Xinxiang University, Xinxiang, China (X.Z.)
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China (C.X., C.X.)
| | - Ting Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China (Y.Z., J.W., T.L.).
| |
Collapse
|
10
|
Yang YC, Wu JJ, Shi F, Ren QG, Jiang QJ, Guan S, Tang XQ, Meng XS. Sub-regional Radiomics Analysis for Predicting Metastasis Risk in Clear Cell Renal Cell Carcinoma: A Multicenter Retrospective Study. Acad Radiol 2025; 32:237-249. [PMID: 39147643 DOI: 10.1016/j.acra.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
RATIONALE AND OBJECTIVES Clear cell renal cell carcinoma (ccRCC) is the most common malignant neoplasm affecting the kidney, exhibiting a dismal prognosis in metastatic instances. Elucidating the composition of ccRCC holds promise for the discovery of highly sensitive biomarkers. Our objective was to utilize habitat imaging techniques and integrate multimodal data to precisely predict the risk of metastasis, ultimately enabling early intervention and enhancing patient survival rates. MATERIAL AND METHODS A retrospective analysis was performed on a cohort of 263 patients with ccRCC from three hospitals between April 2013 and March 2021. Preoperative CT images, ultrasound images, and clinical data were comprehensively analyzed. Patients from two campuses of Qilu Hospital of Shandong University were assigned to the training dataset, while the third hospital served as the independent testing dataset. A robust consensus clustering method was used to classify the primary tumor space into distinct sub-regions (i.e., habitats) using contrast-enhanced CT images. Radiomic features were extracted from these tumor sub-regions and subsequently reduced to identify meaningful features for constructing a predictive model for ccRCC metastasis risk assessment. In addition, the potential value of radiomics in predicting ccRCC metastasis risk was explored by integrating ultrasound image features and clinical data to construct and compare alternative models. RESULTS In this study, we performed k-means clustering within the tumor region to generate three distinct tumor subregions. We quantified the Hounsfiled Unit (HU) value, volume fraction, and distribution of high- and low-risk groups in each subregion. Our investigation focused on 252 patients with Habitat1 + Habitat3 to assess the discriminative power of these two subregions. We then developed a risk prediction model for ccRCC metastasis risk classification based on radiomic features extracted from CT and ultrasound images, and clinical data. The Combined model and the CT_Habitat3 model showed AUC values of 0.935 [95%CI: 0.902-0.968] and 0.934 [95%CI: 0.902-0.966], respectively, in the training dataset, while in the independent testing dataset, they achieved AUC values of 0.891 [95%CI: 0.794-0.988] and 0.903 [95%CI: 0.819-0.987], respectively. CONCLUSION We have identified a non-invasive imaging predictor and the proposed sub-regional radiomics model can accurately predict the risk of metastasis in ccRCC. This predictive tool has potential for clinical application to refine individualized treatment strategies for patients with ccRCC.
Collapse
Affiliation(s)
- You Chang Yang
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Shandong Province, China.
| | - Jiao Jiao Wu
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| | - Qing Guo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Shandong Province, China.
| | - Qing Jun Jiang
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Shandong Province, China.
| | - Shuai Guan
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Shandong Province, China.
| | - Xiao Qiang Tang
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Xiang Shui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Shandong Province, China.
| |
Collapse
|
11
|
Kong W, Xu J, Huang Y, Zhu K, Yao L, Wu K, Wang H, Ma Y, Zhang Q, Zhang R. CT-based habitat radiomics for predicting treatment response to neoadjuvant chemoimmunotherapy in esophageal cancer patients. Front Oncol 2024; 14:1418252. [PMID: 39691599 PMCID: PMC11649542 DOI: 10.3389/fonc.2024.1418252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction We used habitat radiomics as an innovative tumor biomarker to predict the outcome of neoadjuvant therapy for esophageal cancer. Methods This was a two-center retrospective clinical study in which pretreatment CT scans of 112 patients with esophageal cancer treated with neoadjuvant chemoimmunotherapy and surgery between November 2020 and July 2023 were retrospectively collected from two institutions. For training (n = 85) and external testing (n = 27), patients from both institutions were allocated. We employed unsupervised methods to delineate distinct heterogeneous regions within the tumor area. Results To represent the prediction effect of different models, we plotted the AUC curves. The AUCs of the habitat models were 0.909 (0.8418-0.9758, 95% CI) and 0.829 (0.6423-1.0000, 95% CI) in the training and external test cohorts, respectively. The AUCs of the nomogram models were 0.914 (0.8483-0.9801, 95% CI) and 0.849 (0.6752-1.0000, 95% CI) in the training and external test cohorts, respectively. Discussion The results revealed that the model based on habitat data outperforms traditional radiomic analysis models. In addition, when the model is combined with clinical features, it improves the predictive accuracy of pathological complete response in patients undergoing neoadjuvant chemoimmunotherapy.
Collapse
Affiliation(s)
- Weibo Kong
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junrui Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunlong Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Yao
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kaiming Wu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanlin Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuhang Ma
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renquan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Jin W, Wang S, Wang T, Zhang D, Wang Y, Zhang G. Multi-machine Learning Model Based on Habitat Subregions for Outcome Prediction in Adenomyosis Treated by Uterine Artery Embolization. Acad Radiol 2024; 31:4985-4995. [PMID: 38845295 DOI: 10.1016/j.acra.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 11/30/2024]
Abstract
RATIONALE AND OBJECTIVES To establish and validate a predictive multi-machine learning model for the long-term efficacy of uterine artery embolization (UAE) in the treatment of adenomyosis based on habitat subregions. MATERIALS AND METHODS Patients who underwent UAE for adenomyosis at institution A between November 2015 and June 2018 were included in the training cohort and those at institution B between June 2017 and June 2019 were included in the test cohort. The regions of interest (ROI) were manually segmented on the T2-weighted images (T2WI). The ROIs were subsequently partitioned into habitat subregions using k-means clustering. Radiomic features were extracted from each subregion on T1WI, T2WI, apparent diffusion coefficient, and contrast-enhanced images. The least absolute shrinkage and selection operator (LASSO) was used to select the subregion radiomics features. With the improvement in patients' symptoms at 36 months post-UAE, the habitat subregion features were trained using six machine-learning classifiers. The most suitable classifier was chosen based on model performance to establish the habitat radiomics model (HRM). The efficacy of the model was validated using both the training and test cohorts. Finally, a whole-region radiomics model (WRM) and clinical model (CM) were established. The Delong test was used to compare the predictive performance of the habitat subregion model and the two other models. RESULTS The study included 258 patients, 191 in the training cohort and 67 in the test cohort. The ROIs were divided into four habitat subregions. Radiomics features were extracted from different sequence images of the subregions. After LASSO regression, 24 habitat subregion features were included in the model. Based on the receiver operating characteristic curve analysis, the area under the curve (AUC) of the HRM was 0.921 (95% CI, 0.857-0.985, training) and 0.890 (95% CI, 0.736-1.000, test). The AUCs for the WRM were 0.805 (95% CI, 0.737-0.872, training) and 0.693 (95% CI, 0.497-0.889, test). Compared to the HRM, the difference in predictive performance was statistically significant (p = 0.008, training; p = 0.007, test). The AUCs for the CM were 0.788 (95% CI, 0.711-0.866, training) and 0.735 (95% CI, 0.566-0.903, test). Compared to the HRM, there was a statistically significant difference in the training cohort (p = 0.014) but not in the test cohort (p = 0.186). CONCLUSION The HRM can predict the long-term efficacy of UAE in the treatment of adenomyosis. The predictive performance was superior to that of both the WRM and CM, serving as an effective tool to assist interventional physicians in clinical decision-making.
Collapse
Affiliation(s)
- Wentao Jin
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, P R China
| | - Shijia Wang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, P R China
| | - Tianpin Wang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, P R China
| | - Di Zhang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, P R China
| | - Yitang Wang
- Department of Interventional Radiology, DaLian Women and Children's Medical Group, P R China
| | - Guofu Zhang
- Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, P R China.
| |
Collapse
|
13
|
Cai W, Guo K, Chen Y, Shi Y, Chen J. Sub-regional CT Radiomics for the Prediction of Ki-67 Proliferation Index in Gastrointestinal Stromal Tumors: A Multi-center Study. Acad Radiol 2024; 31:4974-4984. [PMID: 39033048 DOI: 10.1016/j.acra.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024]
Abstract
RATIONALE AND OBJECTIVES The objective was to assess and examine radiomics models derived from contrast-enhanced CT for their predictive capacity using the sub-regional radiomics regarding the Ki-67 proliferation index (PI) in patients with pathologically confirmed gastrointestinal stromal tumors (GIST). METHODS In this retrospective study, a total of 412 GIST patients across three institutions (223 from center 1, 106 from center 2, and 83 from center 3) was enrolled. Radiomic features were derived from various sub-regions of the tumor region of interest employing the K-means approach. The Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to identify features correlated with Ki-67 PI level in GIST patients. A support vector machine (SVM) model was then constructed to predict the high level of Ki-67 (Ki-67 index >8%), drawing on the radiomics features from each sub-region within the training cohort. RESULTS After features selection process, 6, 9, 9, 7 features were obtained to construct SVM models based on sub-region 1, 2, 3 and the entire tumor, respectively. Among different models, the model developed by the sub-region 1 achieved an area under the receiver operating characteristic curve (AUC) of 0.880 (95% confidence interval [CI]: 0.830 to 0.919), 0.852 (95% CI: 0.770-0.914), 0.799 (95% CI: 0.697-0.879) in the training, external test set 1, and 2, respectively. CONCLUSION The results of the present study suggested that SVM model based on the sub-regional radiomics features had the potential of predicting Ki-67 PI level in patients with GIST.
