1
|
Poluektov YM, Lopina OD, Strelkova MA, Kuleshova ID, Makarov AA, Petrushanko IY. Mechanisms mediating effects of cardiotonic steroids in mammalian blood cells. Front Pharmacol 2025; 16:1520927. [PMID: 40196366 PMCID: PMC11973394 DOI: 10.3389/fphar.2025.1520927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
Cardiotonic steroids (CTSs) were known as steroidal plant compounds that exert cellular effects by the binding to Na,K-ATPase. Earlier, plant (exogenous) CTSs were used to treat chronic heart failure. By now, endogenous CTS have been identified in mammals, and their concentrations in the blood, normally in a subnanomolar range, are altered in numerous pathologies. This indicates their role as endogenous regulators of physiological processes. CTS transport occurs primarily in the blood, yet the CTS effects on blood cells remain poorly understood. This review summarizes the CTS effects on blood cells of animals and humans under normal and pathological conditions, and analyzes their action based on known mechanisms of action in mammalian cells. At high concentrations (greater than 10-9 M), CTS binding to Na,K-ATPase inhibits the enzyme, whereas lower concentrations of CTSs induce signaling cascades or activate the enzyme. All these mechanisms are shown to be present in blood cells. The particular CTS effect is determined by the CTS type, its concentration, the isoform composition of the catalytic α-subunit of Na,K-ATPase in the cell, and other cell features. It has been demonstrated that all blood cell types (erythrocytes, leukocytes, and platelets) expressed both ubiquitously distributed α1-isoform and tissue-specific α3-subunit, which exhibits a different ion and CTS affinity compared to α1. This results in a wide spectrum of blood cell responses to fluctuations in CTS levels in the blood. In particular, an increase in the level of endogenous CTSs by a more twofold is sufficient to induce a decline in the activity of erythrocyte Na,K-ATPase. The administration of exogenous CTSs is able to modulate the proinflammatory activity of leukocytes, which is attributed to the activation of signaling cascades, and to exert an influence on platelet activation. Hence, alterations of CTS levels in bloodstream significantly affect the functionality of blood cells, contributing to the organism's adaptive response. On top of this, a comparison of the effects of CTSs on human leukocytes and rodent leukocytes carrying the CTS-resistant α1-isoform often reveals opposite effects, thus indicating that rodents are an unsuitable model for studying CTS effects on these cells.
Collapse
Affiliation(s)
- Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Olga D. Lopina
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A. Strelkova
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Iuliia D. Kuleshova
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| | - Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Horesh N, Pelov I, Pogodin I, Zannadeh H, Rosen H, Mikhrina AL, Dvela-Levitt M, Sampath VP, Lichtstein D. Involvement of the Na +, K +-ATPase α1 Isoform and Endogenous Cardiac Steroids in Depression- and Manic-like Behaviors. Int J Mol Sci 2024; 25:1644. [PMID: 38338921 PMCID: PMC10855204 DOI: 10.3390/ijms25031644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.
Collapse
Affiliation(s)
- Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Ilana Pelov
- Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Jerusalem 91060, Israel;
| | - Ilana Pogodin
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Hiba Zannadeh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel;
| | - Anastasiia Leonidovna Mikhrina
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Moran Dvela-Levitt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel;
| | - Vishnu Priya Sampath
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| |
Collapse
|
4
|
Cai L, Pessoa MT, Gao Y, Strause S, Banerjee M, Tian J, Xie Z, Pierre SV. The Na/K-ATPase α1/Src Signaling Axis Regulates Mitochondrial Metabolic Function and Redox Signaling in Human iPSC-Derived Cardiomyocytes. Biomedicines 2023; 11:3207. [PMID: 38137428 PMCID: PMC10740578 DOI: 10.3390/biomedicines11123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Na/K-ATPase (NKA)-mediated regulation of Src kinase, which involves defined amino acid sequences of the NKA α1 polypeptide, has emerged as a novel regulatory mechanism of mitochondrial function in metazoans. Mitochondrial metabolism ensures adequate myocardial performance and adaptation to physiological demand. It is also a critical cellular determinant of cardiac repair and remodeling. To assess the impact of the proposed NKA/Src regulatory axis on cardiac mitochondrial metabolic function, we used a gene targeting approach in human cardiac myocytes. Human induced pluripotent stem cells (hiPSC) expressing an Src-signaling null mutant (A420P) form of the NKA α1 polypeptide were generated using CRISPR/Cas9-mediated genome editing. Total cellular Na/K-ATPase activity remained unchanged in A420P compared to the wild type (WT) hiPSC, but baseline phosphorylation levels of Src and ERK1/2 were drastically reduced. Both WT and A420P mutant hiPSC readily differentiated into cardiac myocytes (iCM), as evidenced by marker gene expression, spontaneous cell contraction, and subcellular striations. Total NKA α1-3 protein expression was comparable in WT and A420P iCM. However, live cell metabolism assessed functionally by Seahorse extracellular flux analysis revealed significant reductions in both basal and maximal rates of mitochondrial respiration, spare respiratory capacity, ATP production, and coupling efficiency. A significant reduction in ROS production was detected by fluorescence imaging in live cells, and confirmed by decreased cellular protein carbonylation levels in A420P iCM. Taken together, these data provide genetic evidence for a role of NKA α1/Src in the tonic stimulation of basal mitochondrial metabolism and ROS production in human cardiac myocytes. This signaling axis in cardiac myocytes may provide a new approach to counteract mitochondrial dysfunction in cardiometabolic diseases.
