1
|
Hook JL, Kuebler WM. CFTR as a therapeutic target for severe lung infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L229-L238. [PMID: 39772994 DOI: 10.1152/ajplung.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is-in addition to its well-established roles in the lung airway and extrapulmonary organs-increasingly recognized as a key regulator of alveolar homeostasis and defense. In the alveolar epithelium, CFTR mediates alveolar fluid secretion and liquid homeostasis; in the microvascular endothelium, CFTR maintains vascular barrier function. CFTR also contributes to alveolar immunity. Yet, in lung infection, diverse molecular mechanisms reduce CFTR abundance and otherwise impair its function, promoting alveolar inflammation, edema, and cell death. Preservation or restoration of CFTR function by CFTR modulator drugs thus presents a promising avenue to combat lung infection in a pathogen-independent manner.
Collapse
Affiliation(s)
- Jaime L Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Chen L, A Hoefel G, Pathinayake PS, Reid A, Pillar AL, Kelly C, Tan H, Ali A, Kim RY, Hansbro PM, Brody SL, Foster PS, Horvat JC, Riveros C, Awatade N, Wark PAB, Kaiko GE. Inflammation-induced loss of CFTR-expressing airway ionocytes in non-eosinophilic asthma. Respirology 2025; 30:25-40. [PMID: 39358991 DOI: 10.1111/resp.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Severe asthma is a heterogeneous disease with subtype classification according to dominant airway infiltrates, including eosinophilic (Type 2 high), or non-eosinophilic asthma. Non-eosinophilic asthma is further divided into paucigranulocytic or neutrophilic asthma characterized by elevated neutrophils, and mixed Type 1 and Type 17 cytokines in the airways. Severe non-eosinophilic asthma has few effective treatments and many patients do not qualify for biologic therapies. The cystic fibrosis transmembrane conductance regulator (CFTR) is dysregulated in multiple respiratory diseases including cystic fibrosis and chronic obstructive pulmonary disease and has proven a valuable therapeutic target. We hypothesized that the CFTR may also play a role in non-eosinophilic asthma. METHODS Patient-derived human bronchial epithelial cells (hBECs) were isolated and differentiated at the air-liquid interface. Single cell RNA-sequencing (scRNAseq) was used to identify epithelial cell subtypes and transcriptional activity. Ion transport was investigated with Ussing chambers and immunofluorescent quantification of ionocyte abundance in human airway epithelial cells and murine models of asthma. RESULTS We identified that hBECs from patients with non-eosinophilic asthma had reduced CFTR function, and did not differentiate into CFTR-expressing ionocytes compared to those from eosinophilic asthma or healthy donors. Similarly, ionocytes were also diminished in the airways of a murine model of neutrophilic-dominant but not eosinophilic asthma. Treatment of hBECs from healthy donors with a neutrophilic asthma-like inflammatory cytokine mixture led to a reduction in ionocytes. CONCLUSION Inflammation-induced loss of CFTR-expressing ionocytes in airway cells from non-eosinophilic asthma may represent a key feature of disease pathogenesis and a novel drug target.
Collapse
Affiliation(s)
- Ling Chen
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Gabriela A Hoefel
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Prabuddha S Pathinayake
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew Reid
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Amber L Pillar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Coady Kelly
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - HuiYing Tan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Carlos Riveros
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nikhil Awatade
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Gerard E Kaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
3
|
Sun L, Walls SA, Dang H, Quinney NL, Sears PR, Sadritabrizi T, Hasegawa K, Okuda K, Asakura T, Chang X, Zheng M, Mikami Y, Dizmond FU, Danilova D, Zhou L, Deshmukh A, Cholon DM, Radicioni G, Rogers TD, Kissner WJ, Markovetz MR, Guhr Lee TN, Gutay MI, Esther CR, Chua M, Grubb BR, Ehre C, Kesimer M, Hill DB, Ostrowski LE, Button B, Gentzsch M, Robinson C, Olivier KN, Freeman AF, Randell SH, O'Neal WK, Boucher RC, Chen G. Dysregulated Airway Host Defense in Hyper IgE Syndrome due to STAT3 Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607930. [PMID: 39211176 PMCID: PMC11361074 DOI: 10.1101/2024.08.14.607930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rationale Hyper IgE syndrome (STAT3-HIES), also known as Job's syndrome, is a rare immunodeficiency disease typically caused by dominant-negative STAT3 mutations. STAT3-HIES syndrome is characterized by chronic pulmonary infection and inflammation, suggesting impairment of pulmonary innate host defense. Objectives To identify airway epithelial host defense defects consequent to STAT3 mutations that, in addition to reported mutant STAT3 immunologic abnormalities, produce pulmonary infection. Methods STAT3-HIES sputum was evaluated for biochemical/biophysical properties. STAT3-HIES excised lungs were harvested for histology; bronchial brush samples were collected for RNA sequencing and in vitro culture. A STAT3-HIES-specific mutation (R382W), expressed