1
|
Benson MD, Eisman AS, Tahir UA, Katz DH, Deng S, Ngo D, Robbins JM, Hofmann A, Shi X, Zheng S, Keyes M, Yu Z, Gao Y, Farrell L, Shen D, Chen ZZ, Cruz DE, Sims M, Correa A, Tracy RP, Durda P, Taylor KD, Liu Y, Johnson WC, Guo X, Yao J, Chen YDI, Manichaikul AW, Jain D, Yang Q, Bouchard C, Sarzynski MA, Rich SS, Rotter JI, Wang TJ, Wilson JG, Clish CB, Sarkar IN, Natarajan P, Gerszten RE. Protein-metabolite association studies identify novel proteomic determinants of metabolite levels in human plasma. Cell Metab 2023; 35:1646-1660.e3. [PMID: 37582364 PMCID: PMC11118091 DOI: 10.1016/j.cmet.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/12/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Although many novel gene-metabolite and gene-protein associations have been identified using high-throughput biochemical profiling, systematic studies that leverage human genetics to illuminate causal relationships between circulating proteins and metabolites are lacking. Here, we performed protein-metabolite association studies in 3,626 plasma samples from three human cohorts. We detected 171,800 significant protein-metabolite pairwise correlations between 1,265 proteins and 365 metabolites, including established relationships in metabolic and signaling pathways such as the protein thyroxine-binding globulin and the metabolite thyroxine, as well as thousands of new findings. In Mendelian randomization (MR) analyses, we identified putative causal protein-to-metabolite associations. We experimentally validated top MR associations in proof-of-concept plasma metabolomics studies in three murine knockout strains of key protein regulators. These analyses identified previously unrecognized associations between bioactive proteins and metabolites in human plasma. We provide publicly available data to be leveraged for studies in human metabolism and disease.
Collapse
Affiliation(s)
- Mark D Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aaron S Eisman
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Center for Biomedical Informatics, Brown University, Providence, RI, USA
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel H Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Debby Ngo
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alissa Hofmann
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michelle Keyes
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zhi Yu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yan Gao
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dongxiao Shen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel E Cruz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mario Sims
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Russell P Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA; Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | | | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, Columbia, SC, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Thomas J Wang
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Indra Neil Sarkar
- Center for Biomedical Informatics, Brown University, Providence, RI, USA
| | - Pradeep Natarajan
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine Harvard Medical School, Boston, MA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
2
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
3
|
Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7493190. [PMID: 34367467 PMCID: PMC8342141 DOI: 10.1155/2021/7493190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are known to induce cardiometabolic benefits, but the metabolic pathways of their biosynthesis ensuring sufficient bioavailability require further investigation. Here, we show that a pharmacological decrease in overall fatty acid utilization promotes an increase in the levels of PUFAs and attenuates cardiometabolic disturbances in a Zucker rat metabolic syndrome model. Metabolome analysis showed that inhibition of fatty acid utilization by methyl-GBB increased the concentration of PUFAs but not the total fatty acid levels in plasma. Insulin sensitivity was improved, and the plasma insulin concentration was decreased. Overall, pharmacological modulation of fatty acid handling preserved cardiac glucose and pyruvate oxidation, protected mitochondrial functionality by decreasing long-chain acylcarnitine levels, and decreased myocardial infarct size twofold. Our work shows that partial pharmacological inhibition of fatty acid oxidation is a novel approach to selectively increase the levels of PUFAs and modulate lipid handling to prevent cardiometabolic disturbances.
Collapse
|
4
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
5
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
6
|
Maresin 1 regulates insulin signaling in human adipocytes as well as in adipose tissue and muscle of lean and obese mice. J Physiol Biochem 2020; 77:167-173. [PMID: 33206345 DOI: 10.1007/s13105-020-00775-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Maresin 1 (MaR1) is a DHA-derived pro-resolving lipid mediator. The present study aimed to characterize the ability of MaR1 to prevent the alterations induced by TNF-α on insulin actions in glucose uptake and Akt phosphorylation in cultured human adipocytes from overweight/obese subjects, as well as to investigate the effects of MaR1 acute and chronic administration on Akt phosphorylation in absence/presence of insulin in white adipose tissue (WAT) and skeletal muscle from lean and diet-induced obese (DIO) mice. MaR1 (0.1 nM) prevented the inhibitory effect of TNF-α on insulin-stimulated 2-Deoxy-D-glucose uptake and Akt phosphorylation in human adipocytes. Acute treatment with MaR1 (50 μg/kg, 3 h, i.p.) induced Akt phosphorylation in WAT and skeletal muscle of lean mice. However, MaR1 did not further increase the stimulatory effect of insulin on Akt activation. Interestingly, intragastric chronic treatment with MaR1 (50 μg/kg, 10 days) in DIO mice reduced the hyperglycemia induced by the high fat diet (HFD) and improved systemic insulin sensitivity. In parallel, MaR1 partially restored the impaired insulin response in skeletal muscle of DIO mice and reversed HFD-induced lower Akt phosphorylation in WAT in non-insulin-stimulated DIO mice while did not restore the defective Akt activation in response to acute insulin observed in DIO mice. Our results suggest that MaR1 attenuates the impaired insulin signaling and glucose uptake induced by proinflammatory cytokines. Moreover, the current data support that MaR1 treatment could be useful to reduce the hyperglycemia and the insulin resistance associated to obesity, at least in part by improving Akt signaling.
