1
|
Kulkarni K, Hussain T. Megalin: A Sidekick or Nemesis of the Kidney? J Am Soc Nephrol 2025; 36:293-300. [PMID: 39607686 PMCID: PMC11801750 DOI: 10.1681/asn.0000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Megalin is an endocytic receptor in the proximal tubules that reabsorbs filtered proteins in the kidneys. Recycling of megalin after endocytosis and its expression on the apical plasma membrane of the proximal tubule are critical for its function. The expression of megalin in the kidney undergoes dynamic changes under physiologic and pathophysiologic conditions. Receptors and various effector signaling components regulate megalin expression and, potentially, function. Genetic manipulation and rare mutations in megalin suggest that a lack of or deficiency in megalin expression/function promotes tubular proteinuria and albuminuria. However, the role of megalin in kidney diseases associated with obesity, diabetes, hypertension, and nephrotoxicity remains unclear. To address these questions, animal and human studies have indicated megalin as a protective, injurious, and potentially urinary marker of nephropathy. This article reviews the literature on the regulation of megalin expression and the role of megalin in the pathophysiology of the kidney under experimental and clinical conditions. Moreover, this review articulates the need for studies that can clarify whether megalin can serve as a therapeutic target, in one way or the other, to treat kidney disease.
Collapse
Affiliation(s)
- Kalyani Kulkarni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | | |
Collapse
|
2
|
Kurosaki Y, Matsumoto T, Uematsu T, Kawakami F, Kawashima R, Tamaki S, Imai M, Ichikawa T, Ishii N, Kitasato H, Hanaki H, Kubo M. SARS-CoV-2 infection causes a decline in renal megalin expression and affects vitamin D metabolism in the kidney of K18-hACE2 mice. Sci Rep 2024; 14:24313. [PMID: 39414885 PMCID: PMC11484755 DOI: 10.1038/s41598-024-75338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) often experience acute kidney injury, linked to disease severity or mortality, along with renal tubular dysfunction and megalin loss in proximal tubules. Megalin plays a crucial role in kidney vitamin D metabolism. However, the impact of megalin loss on vitamin D metabolism during COVID-19 is unclear. This study investigated whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection reduces megalin expression in proximal tubules and its subsequent effect on vitamin D metabolism in mice expressing human angiotensin converting enzyme 2 (K18-hACE2 mice). Histological and immunohistochemical staining analyses revealed glomerular and capillary congestion, and elevated renal neutrophil gelatinase-associated lipocalin levels, indicative of acute kidney injury in K18-hACE2 mice. In SARS-CoV-2-infected mice, immunohistochemical staining revealed suppressed megalin protein levels. Decreased vitamin D receptor (VDR) localization in the nucleus and increased mRNA expression of VDR, CYP27B1, and CYP24A1 were observed by quantitative PCR in SARS-CoV-2-infected mice. Serum vitamin D levels remained similar in infected and vehicle-treated mice, but an increase in tumor necrosis factor-alpha and a decrease in IL-4 mRNA expression were observed in the kidneys of the SARS-CoV-2 group. These findings suggest that megalin loss in SARS-CoV-2 infection may impact the local role of vitamin D in kidney immunomodulation, even when blood vitamin D levels remain unchanged.
Collapse
Affiliation(s)
- Yoshifumi Kurosaki
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Toshihide Matsumoto
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Pathology, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, 364-8501, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Rei Kawashima
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Shun Tamaki
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Motoki Imai
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Biochemistry, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Naohito Ishii
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Hidero Kitasato
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan.
- Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, 252-0373, Japan.
| |
Collapse
|
3
|
Alberro-Brage A, Kryvenko V, Malainou C, Günther S, Morty RE, Seeger W, Herold S, Samakovlis C, Vadász I. Influenza virus decreases albumin uptake and megalin expression in alveolar epithelial cells. Front Immunol 2023; 14:1260973. [PMID: 37727782 PMCID: PMC10505651 DOI: 10.3389/fimmu.2023.1260973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a common complication of influenza virus (IV) infection. During ARDS, alveolar protein concentrations often reach 40-90% of plasma levels, causing severe impairment of gas exchange and promoting deleterious alveolar remodeling. Protein clearance from the alveolar space is at least in part facilitated by the multi-ligand receptor megalin through clathrin-mediated endocytosis. Methods To investigate whether IV infection impairs alveolar protein clearance, we examined albumin uptake and megalin expression in MLE-12 cells and alveolar epithelial cells (AEC) from murine precision-cut lung slices (PCLS) and in vivo, under IV infection conditions by flow cytometry and western blot. Transcriptional levels from AEC and broncho-alveolar lavage (BAL) cells were analyzed in an in-vivo mouse model by RNAseq. Results IV significantly downregulated albumin uptake, independently of activation of the TGF-β1/GSK3β axis that has been previously implicated in the regulation of megalin function. Decreased plasma membrane abundance, total protein levels, and mRNA expression of megalin were associated with this phenotype. In IV-infected mice, we identified a significant upregulation of matrix metalloproteinase (MMP)-14 in BAL fluid cells. Furthermore, the inhibition of this protease partially recovered total megalin levels and albumin uptake. Discussion Our results suggest that the previously described MMP-driven shedding mechanisms are potentially involved in downregulation of megalin cell surface abundance and clearance of excess alveolar protein. As lower alveolar edema protein concentrations are associated with better outcomes in respiratory failure, our findings highlight the therapeutic potential of a timely MMP inhibition in the treatment of IV-induced ARDS.
Collapse
Affiliation(s)
- Andrés Alberro-Brage
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christina Malainou
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E. Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Translational Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christos Samakovlis
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
4
|
Zulijani A, Milardović A, Kovač Z, Perić B, Jakovac H. Megalin Expression in Primary Oral Squamous Cell Carcinoma Is Associated with the Presence of Lymph Node Metastases, Vascular Invasion, and Lower Overall Survival. Curr Issues Mol Biol 2023; 45:2757-2766. [PMID: 37185704 PMCID: PMC10136934 DOI: 10.3390/cimb45040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Megalin (LRP2) is a rapidly recycling multiligand endocytic receptor primarily expressed in polarized epithelial cells. Although megalin might be involved in tumor growth and invasiveness through several mechanisms, its role has been understudied in the field of molecular oncology so far. The present study aimed to evaluate the impact of megalin expression in oral squamous cell carcinoma (OSCC) on disease progression. Megalin expression was evaluated immunohistochemically in 63 OSCC specimens. Data obtained were retrospectively compared with patient clinicopathological features and their survival. The proportion of megalin-expressing cells in the primary OSCC tissue was significantly associated with metastatic spreading to lymph nodes, vascular invasion and lower overall survival rate. Results obtained by the study suggest that megalin can be considered as a novel molecule involved in OSCC pathogenesis, but also useful as a potential biomarker for cancer progression.
Collapse
|
5
|
Sandoval L, Fuentealba LM, Marzolo MP. Participation of OCRL1, and APPL1, in the expression, proteolysis, phosphorylation and endosomal trafficking of megalin: Implications for Lowe Syndrome. Front Cell Dev Biol 2022; 10:911664. [PMID: 36340038 PMCID: PMC9630597 DOI: 10.3389/fcell.2022.911664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Megalin/LRP2 is the primary multiligand receptor for the re-absorption of low molecular weight proteins in the proximal renal tubule. Its function is significantly dependent on its endosomal trafficking. Megalin recycling from endosomal compartments is altered in an X-linked disease called Lowe Syndrome (LS), caused by mutations in the gene encoding for the phosphatidylinositol 5-phosphatase OCRL1. LS patients show increased low-molecular-weight proteins with reduced levels of megalin ectodomain in the urine and accumulation of the receptor in endosomal compartments of the proximal tubule cells. To gain insight into the deregulation of megalin in the LS condition, we silenced OCRL1 in different cell lines to evaluate megalin expression finding that it is post-transcriptionally regulated. As an indication of megalin proteolysis, we detect the ectodomain of the receptor in the culture media. Remarkably, in OCRL1 silenced cells, megalin ectodomain secretion appeared significantly reduced, according to the observation in the urine of LS patients. Besides, the silencing of APPL1, a Rab5 effector associated with OCRL1 in endocytic vesicles, also reduced the presence of megalin’s ectodomain in the culture media. In both silencing conditions, megalin cell surface levels were significantly decreased. Considering that GSK3ß-mediated megalin phosphorylation reduces receptor recycling, we determined that the endosomal distribution of megalin depends on its phosphorylation status and OCRL1 function. As a physiologic regulator of GSK3ß, we focused on insulin signaling that reduces kinase activity. Accordingly, megalin phosphorylation was significantly reduced by insulin in wild-type cells. Moreover, even though in cells with low activity of OCRL1 the insulin response was reduced, the phosphorylation of megalin was significantly decreased and the receptor at the cell surface increased, suggesting a protective role of insulin in a LS cellular model.
