1
|
Schofield LG, Zhao J, Wang Y, Delforce SJ, Endacott SK, Lumbers ER, Ma D, Pringle KG. Unravelling soluble (pro)renin receptor-mediated endothelial dysfunction. Eur J Pharmacol 2025; 996:177601. [PMID: 40187599 DOI: 10.1016/j.ejphar.2025.177601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/23/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Preeclampsia is characterized by maternal endothelial dysfunction and new-onset hypertension. Preeclamptic pregnancies have elevated levels of maternal soluble prorenin receptor (s(P)RR) and previous studies have shown that recombinant s(P)RR produces hypertension and vascular dysfunction. This study aimed to investigate the effects of PRO20, an s(P)RR antagonist, on s(P)RR-induced endothelial dysfunction and its interaction with the Angiotensin II Type 1 Receptor (AT1R). METHODS Human uterine microvascular endothelial cells (HUtMECs) were treated with 100 nM s(P)RR, with/without 10 nM PRO20, 10 μM Losartan (AT1R antagonist), or 10 μM Aliskerin (renin inhibitor). The ability of PRO20 to prevent endothelial dysfunction induced by patient serum from preeclamptic pregnancies was also assessed. Endothelial dysfunction markers were measured using immunoblot, qPCR, and ELISA. For AT1R mechanism studies, HUtMECs were treated with control or AT1R siRNA before s(P)RR exposure. AT1R and s(P)RR protein structures were predicted via AlphaFold-2 and docking examined using Schrödinger. RESULTS PRO20 mitigated s(P)RR-induced increases in the mRNA expression of endothelial dysfunction markers, endothelin-1, VCAM-1 and ICAM-1 and prevented s(P)RR and preeclamptic serum-induced increases in endothelin-1 and VCAM-1 protein. Aliskerin had no effect on s(P)RR-induced endothelial dysfunction. Losartan and an AT1R siRNA were able to prevent s(P)RR induced increases in VCAM-1 protein levels and ET-1 mRNA expression, respectively. Modelling suggested that PRO20 can impair s(P)RR-AT1R complex formation. CONCLUSIONS Elevated s(P)RR induces endothelial dysfunction at least partially through AT1R. PRO20 prevents s(P)RR-AT1R formation, suggesting it could be an effective therapeutic for preeclampsia and conditions requiring renin-angiotensin system suppression.
Collapse
MESH Headings
- Humans
- Female
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/antagonists & inhibitors
- Pregnancy
- Pre-Eclampsia/metabolism
- Pre-Eclampsia/physiopathology
- Pre-Eclampsia/blood
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Prorenin Receptor
- Solubility
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Renin/pharmacology
- Adult
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
- Losartan/pharmacology
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights (Awabakal Country), 2305, New South Wales, Australia
| | - Juyi Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Centre for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China
| | - Yu Wang
- R&D, Beroni Group Ltd, Gadigal Country, Sydney, 2000, New South Wales, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights (Awabakal Country), 2305, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights (Awabakal Country), 2305, New South Wales, Australia
| | - Dan Ma
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Centre for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China.
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights (Awabakal Country), 2305, New South Wales, Australia.
| |
Collapse
|
2
|
Zheng H, Helms MN, Zou C, Zimmerman E, Feng Y, Yang T. Furin-mediated modification is required for epithelial sodium channel-activating activity of soluble (pro)renin receptor in cultured collecting duct cells. Am J Physiol Renal Physiol 2025; 328:F766-F774. [PMID: 39871593 DOI: 10.1152/ajprenal.00087.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 12/03/2024] [Indexed: 01/29/2025] Open
Abstract
(Pro)renin receptor (PRR) contains an overlapping cleavage site for site-1 protease (S1P) and furin for the generation of soluble PRR (sPRR). Although S1P-mediated cleavage mediates the release of sPRR, the functional implication of furin-mediated cleavage is unclear. Here, we tested whether furin-mediated cleavage was required for the activity of sPRR in activating epithelial Na+ channel (ENaC) in cultured M-1 cells. M-1 cells were transfected with pcDNA3.4 containing full-length PRR with (Furin-site Mut) or without (WT) mutagenesis of the furin cleavage site. As compared with empty vector (EM) control, Furin-site Mut showed the attenuation effect on WT-induced α-ENaC expression and amiloride-sensitive short-circuit current. In a separate experiment, M-1 cells were transfected with pcDNA3.4 containing cDNA for sPRR with S1P cleavage (AA 1-282) (sPRR-S1P) or with furin cleavage (AA 1-279) (sPRR-furin), indicating overexpression of the two types of sPRR induced a significant and comparable increase in the release of sPRR, but only sPRR-furin showed an increase of ENaC activity. Single-channel analysis of ENaC activity in Xenopus A6-2F3 cells confirms sPRR-furin activation of ENaC open probability. At last, HEK-293 cells were pretreated with furin inhibitor α1-antitrypsin Portland (α1-PDX) followed by transfection with EM, WT PRR. sPRR in the conditioned medium was enriched by using protein centrifugal filter devices and applied to M-1 cells followed by measurement of ENaC activity, demonstrating that pretreatment with α1-PDX attenuated ENaC-acting activity induced by overexpression of WT PRR. In summary, we conclude that furin-mediated modification is required for the activity of sPRR to increase ENaC-mediated Na+ transport in the collecting duct cells.NEW & NOTEWORTHY The present study for the first time examined the functional implication of furin-dependent cleavage in the activation of sPRR during ENaC regulation in cultured CD cells. We found that sPRR with the initial S1P-dependent cleavage remained silent and only became active following furin-dependent cleavage in terms of enhancement of ENaC activity and expression of α-ENaC. These results offer novel insight into the sPRR maturation process during ENaC regulation.
Collapse
Affiliation(s)
- Huaqing Zheng
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Nephrology and Hypertension, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - My N Helms
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Changjiang Zou
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Nephrology and Hypertension, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Elizabeth Zimmerman
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Ye Feng
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Nephrology and Hypertension, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Tianxin Yang
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Nephrology and Hypertension, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Yang T, Gao ZX, Mao ZH, Wu P. Soluble (pro)renin receptor as a novel regulator of renal medullary Na + reabsorption. Am J Physiol Renal Physiol 2025; 328:F239-F247. [PMID: 39508841 DOI: 10.1152/ajprenal.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
Epithelial sodium channel (ENaC) represents a major route of Na+ reabsorption in the aldosterone-sensitive distal nephron where the bulk of ENaC activity is considered to occur in the cortical collecting duct (CCD). Relatively, ENaC activity in the medulla, especially the inner medulla, is often neglected. (Pro)renin receptor (PRR), also termed ATP6ap2, a newly characterized member of the renin-angiotensin system, has emerged as an important regulator of ENaC in the distal nephron. The ENaC regulatory action of PRR is largely mediated by the 28 kDa soluble PRR (sPRR). Although all three subunits of ENaC are under the control of aldosterone, sPRR only mediates the upregulation of α-ENaC but not the other two subunits. Furthermore, sPRR-dependent regulation of α-ENaC only occurs in the renal inner medulla but not in the cortex. sPRR also rapidly upregulates ENaC activity via Nox4-derived H2O2. Overall, sPRR has emerged as an important regulator of renal medullary Na+ reabsorption in the context of overactivation of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Zhong-Xiuzi Gao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zi-Hui Mao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