Collapse
|
7
|
Effect of omega-3 fatty acids on glucose homeostasis: role of free fatty acid receptor 1. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1797-1808. [PMID: 32388601 DOI: 10.1007/s00210-020-01883-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a worldwide health problem. This study investigated the acute effects of eicosapentanoic acid (EPA) on glucose homeostasis focusing on the role of free fatty acid receptor 1 (FFAR1) and the chronic effects of fish oil omega-3 fatty acids on insulin resistance. Insulin resistance was induced by feeding mice high-fructose, high-fat diet (HFrHFD) for 16 weeks. In the first part, the acute effects of EPA alone and in combination with GW1100 and DC260126 (FFAR1 blockers) on glucose homeostasis and hepatic phosphatidyl-inositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) were investigated in standard chow diet (SCD)- and HFrHFD-fed mice. In the second part, mice were treated with fish oil omega-3 fatty acids for 4 weeks starting at the week 13 of feeding HFrHFD. Changes in the blood- and liver tissue-insulin resistance markers and FFAR1 downstream signals were recorded at the end of experiment. Results showed that EPA increased 0 and 30 min blood glucose levels after glucose load in SCD-fed mice but improved glucose tolerance in HFrHFD-fed mice. Moreover, FFAR1 blockers reduced EPA effects on glucose tolerance and hepatic PIP2 and DAG levels. On the other hand, chronic use of fish oil omega-3 fatty acids increased FBG levels and decreased serum insulin and triglycerides levels without improving the index of insulin resistance. Also, they increased hepatic β-arrestin-2, PIP2, and pS473 Akt levels but decreased DAG levels. In conclusion, EPA acutely improved glucose homeostasis in HFrHFD-fed mice by modulating the activity of FFAR1. However, the chronic use of fish oil omega-3 fatty acids did not improve the insulin resistance.
Collapse
|
8
|
Lou PH, Lucchinetti E, Hersberger M, Clanachan AS, Zaugg M. Lipid Emulsion Containing High Amounts of n3 Fatty Acids (Omegaven) as Opposed to n6 Fatty Acids (Intralipid) Preserves Insulin Signaling and Glucose Uptake in Perfused Rat Hearts. Anesth Analg 2020; 130:37-48. [DOI: 10.1213/ane.0000000000004295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Campos-Staffico AM, Costa APR, Carvalho LSF, Moura FA, Santos SN, Coelho-Filho OR, Nadruz W, Quinaglia E Silva JC, Sposito AC. Omega-3 intake is associated with attenuated inflammatory response and cardiac remodeling after myocardial infarction. Nutr J 2019; 18:29. [PMID: 31060562 PMCID: PMC6503367 DOI: 10.1186/s12937-019-0455-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) elicits an intense acute inflammatory response that is essential for cardiac repair. However, an excessive inflammatory response also favors myocardial apoptosis, cardiac remodeling, and cardiovascular mortality. Omega-3 polyunsaturated fatty acids (ω-3) bear anti-inflammatory effects, which may mitigate the inflammatory response during MI. This study investigated whether ω-3 intake is associated with attenuation of the MI-related inflammatory response and cardiac remodeling. METHODS ST-elevation MI (STEMI) patients (n = 421) underwent clinical, biochemical, nutritional, 3D echocardiogram, Cardiac Magnetic Resonance imaging (CMRi) at 30 days and 3D echocardiogram imaging at six months after the MI. Blood tests were performed at day one (D1) and day five (D5) of hospitalization. Changes in inflammatory markers (ΔD5-D1) were calculated. A validated food frequency questionnaire estimated the nutritional consumption and ω-3 intake in the last 3 months before admission. RESULTS The intake of ω-3 below the median (< 1.7 g/day) was associated with a short-term increase in hs-C-reactive protein [OR:1.96(1.24-3.10); p = 0.004], Interleukin-2 [OR:2.46(1.20-5.04); p = 0.014], brain-type natriuretic peptide [OR:2.66(1.30-5.44); p = 0.007], left-ventricle end-diastolic volume [OR:5.12(1.11-23.52)]; p = 0.036] and decreases in left-ventricle ejection fraction [OR:2.86(1.47-6.88); p = 0.017] after adjustment for covariates. No differences were observed in the extension of infarcted mass obtained by CMRi. CONCLUSION These findings suggest that a reduced daily intake of ω-3 may intensify outcome-determining mechanisms after STEMI, such as acute inflammatory response and late left ventricular remodeling. TRIAL REGISTRATION Clinical Trial Registry number and website: NCT02062554 .
