1
|
Li R, Cairns C, Yu T, Jaladanki R, Dodson CM, Chung HK, Xiao L, Wang J, Turner DJ. miR-495 promotes intestinal epithelial cell apoptosis through downregulation of Sphingosine-1-phosphate. Physiol Rep 2024; 12:e70021. [PMID: 39261977 PMCID: PMC11390489 DOI: 10.14814/phy2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Many pathological conditions lead to defects in intestinal epithelial integrity and loss of barrier function; Sphingosine-1-phosphate (S1P) has been shown to augment intestinal barrier integrity, though the exact mechanisms are not completely understood. We have previously shown that overexpression of Sphingosine Kinase 1 (SphK1), the rate limiting enzyme for S1P synthesis, significantly increased S1P production and cell proliferation. Here we show that microRNA 495 (miR-495) upregulation led to decreased levels of SphK1 resultant from a direct effect at the SphK1 mRNA. Increasing expression of miR-495 in intestinal epithelial cells resulted in decreased proliferation and increased susceptibility to apoptosis. Transgenic expression of miR-495 inhibited mucosal growth, as well as decreased proliferation in the crypts. The intestinal villi also expressed decreased levels of barrier proteins and exaggerated damage upon exposure to cecal ligation-puncture. These results implicate miR-495 as a critical negative regulator of intestinal epithelial protection and proliferation through direct regulation of SphK1, the rate limiting enzyme critical for production of S1P.
Collapse
Affiliation(s)
- Ruiyun Li
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Cassandra Cairns
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ting‐Xi Yu
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Rao Jaladanki
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Claire M. Dodson
- Ohio University Heritage College of Osteopathic MedicineAthensOhioUSA
| | - Hee Kyoung Chung
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Lan Xiao
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Jian‐Ying Wang
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Pathology, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Douglas J. Turner
- Baltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
- Department of Surgery, Cell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
2
|
Chen H, Luo S, Chen H, Zhang C. ATF3 regulates SPHK1 in cardiomyocyte injury via endoplasmic reticulum stress. Immun Inflamm Dis 2023; 11:e998. [PMID: 37773702 PMCID: PMC10540145 DOI: 10.1002/iid3.998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/19/2023] [Accepted: 08/19/2023] [Indexed: 10/01/2023] Open
Abstract
AIM Endoplasmic reticulum (ER) stress is common in different human pathologies, including cardiac diseases. Sphingosine kinase-1 (SPHK1) represents an important player in cardiac growth and function. Nevertheless, its function in cardiomyocyte ER stress remains vague. This study sought to evaluate the mechanism through which SPHK1 might influence ER stress during myocardial infarction (MI). METHODS MI-related GEO data sets were queried to screen differentially expressed genes. Murine HL-1 cells exposed to oxygen-glucose deprivation (OGD) and mice with MI were induced, followed by gene expression manipulation using short hairpin RNAs and overexpression vectors. The activating transcription factor 3 (ATF3) and SPHK1 expression was examined in cells and tissues. Cell counting kit-8, TUNEL, DHE, HE, and Masson's staining were conducted in vitro and in vivo. The inflammatory factor concentrations in mouse serum were measured using ELISA. Finally, the transcriptional regulation of SPHK1 by ATF3 was validated. RESULTS ATF3 and SPHK1 were upregulated in vivo and in vitro. ATF3 downregulation reduced the SPHK1 transcription. ATF3 and SPHK1 downregulation increased the viability of OGD-treated HL-1 cells and decreased apoptosis, oxidative stress, and ER stress. ATF3 and SPHK1 downregulation narrowed the infarction area and attenuated myocardial fibrosis in mice, along with reduced inflammation in the serum and ER stress in the myocardium. In contrast, SPHK1 reduced the protective effect of ATF3 downregulation in vitro and in vivo. CONCLUSIONS ATF3 downregulation reduced SPHK1 expression to attenuate cardiomyocyte injury in MI.
