1
|
Rizwan A, Sridharan B, Park JH, Kim D, Vial JC, Kyhm K, Lim HG. Nanophotonic-enhanced photoacoustic imaging for brain tumor detection. J Nanobiotechnology 2025; 23:170. [PMID: 40045308 PMCID: PMC11881315 DOI: 10.1186/s12951-025-03204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Photoacoustic brain imaging (PABI) has emerged as a promising biomedical imaging modality, combining high contrast of optical imaging with deep tissue penetration of ultrasound imaging. This review explores the application of photoacoustic imaging in brain tumor imaging, highlighting the synergy between nanomaterials and state of the art optical techniques to achieve high-resolution imaging of deeper brain tissues. PABI leverages the photoacoustic effect, where absorbed light energy causes thermoelastic expansion, generating ultrasound waves that are detected and converted into images. This technique enables precise diagnosis, therapy monitoring, and enhanced clinical screening, specifically in the management of complex diseases such as breast cancer, lymphatic disorder, and neurological conditions. Despite integration of photoacoustic agents and ultrasound radiation, providing a comprehensive overview of current methodologies, major obstacles in brain tumor treatment, and future directions for improving diagnostic and therapeutic outcomes. The review underscores the significance of PABI as a robust research tool and medical method, with the potential to revolutionize brain disease diagnosis and treatment.
Collapse
Affiliation(s)
- Ali Rizwan
- Smart Gym-Based Translational Research Center for Active Senior'S Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jin Hyeong Park
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Daehun Kim
- Indusrty 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jean-Claude Vial
- Université Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
- Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Kwangseuk Kyhm
- Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Gyun Lim
- Smart Gym-Based Translational Research Center for Active Senior'S Healthcare, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Indusrty 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Gimenez Y, Vandenkoornhuyse P. Nonconventional Imaging for Viable Bacteria Detection: A Review. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae100. [PMID: 39405184 DOI: 10.1093/mam/ozae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 02/26/2025]
Abstract
The first attempts of bacteria observation started with the use of glass lenses to generate magnified images of specimens. This technique is constrained by the principal limit to the resolution of any optical system. Besides optical microscopy, other imaging techniques emerged to reveal more levels of details. The more the achievable resolution, the more complex the imaging systems, and at the same time, the more potentially cell-killing or DNA-damaging they may become. This article provides a state of the art of nonconventional sensor techniques that have been used in applications related to bacteria imaging, for the purpose of comparing the information they provide and determine their suitability or find out if their combination can yield new results without compromising the ability to keep the cells alive.
Collapse
Affiliation(s)
- Yilbert Gimenez
- CNRS, UMR 6553 ECOBIO, Université de Rennes, Rennes 35000, France
| | | |
Collapse
|
3
|
Ozcan BB, Wanniarachchi H, Mason RP, Dogan BE. Current status of optoacoustic breast imaging and future trends in clinical application: is it ready for prime time? Eur Radiol 2024; 34:6092-6107. [PMID: 38308678 PMCID: PMC11297194 DOI: 10.1007/s00330-024-10600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024]
Abstract
Optoacoustic imaging (OAI) is an emerging field with increasing applications in patients and exploratory clinical trials for breast cancer. Optoacoustic imaging (or photoacoustic imaging) employs non-ionizing, laser light to create thermoelastic expansion in tissues and detect the resulting ultrasonic emission. By combining high optical contrast capabilities with the high spatial resolution and anatomic detail of grayscale ultrasound, OAI offers unique opportunities for visualizing biological function of tissues in vivo. Over the past decade, human breast applications of OAI, including benign/malignant mass differentiation, distinguishing cancer molecular subtype, and predicting metastatic potential, have significantly increased. We discuss the current state of optoacoustic breast imaging, as well as future opportunities and clinical application trends. CLINICAL RELEVANCE STATEMENT: Optoacoustic imaging is a novel breast imaging technique that enables the assessment of breast cancer lesions and tumor biology without the risk of ionizing radiation exposure, intravenous contrast, or radionuclide injection. KEY POINTS: • Optoacoustic imaging (OAI) is a safe, non-invasive imaging technique with thriving research and high potential clinical impact. • OAI has been considered a complementary tool to current standard breast imaging techniques. • OAI combines parametric maps of molecules that absorb light and scatter acoustic waves (like hemoglobin, melanin, lipids, and water) with anatomical images, facilitating scalable and real-time molecular evaluation of tissues.