Collapse
Affiliation(s)
- Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Marco T. Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Sidney Strause
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Moumita Banerjee
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
5
|
Blaustein MP, Gottlieb SS, Hamlyn JM, Leenen FHH. Whither digitalis? What we can still learn from cardiotonic steroids about heart failure and hypertension. Am J Physiol Heart Circ Physiol 2022; 323:H1281-H1295. [PMID: 36367691 DOI: 10.1152/ajpheart.00362.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cloning of the "Na+ pump" (Na+,K+-ATPase or NKA) and identification of a circulating ligand, endogenous ouabain (EO), a cardiotonic steroid (CTS), triggered seminal discoveries regarding EO and its NKA receptor in cardiovascular function and the pathophysiology of heart failure (HF) and hypertension. Cardiotonic digitalis preparations were a preferred treatment for HF for two centuries, but digoxin was only marginally effective in a large clinical trial (1997). This led to diminished digoxin use. Missing from the trial, however, was any consideration that endogenous CTS might influence digitalis' efficacy. Digoxin, at therapeutic concentrations, acutely inhibits NKA but, remarkably, antagonizes ouabain's action. Prolonged treatment with ouabain, but not digoxin, causes hypertension in rodents; in this model, digoxin lowers blood pressure (BP). Furthermore, NKA-bound ouabain and digoxin modulate different protein kinase signaling pathways and have disparate long-term cardiovascular effects. Reports of "brain ouabain" led to the elucidation of a new, slow neuromodulatory pathway in the brain; locally generated EO and the α2 NKA isoform help regulate sympathetic drive to the heart and vasculature. The roles of EO and α2 NKA have been studied by EO assay, ouabain-resistant mutation of α2 NKA, and immunoneutralization of EO with ouabain-binding Fab fragments. The NKA α2 CTS binding site and its endogenous ligand are required for BP elevation in many common hypertension models and full expression of cardiac remodeling and dysfunction following pressure overload or myocardial infarction. Understanding how endogenous CTS impact hypertension and HF pathophysiology and therapy should foster reconsideration of digoxin's therapeutic utility.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen S Gottlieb
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
A Low Dose of Ouabain Alters the Metabolic Profile of Adult Rats Experiencing Intrauterine Growth Restriction in a Sex-Specific Manner. Reprod Sci 2022; 30:1594-1607. [PMID: 36333644 DOI: 10.1007/s43032-022-01118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of type 2 diabetes mellitus (T2DM) and metabolic diseases. The pancreas of fetuses with IUGR is usually characterized by pancreatic dysplasia and reduced levels of insulin secretion caused by the diminished replication of β-cells. Previous studies showed that a low dose of ouabain could reduce the apoptosis of embryonic nephric cells during IUGR and partially restore the number of nephrons at birth. The rescued kidneys functioned well and decreased the prevalence of hypertension. Thus, we hypothesized that ouabain could rescue pancreatic development during IUGR and reduce the morbidity of T2DM and metabolic diseases. Maternal malnutrition was used to induce the IUGR model, and then a low dose of ouabain was administered to rats with IUGR during pregnancy. Throughout the experiment, we monitored the pattern of weight increase and evaluated the metabolic parameters in the offspring in different stages. Male, but not female, offspring in the IUGR group presented catch-up growth. Ouabain could benefit the impaired glucose tolerance of male offspring; however, this desirable effect was eliminated by aging. The insulin sensitivity was significantly impaired in male offspring with IUGR, but it was improved by ouabain, even during old age. However, in the female offspring, low birth weight appeared to be a beneficial factor even in old age; administering ouabain exacerbated these favorable effects. Our data suggested that IUGR influenced glucose metabolism in a sex-specific manner and ouabain treatment during pregnancy exerted strongly contrasting effects in male and female rats.