Collapse
Affiliation(s)
- Huiling Chen
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingP.R. China
| | - Suxin Luo
- Division of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingP.R. China
| | - Huamei Chen
- Division of CardiologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanP.R. China
| | - Cong Zhang
- Department of EmergencyThe People's Hospital of ChuXiong YiZu Autonomous PrefectureChuxiongYunnanP.R. China
| |
Collapse
|
3
|
Zou F, Wang S, Xu M, Wu Z, Deng F. The role of sphingosine-1-phosphate in the gut mucosal microenvironment and inflammatory bowel diseases. Front Physiol 2023; 14:1235656. [PMID: 37560160 PMCID: PMC10407793 DOI: 10.3389/fphys.2023.1235656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a type of bioactive sphingolipid, can regulate various cellular functions of distinct cell types in the human body. S1P is generated intracellularly by the catalysis of sphingosine kinase 1/2 (SphK1/2). S1P is transferred to the extracellular environment via the S1P transporter, binds to cellular S1P receptors (S1PRs) and subsequently activates S1P-S1PR downstream signaling. Dysbiosis of the intestinal microbiota, immune dysregulation and damage to epithelial barriers are associated with inflammatory bowel disease (IBD). Generally, S1P mainly exerts a proinflammatory effect by binding to S1PR1 on lymphocytes to facilitate lymphocyte migration to inflamed tissues, and increased S1P was found in the intestinal mucosa of IBD patients. Notably, there is an interaction between the distribution of gut bacteria and SphK-S1P signaling in the intestinal epithelium. S1P-S1PR signaling can also regulate the functions of intestinal epithelial cells (IECs) in mucosa, including cell proliferation and apoptosis. Additionally, increased S1P in immune cells of the lamina propria aggravates the inflammatory response by increasing the production of proinflammatory cytokines. Several novel drugs targeted at S1PRs have recently been used for IBD treatment. This review provides an overview of the S1P-S1PR signaling pathway and, in particular, summarizes the various roles of S1P in the gut mucosal microenvironment to deeply explore the function of S1P-S1PR signaling during intestinal inflammation and, more importantly, to identify potential therapeutic targets for IBD in the SphK-S1P-S1PR axis.
Collapse
Affiliation(s)
- Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Li R, Rao JN, Smith AD, Chung HK, Xiao L, Wang JY, Turner DJ. miR-542-5p targets c-myc and negates the cell proliferation effect of SphK1 in intestinal epithelial cells. Am J Physiol Cell Physiol 2023; 324:C565-C572. [PMID: 36622069 PMCID: PMC9942902 DOI: 10.1152/ajpcell.00145.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Intestinal epithelial barrier defects occur commonly during a variety of pathological conditions, though their underlying mechanisms are not completely understood. Sphingosine-1-phosphate (S1P) has been shown to be a critical regulator of proliferation and of maintenance of an intact intestinal epithelial barrier, as is also sphingosine kinase 1 (SphK1), the rate-limiting enzyme for S1P synthesis. SphK1 has been shown to modulate its effect on intestinal epithelial proliferation through increased levels of c-myc. We conducted genome-wide profile analysis to search for differential microRNA expression related to overexpressed SphK1 demonstrating adjusted expression of microRNA 542-5p (miR-542-5p). Here, we show that miR-542-5p is regulated by SphK1 activity and is an effector of c-myc translation that ultimately serves as a critical regulator of the intestinal epithelial barrier. miR-542-5p directly regulates c-myc translation through direct binding to the c-myc mRNA. Exogenous S1P analogs administered in vivo protect murine intestinal barrier from damage due to mesenteric ischemia reperfusion, and damaged intestinal tissue had increased levels of miR-542-5p. These results indicate that miR-542-5p plays a critical role in the regulation of S1P-mediated intestinal barrier function, and may highlight a novel role in potential therapies.
Collapse
Affiliation(s)
- Ruiyun Li
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| | - Alexis D Smith
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
- Cell Biology Group, Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore VA Medical Center, Baltimore, Maryland
| |
Collapse
|
5
|
Osma-Garcia IC, Capitan-Sobrino D, Mouysset M, Bell SE, Lebeurrier M, Turner M, Diaz-Muñoz MD. The RNA-binding protein HuR is required for maintenance of the germinal centre response. Nat Commun 2021; 12:6556. [PMID: 34772950 PMCID: PMC8590059 DOI: 10.1038/s41467-021-26908-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
The germinal centre (GC) is required for the generation of high affinity antibodies and immunological memory. Here we show that the RNA binding protein HuR has an essential function in GC B cells to sustain the GC response. In its absence, the GC reaction and production of high-affinity antibody is severely impaired. Mechanistically, HuR affects the transcriptome qualitatively and quantitatively. The expression and splicing patterns of hundreds of genes are altered in the absence of HuR. Among these genes, HuR is required for the expression of Myc and a Myc-dependent transcriptional program that controls GC B cell proliferation and Ig somatic hypermutation. Additionally, HuR regulates the splicing and abundance of mRNAs required for entry into and transition through the S phase of the cell cycle, and it modulates a gene signature associated with DNA deamination protecting GC B cells from DNA damage and cell death.
