1
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
2
|
Zeballos L, García-Peral C, Ledesma MM, Auzmendi J, Lazarowski A, López DE. Changes in the Proteomic Profile After Audiogenic Kindling in the Inferior Colliculus of the GASH/Sal Model of Epilepsy. Int J Mol Sci 2025; 26:2331. [PMID: 40076950 PMCID: PMC11900993 DOI: 10.3390/ijms26052331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and resistance in predisposed individuals. This study investigates the proteomic and immune responses triggered by audiogenic kindling in the inferior colliculus, comparing non-responder animals exhibiting reduced seizure severity following repeated stimulation versus GASH/Sal naïve hamsters. To assess auditory pathway functionality, Auditory Brainstem Responses (ABRs) were recorded, revealing reduced neuronal activity in the auditory nerve of non-responders, while central auditory processing remained unaffected. Cytokine profiling demonstrated increased levels of proinflammatory markers, including IL-1 alpha (Interleukin-1 alpha), IL-10 (Interleukin-10), and TGF-beta (Transforming Growth Factor beta), alongside decreased IGF-1 (Insulin-like Growth Factor 1) levels, highlighting systemic inflammation and its interplay with neuroprotection. Building on these findings, a proteomic analysis identified 159 differentially expressed proteins (DEPs). Additionally, bioinformatic approaches, including Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), revealed disrupted pathways related to metabolic and inflammatory epileptic processes and a module potentially linked to a rise in the threshold of seizures, respectively. Differentially expressed genes, identified through bioinformatic and statistical analyses, were validated by RT-qPCR. This confirmed the upregulation of six genes (Gpc1-Glypican-1; Sdc3-Syndecan-3; Vgf-Nerve Growth Factor Inducible; Cpne5-Copine 5; Agap2-Arf-GAP with GTPase domain, ANK repeat, and PH domain-containing protein 2; and Dpp8-Dipeptidyl Peptidase 8) and the downregulation of two (Ralb-RAS-like proto-oncogene B-and S100b-S100 calcium-binding protein B), aligning with reduced seizure severity. This study may uncover key proteomic and immune mechanisms underlying seizure susceptibility, providing possible novel therapeutic targets for refractory epilepsy.
Collapse
Affiliation(s)
- Laura Zeballos
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos García-Peral
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Martín M. Ledesma
- Unidad de Conocimiento Traslacional, Hospital de Alta Complejidad del Bicentenario Esteban Echeverría, Monte Grande B1842, Argentina;
- Hospital de Alta Complejidad en Red El Cruce Dr. N. C. Kirchner SAMIC, Florencio Varela B1888, Argentina
| | - Jerónimo Auzmendi
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1417, Argentina; (J.A.); (A.L.)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz M2290, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1417, Argentina; (J.A.); (A.L.)
| | - Dolores E. López
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.Z.); (C.G.-P.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Li D, Andaloori L, Crowe M, Lin S, Hong J, Zaidi N, Ho M. Development of CAR-T Therapies and Personalized Vaccines for the Treatment of Cholangiocarcinoma: Current Progress, Mechanisms of Action, and Challenges. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:453-469. [PMID: 39675505 PMCID: PMC11983698 DOI: 10.1016/j.ajpath.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy with an increasing prevalence, a high mortality rate, poor overall survival, and limited responsiveness to conventional chemoradiotherapy. Targeted therapies addressing specific gene mutations have expanded treatment options for some patient populations. The introduction of chimeric antigen receptor-modified T-cell (CAR-T) immunotherapy and personalized vaccines have opened up a new avenue for managing various cancers. Considerable efforts have been dedicated to preclinical research and ongoing clinical trials of immunotherapeutic approaches including CAR-T therapy, vaccines, and antibody-based therapies such as antibody drug conjugates. However, the potential of CAR-T therapy and vaccines in treating advanced unresectable/metastatic cholangiocarcinoma remains largely unexplored. This article offers an overview of the current landscape of antibody-based immunotherapy, particularly CAR-T therapy and vaccines in the context of cholangiocarcinoma treatment. It outlines a framework for selecting CAR-T and vaccine targets and delves into the biology of promising targetable antigens, as well as potential future therapeutic targets.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lalitya Andaloori
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Crowe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
4
|
Szabo DJ, Toth E, Szabo K, Hegedus ZK, Bozsity-Farago N, Zupko I, Rovo L, Xiao X, Xu L, Keller-Pinter A. Trastuzumab Decreases the Expression of G1/S Regulators and Syndecan-4 Proteoglycan in Human Rhabdomyosarcoma. Int J Mol Sci 2025; 26:2137. [PMID: 40076757 PMCID: PMC11900631 DOI: 10.3390/ijms26052137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, arises from skeletal muscle cells that fail to differentiate terminally. Two subgroups of RMS, fusion-positive and fusion-negative RMS (FPRMS and FNRMS, respectively), are characterized by the presence or absence of the PAX3/7-FOXO1 fusion gene. RMSs frequently exhibit increased expression of human epidermal growth factor receptor-2 (HER2). Trastuzumab is a humanized monoclonal antibody targeting HER2, and its potential role in RMS treatment remains to be elucidated. Syndecan-4 (SDC4) is a heparan sulfate proteoglycan (HSPG) affecting myogenesis via Rac1-mediated actin remodeling. Previously, we demonstrated that the SDC4 gene is amplified in 28% of human FNRMS samples, associated with high mRNA expression, suggesting a tumor driver role. In this study, after analyzing the copy numbers and mRNA expressions of other HSPGs in human RMS samples, we found that in addition to SDC4, syndecan-1, syndecan-2, and glypican-1 were also amplified and highly expressed in FNRMS. In RD (human FNRMS) cells, elevated SDC4 expression was accompanied by low levels of phospho-Ser179 of SDC4, leading to high Rac1-GTP activity. Notably, this high SDC4 expression in RD cells decreased following trastuzumab treatment. Trastuzumab decreased the levels of G1/S checkpoint regulators cyclin E and cyclin D1 and reduced the cell number; however, it also downregulated the cyclin-dependent kinase inhibitor p21. The level of MyoD, a transcription factor essential for RMS cell survival, also decreased following trastuzumab administration. Our findings contribute to the understanding of the role of SDC4 in FNRMS. Since HER2 is expressed in about half of RMSs, the trastuzumab-mediated changes observed here may have therapeutic implications.
Collapse
Affiliation(s)
- Dora Julianna Szabo
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Eniko Toth
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Kitti Szabo
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zsofia Kata Hegedus
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Noemi Bozsity-Farago
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Istvan Zupko
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Laszlo Rovo
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, 6720 Szeged, Hungary
| | - Xue Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
5
|
Cava-Cami B, Galvao A, Van Ranst H, Stocker WA, Harrison CA, Smitz J, De Vos M, Kelsey G, Anckaert E. Pro-cumulin addition in a biphasic in vitro oocyte maturation system modulates human oocyte and cumulus cell transcriptomes. Mol Hum Reprod 2025; 31:gaaf001. [PMID: 39862403 PMCID: PMC11842067 DOI: 10.1093/molehr/gaaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/15/2024] [Indexed: 01/27/2025] Open
Abstract
Biphasic IVM can be offered as a patient-friendly alternative to conventional ovarian stimulation in IVF patients predicted to be hyper-responsive to ovarian stimulation. However, cumulative live birth rates after IVM per cycle are lower than after conventional ovarian stimulation for IVF. In different animal species, supplementation of IVM media with oocyte-secreted factors (OSFs) improves oocyte developmental competence through the expression of pro-ovulatory genes in cumulus cells. Whether the addition of OSFs in human biphasic IVM culture impacts the transcriptome of oocytes and cumulus cells retrieved from small antral follicles in minimally stimulated non-hCG-triggered IVM cycles remains to be elucidated. To answer this, human cumulus-oocyte complexes (COCs) that were fully surrounded by cumulus cells or partially denuded at the time of retrieval were cultured in a biphasic IVM system either without or with the addition of pro-cumulin, a GDF9:BMP15 heterodimer. Oocytes and their accompanying cumulus cells were collected separately, and single-cell RNA-seq libraries were generated. The transcriptomic profile of cumulus cells revealed that pro-cumulin upregulated the expression of genes involved in cumulus cell expansion and proliferation while downregulating steroidogenesis, luteinization, and apoptosis pathways. Moreover, pro-cumulin modulated the immature oocyte transcriptome during the pre-maturation step, including regulating translation, apoptosis, and mitochondria remodeling pathways in the growing germinal vesicle oocytes. The addition of pro-cumulin also restored the transcriptomic profile of matured metaphase II oocytes that were partially denuded at collection. These results suggest that cumulus cell and oocyte transcriptome regulation by pro-cumulin may increase the number of developmentally competent oocytes after biphasic IVM treatment. Future studies should assess the effects of pro-cumulin addition in human biphasic IVM at the proteomic level and the embryological outcomes, particularly its potential to enhance outcomes of oocytes that are partially denuded at COC collection.