Luo R, Yang KT, Wang F, Zheng H, Yang T. Collecting Duct Pro(Renin) Receptor Contributes to Unilateral Ureteral Obstruction-Induced Kidney Injury via Activation of the Intrarenal RAS. Hypertension 2024; 81:2152-2161. [PMID: 39171392 PMCID: PMC11410543 DOI: 10.1161/hypertensionaha.123.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Although the concept of the intrarenal renin-angiotensin system (RAS) in renal disease is well-described in the literature, the precise pathogenic role and mechanism of this local system have not been directly assessed in the absence of confounding influence from the systemic RAS. The present study used novel mouse models of collecting duct (CD)-specific deletion of (pro)renin receptor (PRR) or renin together with pharmacological inhibition of soluble PRR production to unravel the precise contribution of the intrarenal RAS to renal injury induced by unilateral ureteral obstruction. METHODS We examined the impact of CD-specific deletion of PRR, CD-specific deletion of renin, and S1P (site-1 protease) inhibitor PF429242 treatment on renal fibrosis and inflammation and the indices of the intrarenal RAS in a mouse model of unilateral ureteral obstruction. RESULTS After 3 days of unilateral ureteral obstruction, the indices of the intrarenal RAS including the renal medullary renin content, activity and mRNA expression, and Ang (angiotensin) II content in obstructed kidneys of floxed mice were all increased. That effect was reversed with CD-specific deletion of PRR, CD-specific deletion of renin, and PF429242 treatment, accompanied by consistent improvement in renal fibrosis and inflammation. On the other hand, renal cortical renin levels were unaffected by unilateral ureteral obstruction, irrespective of the genotype. Similar results were obtained via pharmacological inhibition of S1P, the key protease for the generation of soluble PRR. CONCLUSIONS Our results reveal that PRR-dependent/soluble PRR-dependent activation of CD renin represents a key determinant of the intrarenal RAS and, thus, obstruction-induced renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Renfei Luo
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kevin T. Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fei Wang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Huaqing Zheng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Schofield LG, Delforce SJ, Pryor JC, Endacott SK, Lumbers ER, Marshall SA, Pringle KG. The soluble (pro)renin receptor promotes a preeclampsia-like phenotype both in vitro and in vivo. Hypertens Res 2024; 47:1627-1641. [PMID: 38605139 PMCID: PMC11150152 DOI: 10.1038/s41440-024-01678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Preeclampsia is classified as new-onset hypertension coupled with gross endothelial dysfunction. Placental (pro)renin receptor ((P)RR) and plasma soluble (P)RR (s(P)RR) are elevated in patients with preeclampsia. Thus, we aimed to interrogate the role (P)RR may play in the pathogenesis of preeclampsia. Human uterine microvascular endothelial cells (HUtMECs, n = 4) were cultured with either; vehicle (PBS), 25-100 nM recombinant s(P)RR, or 10 ng/ml TNF-a (positive control) for 24 h. Conditioned media and cells were assessed for endothelial dysfunction markers via qPCR, ELISA, and immunoblot. Angiogenic capacity was assessed through tube formation and adhesion assays. Additionally, pregnant rats were injected with an adenovirus overexpressing s(P)RR from mid-pregnancy (day 8.5), until term (n = 6-7 dams/treatment). Maternal and fetal tissues were assessed. HUtMECs treated with recombinant s(P)RR displayed increased expression of endothelial dysfunction makers including vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and endothelin-1 mRNA expression (P = 0.003, P = 0.001, P = 0.009, respectively), along with elevated endothelin-1 protein secretion (P < 0.001) compared with controls. Recombinant s(P)RR impaired angiogenic capacity decreasing the number of branches, total branch length, and mesh area (P < 0.001, P = 0.004, and P = 0.009, respectively), while also increasing vascular adhesion (P = 0.032). +ADV rats exhibited increased systolic (P = 0.001), diastolic (P = 0.010), and mean arterial pressures (P = 0.012), compared with -ADV pregnancies. Renal arteries from +ADV-treated rats had decreased sensitivity to acetylcholine-induced relaxation (P = 0.030), compared with -ADV pregnancies. Our data show that treatment with s(P)RR caused hypertension and growth restriction in vivo and caused marked endothelial dysfunction in vitro. These findings demonstrate the significant adverse actions of s(P)RR on vascular dysfunction that is characteristic of the preeclamptic phenotype.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Jennifer C Pryor
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- National Health & Medical Research Council (NHMRC) Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Sarah A Marshall
- Department of Obstetrics and Gynaecology, The Ritchie Centre, School of Clinical Sciences, Monash University and The Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
6
|
Yan Z, Yang T, Li X, Jiang Z, Jia W, Zhou J, Fang H. Apelin-13: a novel approach to suppressing renin production in RVHT. Am J Physiol Cell Physiol 2024; 326:C1683-C1696. [PMID: 38646785 DOI: 10.1152/ajpcell.00092.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Renovascular hypertension (RVHT) is characterized by renal artery stenosis and overactivated renin-angiotensin system (RAS). Apelin, known for its negative modulation of RAS, has protective effects against cardiovascular diseases. The role and mechanisms of the primary active form of apelin, apelin-13, in RVHT are unclear. In this study, male Sprague-Dawley rats were divided into control, two-kidney one-clip (2K1C) model, and 2K1C with apelin-13 treatment groups. Renin expression was analyzed using immunohistochemistry and molecular techniques. Full-length (pro)renin receptor (fPRR) and soluble PRR (sPRR) levels were assessed via Western blotting, and cAMP levels were measured using ELISA. Plasma renin content, plasma renin activity (PRA), angiotensin II (ANG II), and sPRR levels were determined by ELISA. Human Calu-6 and mouse As4.1 cells were used to investigate renin production mechanisms. The 2K1C model exhibited increased systolic blood pressure, plasma renin content, PRA, sPRR, and ANG II levels, while apelin-13 treatment reduced these elevations. Apelin-13 inhibited cAMP production, renin mRNA expression, protein synthesis, and PRR/sPRR protein expression in renal tissue. In Calu-6 cells, cAMP-induced fPRR and site-1 protease (S1P)-derived sPRR expression, which was blocked by cAMP-responsive element-binding protein (CREB) inhibition. Apelin-13 suppressed cAMP elevation, CREB phosphorylation, fPRR/sPRR protein expression, and renin production. Recombinant sPRR (sPRR-His) stimulated renin production, which was inhibited by the PRR decoy peptide PRO20 and S1P inhibitor PF429242. These findings suggest that apelin-13 inhibits plasma renin expression through the cAMP/PKA/sPRR pathway, providing a potential therapeutic approach for RVHT. Understanding the regulation of renin production is crucial for developing effective treatments.NEW & NOTEWORTHY Our research elucidated that apelin-13 inhibits renin production through the cAMP/PKA/soluble (pro)renin receptor pathway, presenting a promising therapeutic approach for renovascular hypertension (RVHT) by targeting renin expression mechanisms. These findings underscore the potential of apelin-13 as a novel strategy to address RVHT.
Collapse
Affiliation(s)
- Ziqing Yan
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Teng Yang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Xinxuan Li
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Zipeng Jiang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Wankun Jia
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Jin Zhou
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Hui Fang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| |
Collapse
|
7
|
Fang H, Lin D, Li X, Wang L, Yang T. Therapeutic potential of Ganoderma lucidum polysaccharide peptide in Doxorubicin-induced nephropathy: modulation of renin-angiotensin system and proteinuria. Front Pharmacol 2023; 14:1287908. [PMID: 37841924 PMCID: PMC10570435 DOI: 10.3389/fphar.2023.1287908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: In the Doxorubicin (DOX)-induced nephropathy model, proteinuria is a manifestation of progressive kidney injury. The pathophysiology of renal illness is heavily influenced by the renin-angiotensin system (RAS). To reduce renal RAS activation and proteinuria caused by DOX, this study evaluated the effectiveness of Ganoderma lucidum polysaccharide peptide (GL-PP), a new glycopeptide produced from Ganoderma lucidum grown on grass. Methods: Three groups of BALB/c male mice were created: control, DOX, and DOX + GL-PP. GL-PP (100 mg/kg) was administered to mice by intraperitoneal injection for 4 weeks following a single intravenous injection of DOX (10 mg/kg via the tail vein). Results: After 4 weeks, full-length and soluble pro(renin) receptor (fPRR/sPRR) overexpression in DOX mouse kidneys, which is crucial for the RAS pathway, was dramatically inhibited by GL-PP therapy. Additionally, GL-PP successfully reduced elevation of urinary renin activity and angiotensin II levels, supporting the idea that GL-PP inhibits RAS activation. Moreover, GL-PP showed a considerable downregulation of nicotinamide adenine nucleotide phosphate oxidase 4 (NOX4) expression and a decrease in hydrogen peroxide (H2O2) levels. GL-PP treatment effectively reduced glomerular and tubular injury induced by DOX, as evidenced by decreased proteinuria, podocyte damage, inflammation, oxidative stress, apoptosis, and fibrosis. Discussion: GL-PP inhibits intrarenal PRR/sPRR-RAS activation and upregulation of NOX4 and H2O2, suggesting potential therapeutic approaches against DOX-induced nephropathy.