Collapse
Affiliation(s)
- Lisette Sandoval
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Luz M. Fuentealba
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: María-Paz Marzolo,
| |
Collapse
|
6
|
Long KR, Rbaibi Y, Bondi CD, Ford BR, Poholek AC, Boyd-Shiwarski CR, Tan RJ, Locker JD, Weisz OA. Cubilin-, megalin-, and Dab2-dependent transcription revealed by CRISPR/Cas9 knockout in kidney proximal tubule cells. Am J Physiol Renal Physiol 2022; 322:F14-F26. [PMID: 34747197 PMCID: PMC8698540 DOI: 10.1152/ajprenal.00259.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023] Open
Abstract
The multiligand receptors megalin (Lrp2) and cubilin (Cubn) and their endocytic adaptor protein Dab2 (Dab2) play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of Lrp2 had the greatest transcriptional effect, and nearly all genes whose expression was affected in Cubn KO and Dab2 KO cells were also changed in Lrp2 KO cells. Pathway analysis and more granular inspection of the altered gene profiles suggested changes in pathways with immunomodulatory functions that might trigger the pathological changes observed in KO mice and patients with Donnai-Barrow syndrome. In addition, differences in transcription patterns between Lrp2 and Dab2 KO cells suggested the possibility that altered spatial signaling by aberrantly localized receptors contributes to transcriptional changes upon the disruption of PT endocytic function. A reduction in transcripts encoding sodium-glucose cotransporter isoform 2 was confirmed in Lrp2 KO mouse kidney lysates by quantitative PCR analysis. Our results highlight the role of megalin as a master regulator and coordinator of ion transport, metabolism, and endocytosis in the PT. Compared with the studies in animal models, this approach provides a means to identify PT-specific transcriptional changes that are directly consequent to the loss of these target genes.NEW & NOTEWORTHY Megalin and cubilin receptors together with their adaptor protein Dab2 represent major components of the endocytic machinery responsible for efficient uptake of filtered proteins by the proximal tubule (PT). Dab2 and megalin expression have been implicated as both positive and negative modulators of kidney disease. We used RNA sequencing to knock out CRISPR/Cas9 cubilin, megalin, and Dab2 in highly differentiated PT cells to identify PT-specific changes that are directly consequent to knockout of each component.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Agenesis of Corpus Callosum/genetics
- Agenesis of Corpus Callosum/metabolism
- Agenesis of Corpus Callosum/pathology
- Animals
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- CRISPR-Associated Protein 9/genetics
- CRISPR-Cas Systems
- Cells, Cultured
- Databases, Genetic
- Gene Knockout Techniques
- Gene Regulatory Networks
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Hernias, Diaphragmatic, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/metabolism
- Hernias, Diaphragmatic, Congenital/pathology
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Low Density Lipoprotein Receptor-Related Protein-2/genetics
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Male
- Mice, Knockout
- Monodelphis
- Myopia/genetics
- Myopia/metabolism
- Myopia/pathology
- Proteinuria/genetics
- Proteinuria/metabolism
- Proteinuria/pathology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Renal Tubular Transport, Inborn Errors/genetics
- Renal Tubular Transport, Inborn Errors/metabolism
- Renal Tubular Transport, Inborn Errors/pathology
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Kimberly R Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Corry D Bondi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - B Rhodes Ford
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cary R Boyd-Shiwarski
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph D Locker
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Sheikh-Hamad D, Holliday M, Li Q. Megalin-Mediated Trafficking of Mitochondrial Intracrines: Relevance to Signaling and Metabolism. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:364-369. [PMID: 35098216 PMCID: PMC8793748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The multi-ligand binding protein megalin (LRP2) is ubiquitously expressed and facilitates cell uptake of hormones, nutrients and vitamins. We have recently shown megalin is present in the mitochondria of cultured epithelial and mesenchymal cells, as well as many organs and tissues. Mitochondrial megalin associates with stanniocalcin-1 and SIRT3; two proteins that promote anti-oxidant defenses. Megalin shuttles mitochondrial intracrines (angiotensin II, stanniocalcin-1 and TGF-β) from the cell surface to the mitochondria through the retrograde early endosome to Golgi pathway and requires Rab32. Deletion of megalin impairs mitochondrial respiration and glycolysis. This pathway overlaps molecular and vesicular trafficking defects common to Donai Barrow and Lowe syndromes, suggesting that mitochondrial intracrine signaling defects may contribute to the pathogenesis of these diseases.
Collapse
Affiliation(s)
- David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030 USA,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. Debakey VAMC, Houston, Texas, 77030 USA,Correspondence should be addressed to David Sheikh-Hamad;
| | - Michael Holliday
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030 USA,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. Debakey VAMC, Houston, Texas, 77030 USA
| | - Qingtian Li
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030 USA
| |
Collapse
|
8
|
Zulijani A, Dekanić A, Ćabov T, Jakovac H. Metallothioneins and Megalin Expression Profiling in Premalignant and Malignant Oral Squamous Epithelial Lesions. Cancers (Basel) 2021; 13:4530. [PMID: 34572758 PMCID: PMC8464971 DOI: 10.3390/cancers13184530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
This study aimed to assess the relationship and possible interactions between metallothioneins (MTs) and megalin (LRP-2) in different grades of oral squamous cell carcinoma (OSCC) and premalignant lesions of the oral mucosa (oral leukoplakia and oral lichen planus). The study included archived samples of 114 patients and control subjects. Protein expression was examined by immunohistochemistry and immunofluorescence, and staining quantification was performed by ImageJ software. Protein interaction in cancer tissue was tested and visualized by proximity ligation assay. Mann-Whitney and Kruskal-Wallis tests were used to determine the significance of differences between each group, whereas Pearson correlation coefficient was performed to test correlation. Expression of both proteins differed significantly between each group showing the same pattern of gradual increasing from oral lichen planus to poorly differentiated OSCC. Moreover, MTs and megalin were found to co-express and interact in cancer tissue, and their expression positively correlated within the overall study group. Findings of prominent nuclear and chromosomal megalin expression suggest that it undergoes regulated intramembrane proteolysis upon MTs binding, indicating its ability to directly affect gene expression and cellular division in cancer tissue. The data obtained point to the onco-driving potential of MTs-megalin interaction.