Collapse
Affiliation(s)
- B Bersu Ozcan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA.
| | - Hashini Wanniarachchi
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| | - Basak E Dogan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| |
Collapse
|
4
|
Geng Y, Zou H, Li Z, Wu H. Recent advances in nanomaterial-driven strategies for diagnosis and therapy of vascular anomalies. J Nanobiotechnology 2024; 22:120. [PMID: 38500178 PMCID: PMC10949774 DOI: 10.1186/s12951-024-02370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Nanotechnology has demonstrated immense potential in various fields, especially in biomedical field. Among these domains, the development of nanotechnology for diagnosing and treating vascular anomalies has garnered significant attention. Vascular anomalies refer to structural and functional anomalies within the vascular system, which can result in conditions such as vascular malformations and tumors. These anomalies can significantly impact the quality of life of patients and pose significant health concerns. Nanoscale contrast agents have been developed for targeted imaging of blood vessels, enabling more precise identification and characterization of vascular anomalies. These contrast agents can be designed to bind specifically to abnormal blood vessels, providing healthcare professionals with a clearer view of the affected areas. More importantly, nanotechnology also offers promising solutions for targeted therapeutic interventions. Nanoparticles can be engineered to deliver drugs directly to the site of vascular anomalies, maximizing therapeutic effects while minimizing side effects on healthy tissues. Meanwhile, by incorporating functional components into nanoparticles, such as photosensitizers, nanotechnology enables innovative treatment modalities such as photothermal therapy and photodynamic therapy. This review focuses on the applications and potential of nanotechnology in the imaging and therapy of vascular anomalies, as well as discusses the present challenges and future directions.
Collapse
Affiliation(s)
- Yiming Geng
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Huwei Zou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Zhaowei Li
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, 271000, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
5
|
Wang B, Zhong H, Zhang J, Jiang J, Xiao J. Thin flexible photoacoustic endoscopic probe with a distal-driven micro-step motor for pump-probe-based high-specific molecular imaging. OPTICS EXPRESS 2024; 32:8308-8320. [PMID: 38439489 DOI: 10.1364/oe.514282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/09/2024] [Indexed: 03/06/2024]
Abstract
Conventional photoacoustic endoscopy (PAE) is mostly for structural imaging, and its molecular imaging ability is quite limited. In this work, we address this issue and present the development of a flexible acoustic-resolution-based photoacoustic endoscopic (AR-PAE) probe with an outer diameter of 8 mm. This probe is driven by a micro-step motor at the distal end, enabling flexible and precise angular step control to synchronize with the optical parametric oscillator (OPO) lasers. This probe retains the high spatial resolution, high penetration depth, and spectroscopic imaging ability of conventional AR-PAE. Moreover, it is capable for background-free high-specific photoacoustic molecular imaging with a novel pump-probe detection technique, as demonstrated by the distribution visualizing of the FDA approved contrast agent methylene blue (MB) in an ex-vivo pig ileum. This proposed method represents an important technical advancement in multimodal PAE, and can potentially make considerable contributions across various biomedical fields.
Collapse
|
6
|
MacCuaig WM, Wickizer C, Van RS, Buabeng ER, Lerner MR, Grizzle WE, Shao Y, Henary M, McNally LR. Influence of structural moieties in squaraine dyes on optoacoustic signal shape and intensity. Chem 2024; 10:713-729. [PMID: 38738169 PMCID: PMC11087056 DOI: 10.1016/j.chempr.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Optoacoustic imaging has grown in clinical relevance due to inherent advantages in sensitivity, resolution, and imaging depth, but the development of contrast agents is lacking. This study assesses the influence of structural features of squaraine dyes on optoacoustic activity through computational models, in vitro testing, and in vivo experimentation. The squaraine scaffold was decorated with halogens and side-chain extensions. Extension of side chains and heavy halogenation of squaraines both increased optoacoustic signals individually, although they had a more significant effect in tandem. Density functional theory models suggest that the origin of the increased optoacoustic signal is the increase in transition dipole moment and vibrational entropy, which manifested as increased absorbance in near-infrared region (NIR) wavelengths and decreased fluorescence quantum yield. This study provides insight into the structure-function relationships that will lead guiding principles for optimizing optoacoustic contrast agents. Further developments of squaraines and other agents will further increase the relevance of optoacoustic imaging in a clinical setting.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Carly Wickizer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Richard S. Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | - Megan R. Lerner
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
- Lead contact
| |
Collapse
|
7
|
Fakhoury JW, Lara JB, Manwar R, Zafar M, Xu Q, Engel R, Tsoukas MM, Daveluy S, Mehregan D, Avanaki K. Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11518. [PMID: 38223680 PMCID: PMC10785699 DOI: 10.1117/1.jbo.29.s1.s11518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Significance Cutaneous melanoma (CM) has a high morbidity and mortality rate, but it can be cured if the primary lesion is detected and treated at an early stage. Imaging techniques such as photoacoustic (PA) imaging (PAI) have been studied and implemented to aid in the detection and diagnosis of CM. Aim Provide an overview of different PAI systems and applications for the study of CM, including the determination of tumor depth/thickness, cancer-related angiogenesis, metastases to lymph nodes, circulating tumor cells (CTCs), virtual histology, and studies using exogenous contrast agents. Approach A systematic review and classification of different PAI configurations was conducted based on their specific applications for melanoma detection. This review encompasses animal and preclinical studies, offering insights into the future potential of PAI in melanoma diagnosis in the clinic. Results PAI holds great clinical potential as a noninvasive technique for melanoma detection and disease management. PA microscopy has predominantly been used to image and study angiogenesis surrounding tumors and provide information on tumor characteristics. Additionally, PA tomography, with its increased penetration depth, has demonstrated its ability to assess melanoma thickness. Both modalities have shown promise in detecting metastases to lymph nodes and CTCs, and an all-optical implementation has been developed to perform virtual histology analyses. Animal and human studies have successfully shown the capability of PAI to detect, visualize, classify, and stage CM. Conclusions PAI is a promising technique for assessing the status of the skin without a surgical procedure. The capability of the modality to image microvasculature, visualize tumor boundaries, detect metastases in lymph nodes, perform fast and label-free histology, and identify CTCs could aid in the early diagnosis and classification of CM, including determination of metastatic status. In addition, it could be useful for monitoring treatment efficacy noninvasively.