Collapse
Affiliation(s)
- Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxuan Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Teng Yang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
8
|
Fang H, Yang T, Zhou B, Li X. (Pro)Renin Receptor Decoy Peptide PRO20 Protects against Oxidative Renal Damage Induced by Advanced Oxidation Protein Products. Molecules 2023; 28:molecules28073017. [PMID: 37049779 PMCID: PMC10096258 DOI: 10.3390/molecules28073017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with advanced oxidation protein products (AOPPs). A recent study has shown that AOPP-induced renal tubular injury is mediated by the (pro)renin receptor (PRR). However, it is unclear whether the PRR decoy inhibitor PRO20 can protect against renal damage related to AOPPs in vivo. In this study, we examined the role of the PRR in rats with AOPP-induced renal oxidative damage. Male SD rats were subjected to unilateral nephrectomy, and after a four-day recuperation period, they were randomly divided into four groups (n = 6/group) for four weeks: control (CTR), unmodified rat serum albumin (RSA, 50 mg/kg/day via tail-vein injection), AOPPs-RSA (50 mg/kg/day via tail-vein injection), and AOPPs-RSA + PRO20 (50 mg/kg/day via tail-vein injection + 500 μg/kg/day via subcutaneous injection) groups. PRO20 was administered 3 days before AOPPs-RSA injection. Renal histopathology evaluation was performed by periodic acid–Schiff (PAS) staining, and biochemical parameters related to renal injury and oxidative stress biomarkers were evaluated. The expression of related indicators was quantified by RT-qPCR and immunoblotting analysis. In the results, rats in the AOPPs-RSA group exhibited higher levels of albuminuria, inflammatory cell infiltration, and tubular dilation, along with upregulation of oxidative stress, profibrotic and proinflammatory factors, and elevation of AOPP levels. Meanwhile, in the PRO20 group, these were significantly reduced. Moreover, the levels of almost all components of the renin-angiotensin system (RAS) and Nox4-dependent H2O2 production in urine and the kidneys were elevated by AOPPs-RSA, while they were suppressed by PRO20. Furthermore, AOPPs-RSA rats showed elevated kidney expression of the PRR and soluble PRR (sPRR) and increased renal excretion of sPRR. In summary, these findings suggest that PRR inhibition may serve as a protective mechanism against AOPP-induced nephropathy by inhibiting the intrarenal RAS and Nox4-derived H2O2 mechanisms.
Collapse
|
9
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
10
|
Fu Z, Zheng H, Kaewsaro K, Lambert J, Chen Y, Yang T. Mutagenesis of the cleavage site of (pro)renin receptor abrogates aldosterone-salt-induced hypertension and renal injury in mice. Am J Physiol Renal Physiol 2023; 324:F1-F11. [PMID: 36302140 PMCID: PMC9762973 DOI: 10.1152/ajprenal.00088.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
Soluble (pro)renin receptor (sPRR), the extracellular domain of (pro)renin receptor (PRR), is primarily generated by site-1 protease and furin. It has been reported that sPRR functions as an important regulator of intrarenal renin contributing to angiotensin II (ANG II)-induced hypertension. Relatively, less is known for the function of sPRR in ANG II-independent hypertension such as mineralocorticoid excess. In the present study, we used a novel mouse model with mutagenesis of the cleavage site in PRR (termed as PRRR279V/L282V or mutant) to examine the phenotype during aldosterone (Aldo)-salt treatment. The hypertensive response of mutant mice to Aldo-salt treatment was blunted in parallel with the attenuated response of plasma volume expansion and renal medullary α-epithelial Na+ channel expression. Moreover, Aldo-salt-induced hypertrophy in the heart and kidney as well as proteinuria were improved, accompanied by blunted polydipsia and polyuria. Together, these results represent strong evidence favoring endogenous sPRR as a mediator of Aldo-salt-induced hypertension and renal injury.NEW & NOTEWORTHY We used a novel mouse model with mutagenesis of the cleavage site of PRR to support soluble PRR as an essential mediator of aldosterone-salt-induced hypertension and also as a potential therapeutic target for patients with mineralocorticoid excess. We firstly report that soluble PRR-dependent pathway medicates the Na+-retaining action of aldosterone in the distal nephron, which opens up a new area for a better understanding of the molecular basis of renal handling of Na+ balance and blood pressure.
Collapse
Affiliation(s)
- Ziwei Fu
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Huaqing Zheng
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
- Renal Section, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Kannaree Kaewsaro
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Jacob Lambert
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Yanting Chen
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Tianxin Yang
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
- Renal Section, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
11
|
Yang T. Potential of soluble (pro)renin receptor in kidney disease: can it go beyond a biomarker? Am J Physiol Renal Physiol 2022; 323:F507-F514. [PMID: 36074917 PMCID: PMC9602801 DOI: 10.1152/ajprenal.00202.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022] Open
Abstract
(Pro)renin receptor (PRR), also termed ATPase H+-transporting accessory protein 2 (ATP6AP2), is a type I transmembrane receptor and is capable of binding and activating prorenin and renin. Apart from its association with the renin-angiotensin system, PRR has been implicated in diverse developmental, physiological, and pathophysiological processes. Within the kidney, PRR is predominantly expressed in the distal nephron, particularly the intercalated cells, and activation of renal PRR contributes to renal injury in various rodent models of chronic kidney disease. Moreover, recent evidence demonstrates that PRR is primarily cleaved by site-1 protease to produce 28-kDa soluble PRR (sPRR). sPRR seems to mediate most of the known pathophysiological functions of renal PRR through modulating the activity of the intrarenal renin-angiotensin system and provoking proinflammatory and profibrotic responses. Not only does sPRR activate renin, but it also directly binds and activates the angiotensin II type 1 receptor. This review summarizes recent advances in understanding the roles and mechanisms of sPRR in the context of renal pathophysiology.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
12
|
Ahmadi Badi S, Malek A, Paolini A, Rouhollahi Masoumi M, Seyedi SA, Amanzadeh A, Masotti A, Khatami S, Siadat SD. Downregulation of ACE, AGTR1, and ACE2 genes mediating SARS-CoV-2 pathogenesis by gut microbiota members and their postbiotics on Caco-2 cells. Microb Pathog 2022; 173:105798. [PMID: 36174833 PMCID: PMC9511898 DOI: 10.1016/j.micpath.2022.105798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Coronavirus disease-2019 (COVID-19) is a complex infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can cause also gastrointestinal symptoms. There are various factors that determine the host susceptibility and severity of infection, including the renin-angiotensin system, the immune response, and the gut microbiota. In this regard, we aimed to investigate the gene expression of ACE, AGTR1, ACE2, and TMPRSS2, which mediate SARS-CoV-2 pathogenesis by Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, and Bacteroides fragilis on Caco-2 cells. Also, the enrichment analysis considering the studied genes was analyzed on raw data from the microarray analysis of COVID-19 patients. MATERIALS AND METHODS Caco-2 cells were treated with live, heat-inactivated form and cell free supernatants of A. muciniphila, F. prausnitzii, B. thetaiotaomicron and B. fragilis for overnight. After RNA extraction and cDNA synthesis, the expression of studied genes was assessed by RT-qPCR. DNA methylation of studied genes was analyzed by Partek® Genomics Suite® software on the GSE174818 dataset. We used GSE164805 and GSE166552 datasets from COVID-19 patients to perform enrichment analysis by considering the mentioned genes via GEO2R, DAVID. Finally, the related microRNAs to GO terms concerned on the studied genes were identified by miRPath. RESULTS The downregulation of ACE, AGTR1, and ACE2 genes by A. muciniphila, F. prausnitzii, B. thetaiotaomicron, and B. fragilis in live, heat-inactivated, and cell-free supernatants was reported for the first time. These genes had hypomethylated DNA status in COVID-19 patients' raw data. The highest fold enrichment in upregulated RAS pathways and immune responses belonged to ACE, AGTR1, and ACE2 by considering the protein-protein interaction network. The common miRNAs targeting the studied genes were reported as miR-124-3p and miR-26b-5p. In combination with our experimental data and bioinformatic analysis, we showed the potential of A. muciniphila, F. prausnitzii, B. thetaiotaomicron, and B. fragilis and postbiotics to reduce ACE, ATR1, and ACE2 expression, which are essential genes that drive upregulated biological processes in COVID-19 patients. CONCLUSION Accordingly, due to the potential of studied bacteria on the alteration of ACE, AGTR1, ACE2 genes expression, understanding their correlation with demonstrated miRNAs expression could be valuable. These findings suggest the importance of considering targeted gut microbiota intervention when designing the possible therapeutic strategy for controlling the COVID-19.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Amin Malek
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Alessandro Paolini
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories, V.le di San Paolo 15, 00146, Rome, Italy.
| | - Mahya Rouhollahi Masoumi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyed Amirhesam Seyedi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Andrea Masotti
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories, V.le di San Paolo 15, 00146, Rome, Italy.