Collapse
Affiliation(s)
- Ana Zulijani
- Department of Oral Surgery, Clinical Hospital Center Rijeka, Krešimirova ul. 40, 51000 Rijeka, Croatia;
| | - Andrea Dekanić
- Department of Pathology, Clinical Hospital Center Rijeka, Krešimirova ul. 42, 51000 Rijeka, Croatia;
| | - Tomislav Ćabov
- Faculty of Dental Medicine, University of Rijeka, Krešimirova ul. 40, 51000 Rijeka, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Corrêa JWN, Boaro KR, Sene LB, Polidoro JZ, Salles TA, Martins FL, Bendhack LM, Girardi ACC. Antiproteinuric and Hyperkalemic Mechanisms Activated by Dual Versus Single Blockade of the RAS in Renovascular Hypertensive Rats. Front Physiol 2021; 12:656460. [PMID: 34177612 PMCID: PMC8221266 DOI: 10.3389/fphys.2021.656460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the antiproteinuric and hyperkalemic mechanisms activated by dual renin-angiotensin system (RAS) blockade in renovascular hypertensive rats (2-kidney 1-clip model [2K-1C]). Six weeks after clipping the left renal artery or sham operation (2K), rats were treated with losartan, enalapril, or both drugs for two weeks. We found that 2K-1C rats displayed higher tail-cuff blood pressure (BP), increased non-clipped kidney Ang II concentration, and more pronounced urinary albumin excretion than 2K. BP was decreased by the treatment with either enalapril or losartan, and the combination of both drugs promoted an additional antihypertensive effect in 2K-1C rats. Renal Ang II content and albuminuria were reduced by either enalapril or losartan in monotherapy and restored to control levels by dual RAS blockade. Albuminuria in 2K-1C rats was accompanied by downregulation of the glomerular slit protein podocin, reduction of the endocytic receptors megalin and cubilin, and a marked decrease in the expression of the ClC-5 chloride channel, compared to 2K animals. Treatment with losartan and enalapril in monotherapy or combination increased the expression of podocin, cubilin, and ClC-5. However, only the combined therapy normalized podocin, cubilin, and ClC-5 protein abundance in the non-clipped kidney of 2K-1C rats. Renovascular hypertensive 2K-1C rats had a lower concentration of plasma potassium compared to 2K rats. Single RAS blockade normalized potassium plasma concentration, whereas 2K-1C rats treated with dual RAS blockade exhibited hyperkalemia. Hypokalemia in 2K-1C rats was accompanied by an increase in the cleaved activated forms of α-ENaC and γ-ENaC and the expression of β-ENaC. Combined RAS blockade but not monotherapy significantly reduced the expression of these ENaC subunits in 2K-1C rats. Indeed, double RAS blockade reduced the abundance of cleaved-α-ENaC to levels lower than those of 2K rats. Collectively, these results demonstrate that the antiproteinuric effect of dual RAS blockade in 2K-1C rats is associated with the restored abundance of podocin and cubilin, and ClC-5. Moreover, double RAS blockade-induced hyperkalemia may be due, at least partially, to an exaggerated downregulation of cleaved α-ENaC in the non-clipped kidney of renovascular hypertensive rats.
Collapse
Affiliation(s)
- José Wilson N Corrêa
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil.,Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Amazonas, Manaus, Brazil
| | - Karoline R Boaro
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Letícia B Sene
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Juliano Z Polidoro
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Thiago A Salles
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Flavia L Martins
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Lusiane M Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
10
|
Gomes JR, Lobo A, Nogueira R, Terceiro AF, Costelha S, Lopes IM, Magalhães A, Summavielle T, Saraiva MJ. Neuronal megalin mediates synaptic plasticity-a novel mechanism underlying intellectual disabilities in megalin gene pathologies. Brain Commun 2020; 2:fcaa135. [PMID: 33225275 PMCID: PMC7667529 DOI: 10.1093/braincomms/fcaa135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Donnai-Barrow syndrome, a genetic disorder associated to LRP2 (low-density lipoprotein receptor 2/megalin) mutations, is characterized by unexplained neurological symptoms and intellectual deficits. Megalin is a multifunctional endocytic clearance cell-surface receptor, mostly described in epithelial cells. This receptor is also expressed in the CNS, mainly in neurons, being involved in neurite outgrowth and neuroprotective mechanisms. Yet, the mechanisms involved in the regulation of megalin in the CNS are poorly understood. Using transthyretin knockout mice, a megalin ligand, we found that transthyretin positively regulates neuronal megalin levels in different CNS areas, particularly in the hippocampus. Transthyretin is even able to rescue megalin downregulation in transthyretin knockout hippocampal neuronal cultures, in a positive feedback mechanism via megalin. Importantly, transthyretin activates a regulated intracellular proteolysis mechanism of neuronal megalin, producing an intracellular domain, which is translocated to the nucleus, unveiling megalin C-terminal as a potential transcription factor, able to regulate gene expression. We unveil that neuronal megalin reduction affects physiological neuronal activity, leading to decreased neurite number, length and branching, and increasing neuronal susceptibility to a toxic insult. Finally, we unravel a new unexpected role of megalin in synaptic plasticity, by promoting the formation and maturation of dendritic spines, and contributing for the establishment of active synapses, both in in vitro and in vivo hippocampal neurons. Moreover, these structural and synaptic roles of megalin impact on learning and memory mechanisms, since megalin heterozygous mice show hippocampal-related memory and learning deficits in several behaviour tests. Altogether, we unveil a complete novel role of megalin in the physiological neuronal activity, mainly in synaptic plasticity with impact in learning and memory. Importantly, we contribute to disclose the molecular mechanisms underlying the cognitive and intellectual disabilities related to megalin gene pathologies.
Collapse
Affiliation(s)
- João R Gomes
- Molecular Neurobiology Unit, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrea Lobo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Renata Nogueira
- Molecular Neurobiology Unit, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F Terceiro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Susete Costelha
- Molecular Neurobiology Unit, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Igor M Lopes
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ana Magalhães
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Teresa Summavielle
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Maria J Saraiva
- Molecular Neurobiology Unit, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Kukida M, Sawada H, Daugherty A, Lu HS. Megalin: A bridge connecting kidney, the renin-angiotensin system, and atherosclerosis. Pharmacol Res 2020; 151:104537. [PMID: 31707037 PMCID: PMC6980733 DOI: 10.1016/j.phrs.2019.104537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 01/21/2023]
Abstract
Megalin is a member of the low-density lipoprotein receptor superfamily. It has been recognized as an endocytic receptor for a large spectrum of ligands. As a consequence, megalin regulates homeostasis of many molecules and affects multiple physiological and pathophysiological functions. The renin-angiotensin system is a hormonal system. A number of studies have reported contributions of the renin-angiotensin system to atherosclerosis. There is evolving evidence that megalin is a regulator of the renin-angiotensin system, and contributes to atherosclerosis. This brief review provides contemporary insights into effects of megalin on renal functions, the renin-angiotensin system, and atherosclerosis.
Collapse
Affiliation(s)
- Masayoshi Kukida
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Collery RF, Link BA. Precise Short Sequence Insertion in Zebrafish Using a CRISPR/Cas9 Approach to Generate a Constitutively Soluble Lrp2 Protein. Front Cell Dev Biol 2019; 7:167. [PMID: 31457013 PMCID: PMC6700241 DOI: 10.3389/fcell.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
LRP2 is a large transmembrane receptor expressed on absorptive epithelia where it binds many extracellular ligands to control several signaling pathways. Mutations in LRP2 are associated with buphthalmic eye enlargement, myopia and other non-ocular symptoms. Though studies have clearly shown that absence of LRP2 causes these phenotypes, and that overexpression of individual LRP2 domains can exacerbate eye enlargement caused by the absence of Lrp2, the relationship between soluble LRP2 fragments and full-length membrane-bound LRP2 is not completely understood. Here we use a CRISPR/Cas9 approach to insert a stop codon cassette into zebrafish lrp2 to prematurely truncate the protein before its transmembrane domain while leaving the entire extracellular domain intact. The resulting mutant line will be a useful tool for examining Lrp2 function in the eye, and testing hypotheses regarding its extracellular processing.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Asano Y, Takeuchi T, Okubo H, Saigo C, Kito Y, Iwata Y, Futamura M, Yoshida K. Nuclear localization of LDL receptor-related protein 1B in mammary gland carcinogenesis. J Mol Med (Berl) 2019; 97:257-268. [PMID: 30607440 DOI: 10.1007/s00109-018-01732-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/10/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023]
Abstract
LRP1B intracellular domain is released and transported to the nucleus; however, pathological consequences of this nuclear transport are largely unclear. We aimed to unravel the pathobiological significance of nuclear localization of LRP1B intracellular domain in mammary gland carcinogenesis. Immunohistochemical staining using antibodies for LRP1B intracellular domain was performed to determine LRP1B expression in 92 invasive ductal breast carcinomas. LRP1B immunoreactivity was detected in the surface membrane and cytoplasm of 60 of 92 invasive ductal carcinomas and in the nucleus of 15 of 92 carcinomas. Nuclear LRP1B was significantly associated with poor patient prognosis, particularly luminal A type breast cancer, where it was significantly related to nodal metastasis. Doxycycline-dependent nuclear expression of LRP1B intracellular domain was established in cultured breast cancer cells. Enforced nuclear expression significantly increased Matrigel invasion activity in MCF-7 and T47D luminal A breast cancer cells. Moreover, enforced nuclear expression of LRP1B intracellular domain facilitated MCF-7 cells growth in mammary fat pad of nude mice, which was supplemented with estrogen. Comprehensive microarray-based analysis demonstrated that nuclear expression of LRP1B intracellular domain significantly increased long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) expression, which facilitates breast cancer invasion with poor prognosis. Nuclear-localized LRP1B intracellular domain promoted breast cancer progression with poor prognosis, possibly through the NEAT1 pathway. Nuclear transport of LRP1B intracellular domain could be a therapeutic target for breast cancer patients. KEY MESSAGES: Nuclear LRP1B was significantly associated with poor patient prognosis. Nuclear LRP1B increased Matrigel invasion activity of breast cancer cells. Nuclear expression of LRP1B intracellular domain increased NEAT1 expression.