Collapse
Affiliation(s)
- Wemin Cai
- Department of Emergency, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kun Guo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yongxian Chen
- Department of Chest cancer, Xiamen Second People's Hospital, Xiamen 36100, China
| | - Yubo Shi
- Department of Pulmonary, Yueqing People's Hospital, Wenzhou 325000, China
| | - Junkai Chen
- Department of Emergency, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, China.
| |
Collapse
|
14
|
Zhu Y, Zheng D, Xu S, Chen J, Wen L, Zhang Z, Ruan H. Intratumoral habitat radiomics based on magnetic resonance imaging for preoperative prediction treatment response to neoadjuvant chemotherapy in nasopharyngeal carcinoma. Jpn J Radiol 2024; 42:1413-1424. [PMID: 39162780 DOI: 10.1007/s11604-024-01639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE The aim of this study is to determine intratumoral habitat regions from multi-sequences magnetic resonance imaging (MRI) and to assess the value of those regions for prediction of patient response to neoadjuvant chemotherapy (NAC) in nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS Two hundred and ninety seven patients with NPC were enrolled. Multi-sequences MRI data were used to outline three-dimensional volumes of interest (VOI) of the whole tumor. The original imaging data were divided into two groups, which were resampled to an isotropic resolution of 1 × 1 × 1 mm3 (group_1mm) and 3 × 3 × 3 mm3 (group_3mm). Nineteen radiomics features were computed for each voxel of three sequences in group_3mm, within the tumor region to extract local information. Then, k-means clustering was implemented to segment the whole tumor regions in two groups. After radiomics features were extracted and dimension reduction, habitat models were built using Multi-Layer Perceptron (MLP) algorithm. RESULTS Only T stage was included as the clinical model. The habitat3mm model, which included 10 radiomics features, achieved AUCs of 0.752 and 0.724 in the training and validation cohorts, respectively. Given the slightly better outcome of habitat3mm model, nomogram was developed in combination with habitat3mm model and T stage with the AUC of 0.749 and 0.738 in the training and validation cohorts. The decision curve analysis provides further evidence of the nomogram's clinical practicality. CONCLUSIONS A nomogram based on intratumoral habitat predicts the efficacy of NAC in NPC patients, offering the potential to improve both the treatment plan and patient outcomes.
Collapse
Affiliation(s)
- Yuemin Zhu
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jin'an District, Fuzhou, 350014, Fujian, People's Republic of China
| | - Dechun Zheng
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jin'an District, Fuzhou, 350014, Fujian, People's Republic of China.
| | - Shugui Xu
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jin'an District, Fuzhou, 350014, Fujian, People's Republic of China
| | - Jianwei Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jin'an District, Fuzhou, 350014, Fujian, People's Republic of China
| | - Liting Wen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jin'an District, Fuzhou, 350014, Fujian, People's Republic of China
| | - Zhichao Zhang
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jin'an District, Fuzhou, 350014, Fujian, People's Republic of China
| | - Huiping Ruan
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jin'an District, Fuzhou, 350014, Fujian, People's Republic of China
| |
Collapse
|
15
|
Chen H, Liu Y, Zhao J, Jia X, Chai F, Peng Y, Hong N, Wang S, Wang Y. Quantification of intratumoral heterogeneity using habitat-based MRI radiomics to identify HER2-positive, -low and -zero breast cancers: a multicenter study. Breast Cancer Res 2024; 26:160. [PMID: 39578913 PMCID: PMC11583526 DOI: 10.1186/s13058-024-01921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2-targeted (HER2) therapy with antibody-drug conjugates has proven effective for patients with HER2-low breast cancer. However, intratumoral heterogeneity (ITH) poses a great challenge in identifying HER2-low tumors. ITH signatures were developed by quantifying ITH to differentiate HER2-positive, -low and -zero breast cancers. METHODS This retrospective study included 614 patients from two institutions. The study was structured into two primary tasks: task 1 was to differentiate between HER2-positive and -negative tumors, followed by task 2 to differentiate HER2-low and -zero tumors. Whole-tumor radiomics features and habitat radiomics features were extracted from MRI to construct the radiomics and ITH signatures. Multivariable logistic regression analysis was used to determine significant independent predictors. A combined model integrating significant clinicopathologic variables, radiomics signature, and ITH signature was developed for task (1) Subsequently, the better-performing model was established using the same approach for task (2) The area under the receiver operating characteristic curve (AUC) was used to assess the performance of each model. RESULTS Task 1 comprised 614 patients (training, n = 348; validation, n = 149; and test cohorts, n = 117). Task 2 encompassed 501 patients (training, n = 283; validation, n = 122; and test cohorts, n = 96). For task1, the ITH signature showed outstanding performance, achieving AUCs of 0.81, 0.81, and 0.81 in the training, validation and test cohorts, respectively. The combined model achieved improved performance, with AUCs of 0.83, 0.84 and 0.83 across the three cohorts, respectively. For task2, the ITH signature maintained superior performance, with AUCs of 0.94, 0.93 and 0.84 across the training, validation and test cohorts, respectively. Multivariable logistic regression analysis indicated that none of the clinicopathologic characteristics were retained as predictors associated with odds of HER2-low tumors. CONCLUSIONS Our study developed ITH signatures that quantified ITH using habitat-based MRI radiomics, achieving outstanding performance in differentiating HER2-postive and -negative tumors, and further differentiating HER2-low and -zero breast cancers.
Collapse
Affiliation(s)
- Haoquan Chen
- Department of Radiology, Peking University People's Hospital, No. 11, Xizhimen South St, Beijing, 100044, China
| | - Yulu Liu
- Department of Radiology, Peking University People's Hospital, No. 11, Xizhimen South St, Beijing, 100044, China
- Department of Radiology, The Affiliated Hospital of Southwest Jiaotong University/ The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jiaqi Zhao
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Xiaoxuan Jia
- Department of Radiology, Peking University People's Hospital, No. 11, Xizhimen South St, Beijing, 100044, China
| | - Fan Chai
- Department of Radiology, Peking University People's Hospital, No. 11, Xizhimen South St, Beijing, 100044, China
| | - Yuan Peng
- Department of Breast Surgery, Peking University People's Hospital, No. 11, Xizhimen South St, Beijing, 100044, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, No. 11, Xizhimen South St, Beijing, 100044, China
| | - Shu Wang
- Department of Breast Surgery, Peking University People's Hospital, No. 11, Xizhimen South St, Beijing, 100044, China.
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, No. 11, Xizhimen South St, Beijing, 100044, China.
| |
Collapse
|
16
|
Tang Z, Wang W, Gao B, Liu X, Liu X, Zhuo Y, Du J, Ai F, Yang X, Gu H. Unveiling Tim-3 immune checkpoint expression in hepatocellular carcinoma through abdominal contrast-enhanced CT habitat radiomics. Front Oncol 2024; 14:1456748. [PMID: 39582537 PMCID: PMC11581969 DOI: 10.3389/fonc.2024.1456748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/11/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) are important systemic therapeutic agents for hepatocellular carcinoma (HCC), among which T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) is considered an emerging target for ICI therapy. This study aims to evaluate the prognostic value of Tim-3 expression and develop a predictive model for Tim-3 infiltration in HCC. Methods We collected data from 424 HCC patients in The Cancer Genome Atlas (TCGA) and data from 102 pathologically confirmed HCC patients from our center for prognostic analysis. Multivariate Cox regression analyses were performed on both datasets to determine the prognostic significance of Tim-3 expression. In radiomics analysis, we used the K-means algorithm to cluster regions of interest in arterial phase enhancement and venous phase enhancement images from patients at our center. Radiomic features were extracted from three subregions as well as the entire tumor using pyradiomics. Five machine learning methods were employed to construct Habitat models based on habitat features and Rad models based on traditional radiomic features. The predictive performance of the models was compared using ROC curves, DCA curves, and calibration curves. Results Multivariate Cox analyses from both our center and the TCGA database indicated that high Tim-3 expression is an independent risk factor for poor prognosis in HCC patients. Higher levels of Tim-3 expression were significantly associated with worse prognosis. Among the ten models evaluated, the Habitat model constructed using the LightGBM algorithm showed the best performance in predicting Tim-3 expression status (training set vs. test set AUC 0.866 vs. 0.824). Discussion This study confirmed the importance of Tim-3 as a prognostic marker in HCC. The habitat radiomics model we developed effectively predicted intratumoral Tim-3 infiltration, providing valuable insights for the evaluation of ICI therapy in HCC patients.