Collapse
Affiliation(s)
- Berta Cava-Cami
- Follicle Biology Laboratory, Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Antonio Galvao
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
- Babraham Institute, Epigenetics Programme, Cambridge, UK
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Heidi Van Ranst
- Follicle Biology Laboratory, Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Johan Smitz
- Follicle Biology Laboratory, Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Michel De Vos
- Follicle Biology Laboratory, Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- BrusselsIVF, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Gavin Kelsey
- Babraham Institute, Epigenetics Programme, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, UK
| | - Ellen Anckaert
- Follicle Biology Laboratory, Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
6
|
Adel I, Mahmoud HA, Khater AI, Hafez FS. Diagnostic value of glypican-1; a new marker differentiating pulmonary squamous cell carcinoma from adenocarcinoma: immunohistochemical study on Egyptian series. Clin Exp Med 2025; 25:35. [PMID: 39797955 PMCID: PMC11724789 DOI: 10.1007/s10238-024-01551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC). This retrospective study included a total of 68 cases, of which 36 were diagnosed as SCC and 32 as adenocarcinoma (ADC). Furthermore, glypican-1 expression was compared with the expressions of p63, thyroid transcription factor-1 (TTF-1), and napsin A. All cases of SCC except one showed positive immunostaining to glypican-1; 35/36 (97.2%) cases, and predominantly scored 3 + . While only 5 cases of ADC showed positive immunostaining to glypican-1, having a score of 1 + or 2 + . The difference between glypican-1 expression of the two tumor types was highly significant (p value < 0.001). The sensitivity, specificity, and overall accuracy of glypican-1 expression for differentiating lung SCC from ADC were 97.2%, 84.4%, and 91.2%, respectively. The sensitivity of glypican-1 is more than p63 in the diagnosis of lung SCC. Glypican-1 can be added as a new diagnostic marker to help in the accurate discrimination between poorly differentiated lung SCC and solid predominant adenocarcinoma cases.
Collapse
Affiliation(s)
- Iman Adel
- Oncologic Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba A Mahmoud
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira Ismail Khater
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Fatma S Hafez
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Vitucci ECM, Carberry CK, Payton A, Herring LE, Mordant AL, Kim YH, Gilmour MI, McCullough SD, Rager JE. Wildfire-relevant woodsmoke and extracellular vesicles (EVs): Alterations in EV proteomic signatures involved in extracellular matrix degradation and tissue injury in airway organotypic models. ENVIRONMENTAL RESEARCH 2025; 264:120395. [PMID: 39571711 DOI: 10.1016/j.envres.2024.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Wildfires adversely impact air quality and public health worldwide. Exposures to wildfire smoke are linked to adverse health outcomes, including cardiopulmonary diseases. Critical research gaps remain surrounding the underlying biological pathways leading to wildfire-induced health effects. The regulation of intercellular communication and downstream toxicity driven by extracellular vesicles (EVs) is an important, understudied biological mechanism. This study investigated EVs following a wildfire smoke-relevant in vitro exposure. We hypothesized that woodsmoke (WS) would alter the proteomic content of EVs secreted in organotypic in vitro airway models. Exposures were carried out using a tri-culture model of alveolar epithelial cells, fibroblasts, and endothelial cells and a simplified co-culture model of alveolar epithelial cells and fibroblasts to inform responses across different cell populations. Epithelial cells were exposed to WS condensate and EVs were isolated from basolateral conditioned medium following 24 h exposure. WS exposure did not influence EV particle characteristics, and it moderately increased EV count. Exposure caused the differential loading of 25 and 35 proteins within EVs collected from the tri- and co-culture model, respectively. EV proteins involved in extracellular matrix degradation and wound healing were consistently modulated across both models. However, distinct proteins involved in the wound healing pathway were altered between models, suggesting unique but concerted efforts across cell types to communicate in response to injury. These findings demonstrate that a wildfire-relevant exposure alters the EV proteome and suggest an impact on EV-mediated intercellular communication. Overall, results demonstrate the viability of organotypic approaches in evaluating EVs to investigate exposure-induced biomarkers and underlying mechanisms. Findings also highlight the impact of differences in the biological complexity of in vitro models used to evaluate the effects of inhaled toxicants.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA; Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shaun D McCullough
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Exposure and Protection Group, Technology Advancement and Commercialization Unit, Research Triangle Institute International, Durham, NC 27709, USA; Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Timofeeva AV, Fedorov IS, Nikonets AD, Tarasova AM, Balashova EN, Degtyarev DN, Sukhikh GT. Increased Levels of hsa-miR-199a-3p and hsa-miR-382-5p in Maternal and Neonatal Blood Plasma in the Case of Placenta Accreta Spectrum. Int J Mol Sci 2024; 25:13309. [PMID: 39769074 PMCID: PMC11678653 DOI: 10.3390/ijms252413309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Despite the increasing number of placenta accreta spectrum (PAS) cases in recent years, its impact on neonatal outcomes and respiratory morbidity, as well as the underlying pathogenetic mechanism, has not yet been extensively studied. Moreover, no study has yet demonstrated the effectiveness of antenatal corticosteroid therapy (CT) for the prevention of respiratory distress syndrome (RDS) in newborns of mothers with PAS at the molecular level. In this regard, microRNA (miRNA) profiling by small RNA deep sequencing and quantitative real-time PCR was performed on 160 blood plasma samples from preterm infants (gestational age: 33-36 weeks) and their mothers who had been diagnosed with or without PAS depending on the timing of the antenatal RDS prophylaxis. A significant increase in hsa-miR-199a-3p and hsa-miR-382-5p levels was observed in the blood plasma of the newborns from mothers with PAS compared to the control group. A clear trend toward the normalization of hsa-miR-199a-3p and hsa-miR-382-5p levels in the neonatal blood plasma of the PAS groups was observed when CT was administered within 14 days before delivery, but not beyond 14 days. Direct correlations were found among the hsa-miR-382-5p level in neonatal blood plasma and the hsa-miR-199a-3p level in the same sample (r = 0.49; p < 0.001), the oxygen requirements in the NICU (r = 0.41; p = 0.001), the duration of the NICU stay (r = 0.31; p = 0.019), and the severity of the newborn's condition based on the NEOMOD scale (r = 0.36; p = 0.005). Logistic regression models based on the maternal plasma levels of hsa-miR-199a-3p and hsa-miR-382-5p predicted the need for cardiotonic therapy, invasive mechanical ventilation, or high-frequency oscillatory ventilation in newborns during the early neonatal period, with a sensitivity of 95-100%. According to the literary data, these miRNAs regulate fetal organogenesis via IGF-1, the formation of proper lung tissue architecture, surfactant synthesis in alveolar cells, and vascular tone.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician Kulakov V.I., 117997 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
9
|
Ćurko-Cofek B, Jenko M, Taleska Stupica G, Batičić L, Krsek A, Batinac T, Ljubačev A, Zdravković M, Knežević D, Šoštarič M, Sotošek V. The Crucial Triad: Endothelial Glycocalyx, Oxidative Stress, and Inflammation in Cardiac Surgery-Exploring the Molecular Connections. Int J Mol Sci 2024; 25:10891. [PMID: 39456673 PMCID: PMC11508174 DOI: 10.3390/ijms252010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Since its introduction, the number of heart surgeries has risen continuously. It is a high-risk procedure, usually involving cardiopulmonary bypass, which is associated with an inflammatory reaction that can lead to perioperative and postoperative organ dysfunction. The extent of complications following cardiac surgery has been the focus of interest for several years because of their impact on patient outcomes. Recently, numerous scientific efforts have been made to uncover the complex mechanisms of interaction between inflammation, oxidative stress, and endothelial dysfunction that occur after cardiac surgery. Numerous factors, such as surgical and anesthetic techniques, hypervolemia and hypovolemia, hypothermia, and various drugs used during cardiac surgery trigger the development of systemic inflammatory response and the release of oxidative species. They affect the endothelium, especially endothelial glycocalyx (EG), a thin surface endothelial layer responsible for vascular hemostasis, its permeability and the interaction between leukocytes and endothelium. This review highlights the current knowledge of the molecular mechanisms involved in endothelial dysfunction, particularly in the degradation of EG. In addition, the major inflammatory events and oxidative stress responses that occur in cardiac surgery, their interaction with EG, and the clinical implications of these events have been summarized and discussed in detail. A better understanding of the complex molecular mechanisms underlying cardiac surgery, leading to endothelial dysfunction, is needed to improve patient management during and after surgery and to develop effective strategies to prevent adverse outcomes that complicate recovery.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Matej Jenko