Collapse
Affiliation(s)
- Yoshimi Asano
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Hiroshi Okubo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshinori Iwata
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Breast and Molecular Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
14
|
Cuffe JSM, Briffa JF, Rosser S, Siebel AL, Romano T, Hryciw DH, Wlodek ME, Moritz KM. Uteroplacental insufficiency in rats induces renal apoptosis and delays nephrogenesis completion. Acta Physiol (Oxf) 2018; 222. [PMID: 29047216 DOI: 10.1111/apha.12982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
AIM Uteroplacental insufficiency in rats reduces nephron endowment, leptin concentrations and programmes cardiorenal disease in offspring. Cross-fostering growth-restricted (Restricted) offspring onto a mother with normal lactation restores leptin concentrations and nephron endowment. This study aimed to determine whether the reduced nephron endowment in Restricted offspring is due to delayed glomerular formation and dysregulation of renal genes regulating branching morphogenesis, apoptosis or leptin signalling. Furthermore, we aimed to investigate whether cross-fostering Restricted offspring onto Control mothers could improve glomerular maturation and restore renal gene abundance. METHODS Uteroplacental insufficiency was induced by bilateral uterine vessel ligation (Restricted) or sham (Control) surgery on gestation day 18 (E18). Kidneys were collected at E20, postnatal day 1 (PN1) and PN7. An additional cohort was cross-fostered onto separate mothers at birth and kidneys collected at PN7. RESULTS Kidneys were lighter in the Restricted group, but weight was restored with cross-fostering. At E20, abundance of Bax, Flt1 and Vegfa was increased in Restricted offspring, while Ret and Bcl2 transcripts were increased only in Restricted females. At PN7, abundance of Gdnf and Ret was higher in Restricted offspring, as was Casp3. Restricted offspring had a wider nephrogenic zone with more immature glomeruli suggesting a delayed or extended nephrogenic period. Cross-fostering had subtle effects on gene abundance and glomerular maturity. CONCLUSION Uteroplacental insufficiency induced apoptosis in the developing kidney and delayed and extended nephrogenesis. Cross-fostering Restricted offspring onto Control mothers had beneficial effects on kidney growth and renal maturity, which may contribute to the restoration of nephron endowment.
Collapse
Affiliation(s)
- J. S. M. Cuffe
- School of Biomedical Sciences; The University of Queensland; St. Lucia Qld Australia
- School of Medical Science; Menzies Health Institute Queensland; Griffith University; Southport Qld Australia
| | - J. F. Briffa
- Department of Physiology; The University of Melbourne; Parkville Vic. Australia
| | - S. Rosser
- School of Biomedical Sciences; The University of Queensland; St. Lucia Qld Australia
| | - A. L. Siebel
- Department of Physiology; The University of Melbourne; Parkville Vic. Australia
| | - T. Romano
- Department of Physiology, Anatomy and Microbiology; La Trobe University; Bundoora Vic. Australia
| | - D. H. Hryciw
- Department of Physiology; The University of Melbourne; Parkville Vic. Australia
| | - M. E. Wlodek
- Department of Physiology; The University of Melbourne; Parkville Vic. Australia
| | - K. M. Moritz
- School of Biomedical Sciences; The University of Queensland; St. Lucia Qld Australia
| |
Collapse
|
15
|
In Vivo siRNA Delivery and Rebound of Renal LRP2 in Mice. JOURNAL OF DRUG DELIVERY 2017; 2017:4070793. [PMID: 29410918 PMCID: PMC5750491 DOI: 10.1155/2017/4070793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
siRNA stabilized for in vivo applications is filtered and reabsorbed in the renal proximal tubule (PT), reducing mRNA expression transiently. Prior siRNA efforts have successfully prevented upregulation of mRNA in response to injury. We proposed reducing constitutive gene and protein expression of LRP2 (megalin) in order to understand its molecular regulation in mice. Using siRNA targeting mouse LRP2 (siLRP2), reduction of LRP2 mRNA expression was compared to scrambled siRNA (siSCR) in mouse PT cells. Mice received siLRP2 administration optimized for dose, administration site, carrier solution, administration frequency, and administration duration. Kidney cortex was collected upon sacrifice. Renal gene and protein expression were compared by qRT-PCR, immunoblot, and immunohistochemistry (IHC). Compared to siSCR, siLRP2 reduced mRNA expression in PT cells to 16.6% ± 0.6%. In mouse kidney cortex, siLRP2 reduced mRNA expression to 74.8 ± 6.3% 3 h and 70.1 ± 6.3% 6 h after administration. mRNA expression rebounded at 12 h (160.6 ± 11.2%). No megalin renal protein expression reduction was observed by immunoblot or IHC, even after serial twice daily dosing for 3.5 days. Megalin is a constitutively expressed protein. Although LRP2 renal mRNA expression reduction was achieved, siRNA remains a costly and inefficient intervention to reduce in vivo megalin protein expression.
Collapse
|
16
|
Fatah H, Benfaed N, Chana RS, Chunara MH, Barratt J, Baines RJ, Brunskill NJ. Reduced proximal tubular expression of protein endocytic receptors in proteinuria is associated with urinary receptor shedding. Nephrol Dial Transplant 2017; 33:934-943. [DOI: 10.1093/ndt/gfx321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hiwa Fatah
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Nura Benfaed
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Ravinder S Chana
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mohamed H Chunara
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
- Department of Nephrology, Leicester General Hospital, Leicester, UK
| | - Richard J Baines
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
- Department of Nephrology, Leicester General Hospital, Leicester, UK
| | - Nigel J Brunskill
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
- Department of Nephrology, Leicester General Hospital, Leicester, UK
| |
Collapse
|
17
|
Gene Expression Networks in the Murine Pulmonary Myocardium Provide Insight into the Pathobiology of Atrial Fibrillation. G3-GENES GENOMES GENETICS 2017; 7:2999-3017. [PMID: 28720711 PMCID: PMC5592927 DOI: 10.1534/g3.117.044651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pulmonary myocardium is a muscular coat surrounding the pulmonary and caval veins. Although its definitive physiological function is unknown, it may have a pathological role as the source of ectopic beats initiating atrial fibrillation. How the pulmonary myocardium gains pacemaker function is not clearly defined, although recent evidence indicates that changed transcriptional gene expression networks are at fault. The gene expression profile of this distinct cell type in situ was examined to investigate underlying molecular events that might contribute to atrial fibrillation. Via systems genetics, a whole-lung transcriptome data set from the BXD recombinant inbred mouse resource was analyzed, uncovering a pulmonary cardiomyocyte gene network of 24 transcripts, coordinately regulated by chromosome 1 and 2 loci. Promoter enrichment analysis and interrogation of publicly available ChIP-seq data suggested that transcription of this gene network may be regulated by the concerted activity of NKX2-5, serum response factor, myocyte enhancer factor 2, and also, at a post-transcriptional level, by RNA binding protein motif 20. Gene ontology terms indicate that this gene network overlaps with molecular markers of the stressed heart. Therefore, we propose that perturbed regulation of this gene network might lead to altered calcium handling, myocyte growth, and contractile force contributing to the aberrant electrophysiological properties observed in atrial fibrillation. We reveal novel molecular interactions and pathways representing possible therapeutic targets for atrial fibrillation. In addition, we highlight the utility of recombinant inbred mouse resources in detecting and characterizing gene expression networks of relatively small populations of cells that have a pathological significance.