Collapse
Affiliation(s)
| | | | | | - Filipe A Moura
- Cardiology Department, State University of Campinas (Unicamp), Campinas, SP, Brazil
- Department of Medicine, Weill-Cornell Medical College, New York, United States
| | - Simone N Santos
- Cardiology Department, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Wilson Nadruz
- Cardiology Department, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Andrei C Sposito
- Cardiology Department, State University of Campinas (Unicamp), Campinas, SP, Brazil.
| |
Collapse
|
10
|
Glatz JFC, Luiken JJFP. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res 2018; 59:1084-1093. [PMID: 29627764 PMCID: PMC6027920 DOI: 10.1194/jlr.r082933] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The widely expressed transmembrane glycoprotein, cluster of differentiation 36 (CD36), a scavenger receptor class B protein (SR-B2), serves many functions in lipid metabolism and signaling. Here, we review CD36's role in facilitating cellular long-chain fatty acid uptake across the plasma membrane, particularly in heart and skeletal muscles. CD36 acts in concert with other membrane proteins, such as peripheral plasma membrane fatty acid-binding protein, and is an intracellular docking site for cytoplasmic fatty acid-binding protein. The cellular fatty-acid uptake rate is governed primarily by the presence of CD36 at the cell surface, which is regulated by the subcellular vesicular recycling of CD36 from endosomes to the plasma membrane. CD36 has been implicated in dysregulated fatty acid and lipid metabolism in pathophysiological conditions, particularly in high-fat diet-induced insulin resistance and diabetic cardiomyopathy. Current research is exploring signaling pathways and vesicular trafficking routes involving CD36 to identify metabolic targets to manipulate the cellular utilization of fatty acids. Because of its rate-controlling function in the use of fatty acids in the heart and muscle, CD36 would be a preferable target to protect myocytes against lipotoxicity. Despite a poor understanding of its mechanism of action, CD36 has emerged as a pivotal membrane protein involved in whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences (FHML), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences (FHML), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
11
|
Jeromson S, Mackenzie I, Doherty MK, Whitfield PD, Bell G, Dick J, Shaw A, Rao FV, Ashcroft SP, Philp A, Galloway SDR, Gallagher I, Hamilton DL. Lipid remodeling and an altered membrane-associated proteome may drive the differential effects of EPA and DHA treatment on skeletal muscle glucose uptake and protein accretion. Am J Physiol Endocrinol Metab 2018; 314:E605-E619. [PMID: 28655718 DOI: 10.1152/ajpendo.00438.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In striated muscle, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have differential effects on the metabolism of glucose and differential effects on the metabolism of protein. We have shown that, despite similar incorporation, treatment of C2C12 myotubes (CM) with EPA but not DHA improves glucose uptake and protein accretion. We hypothesized that these differential effects of EPA and DHA may be due to divergent shifts in lipidomic profiles leading to altered proteomic profiles. We therefore carried out an assessment of the impact of treating CM with EPA and DHA on lipidomic and proteomic profiles. Fatty acid methyl esters (FAME) analysis revealed that both EPA and DHA led to similar but substantials changes in fatty acid profiles with the exception of arachidonic acid, which was decreased only by DHA, and docosapentanoic acid (DPA), which was increased only by EPA treatment. Global lipidomic analysis showed that EPA and DHA induced large alterations in the cellular lipid profiles and in particular, the phospholipid classes. Subsequent targeted analysis confirmed that the most differentially regulated species were phosphatidylcholines and phosphatidylethanolamines containing long-chain fatty acids with five (EPA treatment) or six (DHA treatment) double bonds. As these are typically membrane-associated lipid species we hypothesized that these treatments differentially altered the membrane-associated proteome. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics of the membrane fraction revealed significant divergence in the effects of EPA and DHA on the membrane-associated proteome. We conclude that the EPA-specific increase in polyunsaturated long-chain fatty acids in the phospholipid fraction is associated with an altered membrane-associated proteome and these may be critical events in the metabolic remodeling induced by EPA treatment.