Collapse
Affiliation(s)
- Joseph W. Fakhoury
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Juliana Benavides Lara
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Mohsin Zafar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Qiuyun Xu
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Ricardo Engel
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria M. Tsoukas
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| | - Steven Daveluy
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Darius Mehregan
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|
8
|
Oh D, Kim H, Sung M, Kim C. Video-rate endocavity photoacoustic/harmonic ultrasound imaging with miniaturized light delivery. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11528. [PMID: 38505737 PMCID: PMC10949014 DOI: 10.1117/1.jbo.29.s1.s11528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Significance Endocavity ultrasound (US) imaging is a frequently employed diagnostic technique in gynecology and urology for the assessment of male and female genital diseases that present challenges for conventional transabdominal imaging. The integration of photoacoustic (PA) imaging with clinical US imaging has displayed promising outcomes in clinical research. Nonetheless, its application has been constrained due to size limitations, restricting it to spatially confined locations such as vaginal or rectal canals. Aim This study presents the development of a video-rate (20 Hz) endocavity PA/harmonic US imaging (EPAUSI) system. Approach The approach incorporates a commercially available endocavity US probe with a miniaturized laser delivery unit, comprised of a single large-core fiber and a line beamshaping engineered diffuser. The system facilitates real-time image display and subsequent processing, including angular energy density correction and spectral unmixing, in offline mode. Results The spatial resolutions of the concurrently acquired PA and harmonic US images were measured at 318 μ m and 291 μ m in the radial direction, respectively, and 1.22 deg and 1.50 deg in the angular direction, respectively. Furthermore, the system demonstrated its capability in multispectral PA imaging by successfully distinguishing two clinical dyes in a tissue-mimicking phantom. Its rapid temporal resolution enabled the capture of kinetic dye perfusion into an ex vivo porcine ovary through the depth of porcine uterine tissue. EPAUSI proved its clinical viability by detecting pulsating hemodynamics in the male rat's prostate in vivo and accurately classifying human blood vessels into arteries and veins based on sO 2 measurements. Conclusions Our proposed EPAUSI system holds the potential to unveil previously overlooked indicators of vascular alterations in genital cancers or endometriosis, addressing pressing requirements in the fields of gynecology and urology.
Collapse
Affiliation(s)
- Donghyeon Oh
- Pohang University of Science and Technology, Medical Device Innovation Center, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Pohang, Republic of Korea
| | - Hyunhee Kim
- Pohang University of Science and Technology, Medical Device Innovation Center, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Pohang, Republic of Korea
| | - Minsik Sung
- Pohang University of Science and Technology, Medical Device Innovation Center, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Pohang, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology, Medical Device Innovation Center, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, Pohang, Republic of Korea
| |
Collapse
|
9
|
Muñiz-García A, Pichardo AH, Littlewood J, Tasker S, Sharkey J, Wilm B, Peace H, O'Callaghan D, Green M, Taylor A, Murray P. Near infrared conjugated polymer nanoparticles (CPN™) for tracking cells using fluorescence and optoacoustic imaging. NANOSCALE ADVANCES 2023; 5:5520-5528. [PMID: 37822909 PMCID: PMC10563848 DOI: 10.1039/d3na00546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Tracking the biodistribution of cell therapies is crucial for understanding their safety and efficacy. Optical imaging techniques are particularly useful for tracking cells due to their clinical translatability and potential for intra-operative use to validate cell delivery. However, there is a lack of appropriate optical probes for cell tracking. The only FDA-approved material for clinical use is indocyanine green (ICG). ICG can be used for both fluorescence and photoacoustic imaging, but is prone to photodegradation, and at higher concentrations, undergoes quenching and can adversely affect cell health. We have developed novel near-infrared imaging probes comprising conjugated polymer nanoparticles (CPNs™) that can be fine-tuned to absorb and emit light at specific wavelengths. To compare the performance of the CPNs™ with ICG for in vivo cell tracking, labelled mesenchymal stromal cells (MSCs) were injected subcutaneously in mice and detected using fluorescence imaging (FI) and a form of photoacoustic imaging called multispectral optoacoustic tomography (MSOT). MSCs labelled with either ICG or CPN™ 770 could be detected with FI, but only CPN™ 770-labelled MSCs could be detected with MSOT. These results show that CPNs™ show great promise for tracking cells in vivo using optical imaging techniques, and for some applications, out-perform ICG.