Collapse
|
7
|
Short-Term Mild Hypoxia Modulates Na,K-ATPase to Maintain Membrane Electrogenesis in Rat Skeletal Muscle. Int J Mol Sci 2022; 23:ijms231911869. [PMID: 36233169 PMCID: PMC9570130 DOI: 10.3390/ijms231911869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The Na,K-ATPase plays an important role in adaptation to hypoxia. Prolonged hypoxia results in loss of skeletal muscle mass, structure, and performance. However, hypoxic preconditioning is known to protect against a variety of functional impairments. In this study, we tested the possibility of mild hypoxia to modulate the Na,K-ATPase and to improve skeletal muscle electrogenesis. The rats were subjected to simulated high-altitude (3000 m above sea level) hypobaric hypoxia (HH) for 3 h using a hypobaric chamber. Isolated diaphragm and soleus muscles were tested. In the diaphragm muscle, HH increased the α2 Na,K-ATPase isozyme electrogenic activity and stably hyperpolarized the extrajunctional membrane for 24 h. These changes were accompanied by a steady increase in the production of thiobarbituric acid reactive substances as well as a decrease in the serum level of endogenous ouabain, a specific ligand of the Na,K-ATPase. HH also increased the α2 Na,K-ATPase membrane abundance without changing its total protein content; the plasma membrane lipid-ordered phase did not change. In the soleus muscle, HH protected against disuse (hindlimb suspension) induced sarcolemmal depolarization. Considering that the Na,K-ATPase is critical for maintaining skeletal muscle electrogenesis and performance, these findings may have implications for countermeasures in disuse-induced pathology and hypoxic therapy.
Collapse
|
8
|
Su Q, Yu XJ, Wang XM, Peng B, Bai J, Li HB, Li Y, Xia WJ, Fu LY, Liu KL, Liu JJ, Kang YM. Na+/K+-ATPase Alpha 2 Isoform Elicits Rac1-Dependent Oxidative Stress and TLR4-Induced Inflammation in the Hypothalamic Paraventricular Nucleus in High Salt-Induced Hypertension. Antioxidants (Basel) 2022; 11:antiox11020288. [PMID: 35204171 PMCID: PMC8868219 DOI: 10.3390/antiox11020288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous studies have indicated that a high salt diet inhibits brain Na+/K+-ATPase (NKA) activity, and affects oxidative stress and inflammation in the paraventricular nucleus (PVN). Furthermore, Na+/K+-ATPase alpha 2-isoform (NKA α2) may be a target in the brain, taking part in the development of salt-dependent hypertension. Therefore, we hypothesized that NKA α2 regulates oxidative stress and inflammation in the PVN in the context of salt-induced hypertension. Part I: We assessed NKA subunits (NKA α1, NKA α2, and NKA α3), Na+/K+-ATPase activity, oxidative stress, and inflammation in a high salt group (8% NaCl) and normal salt group (0.3% NaCl). Part II: NKA α2 short hairpin RNA (shRNA) was bilaterally microinjected into the PVN of salt-induced hypertensive rats to knockdown NKA α2, and we explored whether NKA α2 regulates downstream signaling pathways related to protein kinase C γ (PKC γ)-dependent oxidative stress and toll-like receptor 4 (TLR4)-induced inflammation in the PVN to promote the development of hypertension. High salt diet increased NKA α1 and NKA α2 protein expression in the PVN but had no effect on NKA α3 compared to the normal salt diet. Na+/K+-ATPase activity and ADP/ATP ratio was lower, but NAD(P)H activity and NF-κB activity in the PVN were higher after a high salt diet. Bilateral PVN microinjection of NKA α2 shRNA not only improved Na+/K+-ATPase activity and ADP/ATP ratio but also suppressed PKC γ-dependent oxidative stress and TLR4-dependent inflammation in the PVN, thus decreasing sympathetic activity in rats with salt-induced hypertension. NKA α2 in the PVN elicits PKC γ/Rac1/NAD (P)H-dependent oxidative stress and TLR4/MyD88/NF-κB-induced inflammation in the PVN, thus increasing MAP and sympathetic activity during the development of salt-induced hypertension.
Collapse
Affiliation(s)
- Qing Su
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
- Correspondence: (X.-J.Y.); (Y.-M.K.); Tel./Fax: +86-298-265-7677 (X.-J.Y. & Y.-M.K.)
| | - Xiao-Min Wang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Bo Peng
- School of Clinical Medicine, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Juan Bai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Hong-Bao Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Ying Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Wen-Jie Xia
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Li-Yan Fu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Jin-Jun Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Shaanxi Engineering and Research Center of Vaccine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (Q.S.); (X.-M.W.); (H.-B.L.); (Y.L.); (W.-J.X.); (L.-Y.F.); (K.-L.L.); (J.-J.L.)
- Correspondence: (X.-J.Y.); (Y.-M.K.); Tel./Fax: +86-298-265-7677 (X.-J.Y. & Y.-M.K.)
| |
Collapse
|
9
|
El-Mallakh RS, Gao Y, You P. Role of endogenous ouabain in the etiology of bipolar disorder. Int J Bipolar Disord 2021; 9:6. [PMID: 33523310 PMCID: PMC7851255 DOI: 10.1186/s40345-020-00213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bipolar disorder is a severe psychiatric illness with poor prognosis and problematic and suboptimal treatments. Understanding the pathoetiologic mechanisms may improve treatment and outcomes. Discussion Dysregulation of cationic homeostasis is the most reproducible aspect of bipolar pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Recent discoveries of the role of endogenous sodium pump modulators (which include ‘endogenous ouabain’) in regulation of sodium and potassium distribution, inflammation, and activation of key cellular second messenger systems that are important in cell survival, and the demonstration that these stress-responsive chemicals may be dysregulated in bipolar patients, suggest that these compounds may be candidates for the coupling of environmental stressors and illness onset. Specifically, individuals with bipolar disorder appear to be unable to upregulate endogenous ouabain under conditions that require it, and therefore may experience a relative deficiency of this important regulatory hormone. In the absence of elevated endogenous ouabain, neurons are unable to maintain their normal resting potential, become relatively depolarized, and are then susceptible to inappropriate activation. Furthermore, sodium pump activity appears to be necessary to prevent inflammatory signals within the central nervous system. Nearly all available data currently support this model, but additional studies are required to solidify the role of this system. Conclusion Endogenous ouabain dysregulation appears to be a reasonable candidate for understanding the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA.