Collapse
Affiliation(s)
- Zhishen Tang
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Wang
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xuyang Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xiangyu Liu
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yingquan Zhuo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jun Du
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Fujun Ai
- Department of Pathology and Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Xianwu Yang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Huajian Gu
- Department of Pediatric Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Wyatt CR. Editorial for "Evaluate the Microvascular Invasion of Hepatocellular Carcinoma (≤5 cm) and Recurrence Free Survival with Gadoxetate Disodium-Enhanced MRI-Based Habitat Imaging". J Magn Reson Imaging 2024; 60:1676-1677. [PMID: 38299235 DOI: 10.1002/jmri.29271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
18
|
Shang Y, Zeng Y, Luo S, Wang Y, Yao J, Li M, Li X, Kui X, Wu H, Fan K, Li ZC, Zheng H, Li G, Liu J, Zhao W. Habitat Imaging With Tumoral and Peritumoral Radiomics for Prediction of Lung Adenocarcinoma Invasiveness on Preoperative Chest CT: A Multicenter Study. AJR Am J Roentgenol 2024; 223:e2431675. [PMID: 39140631 DOI: 10.2214/ajr.24.31675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND. Tumor growth processes result in spatial heterogeneity, with the development of tumor subregions (i.e., habitats) having unique biologic characteristics. OBJECTIVE. The purpose of our study was to develop and validate a habitat model combining tumor and peritumoral radiomic features on chest CT for predicting invasiveness of lung adenocarcinoma. METHODS. This retrospective study included 1156 patients (mean age, 57.5 years; 464 men, 692 women), from three centers and a public dataset, who underwent chest CT before lung adenocarcinoma resection (variable date ranges across datasets). Patients from one center formed training (n = 500) and validation (n = 215) sets; patients from the other sources formed three external test sets (n = 249, 113, 79). For each patient, a single nodule was manually segmented on chest CT. The nodule segmentation was combined with an automatically generated 4-mm peritumoral region into a whole-volume volume of interest (VOI). A gaussian mixture model (GMM) identified voxel clusters with similar first-order energy across patients. GMM results were used to divide each patient's whole-volume VOI into multiple habitats, which were defined consistently across patients. Radiomic features were extracted from each habitat. After feature selection, a habitat model was developed for predicting invasiveness, with the use of pathologic assessment as a reference. An integrated model was constructed, combining features extracted from habitats and whole-volume VOIs. Model performance was evaluated, including in subgroups based on nodule density (pure ground-glass, part-solid, and solid). The code for habitat imaging and model construction is publicly available (https://github.com/Shangyoulan/Habitat/). RESULTS. Invasive cancer was diagnosed in 626 of 1156 patients. GMM identified four as the optimal number of voxel clusters and thus of per-patient tumor habitats. The habitat model had an AUC of 0.932 in the validation set and 0.881, 0.880, and 0.764 in the three external test sets. The integrated model had an AUC of 0.947 in the validation set and 0.936, 0.908, and 0.800 in the three external test sets. In the three external test sets combined, across nodule densities, AUCs for the habitat model were 0.836-0.869 and for the integrated model were 0.846-0.917. CONCLUSION. Habitat imaging combining tumoral and peritumoral radiomic features could help predict lung adenocarcinoma invasiveness. Prediction is improved when combining information on tumor subregions and the tumor overall. CLINICAL IMPACT. The findings may aid personalized preoperative assessments to guide clinical decision-making in lung adenocarcinoma.
Collapse
Affiliation(s)
- Youlan Shang
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Ying Zeng
- Department of Radiology, Xiangtan Central Hospital, Xiangtan City, China
| | - Shiwei Luo
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Yisong Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Jiaqi Yao
- Imaging Center, The Second Affiliated Hospital of Xinjiang Medical University, Urumuqi, China
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Hao Wu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Kangxu Fan
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhi-Cheng Li
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ge Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| |
Collapse
|
19
|
Li S, Dai Y, Chen J, Yan F, Yang Y. MRI-based habitat imaging in cancer treatment: current technology, applications, and challenges. Cancer Imaging 2024; 24:107. [PMID: 39148139 PMCID: PMC11328409 DOI: 10.1186/s40644-024-00758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Extensive efforts have been dedicated to exploring the impact of tumor heterogeneity on cancer treatment at both histological and genetic levels. To accurately measure intra-tumoral heterogeneity, a non-invasive imaging technique, known as habitat imaging, was developed. The technique quantifies intra-tumoral heterogeneity by dividing complex tumors into distinct sub- regions, called habitats. This article reviews the following aspects of habitat imaging in cancer treatment, with a focus on radiotherapy: (1) Habitat imaging biomarkers for assessing tumor physiology; (2) Methods for habitat generation; (3) Efforts to combine radiomics, another imaging quantification method, with habitat imaging; (4) Technical challenges and potential solutions related to habitat imaging; (5) Pathological validation of habitat imaging and how it can be utilized to evaluate cancer treatment by predicting treatment response including survival rate, recurrence, and pathological response as well as ongoing open clinical trials.
Collapse
Affiliation(s)
- Shaolei Li
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai, 201800, China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai, 201800, China
| | - Fuhua Yan
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai, 201800, China
- Department of Radiology, Ruijin Hospital, Shanghai, 201800, China
| | - Yingli Yang
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai, 201800, China.
| |
Collapse
|
20
|
Yang X, Niu W, Wu K, Li X, Hou H, Tan Y, Wang X, Yang G, Wang L, Zhang H. Diffusion kurtosis imaging-based habitat analysis identifies high-risk molecular subtypes and heterogeneity matching in diffuse gliomas. Ann Clin Transl Neurol 2024; 11:2073-2087. [PMID: 38887966 PMCID: PMC11330218 DOI: 10.1002/acn3.52128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE High-risk types of diffuse gliomas in adults include isocitrate dehydrogenase (IDH) wild-type glioblastomas and grade 4 astrocytomas. Achieving noninvasive prediction of high-risk molecular subtypes of gliomas is important for personalized and precise diagnosis and treatment. METHODS We retrospectively collected data from 116 patients diagnosed with adult diffuse gliomas. Multiple high-risk molecular markers were tested, and various habitat models and whole-tumor models were constructed based on preoperative routine and diffusion kurtosis imaging (DKI) sequences to predict high-risk molecular subtypes of gliomas. Feature selection and model construction utilized Least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM). Finally, the Wilcoxon rank-sum test was employed to explore the correlation between habitat quantitative features (intra-tumor heterogeneity score,ITH score) and heterogeneity, as well as high-risk molecular subtypes. RESULTS The results showed that the habitat analysis model based on DKI performed remarkably well (with AUC values reaching 0.977 and 0.902 in the training and test sets, respectively). The model's performance was further enhanced when combined with clinical variables. (The AUC values were 0.994 and 0.920, respectively.) Additionally, we found a close correlation between ITH score and heterogeneity, with statistically significant differences observed between high-risk and non-high-risk molecular subtypes. INTERPRETATION The habitat model based on DKI is an ideal means for preoperatively predicting high-risk molecular subtypes of gliomas, holding significant value for noninvasively alerting malignant gliomas and those with malignant transformation potential.
Collapse
Affiliation(s)
- Xiangli Yang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuan030032China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Wenju Niu
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Kai Wu
- Department of Information ManagementFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiang Li
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Heng Hou
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Yan Tan
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiaochun Wang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Guoqiang Yang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
- Shanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Lei Wang
- Beijing Tiantan HospitalCapital Medical UniversityBeijing100050China
| | - Hui Zhang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
- Shanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- Intelligent Imaging Big Data and Functional Nano‐imaging Engineering Research Center of Shanxi ProvinceFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
21
|
Luan J, Zhang D, Liu B, Yang A, Lv K, Hu P, Yu H, Shmuel A, Zhang C, Ma G. Exploring the prognostic value and biological pathways of transcriptomics and radiomics patterns in glioblastoma multiforme. Heliyon 2024; 10:e33760. [PMID: 39071633 PMCID: PMC11283067 DOI: 10.1016/j.heliyon.2024.e33760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES To develop a multi-omics prognostic model integrating transcriptomics and radiomics for predicting overall survival in patients with glioblastoma multiforme (GBM), and investigate the biological pathways of radiomics patterns. MATERIALS AND METHODS Transcription profiles of GBM patients and normal controls were used to obtain differentially expressed mRNAs and long non-coding RNAs (lncRNAs). Radiomics features were extracted from magnetic resonance imaging (MRI). Least absolute shrinkage and selection operator (LASSO) Cox regression was employed to select survival-associated features for the construction of transcriptomics and radiomics signatures. Genes associated with GBM prognosis were identified through the analysis of lncRNA-mRNA co-expression networks and Weighted Gene Co-expression Network Analysis (WGCNA), and their biological pathways were investigated using Genomes enrichment analysis. Transcriptomics, radiomics, and clinical data were integrated to evaluate the multi-omics prognostic model's performance. RESULTS LASSO Cox regression yielded 21 survival-related features, including 19 transcriptomics features and 2 radiomics features. Based on transcriptomics and radiomics signature, GBM patients were classified as high-risk or low-risk. The genes obtained from the co-expression network screen were associated with microtubule binding, while those from the WGCNA screen were associated with growth factor receptor binding. In the training set, the AUC values for the multi-omics model and clinical model were 0.964 and 0.830, respectively, while in the validation set, they were 0.907 and 0.787. The multi-omics prognostic model outperformed the clinical prognostic model. CONCLUSIONS The co-expression network and WGCNA methods revealed genes associated with multiple biological pathways in GBM. The multi-omics prognostic model demonstrated excellent performance and indicated significant potential for clinical application.