Collapse
Affiliation(s)
- Ines C Osma-Garcia
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, France
| | - Dunja Capitan-Sobrino
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, France
| | - Mailys Mouysset
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, France
| | - Sarah E Bell
- Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Manuel Lebeurrier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, France
| | - Martin Turner
- Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Manuel D Diaz-Muñoz
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, France.
- Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
6
|
Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA, Aliev G, Bishayee A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 2020; 207:107464. [PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory gastrointestinal (GI) diseases and malignancies are associated with growing morbidity and cancer-related mortality worldwide. GI tumor and inflammatory cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinase 1 (SphK1) and SphK2, that generate sphingosine-1-phosphate (S1P), a highly bioactive compound. Many inflammatory responses, including lymphocyte trafficking, are directed by circulatory S1P, present in high concentrations in both the plasma and the lymph of cancer patients. High fat and sugar diet, disbalanced intestinal flora, and obesity have recently been linked to activation of inflammation and SphK/S1P/S1P receptor (S1PR) signaling in various GI pathologies, including cancer. SphK1 overexpression and activation facilitate and enhance the development and progression of esophageal, gastric, and colon cancers. SphK/S1P axis, a mediator of inflammation in the tumor microenvironment, has recently been defined as a target for the treatment of GI disease states, including inflammatory bowel disease and colitis. Several SphK1 inhibitors and S1PR antagonists have been developed as novel anti-inflammatory and anticancer agents. In this review, we analyze the mechanisms of SphK/S1P signaling in GI tissues and critically appraise recent studies on the role of SphK/S1P/S1PR in inflammatory GI disorders and cancers. The potential role of SphK/S1PR inhibitors in the prevention and treatment of inflammation-mediated GI diseases, including GI cancer, is also evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Hideki Furuya
- Department of Surgery, Samuel Oschin Cancer Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mei Li Ng
- Advanced Medical and Dental Institute, University Sains 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia; GALLY International Research Institute, San Antonio, TX 78229, USA; Research Institute of Human Morphology, Moscow 117418, Russia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
7
|
Shen Z, Li Y, Fang Y, Lin M, Feng X, Li Z, Zhan Y, Liu Y, Mou T, Lan X, Wang Y, Li G, Wang J, Deng H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol 2020; 14:387-406. [PMID: 31876369 PMCID: PMC6998659 DOI: 10.1002/1878-0261.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sorting nexin 16 (SNX16), a member of the sorting nexin family, has been implicated in tumor development. However, the function of SNX16 has not yet been investigated in colorectal cancer (CRC). Here, we showed that SNX16 expression was significantly upregulated in CRC tissues compared with normal counterparts. Upregulated mRNA levels of SNX16 predicted poor survival of CRC patients. Functional experiments showed that SNX16 could promote CRC cells growth both in vitro and in vivo. Knockdown of SNX16 induced cell cycle arrest and apoptosis, whereas ectopic overexpression of SNX16 had the opposite effects. Mechanistically, SNX16-eukaryotic translation elongation factor 1A2 (eEF1A2) interaction could inhibit the degradation and ubiquitination of eEF1A2, followed by activation of downstream c-Myc signaling. Our study unveiled that the SNX16/eEF1A2/c-Myc signaling axis could promote colorectal tumorigenesis and SNX16 might potentially serve as a novel biomarker for the diagnosis and an intervention of CRC.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongsheng Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuan Fang
- Department of Radiation OncologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mingdao Lin
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaochuang Feng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhenkang Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yizhi Zhan
- Department of PathologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuechen Liu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Tingyu Mou
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaoliang Lan
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanan Wang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guoxin Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiping Wang