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Lara LS, Gonzalez AA, Hennrikus MT, Prieto MC. Hormone-Dependent Regulation of Renin and Effects on Prorenin Receptor Signaling in the Collecting Duct. Curr Hypertens Rev 2022; 18:91-100. [PMID: 35170417 PMCID: PMC10132771 DOI: 10.2174/1573402118666220216105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 01/27/2023]
Abstract
The production of renin by the principal cells of the collecting duct has widened our understanding of the regulation of intrarenal angiotensin II (Ang II) generation and blood pressure. In the collecting duct, Ang II increases the synthesis and secretion of renin by mechanisms involving the activation of Ang II type 1 receptor (AT1R) via stimulation of the PKCα, Ca2+, and cAMP/PKA/CREB pathways. Additionally, paracrine mediators, including vasopressin (AVP), prostaglandins, bradykinin (BK), and atrial natriuretic peptide (ANP), regulate renin in principal cells. During Ang II-dependent hypertension, despite plasma renin activity suppression, renin and prorenin receptor (RPR) are upregulated in the collecting duct and promote de novo formation of intratubular Ang II. Furthermore, activation of PRR by its natural agonists, prorenin and renin, may contribute to the stimulation of profibrotic factors independent of Ang II. Thus, the interactions of RAS components with paracrine hormones within the collecting duct enable tubular compartmentalization of the RAS to orchestrate complex mechanisms that increase intrarenal Ang II, Na+ reabsorption, and blood pressure.
Collapse
Affiliation(s)
- Lucienne S Lara
- Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matthew T Hennrikus
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Yang T. Soluble (Pro)Renin Receptor in Hypertension. Nephron Clin Pract 2022; 147:234-243. [PMID: 35871512 PMCID: PMC9867785 DOI: 10.1159/000525635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/27/2022] [Indexed: 01/26/2023] Open
Abstract
The (pro)renin receptor (PRR) was originally cloned as a specific single-transmembrane receptor for prorenin and renin and has now emerged as a multifunctional protein implicated in a wide variety of developmental and physiopathological processes. Activation of PRR in the kidney causes Na+ and water retention, contributing to elevation of blood pressure in response to various hypertensive stimuli. Part of the renal action of PRR depends on activation of intrarenal renin-angiotensin system. In recent years, accumulating evidence suggests that the prohypertensive action of renal PRR was largely mediated by production of the 28-kDa soluble (pro)renin receptor through protease-mediated cleavage of the extracellular domain of PRR. The generation of multiple isoforms of PRR due to the protease-mediated cleavage partially explains diversified actions of PRR. The current review will summarize recent advances in understanding the roles of sPPR in animal models of hypertension.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
16
|
Yang T. Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Curr Opin Nephrol Hypertens 2022; 31:351-357. [PMID: 35703290 PMCID: PMC9286065 DOI: 10.1097/mnh.0000000000000806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The (pro)renin receptor (PRR), also termed as ATPase H+ transporting accessory protein 2 (ATP6AP2), was originally cloned as a specific receptor for prorenin and renin [together called (pro)renin]. Given the wide tissue distribution of PRR, PRR was further postulated to act as a regulator of tissue renin. However, assigning a physiological role of PRR within the renin-angiotensin system (RAS) has been challenging largely due to its pleotropic functions in regulation of embryogenesis, autophagy, and H+ transport. The current review will summarize recent advances in understanding the roles of sPPR within the intrarenal RAS as well as those outside this local system. RECENT FINDINGS Site-1 protease (S1P) is a predominant source of sPPR at least in the kidney. So far most of the known physiological functions of PRR including renal handling of electrolytes and fluid and blood pressure are mediated by sPRR. In particular, sPRR serves as a positive regulator of collecting duct renin to activate the intrarenal RAS during water deprivation or angiotensin-II (AngII) infusion. However, PRR/sPRR can act in renin-independent manner under other circumstances. SUMMARY S1P-derived sPRR has emerged as a key regulator of kidney function and blood pressure and its relationship with the intrarenal RAS depends on the physiological context.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Xu C, Liu C, Xiong J, Yu J. Cardiovascular aspects of the (pro)renin receptor: Function and significance. FASEB J 2022; 36:e22237. [PMID: 35226776 DOI: 10.1096/fj.202101649rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs), including all types of disorders related to the heart or blood vessels, are the major public health problems and the leading causes of mortality globally. (Pro)renin receptor (PRR), a single transmembrane protein, is present in cardiomyocytes, vascular smooth muscle cells, and endothelial cells. PRR plays an essential role in cardiovascular homeostasis by regulating the renin-angiotensin system and several intracellular signals such as mitogen-activated protein kinase signaling and wnt/β-catenin signaling in various cardiovascular cells. This review discusses the current evidence for the pathophysiological roles of the cardiac and vascular PRR. Activation of PRR in cardiomyocytes may contribute to myocardial ischemia/reperfusion injury, cardiac hypertrophy, diabetic or alcoholic cardiomyopathy, salt-induced heart damage, and heart failure. Activation of PRR promotes vascular smooth muscle cell proliferation, endothelial cell dysfunction, neovascularization, and the progress of vascular diseases. In addition, phenotypes of animals transgenic for PRR and the hypertensive actions of PRR in the brain and kidney and the soluble PRR are also discussed. Targeting PRR in local tissues may offer benefits for patients with CVDs, including heart injury, atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chunju Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianhua Xiong
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Hu J, Tan Y, Chen Y, Mo S, Hekking B, Su J, Pu M, Lu A, Symons JD, Yang T. Role of (Pro)Renin Receptor in Cyclosporin A-Induced Nephropathy. Am J Physiol Renal Physiol 2022; 322:F437-F448. [PMID: 35073210 PMCID: PMC9662808 DOI: 10.1152/ajprenal.00332.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcineurin inhibitors (CNIs) such as cyclosporin A (CsA) have been widely used to improve graft survival following solid-organ transplantation. However, the clinical use of CsA is often limited by its nephrotoxicity. The present study tested the hypothesis that activation of (pro)renin receptor (PRR) contributes to CsA-induced nephropathy by activating the renin-angiotensin system (RAS). Renal injury in male Sprague-Dawley rats was induced by a low-salt diet combined with CsA as evidenced by elevated plasma creatinine and BUN levels, decreased creatinine clearance and induced renal inflammation, apoptosis as well as interstitial fibrosis, elevated urinary N-acetyl-β-D-glucosaminidase activity and urinary kidney injury molecular 1 content. Each index of renal injury was attenuated following a 2-wk treatment with a PRR decoy inhibitor PRO20. While CsA rats with kidney injury displayed increased renal sPRR abundance, plasma sPRR, renin activity, Ang II, and heightened urinary total prorenin/renin content; RAS activation was attenuated by PRO20. Exposure of cultured human renal proximal tubular HK-2 cells to CsA induced expression of fibronectin and sPRR production, but the fibrotic response was attenuated by PRO20 and siRNA-mediated PRR knockdown. These findings support the hypothesis that activation of PRR contributes to CsA-induced nephropathy by activating the RAS in rats. Of importance, we provide strong proof of concept that targeting PRR offers a novel therapeutic strategy to limit nephotoxic effects of immunosuppressant drugs.