Collapse
Affiliation(s)
- Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Zhang H, Ouyang Y, Zhang H, Zhang Y, Su R, Zhou B, Yang W, Lei Y, Huang B. Sub-region based radiomics analysis for prediction of isocitrate dehydrogenase and telomerase reverse transcriptase promoter mutations in diffuse gliomas. Clin Radiol 2024; 79:e682-e691. [PMID: 38402087 DOI: 10.1016/j.crad.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/26/2024]
Abstract
AIM To enhance the prediction of mutation status of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase (TERT) promoter, which are crucial for glioma prognostication and therapeutic decision-making, via sub-regional radiomics analysis based on multiparametric magnetic resonance imaging (MRI). MATERIALS AND METHODS A retrospective study was conducted on 401 participants with adult-type diffuse gliomas. Employing the K-means algorithm, tumours were clustered into two to four subregions. Sub-regional radiomics features were extracted and selected using the Mann-Whitney U-test, Pearson correlation analysis, and least absolute shrinkage and selection operator, forming the basis for predictive models. The performance of model combinations of different sub-regional features and classifiers (including logistic regression, support vector machines, K-nearest neighbour, light gradient boosting machine, and multilayer perceptron) was evaluated using an external test set. RESULTS The models demonstrated high predictive performance, with area under the receiver operating characteristic curve (AUC) values ranging from 0.918 to 0.994 in the training set for IDH mutation prediction and from 0.758 to 0.939 for TERT promoter mutation prediction. In the external test sets, the two-cluster radiomics features and the logistic regression model yielded the highest prediction for IDH mutation, resulting in an AUC of 0.905. Additionally, the most effective predictive performance with an AUC of 0.803 was achieved using the four-cluster radiomics features and the support vector machine model, specifically for TERT promoter mutation prediction. CONCLUSION The present study underscores the potential of sub-regional radiomics analysis in predicting IDH and TERT promoter mutations in glioma patients. These models have the capacity to refine preoperative glioma diagnosis and contribute to personalised therapeutic interventions for patients.
Collapse
Affiliation(s)
- H Zhang
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China; Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Y Ouyang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - H Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Y Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - R Su
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - B Zhou
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 517108, China
| | - W Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Y Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - B Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
23
|
Yang Y, Cheng J, Peng Z, Yi L, Lin Z, He A, Jin M, Cui C, Liu Y, Zhong Q, Zuo M. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: A Multicenter Study. Acad Radiol 2024; 31:1615-1628. [PMID: 37949702 DOI: 10.1016/j.acra.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 11/12/2023]
Abstract
RATIONALE AND OBJECTIVES This study aims to evaluate the feasibility and effectiveness of deep transfer learning (DTL) and clinical-radiomics in differentiating thymoma from thymic cysts. MATERIALS AND METHODS Clinical and imaging data of 196 patients pathologically diagnosed with thymoma and thymic cysts were retrospectively collected from center 1. (training cohort: n = 137; internal validation cohort: n = 59). An independent external validation cohort comprised 68 thymoma and thymic cyst patients from center 2. Region of interest (ROI) delineation was performed on contrast-enhanced chest computed tomography (CT) images, and eight DTL models including Densenet 169, Mobilenet V2, Resnet 101, Resnet 18, Resnet 34, Resnet 50, Vgg 13, Vgg 16 were constructed. Radiomics features were extracted from the ROI on the CT images of thymoma and thymic cyst patients, and feature selection was performed using intra-observer correlation coefficient (ICC), Spearman correlation analysis, and least absolute shrinkage and selection operator (LASSO) algorithm. Univariate analysis and multivariable logistic regression (LR) were used to select clinical-radiological features. Six machine learning classifiers, including LR, support vector machine (SVM), k-nearest neighbors (KNN), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost), and Multilayer Perceptron (MLP), were used to construct Radiomics and Clinico-radiologic models. The selected features from the Radiomics and Clinico-radiologic models were fused to build a Combined model. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, calibration, and clinical utility of the models, respectively. The Delong test was used to compare the AUC between different models. K-means clustering was used to subdivide the lesions of thymomas or thymic cysts into subregions, and traditional radiomics methods were used to extract features and compare the ability of Radiomics and DTL models to reflect intratumoral heterogeneity using correlation analysis. RESULTS The Densenet 169 based on DTL performed the best, with AUC of 0.933 (95% CI: 0.875-0.991) in the internal validation cohort and 0.962 (95% CI: 0.923-1.000) in the external validation cohort. The AdaBoost classifier achieved AUC of 0.965 (95% CI: 0.923-1.000) and 0.959 (95% CI: 0.919-1.000) in the internal and external validation cohorts, respectively, for the Radiomics model. The LightGBM classifier achieved AUC of 0.805 (95% CI: 0.690-0.920) and 0.839 (95% CI: 0.736-0.943) in the Clinico-radiologic model. The AUC of the Combined model in the internal and external validation cohorts was 0.933 (95% CI: 0.866-1.000) and 0.945 (95% CI: 0.897-0.994), respectively. The results of the Delong test showed that the Radiomics model, DTL model, and Combined model outperformed the Clinico-radiologic model in both internal and external validation cohorts (p-values were 0.002, 0.004, and 0.033 in the internal validation cohort, while in the external validation cohort, the p-values were 0.014, 0.006, and 0.015, respectively). But there was no statistical difference in performance among the three models (all p-values <0.05). Correlation analysis showed that radiomics performed better than DTL in quantifying intratumoral heterogeneity differences between thymoma and thymic cysts. CONCLUSION The developed DTL model and the Combined model based on radiomics and clinical-radiologic features achieved excellent diagnostic performance in differentiating thymic cysts from thymoma. They can serve as potential tools to assist clinical decision-making, particularly when endoscopic biopsy carries a high risk.
Collapse
Affiliation(s)
- Yuhua Yang
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - Jia Cheng
- Department of Radiology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China (J.C.)
| | - Zhiwei Peng
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - Li Yi
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - Ze Lin
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - Anjing He
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - Mengni Jin
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - Can Cui
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - Ying Liu
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - QiWen Zhong
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.)
| | - Minjing Zuo
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China (Y.Y., Z.P., L.Y., Z.L., A.H., M.J., C.C., Y.L., Q.Z., M.Z.).
| |
Collapse
|
24
|
Yang L, Wang T, Zhang J, Kang S, Xu S, Wang K. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. BMC Med Imaging 2024; 24:56. [PMID: 38443817 PMCID: PMC10916038 DOI: 10.1186/s12880-024-01218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND This study aimed to establish a dedicated deep-learning model (DLM) on routine magnetic resonance imaging (MRI) data to investigate DLM performance in automated detection and segmentation of meningiomas in comparison to manual segmentations. Another purpose of our work was to develop a radiomics model based on the radiomics features extracted from automatic segmentation to differentiate low- and high-grade meningiomas before surgery. MATERIALS A total of 326 patients with pathologically confirmed meningiomas were enrolled. Samples were randomly split with a 6:2:2 ratio to the training set, validation set, and test set. Volumetric regions of interest (VOIs) were manually drawn on each slice using the ITK-SNAP software. An automatic segmentation model based on SegResNet was developed for the meningioma segmentation. Segmentation performance was evaluated by dice coefficient and 95% Hausdorff distance. Intra class correlation (ICC) analysis was applied to assess the agreement between radiomic features from manual and automatic segmentations. Radiomics features derived from automatic segmentation were extracted by pyradiomics. After feature selection, a model for meningiomas grading was built. RESULTS The DLM detected meningiomas in all cases. For automatic segmentation, the mean dice coefficient and 95% Hausdorff distance were 0.881 (95% CI: 0.851-0.981) and 2.016 (95% CI:1.439-3.158) in the test set, respectively. Features extracted on manual and automatic segmentation are comparable: the average ICC value was 0.804 (range, 0.636-0.933). Features extracted on manual and automatic segmentation are comparable: the average ICC value was 0.804 (range, 0.636-0.933). For meningioma classification, the radiomics model based on automatic segmentation performed well in grading meningiomas, yielding a sensitivity, specificity, accuracy, and area under the curve (AUC) of 0.778 (95% CI: 0.701-0.856), 0.860 (95% CI: 0.722-0.908), 0.848 (95% CI: 0.715-0.903) and 0.842 (95% CI: 0.807-0.895) in the test set, respectively. CONCLUSIONS The DLM yielded favorable automated detection and segmentation of meningioma and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.