Collapse
Affiliation(s)
- Ana Muñiz-García
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London London UK
| | - Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | - James Littlewood
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
- iThera Medical GmbH Munich Germany
| | - Suzannah Tasker
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
| | | | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | | | | | | | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| |
Collapse
|
10
|
Becker C, Hardarson J, Hoelzer A, Geisler A, Schulz T, Reichl C, Burton NC, Schuler T, Kohl P, Zgierski-Johnston C. Evaluation of cervical lymph nodes using multispectral optoacoustic tomography: a proof-of-concept study. Eur Arch Otorhinolaryngol 2023; 280:4657-4664. [PMID: 37354339 PMCID: PMC10477228 DOI: 10.1007/s00405-023-08073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES Examination of lymph nodes is one of the most common indications for imaging in the head and neck region. The purpose of this study is to evaluate whether multispectral optoacoustic tomography can be used to observe chromophore differences between benign and malignant neck lymph nodes. MATERIALS AND METHODS Proof-of-concept ex vivo study of resected cervical lymph nodes from 11 patients. The examination of lymph nodes included imaging with hybrid ultrasound and multispectral tomography system followed by spectral unmixing to separate signals from the endogenous chromophores water, lipid, hemoglobin and oxygenated hemoglobin; calculation of semi-quantitative parameters (total hemoglobin and relative oxygenation of hemoglobin). Comparison of the results from the hybrid measurement with the histopathological results. RESULTS Most patients suffered from squamous cell carcinoma (n = 7), also metastasis from salivary gland adenocarcinoma and papillary thyroid carcinoma, were included. The comparison between benign cervical lymph nodes and metastases showed significant differences for the absorbers water, lipid, hemoglobin and oxygenated hemoglobin and total hemoglobin. CONCLUSIONS Our ex vivo study suggests that multispectral optoacoustic tomography can be used to detect differences between reactive lymph nodes and metastases. The measurement of endogenous chromophores can be used for this purpose. The examinations are non-invasively and thus potentially improve diagnostic prediction. However, potential influences from the ex vivo setting must be considered.
Collapse
Affiliation(s)
- Christoph Becker
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| | - Johannes Hardarson
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Andrea Hoelzer
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Antje Geisler
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Tobias Schulz
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | | | | | - Tobias Schuler
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Callum Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Ma F, Yuan M, Kozak I. Multispectral imaging: Review of current applications. Surv Ophthalmol 2023; 68:889-904. [PMID: 37321478 DOI: 10.1016/j.survophthal.2023.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Multispectral imaging (MSI) is a unique layer-by-layer imaging technique that allows the visualization of a wide array of retinal and choroidal pathologies including retinovascular disorders, retinal pigment epithelial changes, and choroidal lesions. Herein, we summarize the basic imaging principles and current applications of MSI together with recent technology advances in the field. MSI detects reflectance signal from both normal chorioretinal tissue and pathological lesions. Either hyperreflectance or hyporeflectance reveals the absorption activity of pigments such as hemoglobin and melanin and the reflection from interfaces such as the posterior hyaloid. Advances in MSI technique include creation of a retinal and choroidal oxy-deoxy map that could provide a better understanding of blood oxygen saturation within lesions as well as better interpretation of reflectance phenomenon of MSI images such as the different reflectance from the Sattler and Haller layers described in this review.
Collapse
Affiliation(s)
- Feiyan Ma
- The Second Hospital of Hebei Medical University, Ophthalmology Department, Shijiazhuang, China.