Collapse
Affiliation(s)
- Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yandan Tan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanting Chen
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Brittin Hekking
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
19
|
Advanced Oxidation Protein Product Promotes Oxidative Accentuation in Renal Epithelial Cells via the Soluble (Pro)renin Receptor-Mediated Intrarenal Renin-Angiotensin System and Nox4-H 2O 2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5710440. [PMID: 34873430 PMCID: PMC8642821 DOI: 10.1155/2021/5710440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022]
Abstract
Full-length (pro)renin receptor (fPRR), a research hotspot of the renin-angiotensin system (RAS), plays a serious role in kidney injury. However, the relationship between fPRR and advanced oxidation protein product (AOPP) remains largely unexplored. This study was aimed at exploring the effect of fPRR, especially its 28 kDa soluble form called soluble PRR (sPRR), in AOPP-induced oxidative stress in HK-2 cells, a renal proximal tubular epithelial cell line. Incubation of HK-2 cells with 100 μg/ml AOPP resulted in significant upregulation of fPRR expression and caused an approximately fourfold increase in medium sPRR secretion. However, unmodified albumin did not demonstrate the same effects under the same concentration. Treatment of HK-2 cells with the site-1 protease (S1P) inhibitor PF429242 (40 μM) or S1P siRNA significantly inhibited AOPP-induced sPRR generation. fPRR decoy inhibitor PRO20 and PF429242 treatment for 24 h remarkably attenuated the AOPP-induced upregulation of RAS components. Furthermore, PF429242 significantly reduced the AOPP-stimulated expression of NADPH oxidase 4 (Nox4) and H2O2 expression. The use of a small recombinant protein, named sPRR-His, reversed these alterations. In conclusion, these results provided the first demonstration of AOPP-promoted activation of sPRR. Increased renal proximal tubule Nox4-derived H2O2 contributed to the aggravation of oxidative stress. Targeting S1P-derived sPRR is a promising intervention strategy for chronic kidney disease.
Collapse
|
20
|
Xu C, Chen Y, Wang F, Xie S, Yang T. Soluble (Pro)Renin Receptor as a Negative Regulator of NCC (Na +-Cl - Cotransporter) Activity. Hypertension 2021; 78:1027-1038. [PMID: 34495675 PMCID: PMC9212213 DOI: 10.1161/hypertensionaha.121.16981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chuanming Xu
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, the United States
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yanting Chen
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, the United States
| | - Fei Wang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, the United States
| | - Shiying Xie
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, the United States
| |
Collapse
|
21
|
Qin M, Xu C, Yu J. The Soluble (Pro)Renin Receptor in Health and Diseases: Foe or Friend? J Pharmacol Exp Ther 2021; 378:251-261. [PMID: 34158404 DOI: 10.1124/jpet.121.000576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
The (pro)renin receptor (PRR) is a single-transmembrane protein that regulates the local renin-angiotensin system and participates in various intracellular signaling pathways, thus exhibiting a significant physiopathologic relevance in cellular homeostasis. A soluble form of PRR (sPRR) is generated through protease-mediated cleavage of the full-length PRR and secreted into extracellular spaces. Accumulating evidence indicates pivotal biologic functions of sPRR in various physiopathological processes. sPRR may be a novel biomarker for multiple diseases. SIGNIFICANCE STATEMENT: Circulating sPRR concentrations are elevated in patients and animals under various physiopathological conditions. This minireview highlights recent advances in sPRR functions in health and pathophysiological conditions. Results suggest that sPRR may be a novel biomarker for multiple diseases, but further studies are needed to determine the diagnostic value of sPRR.
Collapse
Affiliation(s)
- Manman Qin
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Jun Yu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| |
Collapse
|
22
|
High glucose induces trafficking of prorenin receptor and stimulates profibrotic factors in the collecting duct. Sci Rep 2021; 11:13815. [PMID: 34226610 PMCID: PMC8257763 DOI: 10.1038/s41598-021-93296-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence indicates that prorenin receptor (PRR) is upregulated in collecting duct (CD) of diabetic kidney. Prorenin is secreted by the principal CD cells, and is the natural ligand of the PRR. PRR activation stimulates fibrotic factors, including fibronectin, collagen, and transforming growth factor-β (TGF-β) contributing to tubular fibrosis. However, whether high glucose (HG) contributes to this effect is unknown. We tested the hypothesis that HG increases the abundance of PRR at the plasma membrane of the CD cells, thus contributing to the stimulation of downstream fibrotic factors, including TGF-β, collagen I, and fibronectin. We used streptozotocin (STZ) male Sprague–Dawley rats to induce hyperglycemia for 7 days. At the end of the study, STZ-induced rats showed increased prorenin, renin, and angiotensin (Ang) II in the renal inner medulla and urine, along with augmented downstream fibrotic factors TGF-β, collagen I, and fibronectin. STZ rats showed upregulation of PRR in the renal medulla and preferential distribution of PRR on the apical aspect of the CD cells. Cultured CD M-1 cells treated with HG (25 mM for 1 h) showed increased PRR in plasma membrane fractions compared to cells treated with normal glucose (5 mM). Increased apical PRR was accompanied by upregulation of TGF-β, collagen I, and fibronectin, while PRR knockdown prevented these effects. Fluorescence resonance energy transfer experiments in M-1 cells demonstrated augmented prorenin activity during HG conditions. The data indicate HG stimulates profibrotic factors by inducing PRR translocation to the plasma membrane in CD cells, which in perspective, might be a novel mechanism underlying the development of tubulointerstitial fibrosis in diabetes mellitus.
Collapse
|
23
|
Wang F, Chen Y, Zou CJ, Luo R, Yang T. Mutagenesis of the Cleavage Site of Pro Renin Receptor Abrogates Angiotensin II-Induced Hypertension in Mice. Hypertension 2021; 78:115-127. [PMID: 34024121 PMCID: PMC9212214 DOI: 10.1161/hypertensionaha.121.16770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chang-jiang Zou
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
24
|
Ramkumar N, Stuart D, Peterson CS, Hu C, Wheatley W, Cho JM, Symons JD, Kohan DE. Loss of Soluble (Pro)renin Receptor Attenuates Angiotensin-II Induced Hypertension and Renal Injury. Circ Res 2021; 129:50-62. [PMID: 33890822 PMCID: PMC8225587 DOI: 10.1161/circresaha.120.317532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - Caitlin S. Peterson
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - Chunyan Hu
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - William Wheatley
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - Jae Min Cho
- Nutrition and Integrative Physiology, University of Utah Health,Salt Lake City, UT
| | - J David Symons
- Nutrition and Integrative Physiology, University of Utah Health,Salt Lake City, UT
- Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| |
Collapse
|
25
|
Wang Y, Wang Y, Xue K, Wang H, Zhou J, Gao F, Li C, Yang T, Fang H. (Pro)renin receptor antagonist PRO20 attenuates nephrectomy-induced nephropathy in rats via inhibition of intrarenal RAS and Wnt/β-catenin signaling. Physiol Rep 2021; 9:e14881. [PMID: 34057312 PMCID: PMC8165733 DOI: 10.14814/phy2.14881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction (Pro)renin receptor has emerged as a new member of the renin‐angiotensin system implicated in the pathogenesis of chronic kidney disease (CKD). Herein we report characterization of the therapeutic potential of (pro)renin receptor (PRR) antagonist PRO20 in 5/6 nephrectomy (5/6Nx) rats. Methods Male Wistar rats underwent 5/6Nx followed by treatment with vehicle or received daily injections of a PRR inhibitor PRO20 (700 μg/kg) via the 3 s.c. Sham group served as a control. Results As compared with the sham control, the 5/6Nx rats exhibited significant increases in proteinuria, glomerulosclerosis, tubular injury, and interstitial inflammation in the remnant kidneys. Treatment with PRO20 significantly attenuated these abnormalities, as evidenced by reduced expression of fibronectin, α‐SMA, collagen 1, TGF‐β1, IL‐6, IL‐8, IL‐1β, MCP‐1 and increased expression of E‐cadherin. Increased urinary/renal levels of renin activity, angiotensinogen (AGT), and Angiotensin II (Ang II) by 5/6Nx, which were all ameliorated by PRO20. Renal PRR, the secreted proteolytic fragment of PRR (sPRR) in renal and urinary, were all elevated in 5/6Nx rats. Moreover, our results revealed that renal Wnt3A and β‐catenin expression were upregulated during 5/6Nx, which were all attenuated by PRO20. Conclusions Overall we conclude that in vivo antagonism of PRR with PRO20 will improve 5/6Nx‐induced CKD mainly through inhibition of intrarenal RAS and Wnt/β‐catenin signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yurong Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Kai Xue
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Huaijie Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingjing Zhou
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chengde Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
26
|
Morosin SK, Lochrin AJ, Delforce SJ, Lumbers ER, Pringle KG. The (pro)renin receptor ((P)RR) and soluble (pro)renin receptor (s(P)RR) in pregnancy. Placenta 2021; 116:43-50. [PMID: 34020806 DOI: 10.1016/j.placenta.2021.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022]
Abstract
The (pro)renin receptor ((P)RR) is a multi-functional protein that can be proteolytically cleaved and released in a soluble form (s(P)RR). Recently, the (P)RR and s(P)RR have become of interest in pregnancy and its associated pathologies. This is because the (P)RR not only activates tissue renin angiotensin systems, but it is also an integral component of vacuolar-ATPase, activates the wingless/integrated (Wnt)/β-catenin and extracellular signal regulated kinases 1 and 2/mitogen-activated protein kinase signalling pathways, and stabilises the β subunit of pyruvate dehydrogenase. Additionally, s(P)RR is detected in plasma and urine, and maternal plasma levels are elevated in pregnancy complications including fetal growth restriction, preeclampsia and gestational diabetes mellitus. Therefore, s(P)RR has potential as a biomarker for these pregnancy pathologies. Preliminary functional findings suggest that s(P)RR may be important for regulating fluid balance, inflammation and blood pressure, all of which contribute to a successful pregnancy. The (P)RR and s(P)RR regulate pathways that are known to be important in maintaining pregnancy, however their role in the physiological context of pregnancy is poorly characterised. This review summarises the known and potential functions of the (P)RR and s(P)RR in pregnancy, and how their dysregulation may contribute to pregnancy complications. It also highlights the need for further research into the source and function of s(P)RR in pregnancy. Soluble (P)RR levels could be indicative of placental, kidney or liver dysfunction and therefore be a novel clinical biomarker, or therapeutic target, to improve the detection and treatment of pregnancy pathologies.