Collapse
Affiliation(s)
- Liping Yang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Tianzuo Wang
- Medical Imaging Department, Changzheng Hospital of Harbin City, Harbin, China
| | - Jinling Zhang
- Medical Imaging Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Kang
- Medical Imaging Department, The Second Hospital of Heilongjiang Province, Harbin, China
| | - Shichuan Xu
- Department of Medical Instruments, Second Hospital of Harbin, Harbin, 150001, China.
| | - Kezheng Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
| |
Collapse
|
25
|
Shahzadi I, Seidlitz A, Beuthien-Baumann B, Zwanenburg A, Platzek I, Kotzerke J, Baumann M, Krause M, Troost EGC, Löck S. Radiomics for residual tumour detection and prognosis in newly diagnosed glioblastoma based on postoperative [ 11C] methionine PET and T1c-w MRI. Sci Rep 2024; 14:4576. [PMID: 38403632 PMCID: PMC10894870 DOI: 10.1038/s41598-024-55092-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
Personalized treatment strategies based on non-invasive biomarkers have potential to improve patient management in patients with newly diagnosed glioblastoma (GBM). The residual tumour burden after surgery in GBM patients is a prognostic imaging biomarker. However, in clinical patient management, its assessment is a manual and time-consuming process that is at risk of inter-rater variability. Furthermore, the prediction of patient outcome prior to radiotherapy may identify patient subgroups that could benefit from escalated radiotherapy doses. Therefore, in this study, we investigate the capabilities of traditional radiomics and 3D convolutional neural networks for automatic detection of the residual tumour status and to prognosticate time-to-recurrence (TTR) and overall survival (OS) in GBM using postoperative [11C] methionine positron emission tomography (MET-PET) and gadolinium-enhanced T1-w magnetic resonance imaging (MRI). On the independent test data, the 3D-DenseNet model based on MET-PET achieved the best performance for residual tumour detection, while the logistic regression model with conventional radiomics features performed best for T1c-w MRI (AUC: MET-PET 0.95, T1c-w MRI 0.78). For the prognosis of TTR and OS, the 3D-DenseNet model based on MET-PET integrated with age and MGMT status achieved the best performance (Concordance-Index: TTR 0.68, OS 0.65). In conclusion, we showed that both deep-learning and conventional radiomics have potential value for supporting image-based assessment and prognosis in GBM. After prospective validation, these models may be considered for treatment personalization.
Collapse
Affiliation(s)
- Iram Shahzadi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bettina Beuthien-Baumann
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alex Zwanenburg
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Ivan Platzek
- Institute of Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jörg Kotzerke
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
- German Cancer Consortium (DKTK) Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
26
|
Peng J, Zou D, Zhang X, Ma H, Han L, Yao B. A novel sub-regional radiomics model to predict immunotherapy response in non-small cell lung carcinoma. J Transl Med 2024; 22:87. [PMID: 38254087 PMCID: PMC10802066 DOI: 10.1186/s12967-024-04904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Identifying precise biomarkers of immunotherapy response for non-small cell lung carcinoma (NSCLC) before treatment is challenging. This study aimed to construct and investigate the potential performance of a sub-regional radiomics model (SRRM) as a novel tumor biomarker in predicting the response of patients with NSCLC treated with immune checkpoint inhibitors, and test whether its predictive performance is superior to that of conventional radiomics, tumor mutational burden (TMB) score and programmed death ligand-1 (PD-L1) expression. METHODS We categorized 264 patients from retrospective databases of two centers into training (n = 159) and validation (n = 105) cohorts. Radiomic features were extracted from three sub-regions of the tumor region of interest using the K-means method. We extracted 1,896 features from each sub-region, resulting in 5688 features per sample. The least absolute shrinkage and selection operator regression method was used to select sub-regional radiomic features. The SRRM was constructed and validated using the support vector machine algorithm. We used next-generation sequencing to classify patients from the two cohorts into high TMB (≥ 10 muts/Mb) and low TMB (< 10 muts/Mb) groups; immunohistochemistry was performed to assess PD-L1 expression in formalin-fixed, paraffin-embedded tumor sections, with high expression defined as ≥ 50% of tumor cells being positive. Associations between the SRRM and progression-free survival (PFS) and variant genes were assessed. RESULTS Eleven sub-regional radiomic features were employed to develop the SRRM. The areas under the receiver operating characteristic curve (AUCs) of the proposed SRRM were 0.90 (95% confidence interval [CI] 0.84-0.96) and 0.86 (95% CI 0.76-0.95) in the training and validation cohorts, respectively. The SRRM (low vs. high; cutoff value = 0.936) was significantly associated with PFS in the training (hazard ratio [HR] = 0.35 [0.24-0.50], P < 0.001) and validation (HR = 0.42 [0.26-0.67], P = 0.001) cohorts. A significant correlation between the SRRM and three variant genes (H3C4, PAX5, and EGFR) was observed. In the validation cohort, the SRRM demonstrated a higher AUC (0.86, P < 0.001) than that for PD-L1 expression (0.66, P = 0.034) and TMB score (0.54, P = 0.552). CONCLUSIONS The SRRM had better predictive performance and was superior to conventional radiomics, PD-L1 expression, and TMB score. The SRRM effectively stratified the progression-free survival (PFS) risk among patients with NSCLC receiving immunotherapy.
Collapse
Affiliation(s)
- Jie Peng
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China.
| | - Dan Zou
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China
| | - Xudong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Honglian Ma
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Lijie Han
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Biao Yao
- Department of Oncology, Tongren People's Hospital, Tongren, China
| |
Collapse
|
27
|
Zhang Y, Yang C, Sheng R, Dai Y, Zeng M. Predicting the recurrence of hepatocellular carcinoma (≤ 5 cm) after resection surgery with promising risk factors: habitat fraction of tumor and its peritumoral micro-environment. LA RADIOLOGIA MEDICA 2023; 128:1181-1191. [PMID: 37597123 DOI: 10.1007/s11547-023-01695-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE Characterizing the composition of hepatocellular carcinoma (HCC) and peritumoral micro-environment may provide sensitive biomarkers. We aimed to predict the recurrence-free survival (RFS) of HCC (≤ 5 cm) with habitat imaging of HCC and its peritumoral micro-environment. MATERIAL AND METHODS A total of 264 patients with HCC were included. Taking advantage of the enhancement ratio at the arterial and hepatobiliary phase of contrast-enhanced MRI, all HCCs and their peritumoral tissue of 3 mm and 4 mm were encoded with different habitats. Besides, the quantitative fraction of each habitat of HCC and peritumoral tissue were calculated. Univariable and multivariable Cox regression analysis was performed to select the prognostic factors. The nomogram-based predictor was established. Kaplan-Meier analysis was conducted to stratify the recurrence risk. Fivefold cross-validation was performed to determine the predictive performance with the concordance index (C-Index). Decision curve analysis was used to evaluate the net benefit. RESULTS Qualitatively, the spatial distribution of the habitats varied for different survival outcomes. Quantitatively, the fraction of habitat 3 in peritumoral tissue of 4 mm (f3-P4) was selected as independent risk factors (OR = 89.2, 95% CI = 14.5-549.2, p < 0.001) together with other two clinical variables. Integrating both clinical variables and f3-P4, a nomogram was constructed and showed high predictive efficacy (C-Index: 0.735, 95% CI 0.617-0.854) and extra net benefit according to the decision curve. Furthermore, patients with low f3-P4 or risk score given by nomogram have far longer RFS than those with high f3-P4 or risk score (stratification by f3-P4: 131.9 vs 55.0 months and stratification by risk score:131.9 vs 34.1 months). CONCLUSION Habitat imaging of HCC and peritumoral microenvironment can be used for effectively and non-invasively estimating the RFS, which holds potential in guiding clinical management and decision making.
Collapse
Affiliation(s)
- Yunfei Zhang
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chun Yang
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruofan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 200032, China.
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
28
|
Guo SB, Pan DQ, Su N, Huang MQ, Zhou ZZ, Huang WJ, Tian XP. Comprehensive scientometrics and visualization study profiles lymphoma metabolism and identifies its significant research signatures. Front Endocrinol (Lausanne) 2023; 14:1266721. [PMID: 37822596 PMCID: PMC10562636 DOI: 10.3389/fendo.2023.1266721] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND There is a wealth of poorly utilized unstructured data on lymphoma metabolism, and scientometrics and visualization study could serve as a robust tool to address this issue. Hence, it was implemented. METHODS After strict quality control, numerous data regarding the lymphoma metabolism were mined, quantified, cleaned, fused, and visualized from documents (n = 2925) limited from 2013 to 2022 using R packages, VOSviewer, and GraphPad Prism. RESULTS The linear fitting analysis generated functions predicting the annual publication number (y = 31.685x - 63628, R² = 0.93614, Prediction in 2027: 598) and citation number (y = 1363.7x - 2746019, R² = 0.94956, Prediction in 2027: 18201). In the last decade, the most academically performing author, journal, country, and affiliation were Meignan Michel (n = 35), European Journal of Nuclear Medicine and Molecular Imaging (n = 1653), USA (n = 3114), and University of Pennsylvania (n = 86), respectively. The hierarchical clustering based on unsupervised learning further divided research signatures into five clusters, including the basic study cluster (Cluster 1, Total Link Strength [TLS] = 1670, Total Occurrence [TO] = 832) and clinical study cluster (Cluster 3, TLS = 3496, TO = 1328). The timeline distribution indicated that radiomics and artificial intelligence (Cluster 4, Average Publication Year = 2019.39 ± 0.21) is a relatively new research cluster, and more endeavors deserve. Research signature burst and linear regression analysis further confirmed the findings above and revealed additional important results, such as tumor microenvironment (a = 0.6848, R² = 0.5194, p = 0.019) and immunotherapy (a = 1.036, R² = 0.6687, p = 0.004). More interestingly, by performing a "Walktrap" algorithm, the community map indicated that the "apoptosis, metabolism, chemotherapy" (Centrality = 12, Density = 6), "lymphoma, pet/ct, prognosis" (Centrality = 11, Density = 1), and "genotoxicity, mutagenicity" (Centrality = 9, Density = 4) are crucial but still under-explored, illustrating the potentiality of these research signatures in the field of the lymphoma metabolism. CONCLUSION This study comprehensively mines valuable information and offers significant predictions about lymphoma metabolism for its clinical and experimental practice.