| | - Yonglin Gao
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA
| | - Pan You
- Xiamen Xianyue Hospital, 399 Xianyue Road, Xiamen, China
| |
Collapse
|
10
|
Koç Ş, Baysal SS. Practical Method for Salt Intake Follow-Up in Hypertensive Patients. Metab Syndr Relat Disord 2020; 18:353-361. [PMID: 32580624 DOI: 10.1089/met.2020.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Obese and hypertensive (HT) patients should restrict salt intake. In excessive salt intake, ouabain-like compounds inhibit Na/K-ATPase (Na+ pump), which increases intracellular Na+ and Ca2+. Ca2+ has a vasotonic effect on arteries and an inotropic effect on the heart and may cause cortical opacities in the lens. To our knowledge, there is still no practical method for salt intake follow-up. This study tested whether salt intake follow-up can be performed with the help of opacity tracking. Methods: In total, 400 HT patients (age 30-69 years) with cortical lens opacities were included in the study. Changes in opacities based on biomicroscopic examination at baseline and after 3 months were recorded digitally with the help of imaging software. Salt intake at 1 and 3 months was evaluated with a 24-hr urine Na assay. Changes in opacities were compared among group 1 (∼50% salt reduction), group 2 (∼10% salt reduction), and group 3 (∼15% salt increase). Results: Age and changes in small opacity diameter (SOD) and large opacity diameter (LOD) were the most important determinants of the 50% salt reduction in the third month. For changes in LOD, the sensitivity was 88.5% [confidence interval (95% CI) 85.2-91.7] and specificity was 95.5% (95% CI 93.1-98.7) for predicting a 50% salt restriction during the 3-month period. For SOD, the values were 85% (95% CI 82.5-87) and 95% (95% CI 92.3-97.5), respectively. Conclusions: Opacity changes are a practical method for predicting a 50% reduction in salt intake over a 3-month period in 30- to 59-year-old HT patients.
Collapse
Affiliation(s)
- Şahbender Koç
- Department of Cardiology, University of Health Sciences. Keçiören Education and Training Hospital, Ankara, Turkey
| | - Sadettin Selçuk Baysal
- Department of Cardiology, University of Health Sciences, Şanlıurfa Mehmet Akif İnan Education and Training Hospital, Urfa, Turkey
| |
Collapse
|
11
|
Na +, K +-ATPase α Isoforms and Endogenous Cardiac Steroids in Prefrontal Cortex of Bipolar Patients and Controls. Int J Mol Sci 2020; 21:ijms21165912. [PMID: 32824628 PMCID: PMC7460572 DOI: 10.3390/ijms21165912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bipolar disorder is a chronic multifactorial psychiatric illness that affects the mood, cognition, and functioning of about 1–2% of the world’s population. Its biological basis is unknown, and its treatment is unsatisfactory. The α1, α2, and α3 isoforms of the Na+, K+-ATPase, an essential membrane transporter, are vital for neuronal and glial function. The enzyme and its regulators, endogenous cardiac steroids like ouabain and marinobufagenin, are implicated in neuropsychiatric disorders, bipolar disorder in particular. Here, we address the hypothesis that the α isoforms of the Na+, K+-ATPase and its regulators are altered in the prefrontal cortex of bipolar disease patients. The α isoforms were determined by Western blot and ouabain and marinobufagenin by specific and sensitive immunoassays. We found that the α2 and α3 isoforms were significantly higher and marinobufagenin levels were significantly lower in the prefrontal cortex of the bipolar disease patients compared with those in the control. A positive correlation was found between the levels of the three α isoforms in all samples and between the α1 isoform and ouabain levels in the controls. These results are in accordance with the notion that the Na+, K+-ATPase-endogenous cardiac steroids system is involved in bipolar disease and suggest that it may be used as a target for drug development.