by lentiviruses, and a STAT3 knockout, generated by CRISPR/Cas9, were maintained in normal human bronchial epithelia under basal or inflammatory (IL1β) conditions. Effects of STAT3 deficiency on transcriptomics, and epithelial ion channel, secretory, antimicrobial, and ciliary functions were assessed. Measurements and Main Results Mucus concentrations and viscoelasticity were increased in STAT3-HIES sputum. STAT3-HIES excised lungs exhibited mucus obstruction and elevated IL1β expression. STAT3 deficiency impaired CFTR-dependent fluid and mucin secretion, inhibited expression of antimicrobial peptides, cytokines, and chemokines, and acidified airway surface liquid at baseline and post-IL1β exposure in vitro. Notably, mutant STAT3 suppressed IL1R1 expression. STAT3 mutations also inhibited ciliogenesis in vivo and impaired mucociliary transport in vitro, a process mediated via HES6 suppression. Administration of a γ-secretase inhibitor increased HES6 expression and improved ciliogenesis in STAT3 R382W mutant cells. Conclusions STAT3 dysfunction leads to multi-component defects in airway epithelial innate defense, which, in conjunction with STAT3-HIES immune deficiency, contributes to chronic pulmonary infection.
Collapse
|
4
|
Rehman T, Pezzulo AA, Thurman AL, Zemans RL, Welsh MJ. Epithelial responses to CFTR modulators are improved by inflammatory cytokines and impaired by antiinflammatory drugs. JCI Insight 2024; 9:e181836. [PMID: 38888974 PMCID: PMC11383177 DOI: 10.1172/jci.insight.181836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder that disrupts CF transmembrane conductance regulator (CFTR) anion channels and impairs airway host defenses. Airway inflammation is ubiquitous in CF, and suppressing it has generally been considered to improve outcomes. However, the role of inflammation in people taking CFTR modulators, small-molecule drugs that restore CFTR function, is not well understood. We previously showed that inflammation enhances the efficacy of CFTR modulators. To further elucidate this relationship, we treated human ΔF508-CF epithelia with TNF-α and IL-17, two inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 enhanced CFTR modulator-evoked anion secretion through mechanisms that raise intracellular Cl- (Na+/K+/2Cl- cotransport) and HCO3- (carbonic anhydrases and Na+/HCO3- cotransport). This enhancement required p38 MAPK signaling. Importantly, CFTR modulators did not affect CF airway surface liquid viscosity under control conditions but prevented the rise in viscosity in epithelia treated with TNF-α+IL-17. Finally, antiinflammatory drugs limited CFTR modulator responses in TNF-α+IL-17-treated epithelia. These results provide critical insights into mechanisms by which inflammation increases responses to CFTR modulators. They also suggest an equipoise between potential benefits and limitations of suppressing inflammation in people taking modulators, call into question current treatment approaches, and highlight a need for additional studies.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Andrew L. Thurman
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
6
|
Stapleton EM, Thurman AL, Pezzulo AA, Comellas AP, Thornell IM. Increased ENaC-mediated liquid absorption across vitamin-D deficient human airway epithelia. Am J Physiol Cell Physiol 2024; 326:C540-C550. [PMID: 38145296 PMCID: PMC11932534 DOI: 10.1152/ajpcell.00369.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Vitamin D deficiency is a risk factor for exacerbation of obstructive airway disease, a hallmark of which is mucus dehydration and plugging. Calcitriol (the active form of vitamin D) deficiency in cultured human airway epithelia resulted in increased SCNN1G and ATP1B1 mRNAs encoding subunits of ENaC and the Na-K pump compared with supplemented epithelia. These drive the absorption of airway surface liquid. Consistently, calcitriol-deficient epithelia absorbed liquid faster than supplemented epithelia. Calcitriol deficiency also increased amiloride-sensitive Isc and Gt without altering Na-K pump activity, indicating the changes in amiloride-sensitivity arose from ENaC. ENaC activity can be regulated by trafficking, proteases, and channel abundance. We found the effect was likely not induced by changes to endocytosis of ENaC given that calcitriol did not affect the half-lives of amiloride-sensitive Isc and Gt. Furthermore, trypsin nominally increased Isc produced by epithelia ± calcitriol, suggesting calcitriol did not affect proteolytic activation of ENaC. Consistent with mRNA and functional data, calcitriol deficiency resulted in increased γENaC protein. These data indicate that the vitamin D receptor response controls ENaC function and subsequent liquid absorption, providing insight into the relationship between vitamin D deficiency and respiratory disease.NEW & NOTEWORTHY It is unknown why calcitriol (active vitamin D) deficiency worsens pulmonary disease outcomes. Results from mRNA, immunoblot, Ussing chamber, and absorption experiments indicate that calcitriol deficiency increases ENaC activity in human airway epithelia, decreasing apical hydration. Given that epithelial hydration is required for mucociliary transport and airway innate immune function, the increased ENaC activity observed in calcitriol-deficient epithelia may contribute to respiratory pathology observed in vitamin D deficiency.