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Gordana Taleska Stupica
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Antea Krsek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Aleksandra Ljubačev
- Department of Surgery, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Maja Šoštarič
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
10
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. Cells 2024; 13:1479. [PMID: 39273049 PMCID: PMC11394257 DOI: 10.3390/cells13171479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
Affiliation(s)
- Michael V. Zaragoza
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Thuy-Anh Bui
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Halida P. Widyastuti
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Mehrsa Mehrabi
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Zixuan Cang
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Yutong Sha
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Anna Grosberg
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Shibata R, Konishi H, Arita T, Yamamoto Y, Matsuda H, Yamamoto T, Ohashi T, Shimizu H, Komatsu S, Shiozaki A, Kubota T, Fujiwara H, Otsuji E. Extracellular glypican-1 affects tumor progression and prognosis in esophageal cancer. Cancer Med 2024; 13:e70212. [PMID: 39300946 PMCID: PMC11413415 DOI: 10.1002/cam4.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Cells are covered with a glycan surface layer that is referred to as the glycocalyx (GCX). It has been reported that the formation of the GCX is promoted on cancer cells and is associated with tumor growth and metastasis. Heparan sulfate proteoglycan glypican-1 (GPC1) is a core protein of the GCX that is overexpressed in esophageal squamous cell carcinoma (ESCC) and is involved in the development and progression of cancer cells. The purpose of the present study is to analyze the utility of GPC1 as a new biomarker ralated to glycocalyx that reflects therapeutic effect and prognosis of ESCC. METHODS We measured the concentration of GPC1 protein in preoperative plasma from advanced esophageal cancer patients and examined its relationships with clinicopathological factors and therapeutic efficacy, and the effects of extracellular GPC1 were investigated. RESULTS The following clinical factors were significantly correlated with the preoperative high GPC1 concentration: male, tumor size ≥30 mm, venous invasion, pT factor ≥2, pStage ≥3, residual tumor, and distant metastatic recurrence. Both overall and recurrence-free survival were significantly worse in the high GPC1 group. Extracellular GPC1 protein concentration reflected intracellular GPC1 expression. Furthermore, we examined the effects of extracellular recombinant human (rh)GPC1 on ESCC cells, and found that extracellular rhGPC1 affects cell motility, including migration and invasion. CONCLUSIONS These results demonstrated the utility of extracellular GPC1 as a biomarker, which can be assayed from a less invasive blood sample-based liquid biopsy. Extracellular GPC1 protein plays a role in both tumor cell motility and cancer progression. Thus, plasma GPC1 is a useful biomarker for esophageal cancer progression and may be a potential candidate of therapeutic target.
Collapse
Affiliation(s)
- Rie Shibata
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hayato Matsuda
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Taiga Yamamoto
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
12
|
Theocharopoulos C, Ziogas IA, Douligeris CC, Efstathiou A, Kolorizos E, Ziogas DC, Kontis E. Antibody-drug conjugates for hepato-pancreato-biliary malignancies: "Magic bullets" to the rescue? Cancer Treat Rev 2024; 129:102806. [PMID: 39094332 DOI: 10.1016/j.ctrv.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hepato-Pancreato-Biliary (HPB) malignancies constitute a highly aggressive group of cancers that have a dismal prognosis. Patients not amenable to curative intent surgical resection are managed with systemic chemotherapy which, however, confers little survival benefit. Antibody-Drug Conjugates (ADCs) are tripartite compounds that merge the intricate selectivity and specificity of monoclonal antibodies with the cytodestructive potency of attached supertoxic payloads. In view of the unmet need for drugs that will enhance the survival rates of HPB cancer patients, the assessment of ADCs for treating HPB malignancies has become the focus of extensive clinical and preclinical investigation, showing encouraging preliminary results. In the current review, we offer a comprehensive overview of the growing body of evidence on ADC approaches tested for HPB malignancies. Starting from a concise discussion of the functional principles of ADCs, we summarize here all available data from preclinical and clinical studies evaluating ADCs in HPB cancers.
Collapse
Affiliation(s)
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | - Dimitrios C Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens 11527, Greece
| | - Elissaios Kontis
- Department of Surgery, Metaxa Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
13
|
Margaret MS, Melrose J. Impaired instructive and protective barrier functions of the endothelial cell glycocalyx pericellular matrix is impacted in COVID-19 disease. J Cell Mol Med 2024; 28:e70033. [PMID: 39180511 PMCID: PMC11344469 DOI: 10.1111/jcmm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 08/26/2024] Open
Abstract
The aim of this study was to review the roles of endothelial cells in normal tissue function and to show how COVID-19 disease impacts on endothelial cell properties that lead to much of its associated symptomatology. This places the endothelial cell as a prominent cell type to target therapeutically in the treatment of this disorder. Advances in glycosaminoglycan analytical techniques and functional glycomics have improved glycosaminoglycan mimetics development, providing agents that can more appropriately target various aspects of the behaviour of the endothelial cell in-situ and have also provided polymers with potential to prevent viral infection. Thus, promising approaches are being developed to combat COVID-19 disease and the plethora of symptoms this disease produces. Glycosaminoglycan mimetics that improve endothelial glycocalyx boundary functions have promising properties in the prevention of viral infection, improve endothelial cell function and have disease-modifying potential. Endothelial cell integrity, forming tight junctions in cerebral cell populations in the blood-brain barrier, prevents the exposure of the central nervous system to circulating toxins and harmful chemicals, which may contribute to the troublesome brain fogging phenomena reported in cognitive processing in long COVID disease.
Collapse
Affiliation(s)
- M. Smith Margaret
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Arthropharm Australia Pharmaceuticals Pty LtdBondi JunctionSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical SchoolNorthern, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| |
Collapse
|
14
|
Godoy MI, Pandey V, Wohlschlegel JA, Zhang Y. Secretome analysis of oligodendrocytes and precursors reveals their roles as contributors to the extracellular matrix and potential regulators of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604699. [PMID: 39091874 PMCID: PMC11291107 DOI: 10.1101/2024.07.22.604699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Oligodendrocytes form myelin that ensheaths axons and accelerates the speed of action potential propagation. Oligodendrocyte progenitor cells (OPCs) proliferate and replenish oligodendrocytes. While the myelin-forming role of oligodendrocytes and OPCs is well-established, potential additional roles of these cells are yet to be fully explored. Here, we analyzed the secreted proteome of oligodendrocytes and OPCs in vitro to determine whether these cell types are major sources of secreted proteins in the central nervous system (CNS). Interestingly, we found that both oligodendrocytes and OPCs secret various extracellular matrix proteins. Considering the critical role of neuroinflammation in neurological disorders, we evaluated the responses and potential contributions of oligodendrocytes and OPCs to this process. By characterizing the secreted proteomes of these cells after pro-inflammatory cytokine treatment, we discovered the secretion of immunoregulators such as C2 and B2m. This finding sheds new light on the hitherto underappreciated role of oligodendrocytes and OPCs in actively modulating neuroinflammation. Our study provides a comprehensive and unbiased proteomic dataset of proteins secreted by oligodendrocyte and OPC under both physiological and inflammatory conditions. It revealed the potential of these cells to secrete matrix and signaling molecules, highlighting their multifaceted function beyond their conventional myelin-forming roles.