Collapse
|
12
|
Akkuratov EE, Westin L, Vazquez-Juarez E, de Marothy M, Melnikova AK, Blom H, Lindskog M, Brismar H, Aperia A. Ouabain Modulates the Functional Interaction Between Na,K-ATPase and NMDA Receptor. Mol Neurobiol 2020; 57:4018-4030. [PMID: 32651756 PMCID: PMC7467916 DOI: 10.1007/s12035-020-01984-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor plays an essential role in glutamatergic transmission and synaptic plasticity and researchers are seeking for different modulators of NMDA receptor function. One possible mechanism for its regulation could be through adjacent membrane proteins. NMDA receptors coprecipitate with Na,K-ATPase, indicating a potential interaction of these two proteins. Ouabain, a mammalian cardiotonic steroid that specifically binds to Na,K-ATPase and affects its conformation, can protect from some toxic effects of NMDA receptor activation. Here we have examined whether NMDA receptor activity and downstream effects can be modulated by physiological ouabain concentrations. The spatial colocalization between NMDA receptors and the Na,K-ATPase catalytic subunits on dendrites of cultured rat hippocampal neurons was analyzed with super-resolution dSTORM microscopy. The functional interaction was analyzed with calcium imaging of single hippocampal neurons exposed to 10 μM NMDA in presence and absence of ouabain and by determination of the ouabain effect on NMDA receptor–dependent long-term potentiation. We show that NMDA receptors and the Na,K-ATPase catalytic subunits alpha1 and alpha3 exist in same protein complex and that ouabain in nanomolar concentration consistently reduces the calcium response to NMDA. Downregulation of the NMDA response is not associated with internalization of the receptor or with alterations in its state of Src phosphorylation. Ouabain in nanomolar concentration elicits a long-term potentiation response. Our findings suggest that ouabain binding to a fraction of Na,K-ATPase molecules that cluster with the NMDA receptors will, via a conformational effect on the NMDA receptors, cause moderate but consistent reduction of NMDA receptor response at synaptic activation.
Collapse
Affiliation(s)
- Evgeny E Akkuratov
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden
| | - Linda Westin
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| | - Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Minttu de Marothy
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Kungliga Tekniska Högskolan, Stockholm, Sweden.
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Oliveira RS, Borges BT, Leal AP, Lailowski MM, Bordon KDCF, de Souza VQ, Vinadé L, dos Santos TG, Hyslop S, Moura S, Arantes EC, Corrado AP, Dal Belo CA. Chemical and Pharmacological Screening of Rhinella icterica (Spix 1824) Toad Parotoid Secretion in Avian Preparations. Toxins (Basel) 2020; 12:E396. [PMID: 32549266 PMCID: PMC7354542 DOI: 10.3390/toxins12060396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
The biological activity of Rhinella icterica parotoid secretion (RIPS) and some of its chromatographic fractions (RI18, RI19, RI23, and RI24) was evaluated in the current study. Mass spectrometry of these fractions indicated the presence of sarmentogenin, argentinogenin, (5β,12β)-12,14-dihydroxy-11-oxobufa-3,20,22-trienolide, marinobufagin, bufogenin B, 11α,19-dihydroxy-telocinobufagin, bufotalin, monohydroxylbufotalin, 19-oxo-cinobufagin, 3α,12β,25,26-tetrahydroxy-7-oxo-5β-cholestane-26-O-sulfate, and cinobufagin-3-hemisuberate that were identified as alkaloid and steroid compounds, in addition to marinoic acid and N-methyl-5-hydroxy-tryptamine. In chick brain slices, all fractions caused a slight decrease in cell viability, as also seen with the highest concentration of RIPS tested. In chick biventer cervicis neuromuscular preparations, RIPS and all four fractions significantly inhibited junctional acetylcholinesterase (AChE) activity. In this preparation, only fraction RI23 completely mimicked the pharmacological profile of RIPS, which included a transient facilitation in the amplitude of muscle twitches followed by progressive and complete neuromuscular blockade. Mass spectrometric analysis showed that RI23 consisted predominantly of bufogenins, a class of steroidal compounds known for their cardiotonic activity mediated by a digoxin- or ouabain-like action and the blockade of voltage-dependent L-type calcium channels. These findings indicate that the pharmacological activities of RI23 (and RIPS) are probably mediated by: (1) inhibition of AChE activity that increases the junctional content of Ach; (2) inhibition of neuronal Na+/K+-ATPase, leading to facilitation followed by neuromuscular blockade; and (3) blockade of voltage-dependent Ca2+ channels, leading to stabilization of the motor endplate membrane.
Collapse
Affiliation(s)
- Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia, Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha 1847, São Gabriel RS 97300-000, Brazil; (R.S.O.); (B.T.B.); (A.P.L.); (V.Q.d.S.)
| | - Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia, Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha 1847, São Gabriel RS 97300-000, Brazil; (R.S.O.); (B.T.B.); (A.P.L.); (V.Q.d.S.)
| | - Allan Pinto Leal
- Laboratório de Neurobiologia e Toxinologia, Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha 1847, São Gabriel RS 97300-000, Brazil; (R.S.O.); (B.T.B.); (A.P.L.); (V.Q.d.S.)