- Division of Surgical OncologyDepartment of SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Haijun Deng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Sukocheva OA, Lukina E, McGowan E, Bishayee A. Sphingolipids as mediators of inflammation and novel therapeutic target in inflammatory bowel disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:123-158. [PMID: 32085881 DOI: 10.1016/bs.apcsb.2019.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morbidity of inflammatory gastrointestinal (GI) diseases continues to grow resulting in worsen quality of life and increased burden on public medical systems. Complex and heterogenous illnesses, inflammatory bowel diseases (IBDs) encompass several inflammation -associated pathologies including Crohn's disease and ulcerative colitis. IBD is often initiated by a complex interplay between host genetic and environmental factors, lifestyle and diet, and intestinal bacterial components. IBD inflammatory signature was linked to the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) signaling pathway that is currently targeted by IBD therapies. Sphingolipid signaling was identified as one of the key mediators and regulators of pro-inflammatory conditions, and, specifically, TNF-α related signaling. All GI tissues and circulating immune/blood cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinases (SphK1 and SphK2) that generate sphingosine-1-phosphate (S1P), a bioactive lipid and ligand for five G-protein coupled membrane S1P receptors (S1PRs). Numerous normal and pathogenic inflammatory responses are mediated by SphK/S1P/S1PRs signaling axis including lymphocyte trafficking and activation of cytokine signaling machinery. SphK1/S1P/S1PRs axis has recently been defined as a target for the treatment of GI diseases including IBD/colitis. Several SphK1 inhibitors and S1PRs antagonists have been developed as novel anti-inflammatory agents. In this review, we discuss the mechanisms of SphK/S1P signaling in inflammation-linked GI disorders. The potential role of SphK/S1PRs inhibitors in the prevention and treatment of IBD/colitis is critically evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Elena Lukina
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Eileen McGowan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
9
|
Acharya S, Yao J, Li P, Zhang C, Lowery FJ, Zhang Q, Guo H, Qu J, Yang F, Wistuba II, Piwnica-Worms H, Sahin AA, Yu D. Sphingosine Kinase 1 Signaling Promotes Metastasis of Triple-Negative Breast Cancer. Cancer Res 2019; 79:4211-4226. [PMID: 31239273 DOI: 10.1158/0008-5472.can-18-3803] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 12/28/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. To identify TNBC therapeutic targets, we performed integrative bioinformatics analysis of multiple breast cancer patient-derived gene expression datasets and focused on kinases with FDA-approved or in-pipeline inhibitors. Sphingosine kinase 1 (SPHK1) was identified as a top candidate. SPHK1 overexpression or downregulation in human TNBC cell lines increased or decreased spontaneous metastasis to lungs in nude mice, respectively. SPHK1 promoted metastasis by transcriptionally upregulating the expression of the metastasis-promoting gene FSCN1 via NFκB activation. Activation of the SPHK1/NFκB/FSCN1 signaling pathway was associated with distance metastasis and poor clinical outcome in patients with TNBC. Targeting SPHK1 and NFκB using clinically applicable inhibitors (safingol and bortezomib, respectively) significantly inhibited aggressive mammary tumor growth and spontaneous lung metastasis in orthotopic syngeneic TNBC mouse models. These findings highlight SPHK1 and its downstream target, NFκB, as promising therapeutic targets in TNBC. SIGNIFICANCE: SPHK1 is overexpressed in TNBC and promotes metastasis, targeting SPHK1 or its downstream target NFκB with clinically available inhibitors could be effective for inhibiting TNBC metastasis.
Collapse
Affiliation(s)
- Sunil Acharya
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Cancer Biology Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chenyu Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Cancer Biology Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hua Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jingkun Qu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Cancer Biology Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
10
|
Zhang W, Liang Y, Li L, Wang X, Yan Z, Dong C, Zeng M, Zhong Q, Liu X, Yu J, Sun S, Liu X, Kang J, Zhao H, Jeong LS, Zhang Y, Jia L. The Nedd8-activating enzyme inhibitor MLN4924 (TAK-924/Pevonedistat) induces apoptosis via c-Myc-Noxa axis in head and neck squamous cell carcinoma. Cell Prolif 2019; 52:e12536. [PMID: 30341788 PMCID: PMC6496207 DOI: 10.1111/cpr.12536] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/08/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The present study aimed to reveal expression status of the neddylation enzymes in HNSCC and to elucidate the anticancer efficacy and the underlying mechanisms of inhibiting neddylation pathway. MATERIALS AND METHODS The expression levels of neddylation enzymes were estimated by Western blotting in human HNSCC specimens and bioinformatics analysis of the cancer genome atlas (TCGA) database. Cell apoptosis was evaluated by Annexin V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) stain and fluorescence-activated cell sorting (FACS). Small interfering RNA (siRNA) and the CRISPR-Cas9 system were used to elucidate the underlying molecular mechanism of MLN4924-induced HNSCC apoptosis. RESULTS Expression levels of NAE1 and UBC12 were prominently higher in HNSCC tissues than that in normal tissues. Inactivation of the neddylation pathway significantly inhibited malignant phenotypes of HNSCC cells. Mechanistic studies revealed that MLN4924 induced the accumulation of CRL ligase substrate c-Myc that transcriptionally activated pro-apoptotic protein Noxa, which triggered apoptosis in HNSCC. CONCLUSIONS These findings determined the over-expression levels of neddylation enzymes in HNSCC and revealed novel mechanisms underlying neddylation inhibition induced growth suppression in HNSCC cells, which provided preclinical evidence for further clinical evaluation of neddylation inhibitors (eg, MLN4924) for the treatment of HNSCC.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yupei Liang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Lihui Li