Collapse
|
18
|
Mazzocchi LC, Vohwinkel CU, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. TGF-β inhibits alveolar protein transport by promoting shedding, regulated intramembrane proteolysis, and transcriptional downregulation of megalin. Am J Physiol Lung Cell Mol Physiol 2017; 313:L807-L824. [PMID: 28705909 DOI: 10.1152/ajplung.00569.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/11/2023] Open
Abstract
Disruption of the alveolar-capillary barrier is a hallmark of acute respiratory distress syndrome (ARDS) that leads to the accumulation of protein-rich edema in the alveolar space, often resulting in comparable protein concentrations in alveolar edema and plasma and causing deleterious remodeling. Patients who survive ARDS have approximately three times lower protein concentrations in the alveolar edema than nonsurvivors; thus the ability to remove excess protein from the alveolar space may be critical for a positive outcome. We have recently shown that clearance of albumin from the alveolar space is mediated by megalin, a 600-kDa transmembrane endocytic receptor and member of the low-density lipoprotein receptor superfamily. In the currents study, we investigate the molecular mechanisms by which transforming growth factor-β (TGF-β), a key molecule of ARDS pathogenesis, drives downregulation of megalin expression and function. TGF-β treatment led to shedding and regulated intramembrane proteolysis of megalin at the cell surface and to a subsequent increase in intracellular megalin COOH-terminal fragment abundance resulting in transcriptional downregulation of megalin. Activity of classical protein kinase C enzymes and γ-secretase was required for the TGF-β-induced megalin downregulation. Furthermore, TGF-β-induced shedding of megalin was mediated by matrix metalloproteinases (MMPs)-2, -9, and -14. Silencing of either of these MMPs stabilized megalin at the cell surface after TGF-β treatment and restored normal albumin transport. Moreover, a direct interaction of megalin with MMP-2 and -14 was demonstrated, suggesting that these MMPs may function as novel sheddases of megalin. Further understanding of these mechanisms may lead to novel therapeutic approaches for the treatment of ARDS.
Collapse
Affiliation(s)
- Luciana C Mazzocchi
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Christine U Vohwinkel
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado; and
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany;
| |
Collapse
|
19
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
20
|
Sun J, Hultenby K, Axelsson J, Nordström J, He B, Wernerson A, Lindström K. Proximal Tubular Expression Patterns of Megalin and Cubilin in Proteinuric Nephropathies. Kidney Int Rep 2017; 2:721-732. [PMID: 29142988 PMCID: PMC5678615 DOI: 10.1016/j.ekir.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/10/2023] Open
Abstract
Introduction Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubules. For albumin this process involves at least 2 interacting receptors, megalin and cubilin. Albumin is not usually present in the urine, indicating a highly efficient tubular reuptake under physiological conditions. However, early appearance of albuminuria may mean that the tubular system is overwhelmed by large quantities of albumin or that the function is impaired. Methods To better understand the physiological role of megalin and cubilin in human renal disease, renal biopsies from 15 patients with a range of albuminuria and 3 healthy living donors were analyzed for proximal tubular expression of megalin and cubilin using immunohistochemistry (IHC) and semiquantitative immune-electron microscopy. Their expression in proteinuric zebrafish was also studied. Results Megalin and cubilin were expressed in brush border and cytoplasmic vesicles. Patients with microalbuminuric IgA nephropathy and thin membrane disease had significantly higher megalin in proximal tubules, whereas those with macro- or nephrotic-range albuminuria had unchanged levels. Cubilin expression was significantly higher in all patients. In a proteinuric zebrafish nphs2 knockdown model, we found a dose-dependent increase in the expression of tubular megalin and cubilin in response to tubular protein uptake. Discussion Megalin and cubilin show different expression patterns in different human diseases, which indicates that the 2 tubular proteins differently cooperate in cleaning up plasma proteins in kidney tubules.
Collapse
Affiliation(s)
- Jia Sun
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Axelsson
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics; Karolinska Institutet, Stockholm, Sweden.,Department Clinical Immunology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Nordström
- Division of Transplantation, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Transplant Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bing He
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics; Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lindström
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
22
|
Briffa JF, McAinch AJ, Romano T, Wlodek ME, Hryciw DH. Leptin in pregnancy and development: a contributor to adulthood disease? Am J Physiol Endocrinol Metab 2015; 308:E335-50. [PMID: 25516549 DOI: 10.1152/ajpendo.00312.2014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging research has highlighted the importance of leptin in fetal growth and development independent of its essential role in the maintenance of hunger and satiety through the modulation of neuropeptide Y and proopiomelanocortin neurons. Alterations in maternal-placental-fetal leptin exchange may modify the development of the fetus and contribute to the increased risk of developing disease in adulthood. In addition, leptin also plays an important role in reproductive functions, with plasma leptin concentrations rising in pregnant women, peaking during the third trimester. Elevated plasma leptin concentrations occur at the completion of organogenesis, and research in animal models has demonstrated that leptin is involved in the development and maturation of a number of organs, including the heart, brain, kidneys, and pancreas. Elevated maternal plasma leptin is associated with maternal obesity, and reduced fetal plasma leptin is correlated with intrauterine growth restriction. Alterations in plasma leptin during development may be associated with an increased risk of developing a number of adulthood diseases, including cardiovascular, metabolic, and renal diseases via altered fetal development and organogenesis. Importantly, research has shown that leptin antagonism after birth significantly reduces maturation of numerous organs. Conversely, restoration of the leptin deficiency after birth in growth-restricted animals restores the offspring's body weight and improves organogenesis. Therefore, leptin appears to play a major role in organogenesis, which may adversely affect the risk of developing a number of diseases in adulthood. Therefore, greater understanding of the role of leptin during development may assist in the prevention and treatment of a number of disease states that occur in adulthood.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, University of Melbourne, Parkville, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St. Albans, Australia; and
| | - Tania Romano
- Department of Human Biosciences, Latrobe University, Bundoora, Australia
| | - Mary E Wlodek
- Department of Physiology, University of Melbourne, Parkville, Australia
| | - Deanne H Hryciw
- Department of Physiology, University of Melbourne, Parkville, Australia;
| |
Collapse
|
23
|
Slattery C, Jang Y, Kruger WA, Hryciw DH, Lee A, Poronnik P. γ-Secretase inhibition promotes fibrotic effects of albumin in proximal tubular epithelial cells. Br J Pharmacol 2014; 169:1239-51. [PMID: 23594166 DOI: 10.1111/bph.12214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/24/2013] [Accepted: 02/20/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Albuminuria is an important biomarker of renal dysfunction and is a major mediator of renal damage and fibrosis during kidney disease. The mechanisms underlying albumin-induced renal fibrosis remain unclear. There has been significant interest in γ-secretase activity in tubular epithelial cells in recent times; however, its potential role in albumin-induced fibrosis has not been investigated. EXPERIMENTAL APPROACH The primary aim of this study was to examine the role of γ-secretase in albumin-induced fibrotic effects in proximal tubular cells. The effects of increasing albumin concentrations on fibrosis indicators and mediators in the human HK-2 cell line were examined in the presence and absence of a γ-secretase inhibitor, compound E. KEY RESULTS Treatment with albumin resulted in a number of pro-fibrotic effects, including up-regulation of fibronectin, TGF-β1 and the EGF-R. Interestingly, similar effects were observed in response to treatment with the γ-secretase inhibitor, compound E. Co-treatment of cells with albumin and an EGF-R inhibitor, AG-1478, resulted in significant inhibition of the observed pro-fibrotic effects, suggesting a major role for the EGF-R in albumin-induced fibrotic events. Albumin-induced effects on the EGF-R appeared to be mediated through inhibition of γ-secretase activity and were dependent on ERK-MAPK signalling. CONCLUSIONS AND IMPLICATIONS These results provide novel insights into the mechanisms of albumin-induced fibrotic effects in tubular epithelial cells, suggesting important roles for the γ-secretase and the EGF-R. These results suggest that the proposed use of γ-secretase inhibitors as anti-fibrotic agents requires further investigation.