Collapse
Affiliation(s)
- Emma M Stapleton
- Division of Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Andrew L Thurman
- Division of Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Alejandro A Pezzulo
- Division of Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Alejandro P Comellas
- Division of Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Ian M Thornell
- Division of Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
7
|
Angyal D, Groeneweg TA, Leung A, Desain M, Dulla K, de Jonge HR, Bijvelds MJC. Pro-inflammatory cytokines stimulate CFTR-dependent anion secretion in pancreatic ductal epithelium. Cell Mol Biol Lett 2024; 29:18. [PMID: 38262945 PMCID: PMC10807165 DOI: 10.1186/s11658-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Loss of CFTR-dependent anion and fluid secretion in the ducts of the exocrine pancreas is thought to contribute to the development of pancreatitis, but little is known about the impact of inflammation on ductal CFTR function. Here we used adult stem cell-derived cell cultures (organoids) obtained from porcine pancreas to evaluate the effects of pro-inflammatory cytokines on CFTR function. METHODS Organoids were cultured from porcine pancreas and used to prepare ductal epithelial monolayers. Monolayers were characterized by immunocytochemistry. Epithelial bicarbonate and chloride secretion, and the effect of IL-1β, IL-6, IFN-γ, and TNF-α on CFTR function was assessed by electrophysiology. RESULTS Immunolocalization of ductal markers, including CFTR, keratin 7, and zonula occludens 1, demonstrated that organoid-derived cells formed a highly polarized epithelium. Stimulation by secretin or VIP triggered CFTR-dependent anion secretion across epithelial monolayers, whereas purinergic receptor stimulation by UTP, elicited CFTR-independent anion secretion. Most of the anion secretory response was attributable to bicarbonate transport. The combination of IL-1β, IL-6, IFN-γ, and TNF-α markedly enhanced CFTR expression and anion secretion across ductal epithelial monolayers, whereas these cytokines had little effect when tested separately. Although TNF-α triggered apoptotic signaling, epithelial barrier function was not significantly affected by cytokine exposure. CONCLUSIONS Pro-inflammatory cytokines enhance CFTR-dependent anion secretion across pancreatic ductal epithelium. We propose that up-regulation of CFTR in the early stages of the inflammatory response, may serve to promote the removal of pathogenic stimuli from the ductal tree, and limit tissue injury.
Collapse
Affiliation(s)
- Dora Angyal
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Tessa A Groeneweg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Anny Leung
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Max Desain
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Kalyan Dulla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim Am Rhein, Germany
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Kim HJ, Hong JH. Multiple Regulatory Signals and Components in the Modulation of Bicarbonate Transporters. Pharmaceutics 2024; 16:78. [PMID: 38258089 PMCID: PMC10820580 DOI: 10.3390/pharmaceutics16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bicarbonate transporters are responsible for the appropriate flux of bicarbonate across the plasma membrane to perform various fundamental cellular functions. The functions of bicarbonate transporters, including pH regulation, cell migration, and inflammation, are highlighted in various cellular systems, encompassing their participation in both physiological and pathological processes. In this review, we focused on recently identified modulatory signaling components that regulate the expression and activity of bicarbonate transporters. Moreover, we addressed recent advances in our understanding of cooperative systems of bicarbonate transporters and channelopathies. This current review aims to provide a new, in-depth understanding of numerous human diseases associated with the dysfunction of bicarbonate transporters.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
9
|
Zajac M, Lepissier A, Dréano E, Chevalier B, Hatton A, Kelly-Aubert M, Guidone D, Planelles G, Edelman A, Girodon E, Hinzpeter A, Crambert G, Pranke I, Galietta LJV, Sermet-Gaudelus I. Putting bicarbonate on the spot: pharmacological insights for CFTR correction in the airway epithelium. Front Pharmacol 2023; 14:1293578. [PMID: 38149052 PMCID: PMC10750368 DOI: 10.3389/fphar.2023.1293578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.