Collapse
Affiliation(s)
- Marlesa I. Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| |
Collapse
|
15
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Cao L, Li F, Cai S, Zhang J, Guo C, Ali S, Zhou J, Jing X, Wang X, Qin Y, Wu F. Pan-cancer analysis and the oncogenic role of Glypican 1 in hepatocellular carcinoma. Sci Rep 2024; 14:15870. [PMID: 38982153 PMCID: PMC11233571 DOI: 10.1038/s41598-024-66838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
Recent studies indicate that Glypican 1 (GPC-1) is aberrantly expressed and plays a key role in certain cancers, but little is known in the hepatocellular carcinoma. Raw data from TCGA, GTEx and TIMER databases were utilized to comprehensively analyze GPC-1 expression landscape in pan-cancer, and the biological function of GPC-1 was investigated in liver cancer cells. The results revealed that GPC-1 is highly expressed in HCC, negatively correlated with survival, and also positively correlated with immune infiltration and clinical stage. Furthermore, GPC-1 promoted cell proliferation and inhibited apoptosis in the HCC cell lines. WGCNA analysis and HCCDB database revealed that Akt acted as a key molecule related to GPC-1, influencing biological functions and regulating cell malignant behaviors via the AKT signaling pathway. In conclusion, our findings provide a relatively comprehensive understanding of the oncogenic role of GPC-1 in HCC, implying that GPC-1 could serve as an innovative therapeutic target.
Collapse
Affiliation(s)
- Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Shuang Cai
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jinyuan Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Sadiq Ali
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Zhou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xintao Jing
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiaofei Wang
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Yannan Qin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
- Institute of Genetics and Development Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710301, Shaanxi, People's Republic of China.
| | - Fei Wu
- Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, People's Republic of China.
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA -Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-derived iPSC Differentiation Support Cell type and Lineage-specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598335. [PMID: 38915555 PMCID: PMC11195187 DOI: 10.1101/2024.06.12.598335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
LMNA -Related Dilated Cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C ( LMNA ) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. Molecular mechanisms of disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA -Related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (4 Patient and 8 Control) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for Cardiac Progenitors to Cardiomyocytes (CM) and Epicardium-Derived Cells (EPDC). Data integration and comparative analyses of Patient and Control cells found cell type and lineage differentially expressed genes (DEG) with enrichment to support pathway dysregulation. Top DEG and enriched pathways included: 10 ZNF genes and RNA polymerase II transcription in Pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CM; LMNA and epigenetic regulation and DDIT4 and mTORC1 signaling in EPDC. Top DEG also included: XIST and other X-linked genes, six imprinted genes: SNRPN , PWAR6 , NDN , PEG10 , MEG3 , MEG8 , and enriched gene sets in metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
|
18
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
19
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Watabe T, Kabayama K, Naka S, Yamamoto R, Kaneda K, Serada S, Ooe K, Toyoshima A, Wang Y, Haba H, Kurimoto K, Kobayashi T, Shimosegawa E, Tomiyama N, Fukase K, Naka T. Immuno-PET and Targeted α-Therapy Using Anti-Glypican-1 Antibody Labeled with 89Zr or 211At: A Theranostic Approach for Pancreatic Ductal Adenocarcinoma. J Nucl Med 2023; 64:1949-1955. [PMID: 37827841 PMCID: PMC10690121 DOI: 10.2967/jnumed.123.266313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Glypican-1 (GPC1) is overexpressed in several solid cancers and is associated with tumor progression, whereas its expression is low in normal tissues. This study aimed to evaluate the potential of an anti-GPC1 monoclonal antibody (GPC1 mAb) labeled with 89Zr or 211At as a theranostic target in pancreatic ductal adenocarcinoma. Methods: GPC1 mAb clone 01a033 was labeled with 89Zr or 211At with a deferoxamine or decaborane linker, respectively. The internalization ability of GPC1 mAb was evaluated by fluorescence conjugation using a confocal microscope. PANC-1 xenograft mice (n = 6) were intravenously administered [89Zr]GPC1 mAb (0.91 ± 0.10 MBq), and PET/CT scanning was performed for 7 d. Uptake specificity was confirmed through a comparative study using GPC1-positive (BxPC-3) and GPC1-negative (BxPC-3 GPC1-knockout) xenografts (each n = 3) and a blocking study. DNA double-strand breaks were evaluated using the γH2AX antibody. The antitumor effect was evaluated by administering [211At]GPC1 mAb (∼100 kBq) to PANC-1 xenograft mice (n = 10). Results: GPC1 mAb clone 01a033 showed increased internalization ratios over time. One day after administration, a high accumulation of [89Zr]GPC1 mAb was observed in the PANC-1 xenograft (SUVmax, 3.85 ± 0.10), which gradually decreased until day 7 (SUVmax, 2.16 ± 0.30). The uptake in the BxPC-3 xenograft was significantly higher than in the BxPC-3 GPC1-knockout xenograft (SUVmax, 4.66 ± 0.40 and 2.36 ± 0.36, respectively; P = 0.05). The uptake was significantly inhibited in the blocking group compared with the nonblocking group (percentage injected dose per gram, 7.3 ± 1.3 and 12.4 ± 3.0, respectively; P = 0.05). DNA double-strand breaks were observed by adding 150 kBq of [211At]GPC1 and were significantly suppressed by the internalization inhibitor (dynasore), suggesting a substantial contribution of the internalization ability to the antitumor effect. Tumor growth suppression was observed in PANC-1 mice after the administration of [211At]GPC1 mAb. Internalization inhibitors (prochlorperazine) significantly inhibited the therapeutic effect of [211At]GPC1 mAb, suggesting an essential role in targeted α-therapy. Conclusion: [89Zr]GPC1 mAb PET showed high tumoral uptake in the early phase after administration, and targeted α-therapy using [211At]GPC1 mAb showed tumor growth suppression. GPC1 is a promising target for future applications for the precise diagnosis of pancreatic ductal adenocarcinoma and GPC1-targeted theranostics.
Collapse
Affiliation(s)
- Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Suita, Japan;
- Institute for Radiation Sciences, Osaka University, Suita, Japan
| | - Kazuya Kabayama
- Institute for Radiation Sciences, Osaka University, Suita, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Sadahiro Naka
- Department of Pharmacy, Osaka University Hospital, Suita, Japan
| | - Ryuku Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Kazuko Kaneda
- Institute for Radiation Sciences, Osaka University, Suita, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Japan
| | - Kazuhiro Ooe
- Institute for Radiation Sciences, Osaka University, Suita, Japan
| | | | - Yang Wang
- Nishina Center for Accelerator-Based Science, RIKEN, Saitama, Japan
| | - Hiromitsu Haba
- Nishina Center for Accelerator-Based Science, RIKEN, Saitama, Japan
| | - Kenta Kurimoto
- Department of Pharmacy, Osaka University Hospital, Suita, Japan
| | - Takanori Kobayashi
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Tomiyama
- Institute for Radiation Sciences, Osaka University, Suita, Japan
- Department of Radiology, Graduate School of Medicine, Osaka University, Suita, Japan; and
| | - Koichi Fukase
- Institute for Radiation Sciences, Osaka University, Suita, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tetsuji Naka
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Japan
- Division of Allergy and Rheumatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
22
|
Tian Y, Wang X, Cramer Z, Rhoades J, Estep KN, Ma X, Adams-Tzivelekidis S, Katona BW, Johnson FB, Yu Z, Blanco MA, Lengner CJ, Li N. APC and P53 mutations synergise to create a therapeutic vulnerability to NOTUM inhibition in advanced colorectal cancer. Gut 2023; 72:2294-2306. [PMID: 37591698 PMCID: PMC10715527 DOI: 10.1136/gutjnl-2022-329140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with the majority of cases initiated by inactivation of the APC tumour suppressor. This results in the constitutive activation of canonical WNT pathway transcriptional effector ß-catenin, along with induction of WNT feedback inhibitors, including the extracellular palmitoleoyl-protein carboxylesterase NOTUM which antagonises WNT-FZD receptor-ligand interactions. Here, we sought to evaluate the effects of NOTUM activity on CRC as a function of driver mutation landscape. DESIGN Mouse and human colon organoids engineered with combinations of CRC driver mutations were used for Notum genetic gain-of-function and loss-of-function studies. In vitro assays, in vivo endoscope-guided orthotopic organoid implantation assays and transcriptomic profiling were employed to characterise the effects of Notum activity. Small molecule inhibitors of Notum activity were used in preclinical therapeutic proof-of-principle studies targeting oncogenic Notum activity. RESULTS NOTUM retains tumour suppressive activity in APC-null adenomas despite constitutive ß-catenin activity. Strikingly, on progression to adenocarcinoma with P53 loss, NOTUM becomes an obligate oncogene. These phenotypes are Wnt-independent, resulting from differential activity of NOTUM on glypican 1 and 4 in early-stage versus late-stage disease, respectively. Ultimately, preclinical mouse models and human organoid cultures demonstrate that pharmacological inhibition of NOTUM is highly effective in arresting primary adenocarcinoma growth and inhibiting metastatic colonisation of distal organs. CONCLUSIONS Our findings that a single agent targeting the extracellular enzyme NOTUM is effective in treating highly aggressive, metastatic adenocarcinomas in preclinical mouse models and human organoids make NOTUM and its glypican targets therapeutic vulnerabilities in advanced CRC.