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofang Wang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Zi Yan
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Changsheng Dong
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mu‐Sheng Zeng
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Qian Zhong
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xue‐Kui Liu
- Department of Head & Neck CancerSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Jinha Yu
- College of PharmacySeoul National UniversitySeoulKorea
| | - Shuyang Sun
- Department of Oral and Maxillofacial‐Head Neck OncologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojun Liu
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Jihui Kang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hu Zhao
- Department of Clinical LaboratoryHuadong HospitalShanghai Key Laboratory of Clinical Geriatric MedicineResearch Center on Aging and MedicineFudan UniversityShanghaiChina
| | | | - Yanmei Zhang
- Department of Clinical LaboratoryHuadong HospitalShanghai Key Laboratory of Clinical Geriatric MedicineResearch Center on Aging and MedicineFudan UniversityShanghaiChina
| | - Lijun Jia
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
11
|
Chen J, Qi Y, Zhao Y, Kaczorowski D, Couttas TA, Coleman PR, Don AS, Bertolino P, Gamble JR, Vadas MA, Xia P, McCaughan GW. Deletion of sphingosine kinase 1 inhibits liver tumorigenesis in diethylnitrosamine-treated mice. Oncotarget 2018; 9:15635-15649. [PMID: 29643998 PMCID: PMC5884653 DOI: 10.18632/oncotarget.24583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is the 3rd leading cause of cancer deaths worldwide with very few effective treatments. Sphingosine kinase 1 (SphK1), a key regulator of sphingolipid metabolites, is over-expressed in human hepatocellular carcinoma (HCC) and our previous studies have shown that SphK1 is important in liver injury. We aimed to explore the role of SphK1 specifically in liver tumorigenesis using the SphK1 knockout (SphK1-/-) mouse. SphK1 deletion significantly reduced the number and the size of DEN-induced liver cancers in mice. Mechanistically, fewer proliferating but more apoptotic and senescent cells were detected in SphK1 deficient tumors compared to WT tumors. There was an increase in sphingosine rather than a decrease in sphingosine 1-phosphate (S1P) in SphK1 deficient tumors. Furthermore, the STAT3-S1PR pathway that has been reported previously to mediate the effect of SphK1 on colorectal cancers was not altered by SphK1 deletion in liver cancer. Instead, c-Myc protein expression was down-regulated by SphK1 deletion. In conclusion, this is the first in vivo evidence that SphK1 contributes to hepatocarcinogenesis. However, the downstream signaling pathways impacting on the development of HCC via SphK1 are organ specific providing further evidence that simply transferring known oncogenic molecular pathway targeting into HCC is not always valid.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer, Camperdown, NSW 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| | - Yanfei Qi
- Vascular Biology, Camperdown, NSW 2050, Australia
| | - Yang Zhao
- Vascular Biology, Camperdown, NSW 2050, Australia
| | | | | | | | - Anthony S Don
- ACRF Centenary Cancer Research, Camperdown, NSW 2050, Australia
| | - Patrick Bertolino
- Liver Immunology in Centenary Institute, Camperdown, NSW 2050, Australia
| | | | | | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Geoffrey W McCaughan
- Liver Injury and Cancer, Camperdown, NSW 2050, Australia.,A.W. Morrow Gastroenterology and Liver Center, Australian Liver Transplant Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
12
|
Li S, Zhou Y, Zheng X, Wu X, Liang Y, Wang S, Zhang Y. Sphk1 promotes breast epithelial cell proliferation via NF-κB-p65-mediated cyclin D1 expression. Oncotarget 2018; 7:80579-80585. [PMID: 27811358 PMCID: PMC5348342 DOI: 10.18632/oncotarget.13013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022] Open
Abstract
Lipid metabolism is crucially involved with the promotion of malignant progression and metastasis in various cancers. Growing evidence suggests that many types of cancers express high levels of sphingosine kinase 1 (Sphk1), which is known to mediate cell proliferation We hypothesized that Sphk1/sphingosine-1-phosphate (S1P) signaling contributes to tumor progression. In MCF10A and MCF10A-Sphk1 breast epithelial cells, we used TNF-α to activate the Sphk1/S1P pathway and the measured expression levels of NF-κBp65 and cyclin D1 mRNA and protein in the presence and absence of an NF-κB-p65 inhibitor. Chromatin immunoprecipitation assays were performed to determine whether NF-κB-p65 binds to the cyclin D1 promoter. We found that overexpression of Sphk1 induced NF-κB-p65 activation, increased expression of cyclin D1, shortened the cell division cycle, and thus promoted proliferation of breast epithelial cells. These findings provide insight into the mechanism by which an Sphk1/NF-κB-p65/cyclin D1 signaling pathway mediates cell proliferation.