| | - Mingzhen Yuan
- Beijing Tongren Hospital of Capital Medical University, Ophthalmology Department, Beijing, China
| | - Igor Kozak
- Moorfields Eye Hospitals UAE, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Husarova T, MacCuaig WM, Dennahy IS, Sanderson EJ, Edil BH, Jain A, Bonds MM, McNally MW, Menclova K, Pudil J, Zaruba P, Pohnan R, Henson CE, Grizzle WE, McNally LR. Intraoperative Imaging in Hepatopancreatobiliary Surgery. Cancers (Basel) 2023; 15:3694. [PMID: 37509355 PMCID: PMC10377919 DOI: 10.3390/cancers15143694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Tereza Husarova
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - William M. MacCuaig
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Isabel S. Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Emma J. Sanderson
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Barish H. Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Morgan M. Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Katerina Menclova
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Jiri Pudil
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Pavel Zaruba
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Radek Pohnan
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Christina E. Henson
- Department of Radiation Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Penn C, Katnik C, Cuevas J, Mohapatra SS, Mohapatra S. Multispectral optoacoustic tomography (MSOT): Monitoring neurovascular changes in a mouse repetitive traumatic brain injury model. J Neurosci Methods 2023; 393:109876. [PMID: 37150303 PMCID: PMC10388337 DOI: 10.1016/j.jneumeth.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Evidence suggests that mild TBI injuries, which comprise > 75% of all TBIs, can cause chronic post-concussive symptoms, especially when experienced repetitively (rTBI). rTBI is a major cause of cognitive deficit in athletes and military personnel and is associated with neurovascular changes. Current methods to monitor neurovascular changes in detail are prohibitively expensive and invasive for patients with mild injuries. NEW METHOD We evaluated the potential of multispectral optoacoustic tomography (MSOT) to monitor neurovascular changes and assess therapeutic strategies in a mouse model of rTBI. Mice were subjected to rTBI or sham via controlled cortical impact and administered pioglitazone (PG) or vehicle. Oxygenated and deoxygenated hemoglobin were monitored using MSOT. Indocyanine green clearance was imaged via MSOT to evaluate blood-brain-barrier (BBB) integrity. RESULTS Mice subjected to rTBI show a transient increase in oxygenated/total hemoglobin ratio which can be mitigated by PG administration. rTBI mice also show BBB disruption shortly after injury and reduction of oxygenated/total hemoglobin in the chronic stage, neither of which were affected by PG intervention. COMPARISON WITH EXISTING METHODS MSOT imaging has the potential as a noninvasive in vivo imaging method to monitor neurovascular changes and assess therapeutics in mouse models of rTBI. In comparison to standard methods of tracking inflammation and BBB disruption, MSOT can be used multiple times throughout the course of injury without the need for surgery. Thus, MSOT is especially useful in research of rTBI models for screening therapeutics, and with further technological improvements may be extended for use in rTBI patients.
Collapse
Affiliation(s)
- Courtney Penn
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Chris Katnik
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Internal Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
14
|
Samykutty A, Thomas KN, McNally M, Hagood J, Chiba A, Thomas A, McWilliams L, Behkam B, Zhan Y, Council-Troche M, Claros-Sorto JC, Henson C, Garwe T, Sarwar Z, Grizzle WE, McNally LR. Simultaneous Detection of Multiple Tumor-targeted Gold Nanoparticles in HER2-Positive Breast Tumors Using Optoacoustic Imaging. Radiol Imaging Cancer 2023; 5:e220180. [PMID: 37233208 PMCID: PMC10240250 DOI: 10.1148/rycan.220180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Purpose To develop optoacoustic, spectrally distinct, actively targeted gold nanoparticle-based near-infrared probes (trastuzumab [TRA], TRA-Aurelia-1, and TRA-Aurelia-2) that can be individually identifiable at multispectral optoacoustic tomography (MSOT) of human epidermal growth factor receptor 2 (HER2)-positive breast tumors. Materials and Methods Gold nanoparticle-based near-infrared probes (Aurelia-1 and 2) that are optoacoustically active and spectrally distinct for simultaneous MSOT imaging were synthesized and conjugated to TRA to produce TRA-Aurelia-1 and 2. Freshly resected human HER2-positive (n = 6) and HER2-negative (n = 6) triple-negative breast cancer tumors were treated with TRA-Aurelia-1 and TRA-Aurelia-2 for 2 hours and imaged with MSOT. HER2-expressing DY36T2Q cells and HER2-negative MDA-MB-231 cells were implanted orthotopically into mice (n = 5). MSOT imaging was performed 6 hours following the injection, and the Friedman test was used for analysis. Results TRA-Aurelia-1 (absorption peak, 780 nm) and TRA-Aurelia-2 (absorption peak, 720 nm) were spectrally distinct. HER2-positive human breast tumors exhibited a significant increase in optoacoustic signal following TRA-Aurelia-1 (28.8-fold) or 2 (29.5-fold) (P = .002) treatment relative to HER2-negative tumors. Treatment with TRA-Aurelia-1 and 2 increased optoacoustic signals in DY36T2Q tumors relative to those in MDA-MB-231 controls (14.8-fold, P < .001; 20.8-fold, P < .001, respectively). Conclusion The study demonstrates that TRA-Aurelia 1 and 2 nanoparticles operate as a spectrally distinct HER2 breast tumor-targeted in vivo optoacoustic agent. Keywords: Molecular Imaging, Nanoparticles, Photoacoustic Imaging, Breast Cancer Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Abhilash Samykutty
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Karl N. Thomas