Collapse
Affiliation(s)
- Song-Bin Guo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Qi Pan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ning Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Man-Qian Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhen-Zhong Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Juan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
29
|
Guo SB, Pan DQ, Su N, Huang MQ, Zhou ZZ, Huang WJ, Tian XP. Comprehensive scientometrics and visualization study profiles lymphoma metabolism and identifies its significant research signatures. Front Endocrinol (Lausanne) 2023; 14. [DOI: pmid: 37822596; doi: 10.3389/fendo.2023.1266721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2025] Open
Abstract
BackgroundThere is a wealth of poorly utilized unstructured data on lymphoma metabolism, and scientometrics and visualization study could serve as a robust tool to address this issue. Hence, it was implemented.MethodsAfter strict quality control, numerous data regarding the lymphoma metabolism were mined, quantified, cleaned, fused, and visualized from documents (n = 2925) limited from 2013 to 2022 using R packages, VOSviewer, and GraphPad Prism.ResultsThe linear fitting analysis generated functions predicting the annual publication number (y = 31.685x - 63628, R² = 0.93614, Prediction in 2027: 598) and citation number (y = 1363.7x - 2746019, R² = 0.94956, Prediction in 2027: 18201). In the last decade, the most academically performing author, journal, country, and affiliation were Meignan Michel (n = 35), European Journal of Nuclear Medicine and Molecular Imaging (n = 1653), USA (n = 3114), and University of Pennsylvania (n = 86), respectively. The hierarchical clustering based on unsupervised learning further divided research signatures into five clusters, including the basic study cluster (Cluster 1, Total Link Strength [TLS] = 1670, Total Occurrence [TO] = 832) and clinical study cluster (Cluster 3, TLS = 3496, TO = 1328). The timeline distribution indicated that radiomics and artificial intelligence (Cluster 4, Average Publication Year = 2019.39 ± 0.21) is a relatively new research cluster, and more endeavors deserve. Research signature burst and linear regression analysis further confirmed the findings above and revealed additional important results, such as tumor microenvironment (a = 0.6848, R² = 0.5194, p = 0.019) and immunotherapy (a = 1.036, R² = 0.6687, p = 0.004). More interestingly, by performing a “Walktrap” algorithm, the community map indicated that the “apoptosis, metabolism, chemotherapy” (Centrality = 12, Density = 6), “lymphoma, pet/ct, prognosis” (Centrality = 11, Density = 1), and “genotoxicity, mutagenicity” (Centrality = 9, Density = 4) are crucial but still under-explored, illustrating the potentiality of these research signatures in the field of the lymphoma metabolism.ConclusionThis study comprehensively mines valuable information and offers significant predictions about lymphoma metabolism for its clinical and experimental practice.
Collapse
|
30
|
Hagiwara A, Fujita S, Kurokawa R, Andica C, Kamagata K, Aoki S. Multiparametric MRI: From Simultaneous Rapid Acquisition Methods and Analysis Techniques Using Scoring, Machine Learning, Radiomics, and Deep Learning to the Generation of Novel Metrics. Invest Radiol 2023; 58:548-560. [PMID: 36822661 PMCID: PMC10332659 DOI: 10.1097/rli.0000000000000962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT With the recent advancements in rapid imaging methods, higher numbers of contrasts and quantitative parameters can be acquired in less and less time. Some acquisition models simultaneously obtain multiparametric images and quantitative maps to reduce scan times and avoid potential issues associated with the registration of different images. Multiparametric magnetic resonance imaging (MRI) has the potential to provide complementary information on a target lesion and thus overcome the limitations of individual techniques. In this review, we introduce methods to acquire multiparametric MRI data in a clinically feasible scan time with a particular focus on simultaneous acquisition techniques, and we discuss how multiparametric MRI data can be analyzed as a whole rather than each parameter separately. Such data analysis approaches include clinical scoring systems, machine learning, radiomics, and deep learning. Other techniques combine multiple images to create new quantitative maps associated with meaningful aspects of human biology. They include the magnetic resonance g-ratio, the inner to the outer diameter of a nerve fiber, and the aerobic glycolytic index, which captures the metabolic status of tumor tissues.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Christina Andica
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Tabassum M, Suman AA, Suero Molina E, Pan E, Di Ieva A, Liu S. Radiomics and Machine Learning in Brain Tumors and Their Habitat: A Systematic Review. Cancers (Basel) 2023; 15:3845. [PMID: 37568660 PMCID: PMC10417709 DOI: 10.3390/cancers15153845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Radiomics is a rapidly evolving field that involves extracting and analysing quantitative features from medical images, such as computed tomography or magnetic resonance images. Radiomics has shown promise in brain tumor diagnosis and patient-prognosis prediction by providing more detailed and objective information about tumors' features than can be obtained from the visual inspection of the images alone. Radiomics data can be analyzed to determine their correlation with a tumor's genetic status and grade, as well as in the assessment of its recurrence vs. therapeutic response, among other features. In consideration of the multi-parametric and high-dimensional space of features extracted by radiomics, machine learning can further improve tumor diagnosis, treatment response, and patients' prognoses. There is a growing recognition that tumors and their microenvironments (habitats) mutually influence each other-tumor cells can alter the microenvironment to increase their growth and survival. At the same time, habitats can also influence the behavior of tumor cells. In this systematic review, we investigate the current limitations and future developments in radiomics and machine learning in analysing brain tumors and their habitats.
Collapse
Affiliation(s)
- Mehnaz Tabassum
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia;
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Abdulla Al Suman
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Eric Suero Molina
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
- Department of Neurosurgery, University Hospital of Münster, 48149 Münster, Germany
| | - Elizabeth Pan
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Sidong Liu
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia;
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| |
Collapse
|
32
|
Capobianco E, Dominietto M. Assessment of brain cancer atlas maps with multimodal imaging features. J Transl Med 2023; 21:385. [PMID: 37308956 PMCID: PMC10262565 DOI: 10.1186/s12967-023-04222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity. MAIN TEXT Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors. Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes. This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrating the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain atlases as the main components. The templates associated with the outcome of straightforward analyses represent promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to other cancers. CONCLUSIONS The focus on novel inference strategies applicable to complex cancer systems and based on building radiomic models from multimodal imaging data can be well supported by machine learning and other computational tools potentially able to translate suitably processed information into more accurate patient stratifications and evaluations of treatment efficacy.
Collapse
Affiliation(s)
- Enrico Capobianco
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 06032, USA.
| | - Marco Dominietto
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen, Switzerland
- Gate To Brain SA, Via Livio 7, 6830, Chiasso, Switzerland
| |
Collapse
|
33
|
Viswanath SE. Editorial for "Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics". J Magn Reson Imaging 2022; 56:1143-1144. [PMID: 35244965 PMCID: PMC9440947 DOI: 10.1002/jmri.28139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Satish E Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
34
|
di Noia C, Grist JT, Riemer F, Lyasheva M, Fabozzi M, Castelli M, Lodi R, Tonon C, Rundo L, Zaccagna F. Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI. Diagnostics (Basel) 2022; 12:diagnostics12092125. [PMID: 36140526 PMCID: PMC9497964 DOI: 10.3390/diagnostics12092125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases, have promoted this rapid development. This narrative review of the current state-of-the-art aimed to survey current applications of AI in predicting survival in patients with brain tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to survival assessment: the first on the classification of subjects into survival classes (short and long-term or eventually short, mid and long-term) to stratify patients in distinct groups. The second focused on quantification, in days or months, of the individual survival interval. Our survey showed excellent state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the most challenging, but state-of-the-art techniques showed promising results, albeit with limitations, with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational methods perform differently, and the choice of the best one to use is non-univocal and dependent on many aspects. Unequivocally, the use of features derived from quantitative imaging has been shown to be advantageous for AI applications, including survival prediction. This evidence from the literature motivates further research in the field of AI-powered methods for survival prediction in patients with brain tumors, in particular, using the wealth of information provided by quantitative MRI techniques.