Collapse
Affiliation(s)
- C Slattery
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Ireland
| | | | | | | | | | | |
Collapse
|
24
|
Savige J. Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol 2014; 592:4013-23. [PMID: 25107927 DOI: 10.1113/jphysiol.2014.274449] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glomerular filtration barrier comprises a fenestrated capillary endothelium, glomerular basement membrane and podocyte slit diaphragm. Over the past decade we have come to realise that permselectivity depends on size and not necessarily charge, that the molecular sieve depends on the podocyte contractile apparatus and is highly dynamic, and that protein uptake by proximal tubular epithelial cells stimulates signalling and the production of transcription factors and inflammatory mediators. Alport syndrome is the second commonest monogenic cause of renal failure after autosomal dominant polycystic kidney disease. Eighty per cent of patients have X-linked disease caused by mutations in the COL4A5 gene. Most of these result in the replacement of the collagen IV α3α4α5 network with the α1α1α2 heterotrimer. Affected membranes also have ectopic laminin and increased matrix metalloproteinase levels, which makes them more susceptible to proteolysis. Mechanical stress, due to the less elastic membrane and hypertension, interferes with integrin-mediated podocyte-GBM adhesion. Proteinuria occurs when urinary levels exceed tubular reabsorption rates, and initiates tubulointerstitial fibrosis. The glomerular mesangial cells produce increased TGFβ and CTGF which also contribute to glomerulosclerosis. Currently there is no specific therapy for Alport syndrome. However treatment with angiotensin converting enzyme (ACE) inhibitors delays renal failure progression by reducing intraglomerular hypertension, proteinuria, and fibrosis. Our greater understanding of the mechanisms underlying the GBM changes and their consequences in Alport syndrome have provided us with further novel therapeutic targets.
Collapse
Affiliation(s)
- Judy Savige
- University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| |
Collapse
|
25
|
De S, Kuwahara S, Saito A. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. MEMBRANES 2014; 4:333-55. [PMID: 25019425 PMCID: PMC4194038 DOI: 10.3390/membranes4030333] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Shankhajit De
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
26
|
Mahadevappa R, Nielsen R, Christensen EI, Birn H. Megalin in acute kidney injury: foe and friend. Am J Physiol Renal Physiol 2013; 306:F147-54. [PMID: 24197071 DOI: 10.1152/ajprenal.00378.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney proximal tubule is a key target in many forms of acute kidney injury (AKI). The multiligand receptor megalin is responsible for the normal proximal tubule uptake of filtered molecules, including nephrotoxins, cytokines, and markers of AKI. By mediating the uptake of nephrotoxins, megalin plays an essential role in the development of some types of AKI. However, megalin also mediates the tubular uptake of molecules implicated in the protection against AKI, and changes in megalin expression have been demonstrated in AKI in animal models. Thus, modulation of megalin expression in response to AKI may be an important part of the tubule cell adaption to cellular protection and regeneration and should be further investigated as a potential target of intervention. This review explores current evidence linking megalin expression and function to the development, diagnosis, and progression of AKI as well as renal protection against AKI.
Collapse
Affiliation(s)
- Ravikiran Mahadevappa
- Dept. of Biomedicine, Aarhus Univ., Wilhelm Meyers Allé 3, Bldg. 1234, Aarhus DK-8000, Denmark.
| | | | | | | |
Collapse
|
27
|
Pieper-Fürst U, Lammert F. Low-density lipoprotein receptors in liver: old acquaintances and a newcomer. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1191-8. [PMID: 24046859 DOI: 10.1016/j.bbalip.2013.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The lipoprotein receptors low-density lipoprotein receptor (LDLR), the low-density lipoprotein receptor-related protein 1 (LRP1) and megalin/LRP2 share characteristic structural elements. In addition to their well-known roles in endocytosis of lipoproteins and systemic lipid homeostasis, it has been established that LRP1 mediates the endocytotic clearance of a multitude of extracellular ligands and regulates diverse signaling processes such as growth factor signaling, inflammatory signaling pathways, apoptosis, and phagocytosis in liver. Here, possible functions of LRP1 expression in hepatocytes and non-parenchymal cells in healthy and injured liver are discussed. Recent studies indicate the expression of megalin (LRP2) by hepatic stellate cells, myofibroblasts and Kupffer cells and hypothesize that LRP2 might represent another potential regulator of hepatic inflammatory processes. These observations provide the experimental framework for the systematic and dynamic analysis of the LDLR family during chronic liver injury and fibrogenesis.
Collapse
|
28
|
Nistala R, Whaley-Connell A. Resistance to insulin and kidney disease in the cardiorenal metabolic syndrome; role for angiotensin II. Mol Cell Endocrinol 2013; 378:53-8. [PMID: 23416840 PMCID: PMC3711952 DOI: 10.1016/j.mce.2013.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 01/03/2013] [Accepted: 02/06/2013] [Indexed: 12/14/2022]
Abstract
The presence of insulin resistance is increasingly recognized as an important contributor to early stage kidney disease independent of the contribution of diabetes. Important in this relationship is the strong correlation between hyperinsulinemia and low levels of albuminuria (e.g. microalbuminuria). Recent work highlight mechanisms for glomerular/tubulointerstitial injury with excess insulin and emerging evidence identifies a unique role for insulin metabolic signaling and altered handling of salt reabsorption at the level of the proximal tubule. Evidence is also emerging for the role of insulin signaling in the glomerulus both epithelial and endothelial. Central to the mechanism of injury is inappropriate activation of the RAAS.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri School of Medicine, Diabetes and Cardiovascular Center, Departments of Internal Medicine, Divisions of Nephrology and Hypertension, United States; Dialysis Clinics Inc., Lemone Industrial Blvd., Columbia MO, United States.
| | | |
Collapse
|
29
|
Shah M, Baterina OY, Taupin V, Farquhar MG. ARH directs megalin to the endocytic recycling compartment to regulate its proteolysis and gene expression. ACTA ACUST UNITED AC 2013; 202:113-27. [PMID: 23836931 PMCID: PMC3704979 DOI: 10.1083/jcb.201211110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ARH is required for the trafficking of megalin from early endosomes to the endocytic recycling compartment, where megalin undergoes intramembrane proteolysis, releasing a tail fragment that represses megalin transcription. Receptors internalized by endocytosis can return to the plasma membrane (PM) directly from early endosomes (EE; fast recycling) or they can traffic from EE to the endocytic recycling compartment (ERC) and recycle from there (slow recycling). How receptors are sorted for trafficking along these two pathways remains unclear. Here we show that autosomal recessive hypercholesterolemia (ARH) is required for trafficking of megalin, a member of the LDL receptor family, from EE to the ERC by coupling it to dynein; in the absence of ARH, megalin returns directly to the PM from EE via the connecdenn2/Rab35 fast recycling pathway. Binding of ARH to the endocytic adaptor AP-2 prevents fast recycling of megalin. ARH-mediated trafficking of megalin to the ERC is necessary for γ-secretase mediated cleavage of megalin and release of a tail fragment that mediates transcriptional repression. These results identify a novel mechanism for sorting receptors for trafficking to the ERC and link ERC trafficking to regulated intramembrane proteolysis (RIP) and expression of megalin.
Collapse
Affiliation(s)
- Mehul Shah
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
30
|
Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic Receptors in the Renal Proximal Tubule. Physiology (Bethesda) 2012; 27:223-36. [DOI: 10.1152/physiol.00022.2012] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein reabsorption is a predominant feature of the renal proximal tubule. Animal studies show that the ability to rescue plasma proteins relies on the endocytic receptors megalin and cubilin. Recently, studies of patients with syndromes caused by dysfunctional receptors have supported the importance of these for protein clearance of human ultrafiltrate. This review focuses on the molecular biology and physiology of the receptors and their involvement in renal pathological conditions.