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria RS 97105-900, Brazil
| | - Manuela Merlin Lailowski
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul RS 95070-560, Brazil; (M.M.L.); (S.M.)
| | - Karla de Castro Figueiredo Bordon
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto SP 14.040-903, Brazil; (K.d.C.F.B.); (E.C.A.)
| | - Velci Queiróz de Souza
- Laboratório de Neurobiologia e Toxinologia, Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha 1847, São Gabriel RS 97300-000, Brazil; (R.S.O.); (B.T.B.); (A.P.L.); (V.Q.d.S.)
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia, Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha 1847, São Gabriel RS 97300-000, Brazil; (R.S.O.); (B.T.B.); (A.P.L.); (V.Q.d.S.)
| | - Tiago Gomes dos Santos
- Laboratório de Estudos em Biodiversidade Pampiana, Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha 1847, São Gabriel RS 97300-000, Brazil;
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas SP 13083-887, Brazil;
| | - Sidnei Moura
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul RS 95070-560, Brazil; (M.M.L.); (S.M.)
| | - Eliane Candiani Arantes
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto SP 14.040-903, Brazil; (K.d.C.F.B.); (E.C.A.)
| | - Alexandre Pinto Corrado
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Avenida Bandeirantes 3900, Ribeirão Preto SP 14040-030, Brazil;
| | - Cháriston A. Dal Belo
- Laboratório de Neurobiologia e Toxinologia, Programa de Pós-Graduação em Ciências Biológicas (PPGCB), Universidade Federal do Pampa (UNIPAMPA), Avenida Antônio Trilha 1847, São Gabriel RS 97300-000, Brazil; (R.S.O.); (B.T.B.); (A.P.L.); (V.Q.d.S.)
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria RS 97105-900, Brazil
| |
Collapse
|
14
|
Skeletal Muscle Na,K-ATPase as a Target for Circulating Ouabain. Int J Mol Sci 2020; 21:ijms21082875. [PMID: 32326025 PMCID: PMC7215781 DOI: 10.3390/ijms21082875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023] Open
Abstract
While the role of circulating ouabain-like compounds in the cardiovascular and central nervous systems, kidney and other tissues in health and disease is well documented, little is known about its effects in skeletal muscle. In this study, rats were intraperitoneally injected with ouabain (0.1-10 µg/kg for 4 days) alone or with subsequent injections of lipopolysaccharide (1 mg/kg). Some rats were also subjected to disuse for 6 h by hindlimb suspension. In the diaphragm muscle, chronic ouabain (1 µg/kg) hyperpolarized resting potential of extrajunctional membrane due to specific increase in electrogenic transport activity of the 2 Na,K-ATPase isozyme and without changes in 1 and 2 Na,K-ATPase protein content. Ouabain (10-20 nM), acutely applied to isolated intact diaphragm muscle from not injected rats, hyperpolarized the membrane to a similar extent. Chronic ouabain administration prevented lipopolysaccharide-induced (diaphragm muscle) or disuse-induced (soleus muscle) depolarization of the extrajunctional membrane. No stimulation of the 1 Na,K-ATPase activity in human red blood cells, purified lamb kidney and Torpedo membrane preparations by low ouabain concentrations was observed. Our results suggest that skeletal muscle electrogenesis is subjected to regulation by circulating ouabain via the 2 Na,K-ATPase isozyme that could be important for adaptation of this tissue to functional impairment.
Collapse
|
15
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Gross NB, Abad N, Lichtstein D, Taron S, Aparicio L, Fonteh AN, Arakaki X, Cowan RP, Grant SC, Harrington MG. Endogenous Na+, K+-ATPase inhibitors and CSF [Na+] contribute to migraine formation. PLoS One 2019; 14:e0218041. [PMID: 31173612 PMCID: PMC6555523 DOI: 10.1371/journal.pone.0218041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022] Open
Abstract
There is strong evidence that neuronal hyper-excitability underlies migraine, and may or may not be preceded by cortical spreading depression. However, the mechanisms for cortical spreading depression and/or migraine are not established. Previous studies reported that cerebrospinal fluid (CSF) [Na+] is higher during migraine, and that higher extracellular [Na+] leads to hyper-excitability. We raise the hypothesis that altered choroid plexus Na+, K+-ATPase activity can cause both migraine phenomena: inhibition raises CSF [K+] and initiates cortical spreading depression, while activation raises CSF [Na+] and causes migraine. In this study, we examined levels of specific Na+, K+-ATPase inhibitors, endogenous ouabain-like compounds (EOLC), in CSF from migraineurs and controls. CSF EOLC levels were significantly lower during ictal migraine (0.4 nM +/- 0.09) than from either controls (1.8 nM +/- 0.4) or interictal migraineurs (3.1 nM +/- 1.9). Blood plasma EOLC levels were higher in migraineurs than controls, but did not differ between ictal and interictal states. In a Sprague-Dawley rat model of nitroglycerin-triggered central sensitization, we changed the concentrations of EOLC and CSF sodium, and measured aversive mechanical threshold (von Frey hairs), trigeminal nucleus caudalis activation (cFos), and CSF [Na+] (ultra-high field 23Na MRI). Animals were sensitized by three independent treatments: intraperitoneal nitroglycerin, immunodepleting EOLC from cerebral ventricles, or cerebroventricular infusion of higher CSF [Na+]. Conversely, nitroglycerin-triggered sensitization was prevented by either vascular or cerebroventricular delivery of the specific Na+, K+-ATPase inhibitor, ouabain. These results affirm our hypothesis that higher CSF [Na+] is linked to human migraine and to a rodent migraine model, and demonstrate that EOLC regulates them both. Our data suggest that altered choroid plexus Na+, K+-ATPase activity is a common source of these changes, and may be the initiating mechanism in migraine.