Collapse
Affiliation(s)
- Miroslaw Zajac
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agathe Lepissier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Elise Dréano
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mairead Kelly-Aubert
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Aleksander Edelman
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emmanuelle Girodon
- Université de Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’Organe, Hôpital Cochin, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Crambert
- U1138/CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Iwona Pranke
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- European Reference Network for Rare Diseases, Frankfurt, Belgium
| |
Collapse
|
10
|
Delpiano L, Rodenburg LW, Burke M, Nelson G, Amatngalim GD, Beekman JM, Gray MA. Dynamic regulation of airway surface liquid pH by TMEM16A and SLC26A4 in cystic fibrosis nasal epithelia with rare mutations. Proc Natl Acad Sci U S A 2023; 120:e2307551120. [PMID: 37967223 PMCID: PMC10666107 DOI: 10.1073/pnas.2307551120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 11/17/2023] Open
Abstract
In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation. The calcium-activated chloride channel, TMEM16A, and the anion exchanger, SLC26A4, have been proposed as targets for restoring ASL pH, but current results are contradictory and often utilise nonphysiological conditions. To provide better evidence for a role of these two proteins in ASL pH homeostasis, we developed an efficient CRISPR-Cas9-based approach to knock-out (KO) relevant transporters in primary airway basal cells lacking CFTR and then measured dynamic changes in ASL pH under thin-film conditions in fully differentiated airway cultures, which better simulate the in vivo situation. Unexpectantly, we found that both proteins regulated steady-state as well as agonist-stimulated ASL pH, but only under inflammatory conditions. Furthermore, we identified two Food and Drug Administration (FDA)-approved drugs which raised ASL pH by activating SLC26A4. While we identified a role for SLC26A4 in fluid absorption, KO had no effect on cyclic adenosine monophosphate (cAMP)-stimulated fluid secretion in airway organoids. Overall, we have identified a role of TMEM16A in ASL pH homeostasis and shown that both TMEM16A and SLC26A4 could be important alternative targets for ASL pH therapy in CF, particularly for those people who do not produce any functional CFTR.
Collapse
Affiliation(s)
- Livia Delpiano
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of the European Reference Network-LUNG, Utrecht 3584 EA, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Matthew Burke
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Glyn Nelson
- Bioimaging Unit, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne NE4 5PL, United Kingdom
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of the European Reference Network-LUNG, Utrecht 3584 EA, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of the European Reference Network-LUNG, Utrecht 3584 EA, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CT, The Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University and Research, Utrecht University, University Medical Center Utrecht, Utrecht 3584 CB, The Netherlands
| | - Michael A Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
11
|
Lei L, Traore S, Romano Ibarra GS, Karp PH, Rehman T, Meyerholz DK, Zabner J, Stoltz DA, Sinn PL, Welsh MJ, McCray PB, Thornell IM. CFTR-rich ionocytes mediate chloride absorption across airway epithelia. J Clin Invest 2023; 133:e171268. [PMID: 37581935 PMCID: PMC10575720 DOI: 10.1172/jci171268] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
The volume and composition of a thin layer of liquid covering the airway surface defend the lung from inhaled pathogens and debris. Airway epithelia secrete Cl- into the airway surface liquid through cystic fibrosis transmembrane conductance regulator (CFTR) channels, thereby increasing the volume of airway surface liquid. The discovery that pulmonary ionocytes contain high levels of CFTR led us to predict that ionocytes drive secretion. However, we found the opposite. Elevating ionocyte abundance increased liquid absorption, whereas reducing ionocyte abundance increased secretion. In contrast to other airway epithelial cells, ionocytes contained barttin/Cl- channels in their basolateral membrane. Disrupting barttin/Cl- channel function impaired liquid absorption, and overexpressing barttin/Cl- channels increased absorption. Together, apical CFTR and basolateral barttin/Cl- channels provide an electrically conductive pathway for Cl- flow through ionocytes, and the transepithelial voltage generated by apical Na+ channels drives absorption. These findings indicate that ionocytes mediate liquid absorption, and secretory cells mediate liquid secretion. Segregating these counteracting activities to distinct cell types enables epithelia to precisely control the airway surface. Moreover, the divergent role of CFTR in ionocytes and secretory cells suggests that cystic fibrosis disrupts both liquid secretion and absorption.