Collapse
Affiliation(s)
- Yuhua Tian
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zvi Cramer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua Rhoades
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katrina N Estep
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xianghui Ma
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bryson W Katona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhengquan Yu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - M Andres Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
25
|
Pratap A, Qualman A, Garrett H, Westbrook L, The E, Mitra S, Cordero M, Monge KM, Idrovo JP, Chauhan A, Cheng L, Cohen MJ, Mungo B, Wani S, Meguid RA, McCarter MD, Meng X. Silencing Glypican-1 enhances the antitumor effects of Pictilisib via downregulating PI3K/Akt/ERK signaling in chemo-resistant esophageal adenocarcinoma. Mol Cell Oncol 2023; 10:2238873. [PMID: 37649964 PMCID: PMC10464651 DOI: 10.1080/23723556.2023.2238873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023]
Abstract
Poorly differentiated esophageal adenocarcinoma (PDEAC) has a dismal prognosis. Glypican-1(GPC-1) is known to be upregulated in several cancer types in contrast to healthy tissues, rendering it as a biomarker. Nevertheless, the potential therapeutic targeting of GPC-1 has not been explored in PDEAC. There is accumulating evidence that GPC-1, via upregulation of PI3K/Akt/ERK signaling, plays a crucial role in the progression and chemoresistance in cancer. Pictilisib, a class I pan PI3K inhibitor, has shown promising antitumor results in clinical trials, however, has not gained widespread success due to acquired drug resistance. This study investigated the role of GPC-1 in chemo-resistant PDEAC and appraises the impact of targeted silencing of GPC-1 on the antitumor effects of Pictilisib in PDEAC cell lines. Immunohistochemistry assays in PDEAC tissue specimens demonstrated a pronounced intensity of staining with GPC-1. Upregulation of GPC-1 was found to be correlated with advanced stage and poor prognosis. In-vitro studies examined the influence of GPC-1 knockdown and Pictilisib, both as individual agents and in combination, on cytotoxicity, cell cycle distribution, apoptosis, and gene expression profiles. Silencing GPC-1 alone showed significantly reduced cell viability, migration, colony formation, epithelial-mesenchymal transition, and stemness in PDEAC cells. Significantly, knockdown of GPC-1 combined with low-dose Pictilisib led to enhancement of cytotoxicity, cell cycle arrest, and apoptosis in ESO-26 and OE-33 cells. In the xenograft mouse model, the combination of Pictilisib and GPC-1 knockdown exhibited synergy. These findings suggest that GPC-1 represents a promising target to augment chemosensitivity in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Akshay Pratap
- Division of Gastrointestinal Tumor and Endocrine Surgery, University of Colorado, Aurora, CO, USA
| | - Andrea Qualman
- Division of Gastrointestinal Tumor and Endocrine Surgery, University of Colorado, Aurora, CO, USA
| | - Hedlund Garrett
- Department of Allergy and Clinical Immunology Flow Core, University of Colorado, Aurora, CO, USA
| | | | - Erlinda The
- Division of Cardiothoracic Surgery, University of Colorado, Aurora, CO, USA
| | - Sanchayita Mitra
- Division of Gastrointestinal Tumor and Endocrine Surgery, University of Colorado, Aurora, CO, USA
| | - Mila Cordero
- School of Science, Engineering, & Technology, St. Mary’s University, San Antonio, TX, USA
| | - Kenneth Meza Monge
- Division of Gastrointestinal Tumor and Endocrine Surgery, University of Colorado, Aurora, CO, USA
| | - Juan- Pablo Idrovo
- Division of Gastrointestinal Tumor and Endocrine Surgery, University of Colorado, Aurora, CO, USA
| | - Argudit Chauhan
- Department of Biomedical Engineering, University of Colorado, Boulder, USA
| | - Linling Cheng
- Division of Cardiothoracic Surgery, University of Colorado, Aurora, CO, USA
| | - Mitchell Jay Cohen
- Division of Gastrointestinal Tumor and Endocrine Surgery, University of Colorado, Aurora, CO, USA
| | - Benedetto Mungo
- Division of Surgical Oncology, University of Colorado, Aurora, CO, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO, USA
| | | | - Martin D McCarter
- Division of Surgical Oncology, University of Colorado, Aurora, CO, USA
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, University of Colorado, Aurora, CO, USA
| |
Collapse
|
26
|
Dev Tripathi A, Katiyar S, Mishra A. Glypican1: a potential cancer biomarker for nanotargeted therapy. Drug Discov Today 2023:103660. [PMID: 37301249 DOI: 10.1016/j.drudis.2023.103660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Glypicans (GPCs) are generally involved in cellular signaling, growth and proliferation. Previous studies reported their roles in cancer proliferation. GPC1 is a co-receptor for a variety of growth-related ligands, thereby stimulating the tumor microenvironment by promoting angiogenesis and epithelial-mesenchymal transition (EMT). This work reviews GPC1-biomarker-assisted drug discovery by the application of nanostructured materials, creating nanotheragnostics for targeted delivery and application in liquid biopsies. The review includes details of GPC1 as a potential biomarker in cancer progression as well as a potential candidate for nano-mediated drug discovery.
Collapse
Affiliation(s)
- Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
27
|
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, Zdravković M, Šustić A, Sotošek V, Batičić L. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis 2023; 10:jcdd10050213. [PMID: 37233179 DOI: 10.3390/jcdd10050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary bypass and commonly inducing endothelial injury that contributes to the development of perioperative and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium. This review highlights the current state-of-the-art knowledge on the structure and function of the endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Particular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their clinical implications.