Collapse
Affiliation(s)
- Erik I. Christensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Tina Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Spuch C, Ortolano S, Navarro C. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer's disease. Front Physiol 2012; 3:269. [PMID: 22934024 PMCID: PMC3429044 DOI: 10.3389/fphys.2012.00269] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP) belongs to the low-density lipoprotein receptor family, generally recognized as cell surface endocytic receptors, which bind and internalize extracellular ligands for degradation in lysosomes. Neurons require cholesterol to function and keep the membrane rafts stable. Cholesterol uptake into the neuron is carried out by ApoE via LRPs receptors on the cell surface. In neurons the most important are LRP-1 and LRP-2, even it is thought that a causal factor in Alzheimer's disease (AD) is the malfunction of this process which cause impairment intracellular signaling as well as storage and/or release of nutrients and toxic compounds. Both receptors are multifunctional cell surface receptors that are widely expressed in several tissues including neurons and astrocytes. LRPs are constituted by an intracellular (ICD) and extracellular domain (ECD). Through its ECD, LRPs bind at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. These receptors has also been shown to interact with scaffolding and signaling proteins via its ICD in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. Thus, LRPs are implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth processes, degradation of proteases, and tissue invasion. Interestingly, LRPs were also localized in neurons in different stages, suggesting that both receptors could be implicated in signal transduction during embryonic development, neuronal outgrowth or in the pathogenesis of AD.
Collapse
Affiliation(s)
- Carlos Spuch
- Department of Pathology and Neuropathology, University Hospital of VigoVigo, Spain
| | | | | |
Collapse
|
32
|
Ogasawara S, Hosojima M, Kaseda R, Kabasawa H, Yamamoto-Kabasawa K, Kurosawa H, Sato H, Iino N, Takeda T, Suzuki Y, Narita I, Yamagata K, Tomino Y, Gejyo F, Hirayama Y, Sekine S, Saito A. Significance of urinary full-length and ectodomain forms of megalin in patients with type 2 diabetes. Diabetes Care 2012; 35:1112-8. [PMID: 22410816 PMCID: PMC3329833 DOI: 10.2337/dc11-1684] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Megalin, an endocytic receptor in proximal tubule cells, is involved in the mechanisms of albuminuria in diabetic nephropathy (DN). To develop efficient novel biomarkers associated with the pathogenesis of DN, we investigated urinary megalin excretion in type 2 diabetes. RESEARCH DESIGN AND METHODS Sandwich enzyme-linked immunosorbent assay systems were established with monoclonal antibodies against the NH(2) (amino [A]-megalin assay) and COOH (C-megalin assay) termini of megalin to analyze urinary forms of megalin in 68 patients with type 2 diabetes. RESULTS The A-megalin assay mainly detected a megalin ectodomain form in the soluble urinary fraction, whereas the C-megalin assay identified a full-length form in both soluble and insoluble fractions. Urinary C-megalin levels were significantly high in patients with normoalbuminuria, were elevated in line with increased albuminuria, and showed a better association with estimated glomerular filtration rate (eGFR) (<60 mL/min/1.73 m(2)) than did urinary albumin. In contrast, urinary A-megalin levels were increased in patients with normo- and microalbuminuria but not in those with macroalbuminuria. Urinary C-megalin levels were also positively associated with plasma inorganic phosphate and negatively with hemoglobin levels in those showing no features of bleeding and not taking vitamin D analogs, phosphate binders, or erythropoiesis-stimulating agents. CONCLUSIONS Urinary full-length megalin excretion as measured by the C-megalin assay is well associated with reduced eGFR and linked to the severity of DN, phosphate dysregulation, and anemia, whereas urinary excretion of megalin ectodomain as measured by the A-megalin assay may be associated with distinctive mechanisms of earlier DN in type 2 diabetes.
Collapse
Affiliation(s)
- Shinya Ogasawara
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J Neurochem 2011; 120 Suppl 1:109-124. [PMID: 22122663 DOI: 10.1111/j.1471-4159.2011.07475.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The amyloid-β precursor protein (βAPP) undergoes several cleavages by enzymatic activities called secretases. Numerous studies aimed at studying the biogenesis and catabolic fate of Aβ peptides, the proteinaceous component of the senile plaques that accumulate in Alzheimer's disease-affected brains. Relatively recently, another secretase-mediated β-APP-derived catabolite called APP IntraCellular Domain (AICD) entered the game. Whether AICD corresponded to a biologically inert by-pass product of βAPP processing or whether it could harbor its own function remained questionable. In this study, we review the mechanisms by which AICD is generated and how its production is regulated. Furthermore, we discuss the degradation mechanism underlying its rapid catabolic fate. Finally, we review putative AICD-related functions and more particularly, the numerous studies indicating that AICD could translocate to the nucleus and control at a transcriptional level, the expression of a series of proteins involved in various functions including the control of cell death and Aβ degradation.
Collapse
Affiliation(s)
- Raphaëlle Pardossi-Piquard
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
35
|
Lal M, Caplan M. Regulated intramembrane proteolysis: signaling pathways and biological functions. Physiology (Bethesda) 2011; 26:34-44. [PMID: 21357901 DOI: 10.1152/physiol.00028.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intramembrane cleavage of transmembrane proteins is a fundamental cellular process. Several enzymes capable of releasing domains of integral membrane proteins have been described. Transmembrane protein proteolytic cleavage is regulated and involved not only in degrading membrane spanning segments but also in generating messengers that elicit biological responses. This review examines the role of the released functional protein domain in signaling mechanisms regulating an array of cellular and physiological processes.
Collapse
Affiliation(s)
- Mark Lal
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
36
|
Cong R, Li Y, Biemesderfer D. A disintegrin and metalloprotease 10 activity sheds the ectodomain of the amyloid precursor-like protein 2 and regulates protein expression in proximal tubule cells. Am J Physiol Cell Physiol 2011; 300:C1366-74. [PMID: 21325636 PMCID: PMC3118630 DOI: 10.1152/ajpcell.00451.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/15/2011] [Indexed: 11/22/2022]
Abstract
A disintegrin and metalloprotease 10 (ADAM10) is a zinc protease that mediates ectodomain shedding of numerous receptors including Notch and members of the amyloid precursor protein family (APP, APLP1, and APLP2). Ectodomain shedding frequently activates a process called regulated intramembrane proteolysis (RIP) that links cellular events with gene regulation. To characterize ADAM10 in kidney and in opossum kidney proximal tubule (OKP) cells, we performed indirect immunofluorescence microscopy and immunoblotting of renal membrane fractions using specific antibodies. These studies show that ADAM10 and APLP2 are coexpressed in the proximal tubule and in OKP cells. To study the role of ADAM10 activity in the proximal tubule, we stably overexpressed wild-type ADAM10 or an inactive mutant ADAM10 in OKP cells. We found a direct correlation between the amount of active ADAM10 expressed and 1) the amount of APLP2 ectodomain shed into the culture supernatant and 2) the amount of Na(+)/H(+) exchanger 3 (NHE3) and megalin mRNA and protein expressed compared with control proteins. To establish a link between ADAM10-mediated shedding of APLP2 and the effect on NHE3 and megalin mRNA expression we performed RNA interference experiments using APLP2-specific short hairpin RNA (shRNA) in OKP cells. Cells expressing the APLP2 shRNA showed >80% knock down of APLP2 protein and mRNA as well as 60-70% reduction in NHE3 protein and mRNA. Levels of megalin and Na-K-ATPase protein and mRNA were not changed. These studies show 1) ADAM10 and APLP2 are expressed in proximal tubule cells and, 2) ADAM10 activity has a pronounced effect on expression of specific brush-border proteins. We postulate that ADAM10 and APLP2 may represent elements of a here-to-fore unknown signaling pathway in proximal tubule that link events at the brush border with control of gene expression.
Collapse
Affiliation(s)
- Rong Cong
- Dept. of Internal Medicine, Section of Nephrology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8029, USA
| | | | | |
Collapse
|
37
|
Abstract
Proteinuria is a prognostic indicator of progressive kidney disease and poor cardiovascular outcomes. Abnormally filtered bioactive macromolecules interact with proximal tubular epithelial cells (PTECs), which results in the development of proteinuric nephropathy. This condition is characterized by alterations in PTEC growth, apoptosis, gene transcription and inflammatory cytokine production as a consequence of dysregulated signaling pathways that are stimulated by proteinuric tubular fluid. The megalin-cubilin complex mediates the uptake of several proteins, including albumin, into PTECs. Megalin might also possess intrinsic signaling properties and the ability to regulate cell signaling pathways and gene transcription after processing regulated intramembrane proteolysis. Megalin could, therefore, link abnormal PTEC albumin exposure with altered growth factor receptor activation, proinflammatory and profibrotic signaling, and gene transcription. Evidence now suggests that other PTEC pathways for protein reabsorption of (patho)physiological importance might be mediated by the neonatal Fc receptor and CD36.