Collapse
Affiliation(s)
- Lei Lei
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - Soumba Traore
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - Guillermo S. Romano Ibarra
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - Philip H. Karp
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute
| | - Tayyab Rehman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine
| | - Joseph Zabner
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| | - David A. Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Department of Biomedical Engineering
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael J. Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine
| | - Paul B. McCray
- Stead Family Department of Pediatrics and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ian M. Thornell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine
| |
Collapse
|
12
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
13
|
Oliver KE, Carlon MS, Pedemonte N, Lopes-Pacheco M. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold? Expert Opin Pharmacother 2023; 24:1545-1565. [PMID: 37379072 PMCID: PMC10528905 DOI: 10.1080/14656566.2023.2230129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.
Collapse
Affiliation(s)
- Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Marianne S. Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
14
|
Rehman T, Welsh MJ. Inflammation as a Regulator of the Airway Surface Liquid pH in Cystic Fibrosis. Cells 2023; 12:1104. [PMID: 37190013 PMCID: PMC10137218 DOI: 10.3390/cells12081104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The airway surface liquid (ASL) is a thin sheet of fluid that covers the luminal aspect of the airway epithelium. The ASL is a site of several first-line host defenses, and its composition is a key factor that determines respiratory fitness. Specifically, the acid-base balance of ASL has a major influence on the vital respiratory defense processes of mucociliary clearance and antimicrobial peptide activity against inhaled pathogens. In the inherited disorder cystic fibrosis (CF), loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function reduces HCO3- secretion, lowers the pH of ASL (pHASL), and impairs host defenses. These abnormalities initiate a pathologic process whose hallmarks are chronic infection, inflammation, mucus obstruction, and bronchiectasis. Inflammation is particularly relevant as it develops early in CF and persists despite highly effective CFTR modulator therapy. Recent studies show that inflammation may alter HCO3- and H+ secretion across the airway epithelia and thus regulate pHASL. Moreover, inflammation may enhance the restoration of CFTR channel function in CF epithelia exposed to clinically approved modulators. This review focuses on the complex relationships between acid-base secretion, airway inflammation, pHASL regulation, and therapeutic responses to CFTR modulators. These factors have important implications for defining optimal ways of tackling CF airway inflammation in the post-modulator era.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J. Welsh
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Guidone D, Buccirossi M, Scudieri P, Genovese M, Sarnataro S, De Cegli R, Cresta F, Terlizzi V, Planelles G, Crambert G, Sermet I, Galietta LJ. Airway surface hyperviscosity and defective mucociliary transport by IL-17/TNF-α are corrected by β-adrenergic stimulus. JCI Insight 2022; 7:164944. [PMID: 36219481 DOI: 10.1172/jci.insight.164944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022] Open
Abstract
The fluid covering the surface of airway epithelia represents a first barrier against pathogens. The chemical and physical properties of the airway surface fluid are controlled by the activity of ion channels and transporters. In cystic fibrosis (CF), loss of CFTR chloride channel function causes airway surface dehydration, bacterial infection, and inflammation. We investigated the effects of IL-17A plus TNF-α, 2 cytokines with relevant roles in CF and other chronic lung diseases. Transcriptome analysis revealed a profound change with upregulation of several genes involved in ion transport, antibacterial defense, and neutrophil recruitment. At the functional level, bronchial epithelia treated in vitro with the cytokine combination showed upregulation of ENaC channel, ATP12A proton pump, ADRB2 β-adrenergic receptor, and SLC26A4 anion exchanger. The overall result of IL-17A/TNF-α treatment was hyperviscosity of the airway surface, as demonstrated by fluorescence recovery after photobleaching (FRAP) experiments. Importantly, stimulation with a β-adrenergic agonist switched airway surface to a low-viscosity state in non-CF but not in CF epithelia. Our study suggests that CF lung disease is sustained by a vicious cycle in which epithelia cannot exit from the hyperviscous state, thus perpetuating the proinflammatory airway surface condition.
Collapse
Affiliation(s)
- Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Paolo Scudieri
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sergio Sarnataro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Federico Cresta
- Centro Fibrosi Cistica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Vito Terlizzi
- Meyer Children's Hospital, Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Firenze, Italy
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS EMR 8228, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS EMR 8228, Paris, France
| | | | - Luis Jv Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medical Sciences (DISMET), University of Napoli "Federico II", Napoli, Italy
| |
Collapse
|
16
|
Rehman T, Karp PH, Thurman AL, Mather SE, Jain A, Cooney AL, Sinn PL, Pezzulo AA, Duffey ME, Welsh MJ. WNK Inhibition Increases Surface Liquid pH and Host Defense in Cystic Fibrosis Airway Epithelia. Am J Respir Cell Mol Biol 2022; 67:491-502. [PMID: 35849656 PMCID: PMC9564924 DOI: 10.1165/rcmb.2022-0172oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.