Collapse
Affiliation(s)
- Shifei Li
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yan Zhou
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaodong Zheng
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiujuan Wu
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yueyang Liang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shushu Wang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Liu X, Jiang Y, Wu J, Zhang W, Liang Y, Jia L, Yu J, Jeong LS, Li L. NEDD8-activating enzyme inhibitor, MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis through up-regulation of ATF-4. Biochem Biophys Res Commun 2017; 488:1-5. [PMID: 28450112 DOI: 10.1016/j.bbrc.2017.04.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
Abstract
It has been reported that MLN4924 can inhibit cell growth and metastasis in various kinds of cancer. We have reported that MLN4924 is able to inhibit angiogenesis through the induction of cell apoptosis both in vitro and in vivo models. Moreover, Neddylation inhibition using MLN4924 triggered the accumulation of pro-apoptotic protein NOXA in Human umbilical vein endothelial cells (HUVECs). However, the mechanism of MLN4924-induced NOXA up-regulation has not been addressed in HUVECs yet. In this study, we investigated how MLN4924 induced NOXA expression and cellular apoptosis in HUVECs treated with MLN4924 at indicated concentrations. MLN4924-induced apoptosis was evaluated by Annexin V-FITC/PI analysis and expression of genes associated with apoptosis was assessed by Quantitative RT-PCR and western blotting. As a result, MLN4924 triggered NOXA-dependent apoptosis in a dose-dependent manner in HUVECs. Mechanistically, inactivation of Neddylation pathway caused up-regulation of activating transcription factor 4 (ATF-4), a substrate of Cullin-Ring E3 ubiquitin ligases (CRL). NOXA was subsequently transactivated by ATF-4 and further induced apoptosis. More importantly, knockdown of ATF-4 by siRNA significantly decreased NOXA expression and apoptotic induction in HUVECs. In summary, our study reveals a new mechanism underlying MLN4924-induced NOXA accumulation in HUVECs, which may help extend further study of MLN4924 for angiogenesis inhibition treatment.
Collapse
Affiliation(s)
- Xiaojun Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanan Jiang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianfu Wu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjuan Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yupei Liang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lijun Jia
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinha Yu
- College of Pharmacy, Seoul National University, Seoul, Korea Department of Pharmacy, South Korea
| | - L S Jeong
- College of Pharmacy, Seoul National University, Seoul, Korea Department of Pharmacy, South Korea.
| | - Lihui Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Park JH, Choi AJ, Kim SJ, Cheong SW, Jeong SY. AhR activation by 6-formylindolo[3,2-b]carbazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibit the development of mouse intestinal epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:44-53. [PMID: 26950395 DOI: 10.1016/j.etap.2016.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The intestinal epithelium plays a central role in immune homeostasis in the intestine. AhR, a ligand-activated transcription factor, plays an important role in diverse physiological processes. The intestines are exposed to various exogenous and endogenous AhR ligands. Thus, AhR may regulate the intestinal homeostasis, directly acting on the development of intestinal epithelial cells (IEC). In this study, we demonstrated that 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited the in vitro development of mouse intestinal organoids. The number of Paneth cells in the small intestine and the depth of crypts of the small and large intestines were reduced in mice administrated with FICZ. Immunohistochemical and flow cytometric assays revealed that AhR was highly expressed in Lgr5(+) stem cells. FICZ inhibited Wnt signaling lowering the level of β-catenin protein. Gene expression analyses demonstrated that FICZ increased expression of Lgr5, Math1, BMP4, and Indian Hedgehog while inhibiting that of Lgr4.