Collapse
Affiliation(s)
- Noah B. Gross
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Nastaren Abad
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States of America
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research, Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Taron
- Department of Medical Neurobiology, Institute for Medical Research, Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lorena Aparicio
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Xianghong Arakaki
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Robert P. Cowan
- Department of Neurology, Stanford University, Palo Alto, California, United States of America
| | - Samuel C. Grant
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States of America
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Michael G. Harrington
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| |
Collapse
|
17
|
El-Mallakh RS, Brar KS, Yeruva RR. Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists. INSECTS 2019; 10:E102. [PMID: 30974764 PMCID: PMC6523104 DOI: 10.3390/insects10040102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Cardiac glycosides, cardenolides and bufadienolides, are elaborated by several plant or animal species to prevent grazing or predation. Entomologists have characterized several insect species that have evolved the ability to sequester these glycosides in their tissues to reduce their palatability and, thus, reduce predation. Cardiac glycosides are known to interact with the sodium- and potassium-activated adenosine triphosphatase, or sodium pump, through a specific receptor-binding site. Over the last couple of decades, and since entomologic studies, it has become clear that mammals synthesize endogenous cardenolides that closely resemble or are identical to compounds of plant origin and those sequestered by insects. The most important of these are ouabain-like compounds. These compounds are essential for the regulation of normal ionic physiology in mammals. Importantly, at physiologic picomolar or nanomolar concentrations, endogenous ouabain, a cardenolide, stimulates the sodium pump, activates second messengers, and may even function as a growth factor. This is in contrast to the pharmacologic or toxic micromolar or milimolar concentrations achieved after consumption of exogenous cardenolides (by consuming medications, plants, or insects), which inhibit the pump and result in either a desired medical outcome, or the toxic consequence of sodium pump inhibition.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Kanwarjeet S Brar
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Rajashekar Reddy Yeruva
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
18
|
Orellana AM, Leite JA, Kinoshita PF, Vasconcelos AR, Andreotti DZ, de Sá Lima L, Xavier GF, Kawamoto EM, Scavone C. Ouabain increases neuronal branching in hippocampus and improves spatial memory. Neuropharmacology 2018; 140:260-274. [PMID: 30099050 DOI: 10.1016/j.neuropharm.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Previous research shows Ouabain (OUA) to bind Na, K-ATPase, thereby triggering a number of signaling pathways, including the transcription factors NFᴋB and CREB. These transcription factors play a key role in the regulation of BDNF and WNT-β-catenin signaling cascades, which are involved in neuroprotection and memory regulation. This study investigated the effects of OUA (10 nM) in the modulation of the principal signaling pathways involved in morphological plasticity and memory formation in the hippocampus of adult rats. The results show intrahippocampal injection of OUA 10 nM to activate the Wnt/β-Catenin signaling pathway and to increase CREB/BDNF and NFᴋB levels. These effects contribute to important changes in the cellular microenvironment, resulting in enhanced levels of dendritic branching in hippocampal neurons, in association with an improvement in spatial reference memory and the inhibition of long-term memory extinction.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Diana Zukas Andreotti
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Bioscience, University of São Paulo, Adress: Rua do Matão, Travessa 14, 101, São Paulo, 05508-090, Brazil.
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science I University of São Paulo, Room 338, Av. Prof. Lineu Prestes, 1524, ICB I, Cidade Universitária, 05508-900, São Paulo, SP. Brazil.
| |
Collapse
|
19
|
Lichtstein D, Ilani A, Rosen H, Horesh N, Singh SV, Buzaglo N, Hodes A. Na⁺, K⁺-ATPase Signaling and Bipolar Disorder. Int J Mol Sci 2018; 19:E2314. [PMID: 30087257 PMCID: PMC6121236 DOI: 10.3390/ijms19082314] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Although in past decades the "monoamine hypothesis" has dominated our understanding of both the pathophysiology of depressive disorders and the action of pharmacological treatments, recent studies focus on the involvement of additional neurotransmitters/neuromodulators systems and cellular processes in BD. Here, evidence for the participation of Na⁺, K⁺-ATPase and its endogenous regulators, the endogenous cardiac steroids (ECS), in the etiology of BD is reviewed. Proof for the involvement of brain Na⁺, K⁺-ATPase and ECS in behavior is summarized and it is hypothesized that ECS-Na⁺, K⁺-ATPase-induced activation of intracellular signaling participates in the mechanisms underlying BD. We propose that the activation of ERK, AKT, and NFκB, resulting from ECS-Na⁺, K⁺-ATPase interaction, modifies neuronal activity and neurotransmission which, in turn, participate in the regulation of behavior and BD. These observations suggest Na⁺, K⁺-ATPase-mediated signaling is a potential target for drug development for the treatment of BD.