Collapse
Affiliation(s)
- Saije K Morosin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia
| | - Alyssa J Lochrin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia.
| |
Collapse
|
27
|
Chen Y, Xu C, Hu J, Deng M, Qiu Q, Mo S, Du Y, Yang T. Diuretic Action of Apelin-13 Mediated by Inhibiting cAMP/PKA/sPRR Pathway. Front Physiol 2021; 12:642274. [PMID: 33868005 PMCID: PMC8044521 DOI: 10.3389/fphys.2021.642274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence is showing that apelin plays an important role in regulating salt and water balance by counteracting the antidiuretic action of vasopressin (AVP). However, the underlying mechanism remains unknown. Here, we hypothesized that (pro) renin receptor (PRR)/soluble prorenin receptor (sPRR) might mediate the diuretic action of apelin in the distal nephron. During water deprivation (WD), the urine concentrating capability was impaired by an apelin peptide, apelin-13, accompanied by the suppression of the protein expression of aquaporin 2 (AQP2), NKCC2, PRR/sPRR, renin and nuclear β-catenin levels in the kidney. The upregulated expression of AQP2 or PRR/sPRR both induced by AVP and 8-Br-cAMP was blocked by apelin-13, PKA inhibitor (H89), or β-catenin inhibitor (ICG001). Interestingly, the blockage of apelin-13 on AVP-induced AQP2 protein expression was reversed by exogenous sPRR. Together, the present study has defined the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/sPRR pathway in the CD as the molecular target of the diuretic action of apelin.
Collapse
Affiliation(s)
- Yanting Chen
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Chuanming Xu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China.,Center for Translational Medicine, Jiangxi University of Traditional Chinese, Nanchang, China
| | - Jiajia Hu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Mokan Deng
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Qixiang Qiu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Mo
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Yanhua Du
- Department of Pharmacology, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
28
|
Fu Z, Wang F, Liu X, Hu J, Su J, Lu X, Lu A, Cho JM, Symons JD, Zou CJ, Yang T. Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin Sci (Lond) 2021; 135:793-810. [PMID: 33625485 PMCID: PMC9215112 DOI: 10.1042/cs20201047] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Until now, renin-angiotensin system (RAS) hyperactivity was largely thought to result from angiotensin II (Ang II)-dependent stimulation of the Ang II type 1 receptor (AT1R). Here we assessed the role of soluble (pro)renin receptor (sPRR), a product of site-1 protease-mediated cleavage of (pro)renin receptor (PRR), as a possible ligand of the AT1R in mediating: (i) endothelial cell dysfunction in vitro and (ii) arterial dysfunction in mice with diet-induced obesity. Primary human umbilical vein endothelial cells (HUVECs) treated with a recombinant histidine-tagged sPRR (sPRR-His) exhibited IκBα degradation concurrent with NF-κB p65 activation. These responses were secondary to sPRR-His evoked elevations in Nox4-derived H2O2 production that resulted in inflammation, apoptosis and reduced NO production. Each of these sPRR-His-evoked responses was attenuated by AT1R inhibition using Losartan (Los) but not ACE inhibition using captopril (Cap). Further mechanistic exploration revealed that sPRR-His activated AT1R downstream Gq signaling pathway. Immunoprecipitation coupled with autoradiography experiments and radioactive ligand competitive binding assays indicate sPRR directly interacts with AT1R via Lysine199 and Asparagine295. Important translational relevance was provided by findings from obese C57/BL6 mice that sPRR-His evoked endothelial dysfunction was sensitive to Los. Besides, sPRR-His elevated blood pressure in obese C57/BL6 mice, an effect that was reversed by concurrent treatment with Los but not Cap. Collectively, we provide solid evidence that the AT1R mediates the functions of sPRR during obesity-related hypertension. Inhibiting sPRR signaling should be considered further as a potential therapeutic intervention in the treatment and prevention of cardiovascular disorders involving elevated blood pressure.
Collapse
Affiliation(s)
- Ziwei Fu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jae Min Cho
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program; University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program; University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
29
|
Feng Y, Peng K, Luo R, Wang F, Yang T. Site-1 Protease-Derived Soluble (Pro)Renin Receptor Contributes to Angiotensin II-Induced Hypertension in Mice. Hypertension 2021; 77:405-416. [PMID: 33280408 PMCID: PMC7803453 DOI: 10.1161/hypertensionaha.120.15100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of PRR ([pro]renin receptor) contributes to enhancement of intrarenal RAS and renal medullary α-ENaC and thus elevated blood pressure during Ang II (angiotensin II) infusion. The goal of the present study was to test whether such action of PRR was mediated by sPRR (soluble PRR), generated by S1P (site-1 protease), a newly identified PRR cleavage protease. F1 B6129SF1/J mice were infused for 6 days with control or Ang II at 300 ng/kg per day alone or in combination with S1P inhibitor PF-429242 (PF), and blood pressure was monitored by radiotelemetry. S1P inhibition significantly attenuated Ang II-induced hypertension accompanied with suppressed urinary and renal medullary renin levels and expression of renal medullary but not renal cortical α-ENaC expression. The effects of S1P inhibition were all reversed by supplement with histidine-tagged sPRR termed as sPRR-His. Ussing chamber technique was performed to determine amiloride-sensitive short-circuit current, an index of ENaC activity in confluent mouse cortical collecting duct cell line cells exposed for 24 hours to Ang II, Ang II + PF, or Ang II + PF + sPRR-His. Ang II-induced ENaC activity was blocked by PF, which was reversed by sPRR-His. Together, these results support that S1P-derived sPRR mediates Ang II-induced hypertension through enhancement of intrarenal renin level and activation of ENaC.