Collapse
Affiliation(s)
- Joo-Hung Park
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea.
| | - Ah-Jeong Choi
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - Soo-Ji Kim
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - Seon-Woo Cheong
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| | - So-Yeon Jeong
- Department of Biology, Changwon National University, Changwon, Kyungnam, 641-773, Korea
| |
Collapse
|
15
|
Whetton AD, Azmi NC, Pearson S, Jaworska E, Zhang L, Blance R, Kendall AC, Nicolaou A, Taylor S, Williamson AJ, Pierce A. MPL W515L expression induces TGFβ secretion and leads to an increase in chemokinesis via phosphorylation of THOC5. Oncotarget 2016; 7:10739-55. [PMID: 26919114 PMCID: PMC4905435 DOI: 10.18632/oncotarget.7639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/15/2016] [Indexed: 02/03/2023] Open
Abstract
The thrombopoietin receptor (MPL) has been shown to be mutated (MPL W515L) in myelofibrosis and thrombocytosis yet new approaches to treat this disorder are still required. We have previously shown that transcriptome and proteomic effects do not correlate well in oncogene-mediated leukemogenesis. We therefore investigated the effects of MPL W515L using proteomics. The consequences of MPL W515L expression on over 3300 nuclear and 3500 cytoplasmic proteins were assessed using relative quantification mass spectrometry. We demonstrate that MPL W515L expression markedly modulates the CXCL12/CXCR4/CD45 pathway associated with stem and progenitor cell chemotactic movement. We also demonstrated that MPL W515L expressing cells displayed increased chemokinesis which required the MPL W515L-mediated dysregulation of MYC expression via phosphorylation of the RNA transport protein THOC5 on tyrosine 225. In addition MPL W515L expression induced TGFβ secretion which is linked to sphingosine 1-phosphate production and the increased chemokinesis. These studies identify several pathways which offer potential targets for therapeutic intervention in the treatment of MPL W515L-driven malignancy. We validate our approach by showing that CD34+ cells from MPL W515L positive patients display increased chemokinesis and that treatment with a combination of MYC and sphingosine kinase inhibitors leads to the preferential killing of MPL W515L expressing cells.
Collapse
Affiliation(s)
- Anthony D. Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Norhaida Che Azmi
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Ewa Jaworska
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Liqun Zhang
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Rognvald Blance
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Alexandra C. Kendall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Samuel Taylor
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Andrew J.K. Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Chen J, Tang H, Sysol JR, Moreno-Vinasco L, Shioura KM, Chen T, Gorshkova I, Wang L, Huang LS, Usatyuk PV, Sammani S, Zhou G, Raj JU, Garcia JGN, Berdyshev E, Yuan JXJ, Natarajan V, Machado RF. The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med 2014; 190:1032-43. [PMID: 25180446 DOI: 10.1164/rccm.201401-0121oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Sphingosine kinases (SphKs) 1 and 2 regulate the synthesis of the bioactive sphingolipid sphingosine-1-phosphate (S1P), an important lipid mediator that promotes cell proliferation, migration, and angiogenesis. OBJECTIVES We aimed to examine whether SphKs and their product, S1P, play a role in the development of pulmonary arterial hypertension (PAH). METHODS SphK1(-/-), SphK2(-/-), and S1P lyase heterozygous (Sgpl1(+/-)) mice, a pharmacologic SphK inhibitor (SKI2), and a S1P receptor 2 (S1PR2) antagonist (JTE013) were used in rodent models of hypoxia-mediated pulmonary hypertension (HPH). S1P levels in lung tissues from patients with PAH and pulmonary arteries (PAs) from rodent models of HPH were measured. MEASUREMENTS AND MAIN RESULTS mRNA and protein levels of SphK1, but not SphK2, were significantly increased in the lungs and isolated PA smooth muscle cells (PASMCs) from patients with PAH, and in lungs of experimental rodent models of HPH. S1P levels were increased in lungs of patients with PAH and PAs from rodent models of HPH. Unlike SphK2(-/-) mice, SphK1(-/-) mice were protected against HPH, whereas Sgpl1(+/-) mice were more susceptible to HPH. Pharmacologic SphK1 and S1PR2 inhibition prevented the development of HPH in rodent models of HPH. Overexpression of SphK1 and stimulation with S1P potentially via ligation of S1PR2 promoted PASMC proliferation in vitro, whereas SphK1 deficiency inhibited PASMC proliferation. CONCLUSIONS The SphK1/S1P axis is a novel pathway in PAH that promotes PASMC proliferation, a major contributor to pulmonary vascular remodeling. Our results suggest that this pathway is a potential therapeutic target in PAH.