Collapse
Affiliation(s)
- Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Marijana Rakić
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Maja Šoštarič
- Clinical Department of Anesthesiology and Perioperative Intensive Therapy, Division of Cardiac Anesthesiology and Intensive Therapy, University Clinical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Alan Šustić
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
28
|
Wishart TFL, Lovicu FJ. Spatiotemporal Localisation of Heparan Sulphate Proteoglycans throughout Mouse Lens Morphogenesis. Cells 2023; 12:1364. [PMID: 37408198 DOI: 10.3390/cells12101364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Heparan sulphate proteoglycans (HSPGs) consist of a core protein decorated with sulphated HS-glycosaminoglycan (GAG) chains. These negatively charged HS-GAG chains rely on the activity of PAPSS synthesising enzymes for their sulfation, which allows them to bind to and regulate the activity of many positively charged HS-binding proteins. HSPGs are found on the surfaces of cells and in the pericellular matrix, where they interact with various components of the cell microenvironment, including growth factors. By binding to and regulating ocular morphogens and growth factors, HSPGs are positioned to orchestrate growth factor-mediated signalling events that are essential for lens epithelial cell proliferation, migration, and lens fibre differentiation. Previous studies have shown that HS sulfation is essential for lens development. Moreover, each of the full-time HSPGs, differentiated by thirteen different core proteins, are differentially localised in a cell-type specific manner with regional differences in the postnatal rat lens. Here, the same thirteen HSPG-associated GAGs and core proteins as well as PAPSS2, are shown to be differentially regulated throughout murine lens development in a spatiotemporal manner. These findings suggest that HS-GAG sulfation is essential for growth factor-induced cellular processes during embryogenesis, and the unique and divergent localisation of different lens HSPG core proteins indicates that different HSPGs likely play specialized roles during lens induction and morphogenesis.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Cheng F, Hansson VC, Georgolopoulos G, Mani K. Attenuation of cancer proliferation by suppression of glypican-1 and its pleiotropic effects in neoplastic behavior. Oncotarget 2023; 14:219-235. [PMID: 36944188 PMCID: PMC10030152 DOI: 10.18632/oncotarget.28388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Glypicans (GPC1-6) are associated with tumorigenic processes and their involvement in neoplastic behavior has been discussed in different cancer types. Here, a cancer-wide GPC expression study, using clinical cancer patient data in The Cancer Genome Atlas, reveals net upregulation of GPC1 and GPC2 in primary solid tumors, whereas GPC3, GPC5 and GPC6 display lowered expression pattern compared to normal tissues. Focusing on GPC1, survival analyses of the clinical cancer patient data reveal statistically significant correlation between high expression of GPC1 and poor prognosis in 10 particular cancer types i.e., bladder urothelial carcinoma, brain lower grade glioma, liver hepatocellular carcinoma, colon adenocarcinoma, kidney renal clear cell carcinoma, lung adenocarcinoma, mesothelioma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uveal melanoma. In vitro studies targeting GPC1 expression by CRISPR/Cas9 or siRNA or treatment with an anti-GPC1 antibody resulted in attenuation of proliferation of cancer cells from bladder carcinoma, glioma and hepatocellular carcinoma patients (T24, U87 and HepG2 cells). Further, overexpression of GPC1 exhibited a significant and negative correlation between GPC1 expression and proliferation of T24 cells. Attempt to reveal the mechanism through which downregulation of GPC1 leads to attenuation of tumor growth using systematic Ingenuity Pathway Analysis indicate that suppression of GPC1 results in ECM-mediated inhibition of specific pro-cancer signaling pathways involving TGF-β and p38 MAPK. Identified differential expression and pleiotropic effects of GPCs in specific cancer types emphasize their potential of as novel diagnostic tools and prognostic factors and open doors for future GPC targeted therapy.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| | - Victor Chérouvrier Hansson
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| | | | - Katrin Mani
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| |
Collapse
|
30
|
Gianesini S, Rimondi E, Raffetto JD, Melloni E, Pellati A, Menegatti E, Avruscio GP, Bassetto F, Costa AL, Rockson S. Human collecting lymphatic glycocalyx identification by electron microscopy and immunohistochemistry. Sci Rep 2023; 13:3022. [PMID: 36810649 PMCID: PMC9945466 DOI: 10.1038/s41598-023-30043-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Blood flow is translated into biochemical inflammatory or anti-inflammatory signals based onshear stress type, by means of sensitive endothelial receptors. Recognition of the phenomenon is of paramount importance for enhanced insights into the pathophysiological processes of vascular remodeling. The endothelial glycocalyx is a pericellular matrix, identified in both arteries and veins, acting collectively as a sensor responsive to blood flow changes. Venous and lymphatic physiology is interconnected; however, to our knowledge, a lymphatic glycocalyx structure has never been identified in humans. The objective of this investigation is to identify glycocalyx structures from ex vivo lymphatic human samples. Lower limb vein and lymphatic vessels were harvested. The samples were analyzed by transmission electron microscopy. The specimens were also examined by immunohistochemistry. Transmission electron microscopy identified a glycocalyx structure in human venous and lymphatic samples. Immunohistochemistry for podoplanin, glypican-1, mucin-2, agrin and brevican characterized lymphatic and venous glycocalyx-like structures. To our knowledge, the present work reports the first identification of a glycocalyx-like structure in human lymphatic tissue. The vasculoprotective action of the glycocalyx could become an investigational target in the lymphatic system as well, with clinical implications for the many patients affected by lymphatic disorders.
Collapse
Affiliation(s)
- S. Gianesini
- grid.8484.00000 0004 1757 2064Department of Translational Medicine, LTTA Centre, University of Ferrara, Ferrara, Italy ,grid.265436.00000 0001 0421 5525Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, USA
| | - E. Rimondi
- grid.8484.00000 0004 1757 2064Department of Translational Medicine, LTTA Centre, University of Ferrara, Ferrara, Italy
| | - J. D. Raffetto
- grid.265436.00000 0001 0421 5525Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, USA ,grid.38142.3c000000041936754XSurgery Department, VA Boston Healthcare System, Harvard University, Boston, USA
| | - E. Melloni
- grid.8484.00000 0004 1757 2064Department of Translational Medicine, LTTA Centre, University of Ferrara, Ferrara, Italy
| | - A. Pellati
- grid.8484.00000 0004 1757 2064Department of Translational Medicine, LTTA Centre, University of Ferrara, Ferrara, Italy
| | - E. Menegatti
- grid.8484.00000 0004 1757 2064Environmental Sciences and Prevention Department, University of Ferrara, Ferrara, Italy
| | - G. P. Avruscio
- grid.5608.b0000 0004 1757 3470Department of Cardiac, Thoracic and Vascular Sciences, Hospital-University of Padua, Padua, Italy
| | - F. Bassetto
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Clinic of Plastic Surgery, University of Padova, Padua, Italy
| | - A. L. Costa
- grid.5608.b0000 0004 1757 3470Department of Neuroscience, Clinic of Plastic Surgery, University of Padova, Padua, Italy
| | - S. Rockson
- grid.168010.e0000000419368956Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
31
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
32
|
Weinberg L, Yanase F, Tosif S, Riedel B, Bellomo R, Hahn RG. Trajectory of plasma syndecan-1 and heparan sulphate during major surgery: A retrospective observational study. Acta Anaesthesiol Scand 2023; 67:4-11. [PMID: 36112130 PMCID: PMC10087164 DOI: 10.1111/aas.14150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Surgical trauma-induced inflammation during major surgery may disrupt endothelial integrity and affect plasma concentrations of glycocalyx constituents, such as syndecan-1 and heparan sulphate. To date, no studies have focused on their perioperative temporal changes. METHODS As part of a trial, we obtained plasma and urine specimens sampled during the perioperative period in 72 patients undergoing major abdominal surgery. The plasma concentration of syndecan-1 and heparan sulphate was measured on five occasions, from baseline to the second postoperative day. Plasma and urinary creatinine and urinary syndecan-1 concentrations were measured before surgery and on the first postoperative morning. RESULTS We observed three different temporal patterns of plasma syndecan-1 concentration. Group 1 'low' (64% of patients) showed only minor changes from baseline despite a median heparan sulphate increase of 67% (p < .005). Group 2 'increase' (21% of patients) showed a marked increase in median plasma syndecan-1 from 27 μg/L to 118 μg/L during the first postoperative day (p < .001) with a substantial (+670%; p < .005) increase in median plasma heparan sulphate from 279 to 2196 μg/L. Group 3 'high' (14% of patients) showed a constant elevation of plasma syndecan-1 to >100 μg/L, but low heparan sulphate levels. The plasma C-reactive protein concentration did not differ across the three groups and 90% of colon surgeries occurred in Group 1. Treatment with dexamethasone was similar across the three groups. Surgical blood loss, duration of surgery and liver resection were greatest in Group 2. CONCLUSION Changes in syndecan-1 and heparan sulphate after surgery appear to show three different patterns, with the greatest increases in those patients with greater blood loss, more liver surgery and longer operations. These observations suggest that increases in syndecan-1 and heparan sulphate reflect the degree of surgical injury.