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Molly McNally
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Jordan Hagood
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Akiko Chiba
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Alexandra Thomas
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Libby McWilliams
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Bahareh Behkam
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Ying Zhan
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - McAlister Council-Troche
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Juan C. Claros-Sorto
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Christina Henson
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Tabitha Garwe
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Zoona Sarwar
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - William E. Grizzle
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Lacey R. McNally
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| |
Collapse
|
15
|
Chalfant H, Bonds M, Scott K, Condacse A, Dennahy IS, Martin WT, Little C, Edil BH, McNally LR, Jain A. Innovative Imaging Techniques Used to Evaluate Borderline-Resectable Pancreatic Adenocarcinoma. J Surg Res 2023; 284:42-53. [PMID: 36535118 PMCID: PMC10131671 DOI: 10.1016/j.jss.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 12/23/2022]
Abstract
A diagnosis of pancreatic cancer carries a 5-y survival rate of less than 10%. Furthermore, the detection of pancreatic cancer occurs most often in later stages of the disease due to its location in the retroperitoneum and lack of symptoms (in most cases) until tumors become more advanced. Once diagnosed, cross-sectional imaging techniques are heavily utilized to determine the tumor stage and the potential for surgical resection. However, a major determinant of resectability is the extent of local vascular involvement of the mesenteric vessels and critical tributaries; current imaging techniques have limited capacity to accurately determine vascular involvement. Surrounding inflammation and fibrosis can be difficult to discriminate from viable tumor, making determination of the degree of vascular involvement unreliable. New innovations in fluorescence and optoacoustic imaging techniques may overcome these limitations and make determination of resectability more accurate. These imaging modalities are able to more clearly discern between viable tumor tissue and non-neoplastic inflammation or desmoplasia, allowing clinicians to more reliably characterize vascular involvement and develop individualized treatment plans for patients. This review will discuss the current imaging techniques used to diagnose pancreatic cancer, the barriers that current techniques raise to accurate staging, and novel fluorescence and optoacoustic imaging techniques that may provide more accurate clinical staging of pancreatic cancer.
Collapse
Affiliation(s)
- Hunter Chalfant
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Morgan Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Kristina Scott
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Anna Condacse
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - W Taylor Martin
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Cooper Little
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma.
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma.
| |
Collapse
|
16
|
Zhao C, Liu Z, Chang CC, Chen YC, Zhang Q, Zhang XD, Andreou C, Pang J, Liu ZX, Wang DY, Kircher MF, Yang J. Near-Infrared Phototheranostic Iron Pyrite Nanocrystals Simultaneously Induce Dual Cell Death Pathways via Enhanced Fenton Reactions in Triple-Negative Breast Cancer. ACS NANO 2023; 17:4261-4278. [PMID: 36706095 DOI: 10.1021/acsnano.2c06629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.
Collapse
Affiliation(s)
- Chunhua Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chia-Che Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Yi-Chia Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Qize Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300354, China
| | - Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Jiadong Pang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| |
Collapse
|
17
|
Harold KM, MacCuaig WM, Holter-Charkabarty J, Williams K, Hill K, Arreola AX, Sekhri M, Carter S, Gomez-Gutierrez J, Salem G, Mishra G, McNally LR. Advances in Imaging of Inflammation, Fibrosis, and Cancer in the Gastrointestinal Tract. Int J Mol Sci 2022; 23:16109. [PMID: 36555749 PMCID: PMC9781634 DOI: 10.3390/ijms232416109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal disease is prevalent and broad, manifesting itself in a variety of ways, including inflammation, fibrosis, infection, and cancer. However, historically, diagnostic technologies have exhibited limitations, especially with regard to diagnostic uncertainty. Despite development of newly emerging technologies such as optoacoustic imaging, many recent advancements have focused on improving upon pre-existing modalities such as ultrasound, computed tomography, magnetic resonance imaging, and endoscopy. These advancements include utilization of machine learning models, biomarkers, new technological applications such as diffusion weighted imaging, and new techniques such as transrectal ultrasound. This review discusses assessment of disease processes using imaging strategies for the detection and monitoring of inflammation, fibrosis, and cancer in the context of gastrointestinal disease. Specifically, we include ulcerative colitis, Crohn's disease, diverticulitis, celiac disease, graft vs. host disease, intestinal fibrosis, colorectal stricture, gastric cancer, and colorectal cancer. We address some of the most recent and promising advancements for improvement of gastrointestinal imaging, including unique discussions of such advancements with regard to imaging of fibrosis and differentiation between similar disease processes.