Collapse
Affiliation(s)
- Jiwang Chen
- 1 Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Münzer P, Schmid E, Walker B, Fotinos A, Chatterjee M, Rath D, Vogel S, Hoffmann SM, Metzger K, Seizer P, Geisler T, Gawaz M, Borst O, Lang F. Sphingosine kinase 1 (Sphk1) negatively regulates platelet activation and thrombus formation. Am J Physiol Cell Physiol 2014; 307:C920-7. [PMID: 25231106 DOI: 10.1152/ajpcell.00029.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a powerful regulator of platelet formation. Enzymes generating S1P include sphingosine kinase 1. The present study thus explored the role of sphingosine kinase 1 in platelet formation and function. Activation-dependent platelet integrin αIIbβ3 activation and secretion of platelets lacking functional sphingosine kinase 1 (sphk1(-/-)) and of wild-type platelets (sphk1(+/+)) were determined utilizing flow cytometry and chronolume luciferin assay. Cytosolic Ca(2+) activity ([Ca(2+)]i) and aggregation were measured using fura-2 fluorescence and aggregometry, respectively. In vitro platelet adhesion and thrombus formation were evaluated using a flow chamber with shear rates of 1,700 s(-1). Activation-dependent increase of [Ca(2+)]i, degranulation (release of alpha and dense granules), integrin αIIbβ3 activation, and aggregation were all significantly increased in sphk1(-/-) platelets compared with sphk1(+/+) platelets. Moreover, while platelet adhesion and thrombus formation under arterial shear rates were significantly augmented in Sphk1-deficient platelets, bleeding time and blood count were unaffected in sphk1(-/-) mice. In conclusion, sphingosine kinase 1 is a powerful negative regulator of platelet function counteracting degranulation, aggregation, and thrombus formation.
Collapse
Affiliation(s)
- Patrick Münzer
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Evi Schmid
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Britta Walker
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Anna Fotinos
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Madhumita Chatterjee
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Dominik Rath
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Sebastian Vogel
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Sascha M Hoffmann
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany
| | - Katja Metzger
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Peter Seizer
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Tobias Geisler
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Oliver Borst
- Department of Physiology, University of Tübingen, Tübingen, Germany. Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Dai L, Xia P, Di W. Sphingosine 1-phosphate: a potential molecular target for ovarian cancer therapy? Cancer Invest 2014; 32:71-80. [PMID: 24499107 DOI: 10.3109/07357907.2013.876646] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sphingosine 1-phosphate (S1P) is an important signaling regulator involved in tumor progression in multiple neoplasms. However, the role of S1P in the pathogenesis of ovarian cancer remains unclear. Herein, we summarize recent advances in understanding the impact of S1P signaling in ovarian cancer progression. S1P, aberrantly produced in ovarian cancer patients, is involved in the regulation of key cellular processes that contribute to ovarian cancer initiation and progression. Moreover, agents that block the S1P signaling pathway inhibit ovarian cancer cell growth or induce apoptosis. Hence, current evidence suggests that S1P may become a potential molecular target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , People's Republic of China1
| | | | | |
Collapse
|
19
|
Frank SB, Miranti CK. Disruption of prostate epithelial differentiation pathways and prostate cancer development. Front Oncol 2013; 3:273. [PMID: 24199173 PMCID: PMC3813973 DOI: 10.3389/fonc.2013.00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022] Open
Abstract
One of the foremost problems in the prostate cancer (PCa) field is the inability to distinguish aggressive from indolent disease, which leads to difficult prognoses and thousands of unnecessary surgeries. This limitation stems from the fact that the mechanisms of tumorigenesis in the prostate are poorly understood. Some genetic alterations are commonly reported in prostate tumors, including upregulation of Myc, fusion of Ets genes to androgen-regulated promoters, and loss of Pten. However, the specific roles of these aberrations in tumor initiation and progression are poorly understood. Likewise, the cell of origin for PCa remains controversial and may be linked to the aggressive potential of the tumor. One important clue is that prostate tumors co-express basal and luminal protein markers that are restricted to their distinct cell types in normal tissue. Prostate epithelium contains layer-specific stem cells as well as rare bipotent cells, which can differentiate into basal or luminal cells. We hypothesize that the primary oncogenic cell of origin is a transient-differentiating bipotent cell. Such a cell must maintain tight temporal and spatial control of differentiation pathways, thus increasing its susceptibility for oncogenic disruption. In support of this hypothesis, many of the pathways known to be involved in prostate differentiation can be linked to genes commonly altered in PCa. In this article, we review what is known about important differentiation pathways (Myc, p38MAPK, Notch, PI3K/Pten) in the prostate and how their misregulation could lead to oncogenesis. Better understanding of normal differentiation will offer new insights into tumor initiation and may help explain the functional significance of common genetic alterations seen in PCa. Additionally, this understanding could lead to new methods for classifying prostate tumors based on their differentiation status and may aid in identifying more aggressive tumors.
Collapse
Affiliation(s)
- Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute , Grand Rapids, MI , USA ; Genetics Graduate Program, Michigan State University , East Lansing, MI , USA
| | | |
Collapse
|