Collapse
Affiliation(s)
- Stewart Jeromson
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| | - Ivor Mackenzie
- Department of Diabetes and Cardiovascular Science, University of Highlands and Islands , Inverness , United Kingdom
| | - Mary K Doherty
- Department of Diabetes and Cardiovascular Science, University of Highlands and Islands , Inverness , United Kingdom
| | - Phillip D Whitfield
- Department of Diabetes and Cardiovascular Science, University of Highlands and Islands , Inverness , United Kingdom
| | - Gordon Bell
- Institute of Aquaculture, University of Stirling , Stirling , United Kingdom
| | - James Dick
- Institute of Aquaculture, University of Stirling , Stirling , United Kingdom
| | - Andy Shaw
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| | - Francesco V Rao
- DC Biosciences, Limited, Dundee Technopole, Dundee , United Kingdom
| | - Stephen P Ashcroft
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - Stuart D R Galloway
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| | - Iain Gallagher
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| | - D Lee Hamilton
- Health and Exercise Sciences Research Group, University of Stirling , Stirling , United Kingdom
| |
Collapse
|
12
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
13
|
Myśliwiec H, Baran A, Harasim-Symbor E, Myśliwiec P, Milewska AJ, Chabowski A, Flisiak I. Serum fatty acid profile in psoriasis and its comorbidity. Arch Dermatol Res 2017; 309:371-380. [PMID: 28585093 PMCID: PMC5486566 DOI: 10.1007/s00403-017-1748-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease that is accompanied by metabolic disturbances and cardio-metabolic disorders. Fatty acids (FAs) might be a link between psoriasis and its comorbidity. The aim of the study was to evaluate serum concentrations of FAs and to investigate their association with the disease activity, markers of inflammation and possible involvement in psoriatic comorbidity: obesity, type 2 diabetes and hypertension. We measured 14 total serum fatty acids content and composition by gas-liquid chromatography and flame-ionization detector after direct in situ transesterification in 85 patients with exacerbated plaque psoriasis and in 32 healthy controls. FAs were grouped according to their biologic properties to saturated FA (SFA), unsaturated FA (UFA), monounsaturated FA (MUFA), n-3 polyunsaturated FA (n-3 PUFA) and n-6 PUFA. Generally, patients characteristic included: Psoriasis Area and Severity Index (PASI), Body Mass Index, inflammatory and biochemical markers, lipid profile and presence of psoriatic comorbidity. We have observed highly abnormal FAs pattern in psoriatic patients both with and without obesity compared to the control group. We have demonstrated association of PASI with low levels of circulating DHA, n-3 PUFA (p = 0.044 and p = 0.048, respectively) and high percent of MUFA (p = 0.024) in the non-obese psoriatic group. The SFA/UFA ratio increased with the duration of the disease (p = 0.03) in all psoriatic patients. These findings indicate abnormal FAs profile in psoriasis which may reflect metabolic disturbances and might play a role in the psoriatic comorbidity.
Collapse
Affiliation(s)
- Hanna Myśliwiec
- Department of Dermatology and Venereology, Medical University of Bialystok, Żurawia str. 14, 15-540, Białystok, Poland.
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Żurawia str. 14, 15-540, Białystok, Poland
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Białystok, Poland
| | - Piotr Myśliwiec
- 1st Department of General and Endocrinological Surgery, Medical University of Bialystok, Białystok, Poland
| | - Anna Justyna Milewska
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Białystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Białystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Żurawia str. 14, 15-540, Białystok, Poland
| |
Collapse
|
14
|
From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake. Biochimie 2017; 136:21-26. [DOI: 10.1016/j.biochi.2016.12.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 01/11/2023]
|
15
|
Abumrad NA, Goldberg IJ. CD36 actions in the heart: Lipids, calcium, inflammation, repair and more? Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1442-9. [PMID: 27004753 DOI: 10.1016/j.bbalip.2016.03.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/15/2023]
Abstract
CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa(2+)) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Nada A Abumrad
- Departments of Medicine and Cell Biology, Washington University, St. Louis, MO, United States..
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Creus A, Ferreira MR, Oliva ME, Lombardo YB. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats. J Clin Med 2016; 5:jcm5020018. [PMID: 26828527 PMCID: PMC4773774 DOI: 10.3390/jcm5020018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 01/12/2023] Open
Abstract
This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats.
Collapse
Affiliation(s)
- Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - María R Ferreira
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - María E Oliva
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| |
Collapse
|