Collapse
Affiliation(s)
| | - Philip H. Karp
- Department of Internal Medicine and
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa; and
| | | | | | | | | | | | | | - Michael E. Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Michael J. Welsh
- Department of Internal Medicine and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, and
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
17
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Cook DP, Peebles RS. A Nod and a WNK (Kinase): Understanding Airway Surface Liquid pH. Am J Respir Cell Mol Biol 2022; 67:421-422. [PMID: 35881960 PMCID: PMC9564928 DOI: 10.1165/rcmb.2022-0285ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Daniel P Cook
- Department of Medicine Vanderbilt University School of Medicine Nashville, Tennessee
| | - R Stokes Peebles
- Department of Medicine Vanderbilt University School of Medicine Nashville, Tennessee
- U.S. Department of Veterans Affairs Tennessee Valley Health Care Nashville, Tennessee
| |
Collapse
|
19
|
Ritzmann F, Lunding LP, Bals R, Wegmann M, Beisswenger C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022; 11:2132. [PMID: 35883573 PMCID: PMC9318387 DOI: 10.3390/cells11142132] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
IL-17 cytokines are expressed by numerous cells (e.g., gamma delta (γδ) T, innate lymphoid (ILC), Th17, epithelial cells). They contribute to the elimination of bacteria through the induction of cytokines and chemokines which mediate the recruitment of inflammatory cells to the site of infection. However, IL-17-driven inflammation also likely promotes the progression of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, and asthma. In this review, we highlight the role of IL-17 cytokines in chronic lung diseases.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Lars Peter Lunding
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; (L.P.L.); (M.W.)
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (R.B.)
| |
Collapse
|
20
|
Thurman AL, Li X, Villacreses R, Yu W, Gong H, Mather SE, Romano-Ibarra GS, Meyerholz DK, Stoltz DA, Welsh MJ, Thornell IM, Zabner J, Pezzulo AA. A Single-Cell Atlas of Large and Small Airways at Birth in a Porcine Model of Cystic Fibrosis. Am J Respir Cell Mol Biol 2022; 66:612-622. [PMID: 35235762 PMCID: PMC9163647 DOI: 10.1165/rcmb.2021-0499oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.
Collapse
Affiliation(s)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | | | | | | | | | | | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Biomedical Engineering, and
| | - Michael J. Welsh
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| | | | - Joseph Zabner
- Department of Internal Medicine
- Pappajohn Biomedical Institute
| | | |
Collapse
|
21
|
Saint-Criq V, Guequén A, Philp AR, Villanueva S, Apablaza T, Fernández-Moncada I, Mansilla A, Delpiano L, Ruminot I, Carrasco C, Gray MA, Flores CA. Inhibition of the sodium-dependent HCO 3- transporter SLC4A4, produces a cystic fibrosis-like airway disease phenotype. eLife 2022; 11:e75871. [PMID: 35635440 PMCID: PMC9173743 DOI: 10.7554/elife.75871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bicarbonate secretion is a fundamental process involved in maintaining acid-base homeostasis. Disruption of bicarbonate entry into airway lumen, as has been observed in cystic fibrosis, produces several defects in lung function due to thick mucus accumulation. Bicarbonate is critical for correct mucin deployment and there is increasing interest in understanding its role in airway physiology, particularly in the initiation of lung disease in children affected by cystic fibrosis, in the absence of detectable bacterial infection. The current model of anion secretion in mammalian airways consists of CFTR and TMEM16A as apical anion exit channels, with limited capacity for bicarbonate transport compared to chloride. However, both channels can couple to SLC26A4 anion exchanger to maximise bicarbonate secretion. Nevertheless, current models lack any details about the identity of the basolateral protein(s) responsible for bicarbonate uptake into airway epithelial cells. We report herein that the electrogenic, sodium-dependent, bicarbonate cotransporter, SLC4A4, is expressed in the basolateral membrane of human and mouse airways, and that it's pharmacological inhibition or genetic silencing reduces bicarbonate secretion. In fully differentiated primary human airway cells cultures, SLC4A4 inhibition induced an acidification of the airways surface liquid and markedly reduced the capacity of cells to recover from an acid load. Studies in the Slc4a4-null mice revealed a previously unreported lung phenotype, characterized by mucus accumulation and reduced mucociliary clearance. Collectively, our results demonstrate that the reduction of SLC4A4 function induced a CF-like phenotype, even when chloride secretion remained intact, highlighting the important role SLC4A4 plays in bicarbonate secretion and mammalian airway function.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Anita Guequén
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Amber R Philp
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Tábata Apablaza
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Agustín Mansilla
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Livia Delpiano
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Iván Ruminot