Collapse
Affiliation(s)
- Kylene M. Harold
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | - Kaitlyn Hill
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex X. Arreola
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Malika Sekhri
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Steven Carter
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jorge Gomez-Gutierrez
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - George Salem
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Girish Mishra
- Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Barbosa RCS, Mendes PM. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9541. [PMID: 36502258 PMCID: PMC9736954 DOI: 10.3390/s22239541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The photoacoustic effect is an emerging technology that has sparked significant interest in the research field since an acoustic wave can be produced simply by the incidence of light on a material or tissue. This phenomenon has been extensively investigated, not only to perform photoacoustic imaging but also to develop highly miniaturized ultrasound probes that can provide biologically meaningful information. Therefore, this review aims to outline the materials and their fabrication process that can be employed as photoacoustic targets, both biological and non-biological, and report the main components' features to achieve a certain performance. When designing a device, it is of utmost importance to model it at an early stage for a deeper understanding and to ease the optimization process. As such, throughout this article, the different methods already implemented to model the photoacoustic effect are introduced, as well as the advantages and drawbacks inherent in each approach. However, some remaining challenges are still faced when developing such a system regarding its fabrication, modeling, and characterization, which are also discussed.
Collapse
|
19
|
Zheng Y, Liu M, Jiang L. Progress of photoacoustic imaging combined with targeted photoacoustic contrast agents in tumor molecular imaging. Front Chem 2022; 10:1077937. [PMID: 36479441 PMCID: PMC9720136 DOI: 10.3389/fchem.2022.1077937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular imaging visualizes, characterizes, and measures biological processes at the molecular and cellular level. In oncology, molecular imaging is an important technology to guide integrated and precise diagnosis and treatment. Photoacoustic imaging is mainly divided into three categories: photoacoustic microscopy, photoacoustic tomography and photoacoustic endoscopy. Different from traditional imaging technology, which uses the physical properties of tissues to detect and identify diseases, photoacoustic imaging uses the photoacoustic effect to obtain the internal information of tissues. During imaging, lasers excite either endogenous or exogenous photoacoustic contrast agents, which then send out ultrasonic waves. Currently, photoacoustic imaging in conjunction with targeted photoacoustic contrast agents is frequently employed in the research of tumor molecular imaging. In this study, we will examine the latest advancements in photoacoustic imaging technology and targeted photoacoustic contrast agents, as well as the developments in tumor molecular imaging research.
Collapse
Affiliation(s)
| | | | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
20
|
Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14050917. [PMID: 35631503 PMCID: PMC9144228 DOI: 10.3390/pharmaceutics14050917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Image-guided nanotheranostics have the potential to represent a new paradigm in the treatment of cancer. Recent developments in modern imaging and nanoparticle design offer an answer to many of the issues associated with conventional chemotherapy, including their indiscriminate side effects and susceptibility to drug resistance. Imaging is one of the tools best poised to enable tailoring of cancer therapies. The field of image-guided nanotheranostics has the potential to harness the precision of modern imaging techniques and use this to direct, dictate, and follow site-specific drug delivery, all of which can be used to further tailor cancer therapies on both the individual and population level. The use of image-guided drug delivery has exploded in preclinical and clinical trials although the clinical translation is incipient. This review will focus on traditional mechanisms of targeted drug delivery in cancer, including the use of molecular targeting, as well as the foundations of designing nanotheranostics, with a focus on current clinical applications of nanotheranostics in cancer. A variety of specially engineered and targeted drug carriers, along with strategies of labeling nanoparticles to endow detectability in different imaging modalities will be reviewed. It will also introduce newer concepts of image-guided drug delivery, which may circumvent many of the issues seen with other techniques. Finally, we will review the current barriers to clinical translation of image-guided nanotheranostics and how these may be overcome.
Collapse
|
21
|
Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, Nitipir C, Galateanu B. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Front Oncol 2022; 12:856575. [PMID: 35356214 PMCID: PMC8959149 DOI: 10.3389/fonc.2022.856575] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.
Collapse
Affiliation(s)
- Octav Ginghina
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marius Zamfir
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Andrada Spanu
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Mara Mardare
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Irina Bondoc
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | | | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Cornelia Nitipir
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
22
|
Wendler T, van Leeuwen FWB, Navab N, van Oosterom MN. How molecular imaging will enable robotic precision surgery : The role of artificial intelligence, augmented reality, and navigation. Eur J Nucl Med Mol Imaging 2021; 48:4201-4224. [PMID: 34185136 PMCID: PMC8566413 DOI: 10.1007/s00259-021-05445-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Molecular imaging is one of the pillars of precision surgery. Its applications range from early diagnostics to therapy planning, execution, and the accurate assessment of outcomes. In particular, molecular imaging solutions are in high demand in minimally invasive surgical strategies, such as the substantially increasing field of robotic surgery. This review aims at connecting the molecular imaging and nuclear medicine community to the rapidly expanding armory of surgical medical devices. Such devices entail technologies ranging from artificial intelligence and computer-aided visualization technologies (software) to innovative molecular imaging modalities and surgical navigation (hardware). We discuss technologies based on their role at different steps of the surgical workflow, i.e., from surgical decision and planning, over to target localization and excision guidance, all the way to (back table) surgical verification. This provides a glimpse of how innovations from the technology fields can realize an exciting future for the molecular imaging and surgery communities.