Collapse
Affiliation(s)
- Christian di Noia
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
| | - James T. Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford Centre for Clinical Magnetic Research Imaging, University of Oxford, Oxford OX3 9DU, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Maria Lyasheva
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Miriana Fabozzi
- Centro Medico Polispecialistico (CMO), 80058 Torre Annunziata, Italy
| | - Mauro Castelli
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Correspondence: ; Tel.: +39-0514969951
| |
Collapse
|
35
|
Jiang H, Chen L, Zhao YJ, Lin ZY, Yang H. Machine Learning-Based Ultrasomics for Predicting Subacromial Impingement Syndrome Stages. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2279-2285. [PMID: 34882827 DOI: 10.1002/jum.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To determine the performance of machine learning (ML)-based ultrasomic analysis of subacromial impingement syndrome (SIS) stage evaluation. METHODS In this retrospective study, 324 patients with SIS were included. The SIS stage was evaluated with a Neer test. Regions of the musculi supraspinatus were manually segmented by an experienced radiologist. Then, 5936 ultrasomic features were extracted from the Ultrasomics Platform software. The Wilcoxon test was used to identify differentially expressed radiomic features. Then, these differentially expressed features were submitted to the least absolute shrinkage and selection operator (LASSO) for model construction. The area under the curve (AUC) of the receiver operating characteristic was used to evaluate the performance of the ultrasonic model for SIS stage evaluation. RESULTS Finally, a total of 223 early-stage and 101 advanced-stage SIS patients were randomly divided into a training cohort (n = 227) and a validation cohort (n = 97). After feature-dimensionality reduction, a total of 28 radiomic features were submitted to LASSO analysis. Finally, 10 radiomic features were finally included for radiomics model construction. The AUC results showed that the ultrasomics model had moderate performance for SIS stage evaluation in both the training cohort (AUC = 0.839) and the validation cohort (AUC = 0.789). CONCLUSIONS ML-derived ultrasomics can discriminate the SIS stage in patients with SIS. This noninvasive and low-cost approach may be helpful in the preliminary screening of shoulder pain.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pain Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Medical Ultrasound, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu-Jia Zhao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhang-Ya Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Wang X, Xu C, Grzegorzek M, Sun H. Habitat radiomics analysis of pet/ct imaging in high-grade serous ovarian cancer: Application to Ki-67 status and progression-free survival. Front Physiol 2022; 13:948767. [PMID: 36091379 PMCID: PMC9452776 DOI: 10.3389/fphys.2022.948767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: We aim to develop and validate PET/ CT image-based radiomics to determine the Ki-67 status of high-grade serous ovarian cancer (HGSOC), in which we use the metabolic subregion evolution to improve the prediction ability of the model. At the same time, the stratified effect of the radiomics model on the progression-free survival rate of ovarian cancer patients was illustrated.Materials and methods: We retrospectively reviewed 161 patients with HGSOC from April 2013 to January 2019. 18F-FDG PET/ CT images before treatment, pathological reports, and follow-up data were analyzed. A randomized grouping method was used to divide ovarian cancer patients into a training group and validation group. PET/ CT images were fused to extract radiomics features of the whole tumor region and radiomics features based on the Habitat method. The feature is dimensionality reduced, and meaningful features are screened to form a signature for predicting the Ki-67 status of ovarian cancer. Meanwhile, survival analysis was conducted to explore the hierarchical guidance significance of radiomics in the prognosis of patients with ovarian cancer.Results: Compared with texture features extracted from the whole tumor, the texture features generated by the Habitat method can better predict the Ki-67 state (p < 0.001). Radiomics based on Habitat can predict the Ki-67 expression accurately and has the potential to become a new marker instead of Ki-67. At the same time, the Habitat model can better stratify the prognosis (p < 0.05).Conclusion: We found a noninvasive imaging predictor that could guide the stratification of prognosis in ovarian cancer patients, which is related to the expression of Ki-67 in tumor tissues. This method is of great significance for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hongzan Sun,
| |
Collapse
|
37
|
Zhu M, Li S, Kuang Y, Hill VB, Heimberger AB, Zhai L, Zhai S. Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Front Oncol 2022; 12:924245. [PMID: 35982952 PMCID: PMC9379255 DOI: 10.3389/fonc.2022.924245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Sijia Li
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Yu Kuang
- Medical Physics Program, Department of Health Physics, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Virginia B. Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| | - Shengjie Zhai
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| |
Collapse
|
38
|
Verma R, Hill VB, Statsevych V, Bera K, Correa R, Leo P, Ahluwalia M, Madabhushi A, Tiwari P. Stable and Discriminatory Radiomic Features from the Tumor and Its Habitat Associated with Progression-Free Survival in Glioblastoma: A Multi-Institutional Study. AJNR Am J Neuroradiol 2022; 43:1115-1123. [PMID: 36920774 PMCID: PMC9575418 DOI: 10.3174/ajnr.a7591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/13/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Glioblastoma is an aggressive brain tumor, with no validated prognostic biomarkers for survival before surgical resection. Although recent approaches have demonstrated the prognostic ability of tumor habitat (constituting necrotic core, enhancing lesion, T2/FLAIR hyperintensity subcompartments) derived radiomic features for glioblastoma survival on treatment-naive MR imaging scans, radiomic features are known to be sensitive to MR imaging acquisitions across sites and scanners. In this study, we sought to identify the radiomic features that are both stable across sites and discriminatory of poor and improved progression-free survival in glioblastoma tumors. MATERIALS AND METHODS We used 150 treatment-naive glioblastoma MR imaging scans (Gadolinium-T1w, T2w, FLAIR) obtained from 5 sites. For every tumor subcompartment (enhancing tumor, peritumoral FLAIR-hyperintensities, necrosis), a total of 316 three-dimensional radiomic features were extracted. The training cohort constituted studies from 4 sites (n = 93) to select the most stable and discriminatory radiomic features for every tumor subcompartment. These features were used on a hold-out cohort (n = 57) to evaluate their ability to discriminate patients with poor survival from those with improved survival. RESULTS Incorporating the most stable and discriminatory features within a linear discriminant analysis classifier yielded areas under the curve of 0.71, 0.73, and 0.76 on the test set for distinguishing poor and improved survival compared with discriminatory features alone (areas under the curve of 0.65, 0.54, 0.62) from the necrotic core, enhancing tumor, and peritumoral T2/FLAIR hyperintensity, respectively. CONCLUSIONS Incorporating stable and discriminatory radiomic features extracted from tumors and associated habitats across multisite MR imaging sequences may yield robust prognostic classifiers of patient survival in glioblastoma tumors.
Collapse
Affiliation(s)
- R Verma
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio .,Alberta Machine Intelligence Institute (R.V.), Edmonton, Alberta
| | - V B Hill
- Department of Neuroradiology (V.B.H.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - V Statsevych
- Brain Tumor and Neuro-Oncology Center (V.S.), Cleveland Clinic, Cleveland, Ohio
| | - K Bera
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - R Correa
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - P Leo
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - M Ahluwalia
- Miami Cancer Institute (M.A.), Miami, FL and Herbert Wertheim College of Medicine, Florida International University, Florida
| | - A Madabhushi
- Department of Biomedical Engineering (A.M.), Emory University, Atlanta Veterans Administration Medical Center
| | - P Tiwari
- Departments of Radiology and Biomedical Engineering (P.T.), University of Wisconsin Madison, Wisconsin
| |
Collapse
|
39
|
Bailo M, Pecco N, Callea M, Scifo P, Gagliardi F, Presotto L, Bettinardi V, Fallanca F, Mapelli P, Gianolli L, Doglioni C, Anzalone N, Picchio M, Mortini P, Falini A, Castellano A. Decoding the Heterogeneity of Malignant Gliomas by PET and MRI for Spatial Habitat Analysis of Hypoxia, Perfusion, and Diffusion Imaging: A Preliminary Study. Front Neurosci 2022; 16:885291. [PMID: 35911979 PMCID: PMC9326318 DOI: 10.3389/fnins.2022.885291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTumor heterogeneity poses major clinical challenges in high-grade gliomas (HGGs). Quantitative radiomic analysis with spatial tumor habitat clustering represents an innovative, non-invasive approach to represent and quantify tumor microenvironment heterogeneity. To date, habitat imaging has been applied mainly on conventional magnetic resonance imaging (MRI), although virtually extendible to any imaging modality, including advanced MRI techniques such as perfusion and diffusion MRI as well as positron emission tomography (PET) imaging.ObjectivesThis study aims to evaluate an innovative PET and MRI approach for assessing hypoxia, perfusion, and tissue diffusion in HGGs and derive a combined map for clustering of intra-tumor heterogeneity.Materials and MethodsSeventeen patients harboring HGGs underwent a pre-operative acquisition of MR perfusion (PWI), Diffusion (dMRI) and 18F-labeled fluoroazomycinarabinoside (18F-FAZA) PET imaging to evaluate tumor vascularization, cellularity, and hypoxia, respectively. Tumor volumes were segmented on fluid-attenuated inversion recovery (FLAIR) and T1 post-contrast images, and voxel-wise clustering of each quantitative imaging map identified eight combined PET and physiologic MRI habitats. Habitats’ spatial distribution, quantitative features and histopathological characteristics were analyzed.ResultsA highly reproducible distribution pattern of the clusters was observed among different cases, particularly with respect to morphological landmarks as the necrotic core, contrast-enhancing vital tumor, and peritumoral infiltration and edema, providing valuable supplementary information to conventional imaging. A preliminary analysis, performed on stereotactic bioptic samples where exact intracranial coordinates were available, identified a reliable correlation between the expected microenvironment of the different spatial habitats and the actual histopathological features. A trend toward a higher representation of the most aggressive clusters in WHO (World Health Organization) grade IV compared to WHO III was observed.ConclusionPreliminary findings demonstrated high reproducibility of the PET and MRI hypoxia, perfusion, and tissue diffusion spatial habitat maps and correlation with disease-specific histopathological features.