Collapse
|
38
|
The soluble intracellular domain of megalin does not affect renal proximal tubular function in vivo. Kidney Int 2010; 78:473-7. [PMID: 20531455 DOI: 10.1038/ki.2010.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Megalin-mediated endocytic uptake constitutes the main pathway for clearance of plasma proteins from the glomerular filtrate in proximal tubules. Little is known, however, about mechanisms that control megalin expression and activity in the kidney. A widely discussed hypothesis states that upon ligand binding a regulated intramembrane proteolysis releases the cytosolic domain of megalin and this fragment subsequently modulates megalin gene transcription. Here, we tested this by generating a mouse model that co-expressed both the soluble intracellular domain and full-length megalin. Despite pronounced synthesis in the proximal tubules, the soluble intracellular domain failed to exert distinct effects on renal proximal tubular function, including megalin expression, endocytic retrieval of proteins, or global renal gene transcription. Hence, our study argues that the soluble intracellular domain does not have a role in regulating the activity of megalin in the kidney.
Collapse
|
39
|
Molecular mechanisms of receptor-mediated endocytosis in the renal proximal tubular epithelium. J Biomed Biotechnol 2010; 2010:403272. [PMID: 20011067 PMCID: PMC2789548 DOI: 10.1155/2010/403272] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 09/14/2009] [Indexed: 11/17/2022] Open
Abstract
Receptor-mediated endocytosis is a pivotal function of renal proximal tubule epithelial cells (PTECs) to reabsorb and metabolize substantial amounts of proteins and other substances in glomerular filtrates. The function accounts for the conservation of nutrients, including carrier-bound vitamins and trace elements, filtered by glomeruli. Impairment of the process results in a loss of such substances and development of proteinuria, an important clinical sign of kidney disease and a risk marker for cardiovascular disease. Megalin is a multiligand endocytic receptor expressed at clathrin-coated pits of PTEC, playing a central role in the process. Megalin cooperates with various membrane molecules and interacts with many intracellular adaptor proteins for endocytic trafficking. Megalin is also involved in signaling pathways in the cells. Megalin-mediated endocytic overload leads to damage of PTEC. Further studies are needed to elucidate the mechanism of megalin-mediated endocytosis and develop strategies for preventing the damage of PTEC.
Collapse
|
40
|
Lima WR, Parreira KS, Devuyst O, Caplanusi A, N'kuli F, Marien B, Van Der Smissen P, Alves PMS, Verroust P, Christensen EI, Terzi F, Matter K, Balda MS, Pierreux CE, Courtoy PJ. ZONAB promotes proliferation and represses differentiation of proximal tubule epithelial cells. J Am Soc Nephrol 2010; 21:478-88. [PMID: 20133480 DOI: 10.1681/asn.2009070698] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Epithelial polarization modulates gene expression. The transcription factor zonula occludens 1 (ZO-1)-associated nucleic acid binding protein (ZONAB) can shuttle between tight junctions and nuclei, promoting cell proliferation and expression of cyclin D1 and proliferating cell nuclear antigen (PCNA), but whether it also represses epithelial differentiation is unknown. Here, during mouse kidney ontogeny and polarization of proximal tubular cells (OK cells), ZONAB and PCNA levels decreased in parallel and inversely correlated with increasing apical differentiation, reflected by expression of megalin/cubilin, maturation of the brush border, and extension of the primary cilium. Conversely, ZONAB reexpression and loss of apical differentiation markers provided a signature for renal clear cell carcinoma. In confluent OK cells, ZONAB overexpression increased proliferation and PCNA while repressing megalin/cubilin expression and impairing differentiation of the brush border and primary cilium. Reporter and chromatin immunoprecipitation assays demonstrated that megalin and cubilin are ZONAB target genes. Sparsely plated OK cells formed small islands composed of distinct populations: Cells on the periphery, which lacked external tight junctions, strongly expressed nuclear ZONAB, proliferated, and failed to differentiate; central cells, surrounded by continuous junctions, lost nuclear ZONAB, stopped proliferating, and engaged in apical differentiation. Taken together, these data suggest that ZONAB is an important component of the mechanisms that sense epithelial density and participates in the complex transcriptional networks that regulate the switch between proliferation and differentiation.
Collapse
Affiliation(s)
- Wânia R Lima
- CELL Unit, de Duve Institute and Université, catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5. Pflugers Arch 2010; 460:543-57. [PMID: 20049483 DOI: 10.1007/s00424-009-0769-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 02/03/2023]
Abstract
The involvement of several members of the chloride channel (ClC) family of membrane proteins in human disease highlights the need to define the mechanisms underlying their function and the consequences of disease-causing mutations. Despite the utility of high-resolution structural models, our understanding of the molecular basis for function of the chloride channels and transporters in the family remains incomplete. In this review, we focus on recent discoveries regarding molecular mechanisms underlying the regulated chloride:proton antiporter activity of ClC-5, the protein mutated in the Dent's disease-a kidney disease presenting with proteinuria and renal failure in severe cases. We discuss the putative role of ClC-5 in receptor-mediated endocytosis and protein uptake by the proximal renal tubule and the possible molecular and cellular consequences of disease-causing mutations. However, validation of these models will require future study of the intrinsic function of this transporter, in situ, in the membranes of recycling endosomes in proximal tubule epithelial cells.
Collapse
|
42
|
Blaine J, Okamura K, Giral H, Breusegem S, Caldas Y, Millard A, Barry N, Levi M. PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI. Am J Physiol Cell Physiol 2009; 297:C1339-46. [PMID: 19776390 DOI: 10.1152/ajpcell.00260.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parathyroid hormone (PTH) plays a critical role in the regulation of renal phosphorous homeostasis by altering the levels of the sodium-phosphate cotransporter NaPi2a in the brush border membrane (BBM) of renal proximal tubular cells. While details of the molecular events of PTH-induced internalization of NaPi2a are emerging, the precise events governing NaPi2a removal from brush border microvilli in response to PTH remain to be fully determined. Here we use a novel application of total internal reflection fluorescence microscopy to examine how PTH induces movement of NaPi2a out of brush border microvilli in living cells in real time. We show that a dynamic actin cytoskeleton is required for NaPi2a removal from the BBM in response to PTH. In addition, we demonstrate that a myosin motor that has previously been shown to be coregulated with NaPi2a, myosin VI, is necessary for PTH-induced removal of NaPi2a from BBM microvilli.
Collapse
Affiliation(s)
- Judith Blaine
- Department of Medicine, University of Colorado Denver, Aurora, 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Brown D, Breton S, Ausiello DA, Marshansky V. Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 2009; 10:275-84. [PMID: 19170982 PMCID: PMC2896909 DOI: 10.1111/j.1600-0854.2008.00867.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kidney regulates body fluid, ion and acid/base homeostasis through the interaction of a host of channels, transporters and pumps within specific tubule segments, specific cell types and specific plasma membrane domains. Furthermore, renal epithelial cells have adapted to function in an often unique and challenging environment that includes high medullary osmolality, acidic pHs, variable blood flow and constantly changing apical and basolateral 'bathing' solutions. In this review, we focus on selected protein trafficking events by which kidney epithelial cells regulate body fluid, ion and acid-base homeostasis in response to changes in physiological conditions. We discuss aquaporin 2 and G-protein-coupled receptors in fluid and ion balance, the vacuolar H(+)-adenosine triphosphatase (V-ATPase) and intercalated cells in acid/base regulation and acidification events in the proximal tubule degradation pathway. Finally, in view of its direct role in vesicle trafficking that we outline in this study, we propose that the V-ATPase itself should, under some circumstances, be considered a fourth category of vesicle 'coat' protein (COP), alongside clathrin, caveolin and COPs.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|