Collapse
Affiliation(s)
- Thomas Wendler
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei München, Germany
| | - Fijs W. B. van Leeuwen
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute - Antonie van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Orsi Academy, Melle, Belgium
| | - Nassir Navab
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei München, Germany
- Chair for Computer Aided Medical Procedures Laboratory for Computational Sensing + Robotics, Johns-Hopkins University, Baltimore, MD USA
| | - Matthias N. van Oosterom
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute - Antonie van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
23
|
MacCuaig WM, Fouts BL, McNally MW, Grizzle WE, Chuong P, Samykutty A, Mukherjee P, Li M, Jasinski J, Behkam B, McNally LR. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49614-49630. [PMID: 34653338 PMCID: PMC9783196 DOI: 10.1021/acsami.1c09379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoparticles are widely studied as theranostic vehicles for cancer; however, clinical translation has been limited due to poor tumor specificity. Features that maximize tumor uptake remain controversial, particularly when using clinically relevant models. We report a systematic study that assesses two major features for the impact on tumor specificity, i.e., active vs passive targeting and nanoparticle size, to evaluate relative influences in vivo. Active targeting via the V7 peptide is superior to passive targeting for uptake by pancreatic tumors, irrespective of nanoparticle size, observed through in vivo imaging. Size has a secondary effect on uptake for actively targeted nanoparticles in which 26 nm nanoparticles outperform larger 45 and 73 nm nanoparticles. Nanoparticle size had no significant effect on uptake for passively targeted nanoparticles. Results highlight the superiority of active targeting over nanoparticle size for tumor uptake. These findings suggest a framework for optimizing similar nonaggregate nanoparticles for theranostic treatment of recalcitrant cancers.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Benjamin L. Fouts
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
| | - Molly W McNally
- Department of Surgery, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC 27157, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip Chuong
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Abhilash Samykutty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC 27157, USA
| | | | - Min Li
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
| | - Jacek Jasinski
- Conn Center Materials Characterization, University of Louisville, Louisville, KY 40202, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Surgery, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC 27157, USA
| |
Collapse
|
24
|
Yang X, Chen YH, Xia F, Sawan M. Photoacoustic imaging for monitoring of stroke diseases: A review. PHOTOACOUSTICS 2021; 23:100287. [PMID: 34401324 PMCID: PMC8353507 DOI: 10.1016/j.pacs.2021.100287] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Stroke is the leading cause of death and disability after ischemic heart disease. However, there is lacking a non-invasive long-time monitoring technique for stroke diagnosis and therapy. The photoacoustic imaging approach reconstructs images of an object based on the energy excitation by optical absorption and its conversion to acoustic waves, due to corresponding thermoelastic expansion, which has optical resolution and acoustic propagation. This emerging functional imaging method is a non-invasive technique. Due to its precision, this method is particularly attractive for stroke monitoring purpose. In this paper, we review the achievements of this technology and its applications on stroke, as well as the development status in both animal and human applications. Also, various photoacoustic systems and multi-modality photoacoustic imaging are introduced as for potential clinical applications. Finally, the challenges of photoacoustic imaging for monitoring stroke are discussed.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yun-Hsuan Chen
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Fen Xia
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
- Corresponding author at: CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
25
|
Jones MA, MacCuaig WM, Frickenstein AN, Camalan S, Gurcan MN, Holter-Chakrabarty J, Morris KT, McNally MW, Booth KK, Carter S, Grizzle WE, McNally LR. Molecular Imaging of Inflammatory Disease. Biomedicines 2021; 9:152. [PMID: 33557374 PMCID: PMC7914540 DOI: 10.3390/biomedicines9020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases include a wide variety of highly prevalent conditions with high mortality rates in severe cases ranging from cardiovascular disease, to rheumatoid arthritis, to chronic obstructive pulmonary disease, to graft vs. host disease, to a number of gastrointestinal disorders. Many diseases that are not considered inflammatory per se are associated with varying levels of inflammation. Imaging of the immune system and inflammatory response is of interest as it can give insight into disease progression and severity. Clinical imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) are traditionally limited to the visualization of anatomical information; then, the presence or absence of an inflammatory state must be inferred from the structural abnormalities. Improvement in available contrast agents has made it possible to obtain functional information as well as anatomical. In vivo imaging of inflammation ultimately facilitates an improved accuracy of diagnostics and monitoring of patients to allow for better patient care. Highly specific molecular imaging of inflammatory biomarkers allows for earlier diagnosis to prevent irreversible damage. Advancements in imaging instruments, targeted tracers, and contrast agents represent a rapidly growing area of preclinical research with the hopes of quick translation to the clinic.
Collapse
Affiliation(s)
- Meredith A. Jones
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Seda Camalan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Metin N. Gurcan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Jennifer Holter-Chakrabarty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Katherine T. Morris
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Kristina K. Booth
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Steven Carter
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|