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de ValdiviaValdiviaChile
| | - Michael A Gray
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Carlos A Flores
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| |
Collapse
|
22
|
Shah VS, Chivukula RR, Lin B, Waghray A, Rajagopal J. Cystic Fibrosis and the Cells of the Airway Epithelium: What Are Ionocytes and What Do They Do? ANNUAL REVIEW OF PATHOLOGY 2022; 17:23-46. [PMID: 34437820 PMCID: PMC10837786 DOI: 10.1146/annurev-pathol-042420-094031] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cystic fibrosis (CF) is caused by defects in an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Recently, a new airway epithelial cell type has been discovered and dubbed the pulmonary ionocyte. Unexpectedly, these ionocytes express higher levels of CFTR than any other airway epithelial cell type. However, ionocytes are not the sole CFTR-expressing airway epithelial cells, and CF-associated disease genes are in fact expressed in multiple airway epithelial cell types. The experimental depletion of ionocytes perturbs epithelial physiology in the mouse trachea, but the role of these rare cells in the pathogenesis of human CF remains mysterious. Ionocytes have been described in diverse tissues(kidney and inner ear) and species (frog and fish). We draw on these prior studies to suggest potential roles of airway ionocytes in health and disease. A complete understanding of ionocytes in the mammalian airway will ultimately depend on cell type-specific genetic manipulation.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Raghu R Chivukula
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Brian Lin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Avinash Waghray
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jayaraj Rajagopal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
23
|
Zhu K, Jin Y. Case report: A case of SLC26A4 mutations causing pendred syndrome and non-cystic fibrosis bronchiectasis. Front Pediatr 2022; 10:1077878. [PMID: 36699303 PMCID: PMC9869259 DOI: 10.3389/fped.2022.1077878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The SLC26A4 gene encodes the transmembrane protein pendrin, which is involved in the ion transport of chloride (Cl-), iodide (I-) or bicarbonate (HCO3-). Mutations in the SLC26A4 gene alter the structure and (or) function of pendrin, which are closely related to Pendred syndrome. What's more, researchers have demonstrated in vitro that mutations of SLC26A4 cause acidification of airway surface fluid (ASL), reduce airway defense, and increase the thickness of ASL. In the context of infection, it may lead to chronic inflammation, destruction of airway wall architecture and bronchiectasis. However, there is no case report of bronchiectasis caused by SLC26A4 gene mutations. Here, we describe the first case of Pendred syndrome and non-cystic fibrosis bronchiectasis in a child possibly caused by SLC26A4 mutations. We remind clinicians to pay attention to the possibility of bronchiectasis in patients with SLC26A4 gene mutations.
Collapse
Affiliation(s)
- Kang Zhu
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingkang Jin
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Simões FB, Kmit A, Amaral MD. Cross-talk of inflammatory mediators and airway epithelium reveals the cystic fibrosis transmembrane conductance regulator as a major target. ERJ Open Res 2021; 7:00247-2021. [PMID: 34912883 PMCID: PMC8666577 DOI: 10.1183/23120541.00247-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022] Open
Abstract
Airway inflammation, mucus hyperproduction and epithelial remodelling are hallmarks of many chronic airway diseases, including asthma, COPD and cystic fibrosis. While several cytokines are dysregulated in these diseases, most studies focus on the response of airways to interleukin (IL)-4 and IL-13, which have been shown to induce mucus hyperproduction and shift the airway epithelium towards a hypersecretory phenotype. We hypothesised that other cytokines might induce the expression of chloride (Cl-) channels/transporters, and regulate epithelial differentiation and mucus production. To this end, fully differentiated human airway basal cells (BCi-NS1.1) were treated with cytokines identified as dysregulated in those diseases, namely IL-8, IL-1β, IL-4, IL-17A, IL-10 and IL-22, and tumour necrosis factor-α. Our results show that the cystic fibrosis transmembrane conductance regulator (CFTR) is the main Cl- channel modulated by inflammation, in contrast to transmembrane protein 16A (TMEM16A), whose levels only changed with IL-4. Furthermore, we identified novel roles for IL-10 and IL-22 by influencing epithelial differentiation towards ciliated cells and away from pulmonary ionocytes. In contrast, IL-1β and IL-4 reduced the number of ciliated cells while increasing club cells. Interestingly, while IL-1β, IL-4 and IL-10 upregulated CFTR expression, IL-4 was the only cytokine that increased both its function and the number of CFTR-expressing club cells, suggesting that this cell type may be the main contributor for CFTR function. Additionally, all cytokines assessed increased mucus production through a differential upregulation of MUC5AC and MUC5B transcript levels. This study reveals a novel insight into differentiation resulting from the cross-talk of inflammatory mediators and airway epithelial cells, which is particularly relevant for chronic airway diseases.