Collapse
Affiliation(s)
- Michele Bailo
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicolò Pecco
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Paola Scifo
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Presotto
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Federico Fallanca
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luigi Gianolli
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Nicoletta Anzalone
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Antonella Castellano,
| |
Collapse
|
40
|
Aftab K, Aamir FB, Mallick S, Mubarak F, Pope WB, Mikkelsen T, Rock JP, Enam SA. Radiomics for precision medicine in glioblastoma. J Neurooncol 2022; 156:217-231. [PMID: 35020109 DOI: 10.1007/s11060-021-03933-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Being the most common primary brain tumor, glioblastoma presents as an extremely challenging malignancy to treat with dismal outcomes despite treatment. Varying molecular epidemiology of glioblastoma between patients and intra-tumoral heterogeneity explains the failure of current one-size-fits-all treatment modalities. Radiomics uses machine learning to identify salient features of the tumor on brain imaging and promises patient-specific management in glioblastoma patients. METHODS We performed a comprehensive review of the available literature on studies investigating the role of radiomics and radiogenomics models for the diagnosis, stratification, prognostication as well as treatment planning and monitoring of glioblastoma. RESULTS Classifiers based on a combination of various MRI sequences, genetic information and clinical data can predict non-invasive tumor diagnosis, overall survival and treatment response with reasonable accuracy. However, the use of radiomics for glioblastoma treatment remains in infancy as larger sample sizes, standardized image acquisition and data extraction techniques are needed to develop machine learning models that can be translated effectively into clinical practice. CONCLUSION Radiomics has the potential to transform the scope of glioblastoma management through personalized medicine.
Collapse
Affiliation(s)
- Kiran Aftab
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan
| | | | - Saad Mallick
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Fatima Mubarak
- Department of Radiology, Aga Khan University, Karachi, Pakistan
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tom Mikkelsen
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Jack P Rock
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
41
|
Guo P, Unberath M, Heo HY, Eberhart CG, Lim M, Blakeley JO, Jiang S. Learning-based analysis of amide proton transfer-weighted MRI to identify true progression in glioma patients. NEUROIMAGE: CLINICAL 2022; 35:103121. [PMID: 35905666 PMCID: PMC9421489 DOI: 10.1016/j.nicl.2022.103121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Pengfei Guo
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Mathias Unberath
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Hye-Young Heo
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | | | - Shanshan Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
42
|
Abstract
The central role of MRI in neuro-oncology is undisputed. The technique is used, both in clinical practice and in clinical trials, to diagnose and monitor disease activity, support treatment decision-making, guide the use of focused treatments and determine response to treatment. Despite recent substantial advances in imaging technology and image analysis techniques, clinical MRI is still primarily used for the qualitative subjective interpretation of macrostructural features, as opposed to quantitative analyses that take into consideration multiple pathophysiological features. However, the field of quantitative imaging and imaging biomarker development is maturing. The European Imaging Biomarkers Alliance (EIBALL) and Quantitative Imaging Biomarkers Alliance (QIBA) are setting standards for biomarker development, validation and implementation, as well as promoting the use of quantitative imaging and imaging biomarkers by demonstrating their clinical value. In parallel, advanced imaging techniques are reaching the clinical arena, providing quantitative, commonly physiological imaging parameters that are driving the discovery, validation and implementation of quantitative imaging and imaging biomarkers in the clinical routine. Additionally, computational analysis techniques are increasingly being used in the research setting to convert medical images into objective high-dimensional data and define radiomic signatures of disease states. Here, I review the definition and current state of MRI biomarkers in neuro-oncology, and discuss the clinical potential of quantitative image analysis techniques.
Collapse
|
43
|
Di Carlo DT, Montemurro N, Petrella G, Siciliano G, Ceravolo R, Perrini P. Exploring the clinical association between neurological symptoms and COVID-19 pandemic outbreak: a systematic review of current literature. J Neurol 2021; 268:1561-1569. [PMID: 32740766 PMCID: PMC7395578 DOI: 10.1007/s00415-020-09978-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECT The novel severe acute respiratory syndrome (SARS)-CoV-2 outbreak has been declared a pandemic in March, 2020. An increasing body of evidence suggests that patients with the coronavirus disease (COVID-19) might have a heterogeneous spectrum of neurological symptoms METHODS: A systematic search of two databases was performed for studies published up to May 29th, 2020. PRISMA guidelines were followed. RESULTS We included 19 studies evaluating 12,157 patients with laboratory-confirmed COVID-19 infections. The median age of patients was 50.3 (IQR 11.9), and the rate of male patients was 50.6% (95% CI 49.2-51.6%). The most common reported comorbidities were hypertension and diabetes (31.1%, 95% CI 30-32.3% and 13.5%, 95% CI 12.3-14.8%, respectively). Headache was reported in 7.5% of patients (95% CI 6.6-8.4%), and dizziness in 6.1% (95% CI 5.1-7.1%). Hypo/anosmia, and gustatory dysfunction were reported in 46.8 and 52.3%, of patients, respectively. Symptoms related to muscular injury ranged between 15 and 30%. Three studies reported radiological confirmed acute cerebrovascular disease in 2% of patients (95% CI 1.6-2.4%). CONCLUSIONS These data support accumulating evidence that a significant proportion of patients with COVID-19 infection develop neurological manifestations, especially olfactory, and gustatory dysfunction. The pathophysiology of this association is under investigation and warrants additional studies, Physicians should be aware of this possible association because during the epidemic period of COVID-19, early recognition of neurologic manifestations otherwise not explained would raise the suspect of acute respiratory syndrome coronavirus 2 infection.
Collapse
Affiliation(s)
- Davide Tiziano Di Carlo
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56100, Pisa, Italy
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), Pisa, Italy
| | - Nicola Montemurro
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56100, Pisa, Italy
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), Pisa, Italy
| | - Giandomenico Petrella
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56100, Pisa, Italy
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Perrini
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via Paradisa 2, 56100, Pisa, Italy.
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), Pisa, Italy.
| |
Collapse
|
44
|
Sanvito F, Castellano A, Falini A. Advancements in Neuroimaging to Unravel Biological and Molecular Features of Brain Tumors. Cancers (Basel) 2021; 13:cancers13030424. [PMID: 33498680 PMCID: PMC7865835 DOI: 10.3390/cancers13030424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Advanced neuroimaging is gaining increasing relevance for the characterization and the molecular profiling of brain tumor tissue. On one hand, for some tumor types, the most widespread advanced techniques, investigating diffusion and perfusion features, have been proven clinically feasible and rather robust for diagnosis and prognosis stratification. In addition, 2-hydroxyglutarate spectroscopy, for the first time, offers the possibility to directly measure a crucial molecular marker. On the other hand, numerous innovative approaches have been explored for a refined evaluation of tumor microenvironments, particularly assessing microstructural and microvascular properties, and the potential applications of these techniques are vast and still to be fully explored. Abstract In recent years, the clinical assessment of primary brain tumors has been increasingly dependent on advanced magnetic resonance imaging (MRI) techniques in order to infer tumor pathophysiological characteristics, such as hemodynamics, metabolism, and microstructure. Quantitative radiomic data extracted from advanced MRI have risen as potential in vivo noninvasive biomarkers for predicting tumor grades and molecular subtypes, opening the era of “molecular imaging” and radiogenomics. This review presents the most relevant advancements in quantitative neuroimaging of advanced MRI techniques, by means of radiomics analysis, applied to primary brain tumors, including lower-grade glioma and glioblastoma, with a special focus on peculiar oncologic entities of current interest. Novel findings from diffusion MRI (dMRI), perfusion-weighted imaging (PWI), and MR spectroscopy (MRS) are hereby sifted in order to evaluate the role of quantitative imaging in neuro-oncology as a tool for predicting molecular profiles, stratifying prognosis, and characterizing tumor tissue microenvironments. Furthermore, innovative technological approaches are briefly addressed, including artificial intelligence contributions and ultra-high-field imaging new techniques. Lastly, after providing an overview of the advancements, we illustrate current clinical applications and future perspectives.
Collapse
Affiliation(s)
- Francesco Sanvito
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-3015
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|