Collapse
Affiliation(s)
- Laurence Weinberg
- Department of Anaesthesia, Austin Hospital, Melbourne, Australia.,Department of Critical Care, The University of Melbourne, Melbourne, Australia
| | - Fumitaka Yanase
- Department of Intensive Care, Austin Hospital, Melbourne, Australia.,Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia
| | - Shervin Tosif
- Department of Anaesthesia, Austin Hospital, Melbourne, Australia
| | - Bernhard Riedel
- Department of Critical Care, The University of Melbourne, Melbourne, Australia.,Department of Anaesthesia, Perioperative and Pain Medicine, Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, The University of Melbourne, Melbourne, Australia.,Department of Intensive Care, Austin Hospital, Melbourne, Australia
| | - Robert G Hahn
- Karolinska Institute at Danderyd's Hospital (KIDS), Stockholm, Sweden.,Department of Research, Södertälje Hospital, Södertälje, Sweden
| |
Collapse
|
33
|
Zhao J, Guo M, Song Y, Liu S, Liao R, Zhang Y, Zhang Y, Yang Q, Gu Y, Huang X. Serum exosomal and serum glypican-1 are associated with early recurrence of pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:992929. [PMID: 36313694 PMCID: PMC9614098 DOI: 10.3389/fonc.2022.992929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background The diagnostic performance and prognostic value of serum exosomal glypican 1 (GPC-1) in pancreatic ductal adenocarcinoma (PDAC) remain controversial. In this study, we detected serum exosomal GPC-1 using enzyme-linked immunosorbent assay (ELISA) and determined whether it serves as a predictor of diagnosis and recurrence for early-stage PDAC. Methods Serum samples were obtained from patients with 50 PDAC, 6 benign pancreatic tumor (BPT), or 9 chronic pancreatitis (CP) and 50 healthy controls (HCs). Serum exosomes were isolated using an exosome isolation kit. Exosomal and serum GPC-1 levels were measured using ELISA. The freeze–thaw process was carried out to analyze the stability of GPC-1. Receiver operating characteristic (ROC) analysis was employed to assess the diagnostic value of GPC-1. Kaplan–Meier and multivariate Cox analyses were used to evaluate the prognostic value of GPC-1. Results The average concentrations of serum exosomal and serum GPC-1 were 1.5 and 0.8 ng/ml, respectively. GPC-1 expression levels were stable under repeated freezing and thawing (d1-5 freeze–thaw cycles vs. d0 P > 0.05). Serum exosomal and serum GPC-1 were significantly elevated in patients with PDAC compared with HCs (P < 0.0001) but were slightly higher compared with that in patients with CP and BPT (P > 0.05). The expression levels of exosomal and serum GPC-1 were elevated 5 days after surgery in patients with PDAC, CP, and BPT (P < 0.05). Patients with high levels of exosomal and serum GPC-1 had a shorter relapse-free survival (RFS) (P = 0.006, and P = 0.010). Multivariate analyses showed that serum exosomal and serum GPC-1 were independent prognostic indicators for early RFS (P = 0.008, and P = 0.041). Conclusion ELISA is an effective and sensitive method to detect exosomal and serum GPC-1. The detection of GPC-1 was stable under repeated freezing and thawing cycles and could distinguish early-stage PDAC from HCs but not CP and BPT. Exosomal and serum GPC-1 may be good independent predictors of early recurrence in early-stage PDAC.
Collapse
Affiliation(s)
- Juan Zhao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Madi Guo
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yushuai Song
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Liu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ran Liao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yumin Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Yang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanlong Gu
- Department of interventional oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Xiaoyi Huang,
| |
Collapse
|
34
|
He T, d’Uscio LV, Sun R, Santhanam AVR, Katusic ZS. Inactivation of BACE1 increases expression of endothelial nitric oxide synthase in cerebrovascular endothelium. J Cereb Blood Flow Metab 2022; 42:1920-1932. [PMID: 35673977 PMCID: PMC9536128 DOI: 10.1177/0271678x221105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Cerebrovascular effects of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) inactivation have not been systematically studied. In the present study we employed cultured human brain microvascular endothelial cells (BMECs), BACE1-knockout (BACE1-/-) mice and conditional (tamoxifen-induced) endothelium-specific BACE1-knockout (eBACE1-/-) mice to determine effect of BACE1 inhibition on expression and function of endothelial nitric oxide synthase (eNOS). Deletion of BACE1 caused upregulation of eNOS and glypican-1 (GPC1) in human BMECs treated with BACE1-siRNA, and cerebral microvessels of male BACE1-/- mice and male eBACE1-/- mice. In addition, BACE1siRNA treatment increased NO production in human BMECs. These effects appeared to be independent of amyloid β-peptide production. Furthermore, adenoviral-mediated overexpression of BACE1 in human BMECs down-regulated GPC1 and eNOS. Treatment of human BMECs with GPC1siRNA suppressed mRNA and protein levels of eNOS. In basilar arteries of male eBACE1-/- mice, endothelium-dependent relaxations to acetylcholine and endothelium-independent relaxations to NO donor, DEA-NONOate, were not affected, consistent with unchanged expression of eNOS and phosphorylation of eNOS at Ser1177 in large cerebral arteries. In aggregate, our findings suggest that under physiological conditions, inactivation of endothelial BACE1 increases expression of eNOS in cerebral microvessels but not in large brain arteries. This effect appears to be mediated by increased GPC1 expression.
Collapse
Affiliation(s)
- Tongrong He
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Livius V d’Uscio
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ruohan Sun
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anantha Vijay R Santhanam
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Critcher M, Huang ML. Excavating proteoglycan structure-function relationships: Modern approaches to capture the interactions of ancient biomolecules. Am J Physiol Cell Physiol 2022; 323:C415-C422. [PMID: 35759439 PMCID: PMC9359657 DOI: 10.1152/ajpcell.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans are now well regarded as key facilitators of cell biology. While a majority of their interactions and functions are attributed to the decorating glycosaminoglycan chains, there is a growing appreciation for the roles of the proteoglycan core protein and for considering proteoglycans as replete protein-glycan conjugates. This appreciation, seeded by early work in proteoglycan biology, is now being advanced and exalted by modern approaches in chemical glycobiology. In this review, we discuss up-and-coming methods to unearth the fine-scale architecture of proteoglycans that modulate their functions and interactions. Crucial to these efforts is the production of chemically defined materials, including semi-synthetic proteoglycans and the in situ capture of interacting proteins. Together, the integration of chemical biology approaches promises to expedite the dissection of the structural heterogeneity of proteoglycans and deliver refined insight into their functions.
Collapse
Affiliation(s)
- Meg Critcher
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | - Mia L Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA.,Department of Chemistry, Scripps Research, La Jolla, CA
| |
Collapse
|
36
|
Wilson LFL, Dendooven T, Hardwick SW, Echevarría-Poza A, Tryfona T, Krogh KBRM, Chirgadze DY, Luisi BF, Logan DT, Mani K, Dupree P. The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nat Commun 2022; 13:3314. [PMID: 35676258 PMCID: PMC9178029 DOI: 10.1038/s41467-022-31048-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Heparan sulfate is a highly modified O-linked glycan that performs diverse physiological roles in animal tissues. Though quickly modified, it is initially synthesised as a polysaccharide of alternating β-D-glucuronosyl and N-acetyl-α-D-glucosaminyl residues by exostosins. These enzymes generally possess two glycosyltransferase domains (GT47 and GT64)-each thought to add one type of monosaccharide unit to the backbone. Although previous structures of murine exostosin-like 2 (EXTL2) provide insight into the GT64 domain, the rest of the bi-domain architecture is yet to be characterised; hence, how the two domains co-operate is unknown. Here, we report the structure of human exostosin-like 3 (EXTL3) in apo and UDP-bound forms. We explain the ineffectiveness of EXTL3's GT47 domain to transfer β-D-glucuronosyl units, and we observe that, in general, the bi-domain architecture would preclude a processive mechanism of backbone extension. We therefore propose that heparan sulfate backbone polymerisation occurs by a simple dissociative mechanism.