Collapse
Affiliation(s)
- Ye Feng
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Kexin Peng
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Renfei Luo
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Fei Wang
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Tianxin Yang
- From the Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| |
Collapse
|
30
|
Wang F, Sun Y, Luo R, Lu X, Yang B, Yang T. COX-2-independent activation of renal (pro)renin receptor contributes to DOCA-salt hypertension in rats. Am J Physiol Renal Physiol 2020; 319:F647-F653. [PMID: 32799674 PMCID: PMC7642891 DOI: 10.1152/ajprenal.00112.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
It has been shown that cyclooxygenase (COX)-2-dependent activation of renal (pro)renin receptor (PRR) contributes to angiotensin II (ANG II)-induced hypertension. However, less is known about the involvement of this mechanism in ANG II-independent hypertension. The goal of the present study was to test whether or not COX-2-dependent upregulation of PRR serves as a universal mechanism contributing to ANG II-dependent and -independent hypertension. Here, we examined the association between renal COX-2 and PRR during deoxycorticosterone acetate (DOCA)-salt hypertension in rats. By immunoblot analysis and immunofluorescence, renal protein expression of PRR was remarkably upregulated by DOCA-salt treatment. Surprisingly, this upregulation of renal PRR expression was unaffected by a COX-2 inhibitor, celecoxib. To address the role of renal PRR to the pathogenesis of DOCA-salt hypertension, a decoy PRR inhibitor, PRO20, was infused to the renal medulla of uninephrectomized Sprague-Dawley rats for 14 days. Radiotelemetry demonstrated effective attenuation of DOCA-salt hypertension by intramedullary infusion of a PRR inhibitor, PRO20. In parallel, DOCA-salt-induced hypertrophy in the heart and kidney as well as proteinuria were improved, accompanied with blunted polydipsia and polyuria. In contrast, intravenous infusion of PRO20 was less effective in attenuating DOCA-salt hypertension and cardiorenal injury. Together, these results suggest that COX-2-independent activation of renal PRR contributes to DOCA-salt hypertension.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Ying Sun
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
31
|
Chen Y, Xu C. The interaction partners of (pro)renin receptor in the distal nephron. FASEB J 2020; 34:14136-14149. [PMID: 32975331 DOI: 10.1096/fj.202001711r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/11/2022]
Abstract
The (pro)renin receptor (PRR), a key regulator of intrarenal renin-angiotensin system (RAS), is predominantly presented in podocytes, proximal tubules, distal convoluted tubules, and the apical membrane of collecting duct A-type intercalated cells, and plays a crucial role in hypertension, cardiovascular disease, kidney disease, and fluid homeostasis. In addition to its well-known renin-regulatory function, increasing evidence suggests PRR can also act in a variety of intracellular signaling cascades independently of RAS in the renal medulla, including Wnt/β-catenin signaling, cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) signaling, and the apelinergic system, and work as a component of the vacuolar H+ -ATPase. PRR and these pathways regulate the expression/activity of each other that controlling blood pressure and renal functions. In this review, we highlight recent findings regarding the antagonistic interaction between PRR and ELABELA/apelin, the mutually stimulatory relationship between PRR and COX-2/PGE2 or Wnt/β-catenin signaling in the renal medulla, and their involvement in the regulation of intrarenal RAS thereby control blood pressure, renal injury, and urine concentrating ability in health and patho-physiological conditions. We also highlight the latest progress in the involvement of PRR for the vacuolar H+ -ATPase activity.
Collapse
Affiliation(s)
- Yanting Chen
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China.,Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Chuanming Xu
- Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Center for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
32
|
Morosin SK, Delforce SJ, Lumbers ER, Pringle KG. Cleavage of the soluble (pro)renin receptor (sATP6AP2) in the placenta. Placenta 2020; 101:49-56. [PMID: 32920451 DOI: 10.1016/j.placenta.2020.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The (pro)renin receptor (ATP6AP2) is cleaved and released as soluble ATP6AP2 (sATP6AP2). The sATP6AP2 is detected in plasma and urine and is elevated in women with gestational diabetes and preeclampsia. The source and cleavage pathway of sATP6AP2 in pregnancy is unknown. The syncytiotrophoblast is the major placental secretory layer and is in direct contact with maternal blood. Both FURIN and Site 1 protease (MBTPS1) cleave sATP6AP2 in non-placental cells. We postulated that ATP6AP2 was cleaved by FURIN and/or MBTPS1 and that sATP6AP2 is secreted by the placental syncytiotrophoblast. METHODS Term primary trophoblast cells were transfected with FURIN siRNA, negative control siRNA or vehicle. In a separate experiment, primary trophoblasts were treated with a pro-protein convertase inhibitor (DEC-RVKR-CMK), an MBTPS1 inhibitor (PF 429242) or vehicle. Trophoblasts were left to spontaneously syncytialise before cells and supernatants were collected and intracellular and extracellular sATP6AP2 levels analysed by immunoblot. RESULTS sATP6AP2 is secreted by placental trophoblasts. Levels of intra and extra-cellular sATP6AP2 decrease with syncytialisation (P = 0.01 and P = 0.02, respectively), as do FURIN mRNA (P = 0.0003) and protein (P = 0.0007). FURIN siRNA decreased FURIN mRNA and protein levels (both P < 0.0001). Neither FURIN siRNA or PF 429242 affected sATP6AP2 levels. DEC-RVKR-CMK significantly decreased extracellular sATP6AP2 protein levels (P = 0.02). DISCUSSION Soluble ATP6AP2 is secreted by placental trophoblasts and levels decrease with syncytialisation. DEC-RVKR-CMK, a broad inhibitor of pro-protein convertases reduced extracellular sATP6AP2 levels, but FURIN siRNA and MBTPS1 inhibition had no effect. Hence, a convertase other than FURIN or MBTPS1 is most likely responsible for placental sATP6AP2 secretion.
Collapse
Affiliation(s)
- Saije K Morosin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia.
| |
Collapse
|
33
|
Endo M, Ohba K, Sato S, Yokota Y, Takahashi K. Increased soluble (pro)renin receptor protein by autophagy inhibition in cultured cancer cells. Genes Cells 2020; 25:483-497. [PMID: 32314441 DOI: 10.1111/gtc.12776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/17/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022]
Abstract
(Pro)renin receptor ((P)RR) regulates the renin-angiotensin system and functions as an essential accessory subunit of vacuolar H+ -ATPase. There is accumulating evidence that shows close relationship between (P)RR and autophagy. Soluble (P)RR consisting of the extracellular domain of (P)RR is generated from (P)RR by proteolytic enzymes. The aim of the present study was to clarify the influence of autophagy inhibition on soluble (P)RR expression in cancer cells. Autophagy was inhibited by treatment of bafilomycin A1 or chloroquine in MCF-7 and A549 cells for 72 hr. Western blot analysis showed that protein levels of soluble (P)RR were markedly elevated by autophagy inhibition, whereas no noticeable increases were observed in full-length (P)RR. Secretion of soluble (P)RR into the medium was increased dose-dependently by bafilomycin A1 or chloroquine. Autophagy inhibition was confirmed by enhanced accumulation of autophagy-related proteins, LC3, p62 and LAMP1 in intracellular vesicles. Increased amount of soluble (P)RR by autophagy inhibition was decreased by site-1 protease inhibitor, whereas no noticeable increase in site-1 protease immunoreactivity was observed in cells with autophagy inhibition by immunocytochemistry. These findings suggest that soluble (P)RR protein accumulates by autophagy inhibition, possibly because of the reduced degradation of soluble (P)RR in the intracellular vesicles during autophagy inhibition.
Collapse
Affiliation(s)
- Moe Endo
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Ohba
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigemitsu Sato
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yurina Yokota
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
34
|
Wang F, Luo R, Zou CJ, Xie S, Peng K, Zhao L, Yang KT, Xu C, Yang T. Soluble (pro)renin receptor treats metabolic syndrome in mice with diet-induced obesity via interaction with PPARγ. JCI Insight 2020; 5:128061. [PMID: 32271168 PMCID: PMC7205274 DOI: 10.1172/jci.insight.128061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
The therapies available for management of obesity and associated conditions are limited, because they are often directed toward an individual component of metabolic syndrome and are associated with adverse effects. Here, we report the multifaceted therapeutic potential of histidine-tagged recombinant soluble (pro)renin receptor (sPRR), termed sPRR-His, in a mouse model of diet-induced obesity (DIO). In the DIO model, 2-week administration of sPRR-His lowered body weight and remarkably improved multiple metabolic parameters in the absence of fluid retention. Conversely, inhibition of endogenous sPRR production by PF429242 induced diabetes and insulin resistance, both of which were reversed by the sPRR-His supplement. At the cellular level, sPRR-His enhanced insulin-induced increases in glucose uptake via upregulation of phosphorylated AKT and protein abundance of glucose transporter 4. Promoter and gene expression analysis revealed PRR as a direct target gene of PPARγ. Adipocyte-specific PPARγ deletion induced severe diabetes and insulin resistance associated with reduced adipose PRR expression and circulating sPRR. The sPRR-His supplement in the null mice nearly normalized blood glucose and insulin levels. Additionally, sPRR-His treatment suppressed DIO-induced renal sodium-glucose cotransporter-2 (SGLT2) expression. Overall, sPRR-His exhibits a therapeutic potential in management of metabolic syndrome via interaction with PPARγ.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chang-Jiang Zou
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Long Zhao
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kevin T. Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Wang F, Luo R, Peng K, Liu X, Xu C, Lu X, Soodvilai S, Yang T. Soluble (pro)renin receptor regulation of ENaC involved in aldosterone signaling in cultured collecting duct cells. Am J Physiol Renal Physiol 2020; 318:F817-F825. [PMID: 31841392 PMCID: PMC7099505 DOI: 10.1152/ajprenal.00436.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that activation of (pro)renin receptor (PRR) induces epithelial Na+ channel (ENaC) activity in cultured collecting duct cells. Here, we examined the role of soluble PRR (sPRR), the cleavage product of PRR in ENaC regulation, and further tested its relevance to aldosterone signaling. In cultured mpkCCD cells, administration of recombinant histidine-tagged sPRR (sPRR-His) at 10 nM within minutes induced a significant and transient increase in the amiloride-sensitive short-circuit current as assessed using the Ussing chamber technique. The acute ENaC activation was blocked by the NADPH oxidase 1/4 inhibitor GKT137892 and siRNA against Nox4 but not the β-catenin inhibitor ICG-001. In primary rat inner medullary collecting duct cells, administration of sPRR-His at 10 nM for 24 h induced protein expression of the α-subunit but not β- or γ-subunits of ENaC, in parallel with upregulation of mRNA expression as well as promoter activity of the α-subunit. The transcriptional activation of α-ENaC was dependent on β-catenin signaling. Consistent results obtained by epithelial volt ohmmeter measurement of equivalent current and Ussing chamber determination of short-circuit current showed that aldosterone-induced transepithelial Na+ transport was inhibited by the PRR decoy inhibitor PRO20 and PF-429242, an inhibitor of sPRR-generating enzyme site-1 protease, and the response was restored by the addition of sPRR-His. Medium sPRR was elevated by aldosterone and inhibited by PF-429242. Taken together, these results demonstrate that sPRR induces two phases of ENaC activation via distinct mechanisms and functions as a mediator of the natriferic action of aldosterone.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
36
|
Abstract
The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin-angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid-base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.