Collapse
Affiliation(s)
- Filipa B Simões
- Faculty of Sciences, University of Lisbon, BioISI - Biosystems and Integrative Sciences Institute, Lisbon, Portugal
| | - Arthur Kmit
- Faculty of Sciences, University of Lisbon, BioISI - Biosystems and Integrative Sciences Institute, Lisbon, Portugal
| | - Margarida D Amaral
- Faculty of Sciences, University of Lisbon, BioISI - Biosystems and Integrative Sciences Institute, Lisbon, Portugal
| |
Collapse
|
25
|
Rehman T, Karp PH, Tan P, Goodell BJ, Pezzulo AA, Thurman AL, Thornell IM, Durfey SL, Duffey ME, Stoltz DA, McKone EF, Singh PK, Welsh MJ. Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators. J Clin Invest 2021; 131:e150398. [PMID: 34166230 DOI: 10.1172/jci150398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl-/HCO3- exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. As predicted by these results, in vivo data revealed a positive correlation between airway inflammation and CFTR modulator-induced improvement in lung function. These findings suggest that inflammation is a key regulator of HCO3- secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Philip H Karp
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and.,Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Ping Tan
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Brian J Goodell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Alejandro A Pezzulo
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Andrew L Thurman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Ian M Thornell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and
| | - Samantha L Durfey
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael E Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Edward F McKone
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Pradeep K Singh
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and.,Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I. Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge. Int J Mol Sci 2021; 22:3384. [PMID: 33806154 PMCID: PMC8037888 DOI: 10.3390/ijms22073384] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.
Collapse
Affiliation(s)
- Miroslaw Zajac
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Elise Dreano
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Laboratoire de Physiologie rénale et Tubulopathies, CNRS ERL 8228, 75006 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, 75015 Paris, France
- Clinical Trial Network, European Cystic Fibrosis Society, BT2 Belfast, Ireland
- European Respiratory Network Lung, 75006 Paris, France
| |
Collapse
|
27
|
Thornell IM, Rehman T, Pezzulo AA, Welsh MJ. Paracellular bicarbonate flux across human cystic fibrosis airway epithelia tempers changes in airway surface liquid pH. J Physiol 2020; 598:4307-4320. [PMID: 32627187 PMCID: PMC7589346 DOI: 10.1113/jp280120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Cl- and HCO3- had similar paracellular permeabilities in human airway epithelia. PCl /PNa of airway epithelia was unaltered by pH 7.4 vs. pH 6.0 solutions. Under basal conditions, calculated paracellular HCO3- flux was secretory. Cytokines that increased airway surface liquid pH decreased or reversed paracellular HCO3- flux. HCO3- flux through the paracellular pathway may counterbalance effects of cellular H+ and HCO3- secretion. ABSTRACT Airway epithelia control the pH of airway surface liquid (ASL), thereby optimizing respiratory defences. Active H+ and HCO3- secretion by airway epithelial cells produce an ASL that is acidic compared with the interstitial space. The paracellular pathway could provide a route for passive HCO3- flux that also modifies ASL pH. However, there is limited information about paracellular HCO3- flux, and it remains uncertain whether an acidic pH produced by loss of cystic fibrosis transmembrane conductance regulator anion channels or proinflammatory cytokines might alter the paracellular pathway function. To investigate paracellular HCO3- transport, we studied differentiated primary cultures of human cystic fibrosis (CF) and non-CF airway epithelia. The paracellular pathway was pH-insensitive at pH 6.0 vs. pH 7.4 and was equally permeable to Cl- and HCO3- . Under basal conditions at pH ∼6.6, calculated paracellular HCO3- flux was weakly secretory. Treating epithelia with IL-17 plus TNFα alkalinized ASL pH to ∼7.0, increased paracellular HCO3- permeability, and paracellular HCO3- flux was negligible. Applying IL-13 increased ASL pH to ∼7.4 without altering paracellular HCO3- permeability, and calculated paracellular HCO3- flux was absorptive. These results suggest that HCO3- flux through the paracellular pathway counterbalances, in part, changes in the ASL pH produced via cellular mechanisms. As the pH of ASL increases towards that of basolateral liquid, paracellular HCO3- flux becomes absorptive, tempering the alkaline pH generated by transcellular HCO3- secretion.
Collapse
Affiliation(s)
- Ian M. Thornell
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Tayyab Rehman
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Alejandro A. Pezzulo
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Michael J. Welsh
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Molecular Physiology and BiophysicsPappajohn Biomedical InstituteRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Howard Hughes Medical InstituteUniversity of IowaIowa CityIAUSA
| |
Collapse
|