Collapse
Affiliation(s)
- L F L Wilson
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - T Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - S W Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - A Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - T Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - K B R M Krogh
- Department of Protein Biochemistry and Stability, Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark
| | - D Y Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - B F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - D T Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| | - K Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, SE-221 00, Lund, Sweden.
| | - P Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
37
|
Pan J, Li N, Renn A, Zhu H, Chen L, Shen M, Hall MD, Qian M, Pastan I, Ho M. GPC1-Targeted Immunotoxins Inhibit Pancreatic Tumor Growth in Mice via Depletion of Short-lived GPC1 and Downregulation of Wnt Signaling. Mol Cancer Ther 2022; 21:960-973. [PMID: 35312769 PMCID: PMC9167738 DOI: 10.1158/1535-7163.mct-21-0778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Glypican-1 (GPC1) is a cell surface proteoglycan that is upregulated in multiple types of human cancers including pancreatic cancer. Here, we investigated whether GPC1 could be a target of antibody-toxin fusion proteins (i.e., immunotoxins) for treating pancreatic cancer. We constructed a panel of GPC1-targeted immunotoxins derived from a functional domain of Pseudomonas exotoxin A. An albumin-binding domain was also introduced into the anti-GPC1 immunotoxin to improve serum half-life. Small-molecule screening was performed to identify irinotecan that shows synergistic efficacy with the immunotoxin. We showed that GPC1 was internalized upon antibody binding. Anti-GPC1 immunotoxins alone inhibited tumor growth in a pancreatic cancer xenograft model. The immunotoxin treatment reduced active β-catenin expression in tumor cells. Furthermore, immunotoxins containing an albumin-binding domain in combination with irinotecan caused pancreatic tumor regression. GPC1 expression was reduced by the immunotoxin treatment due to the degradation of the internalized GPC1 and its short cellular turnover rate. Our data indicate that the GPC1-targeted immunotoxin inhibits pancreatic tumor growth via degradation of internalized GPC1, downregulation of Wnt signaling, and inhibition of protein synthesis. The anti-GPC1 immunotoxin in combination with irinotecan thus provides a potential new treatment strategy for patients with pancreatic tumors.
Collapse
Affiliation(s)
- Jiajia Pan
- School of Life Sciences, East China Normal University, Shanghai, China
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alex Renn
- NCATS Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Hu Zhu
- NCATS Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Lu Chen
- NCATS Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- NCATS Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Matthew D. Hall
- NCATS Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Qian
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Unconventional secretion mediated by direct protein self-translocation across the plasma membranes of mammalian cells. Trends Biochem Sci 2022; 47:699-709. [PMID: 35490075 DOI: 10.1016/j.tibs.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.
Collapse
|
39
|
Sparn C, Dimou E, Meyer A, Saleppico R, Wegehingel S, Gerstner M, Klaus S, Ewers H, Nickel W. Glypican-1 drives unconventional secretion of Fibroblast Growth Factor 2. eLife 2022; 11:75545. [PMID: 35348113 PMCID: PMC8986318 DOI: 10.7554/elife.75545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fibroblast Growth Factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse sub-classes consisting of syndecans, perlecans, glypicans and others, Glypican-1 (GPC1) is the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin
| | | |
Collapse
|
40
|
Hayashida K, Aquino RS, Park PW. Coreceptor Functions of Cell Surface Heparan Sulfate Proteoglycans. Am J Physiol Cell Physiol 2022; 322:C896-C912. [PMID: 35319900 PMCID: PMC9109798 DOI: 10.1152/ajpcell.00050.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Receptor-ligand interactions play an important role in many biological processes by triggering specific cellular responses. These interactions are frequently regulated by coreceptors that facilitate, alter, or inhibit signaling. Coreceptors work in parallel with other specific and accessory molecules to coordinate receptor-ligand interactions. Cell surface heparan sulfate proteoglycans (HSPGs) function as unique coreceptors because they can bind to many ligands and receptors through their HS and core protein motifs. Cell surface HSPGs are typically expressed in abundance of the signaling receptors and, thus, are capable of mediating the initial binding of ligands to the cell surface. HSPG coreceptors do not possess kinase domains or intrinsic enzyme activities and, for the most part, binding to cell surface HSPGs does not directly stimulate intracellular signaling. Because of these features, cell surface HSPGs primarily function as coreceptors for many receptor-ligand interactions. Given that cell surface HSPGs are widely conserved, they likely serve fundamental functions to preserve basic physiological processes. Indeed, cell surface HSPGs can support specific cellular interactions with growth factors, morphogens, chemokines, extracellular matrix (ECM) components, and microbial pathogens and their secreted virulence factors. Through these interactions, HSPG coreceptors regulate cell adhesion, proliferation, migration and differentiation, and impact the onset, progression, and outcome of pathophysiological processes, such as development, tissue repair, inflammation, infection, and tumorigenesis. This review seeks to provide an overview of the various mechanisms of how cell surface HSPGs function as coreceptors.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Rafael S Aquino
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Pyong Woo Park
- Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Piperigkou Z, Tzaferi K, Makrokanis G, Cheli K, Karamanos NK. The microRNA-cell surface proteoglycan axis in cancer progression. Am J Physiol Cell Physiol 2022; 322:C825-C832. [PMID: 35294845 DOI: 10.1152/ajpcell.00041.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteoglycans consist one of the major extracellular matrix class of biomolecules that demonstrate nodal roles in cancer progression. Μodern diagnostic and therapeutic approaches include proteoglycan detection and pharmacological targeting in various cancers. Proteoglycans orchestrate critical signaling pathways for cancer development and progression through dynamic interactions with matrix components. It is well established that the epigenetic signatures of cancer cells play critical role in guiding their functional properties and metastatic potential. Secreted microRNAs (miRNAs) reside in a complex network with matrix proteoglycans, thus affecting cell-cell and cell-matrix communication. This mini-review aims to highlight current knowledge on the proteoglycan-mediated signaling cascades that regulate miRNA biogenesis in cancer. Moreover, the miRNA-mediated proteoglycan regulation during cancer progression and mechanistic aspects on the way that proteoglycans affect miRNA expression are presented. Recent advances on the role of cell surface proteoglycans in exosome biogenesis and miRNA packaging and expression are also discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - George Makrokanis
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konsatntina Cheli
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
42
|
Abstract
Glypicans are proteoglycans that are bound to the outer surface of the plasma membrane by a glycosylphosphatidylinositol anchor. The mammalian genome contains six members of the glypican family (GPC1 to GPC6). Although the degree of sequence homology within the family is rather low, the three-dimensional structure of these proteoglycans is highly conserved. Glypicans are predominantly expressed during embryonic development. Genetic and biochemical studies have shown that glypicans can stimulate or inhibit the signaling pathways triggered by Wnts, Hedgehogs, Fibroblast Growth Factors, and Bone Morphogenetic Proteins. The study of mutant mouse strains demonstrated that glypicans have important functions in the developmental morphogenesis of various organs. In addition, a role of glypicans in synapsis formation has been established. Notably, glypican loss-of-function mutations are the cause of three human inherited syndromes. Recent analysis of glypican compound mutant mice have demonstrated that members of this protein family display redundant functions during embryonic development.
Collapse
Affiliation(s)
- Jorge Filmus
- Biological Sciences, Sunnybrook Research Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Ghosh S, Huda P, Fletcher N, Campbell D, Thurecht KJ, Walsh B. Clinical development of an anti-GPC-1 antibody for the treatment of cancer. Expert Opin Biol Ther 2022; 22:603-613. [DOI: 10.1080/14712598.2022.2033204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | | | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
44
|
Wu LN, Zhu ZJ, Sun LY. Genetic Factors and Their Role in the Pathogenesis of Biliary Atresia. Front Pediatr 2022; 10:912154. [PMID: 35844731 PMCID: PMC9277099 DOI: 10.3389/fped.2022.912154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Biliary Atresia, a common basis for neonatal cholestasis and primary indication for Liver Transplantation, accounts for 60% of pediatric Liver Transplantations. While the pathogenesis of Biliary Atresia remains obscure, abnormalities within bile ducts and the liver, inflammation, fibrosis and cilia defects are thought to comprise the pathological basis for this condition. The findings of genetic variants in Biliary Atresia, such as Copy Number Variations and Single Nucleotide Polymorphism, are considered as essential factors in the development of this condition. In this review, we summarize and analyze these Biliary Atresia variants from a perspective of their pathological characteristics. In conclusion, such analyses may offer novel insights into the pathogenesis of Biliary Atresia and provide a foundation for future studies directed toward a better understanding and treatment of Biliary Atresia.
Collapse
Affiliation(s)
- Li-Na Wu
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| |
Collapse
|