Collapse
|
37
|
Wang F, Xu C, Luo R, Peng K, Ramkumar N, Xie S, Lu X, Zhao L, Zuo CJ, Kohan DE, Yang T. Site-1 protease-derived soluble (pro)renin receptor targets vasopressin receptor 2 to enhance urine concentrating capability. JCI Insight 2019; 4:124174. [PMID: 30944256 PMCID: PMC6483716 DOI: 10.1172/jci.insight.124174] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
The antidiuretic hormone vasopressin (AVP), acting through its type 2 receptor (V2R) in the collecting duct (CD), critically controls urine concentrating capability. Here, we report that site-1 protease-derived (S1P-derived) soluble (pro)renin receptor (sPRR) participates in regulation of fluid homeostasis via targeting V2R. In cultured inner medullary collecting duct (IMCD) cells, AVP-induced V2R expression was blunted by a PRR antagonist, PRO20; a PRR-neutralizing antibody; or a S1P inhibitor, PF-429242. In parallel, sPRR release was increased by AVP and reduced by PF-429242. Administration of histidine-tagged sPRR, sPRR-His, stimulated V2R expression and also reversed the inhibitory effect of PF-429242 on the expression induced by AVP. PF-429242 treatment in C57/BL6 mice impaired urine concentrating capability, which was rescued by sPRR-His. This observation was recapitulated in mice with renal tubule-specific deletion of S1P. During the pharmacological or genetic manipulation of S1P alone or in combination with sPRR-His, the changes in urine concentration were paralleled with renal expression of V2R and aquaporin-2 (AQP2). Together, these results support that S1P-derived sPRR exerts a key role in determining renal V2R expression and, thus, urine concentrating capability.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Nirupama Ramkumar
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Long Zhao
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chang-Jiang Zuo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Donald E. Kohan
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension and Renal Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Enzymatic sources and physio-pathological functions of soluble (pro)renin receptor. Curr Opin Nephrol Hypertens 2018; 27:77-82. [PMID: 29346132 DOI: 10.1097/mnh.0000000000000396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW (Pro)renin receptor (PRR) belongs to type I transmembrane receptor family and binds both prorenin and renin, representing a potential regulator of the activity of the renin-angiotensin system. Soluble form of PRR (sPRR) is generated by intracellular protease-mediated cleavage of full-length PRR. The purpose of this review is to highlight recent advances in understanding the mechanisms of action and production of sPRR. RECENT FINDINGS It has recently been demonstrated that site-1-protease (S1P) plays a dominant role in the generation of sPRR. New evidence is also emerging to support a biological function of sPRR in the physiological regulation of fluid homeostasis as well as pathogenesis of chronic kidney disease. SUMMARY sPRR is a 28 kDa product of PRR cleavage via S1P-mediated protease activity. Not only does sPRR regulate renal tubular water transport, but it also mediates pathogenic responses to renal cellular injury. sPRR is likely involved in a wide range of physio-pathological processes.
Collapse
|
39
|
Yang KT, Yang T, Symons JD. Soluble (pro)renin receptor as a potential therapy for diabetes insipidus. Am J Physiol Renal Physiol 2018; 315:F1416-F1421. [PMID: 30019932 DOI: 10.1152/ajprenal.00266.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antidiuretic hormone vasopressin (VP) is produced by the hypothalamus and is stored and secreted from the posterior pituitary. VP acts via VP type 2 receptors (V2Rs) on the basolateral membrane of principal cells of the collecting duct (CD) to regulate fluid permeability. The VP-evoked endocrine pathway is essential in determining urine concentrating capability. For example, a defect in any component of the VP signaling pathway can result in polyuria, polydipsia, and hypotonic urine, collectively termed diabetes insipidus (DI). A lack of VP production precipitates central diabetes insipidus (CDI), which can be managed effectively by VP supplementation. A majority of cases of nephrogenic diabetes insipidus (NDI) result from V2R mutations that impair receptor sensitivity. No specific therapy is currently available for management of NDI. Evidence is evolving that (pro)renin receptor (PRR), a newly identified member of the renin-angiotensin system, is capable of regulating VP production and action. As such, PRR should be considered strongly as a therapeutic target for treating CDI and NDI. The current review will summarize recent advances in understanding the physiology of renal and central PRR as it relates to the two types of DI.
Collapse
Affiliation(s)
- Kevin T Yang
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,College of Health, University of Utah , Salt Lake City, Utah.,Molecular Medicine Program, University of Utah , Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Research Service, Veterans Affairs Medical Center , Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine , Guangzhou , China
| | - J David Symons
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,College of Health, University of Utah , Salt Lake City, Utah.,Molecular Medicine Program, University of Utah , Salt Lake City, Utah
| |
Collapse
|
40
|
Fang H, Deng M, Zhang L, Lu A, Su J, Xu C, Zhou L, Wang L, Ou JS, Wang W, Yang T. Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. Am J Physiol Renal Physiol 2018; 315:F1759-F1768. [PMID: 29846109 DOI: 10.1152/ajprenal.00071.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteinuria is not only a common feature of chronic kidney diseases (CKD) but also an independent risk factor promoting CKD progression to end-stage renal failure. However, the underlying molecular mechanisms for protein overload-induced renal injury remain elusive. The present study examined the role of (pro)renin receptor (PRR) in pathogenesis of albumin overload (AO)-induced nephropathy and activation of the intrarenal renin-angiotensin system (RAS) in rats. Wistar rats underwent unilateral nephrectomy and were treated for 7 wk with vehicle, bovine serum albumin (5 g·kg-1·day-1 via a single ip injection), alone or in conjunction with the PRR decoy inhibitor PRO20 (500 μg·kg-1·day-1 via 3 sc injections). The AO rat model exhibited severe proteinuria, tubular necrosis, and interstitial fibrosis, oxidative stress, and inflammation, accompanied by elevated urinary N-acetyl-β-d-glucosaminidase activity and urinary β2-microglobulin secretion, all of which were significantly attenuated by PRO20. Urinary and renal levels of renin, angiotensinogen, and ANG II were elevated by AO and suppressed by PRO20, contrasting to largely unaltered plasma levels of the RAS parameters. The AO model also showed increased renal expression of full-length PRR and soluble PRR (sPRR) and urinary excretion of sPRR. Taken together, we conclude that PRR antagonism with PRO20 alleviates AO-induced nephropathy via inhibition of intrarenal RAS.
Collapse
Affiliation(s)
- Hui Fang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Mokan Deng
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jiahui Su
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Lei Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|