Collapse
Affiliation(s)
- David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Asher Ilani
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Haim Rosen
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Shiv Vardan Singh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Nahum Buzaglo
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
20
|
Buzaglo N, Golomb M, Rosen H, Beeri R, Ami HCB, Langane F, Pierre S, Lichtstein D. Augmentation of Ouabain-Induced Increase in Heart Muscle Contractility by Akt Inhibitor MK-2206. J Cardiovasc Pharmacol Ther 2018; 24:78-89. [DOI: 10.1177/1074248418788301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac steroids (CSs), such as ouabain and digoxin, increase the force of contraction of heart muscle and are used for the treatment of congestive heart failure (CHF). However, their small therapeutic window limits their use. It is well established that Na+, K+-ATPase inhibition mediates CS-induced increase in heart contractility. Recently, the involvement of intracellular signal transduction was implicated in this effect. The aim of the present study was to test the hypothesis that combined treatment with ouabain and Akt inhibitor (MK-2206) augments ouabain-induced inotropy in mammalian models. We demonstrate that the combined treatment led to an ouabain-induced increase in contractility at concentrations at which ouabain alone was ineffective. This was shown in 3 experimental systems: neonatal primary rat cardiomyocytes, a Langendorff preparation, and an in vivo myocardial infarction induced by left anterior descending coronary artery (LAD) ligation. Furthermore, cell viability experiments revealed that this treatment protected primary cardiomyocytes from MK-2206 toxicity and in vivo reduced the size of scar tissue 10 days post-LAD ligation. We propose that Akt activity imposes a constant inhibitory force on muscle contraction, which is attenuated by low concentrations of MK-2206, resulting in potentiation of the ouabain effect. This demonstration of the increase in the CS effect advocates the development of the combined treatment in CHF.
Collapse
Affiliation(s)
- Nahum Buzaglo
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Mordechai Golomb
- The Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ronen Beeri
- The Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hagit Cohen-Ben Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Fattal Langane
- Marshall Institute for Interdisciplinary Research, Huntington, WV, USA
| | - Sandrine Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV, USA
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
21
|
Kutz LC, Mukherji ST, Wang X, Bryant A, Larre I, Heiny JA, Lingrel JB, Pierre SV, Xie Z. Isoform-specific role of Na/K-ATPase α1 in skeletal muscle. Am J Physiol Endocrinol Metab 2018; 314:E620-E629. [PMID: 29438630 PMCID: PMC6032065 DOI: 10.1152/ajpendo.00275.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1+/-) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K+, fat tissue mass, and exercise capacity were not altered in α1+/- mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1+/- is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.
Collapse
Affiliation(s)
- Laura C Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Amber Bryant
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| |
Collapse
|
22
|
Lopachev AV, Abaimov DA, Fedorova TN, Lopacheva OM, Akkuratova NV, Akkuratov EE. Cardiotonic Steroids as Potential Endogenous Regulators in the Nervous System. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Oliveira RS, Leal AP, Ogata B, Moreira de Almeida CG, dos Santos DS, Lorentz LH, Moreira CM, de Castro Figueiredo Bordon K, Arantes EC, dos Santos TG, Dal Belo CA, Vinadé L. Mechanism of Rhinella icterica (Spix, 1824) toad poisoning using in vitro neurobiological preparations. Neurotoxicology 2018; 65:264-271. [DOI: 10.1016/j.neuro.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
|
24
|
Lopachev AV, Lopacheva OM, Nikiforova KA, Filimonov IS, Fedorova TN, Akkuratov EE. Comparative Action of Cardiotonic Steroids on Intracellular Processes in Rat Cortical Neurons. BIOCHEMISTRY (MOSCOW) 2018; 83:140-151. [DOI: 10.1134/s0006297918020062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Hodes A, Lifschytz T, Rosen H, Cohen Ben-Ami H, Lichtstein D. Reduction in endogenous cardiac steroids protects the brain from oxidative stress in a mouse model of mania induced by amphetamine. Brain Res Bull 2018; 137:356-362. [PMID: 29374602 DOI: 10.1016/j.brainresbull.2018.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is a severe mental illness characterized by episodes of mania and depression. Numerous studies have implicated the involvement of endogenous cardiac steroids (CS), and their receptor, Na+, K+ -ATPase, in BD. The aim of the present study was to examine the role of brain oxidative stress in the CS-induced behavioral effects in mice. METHODS Amphetamine (AMPH)-induced hyperactivity, assessed in the open-field test, served as a model for manic-like behavior in mice. A reduction in brain CS was obtained by specific and sensitive anti-ouabain antibodies. The level of oxidative stress was tested in the hippocampus and frontal cortex by measuring the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the levels of antioxidant non-protein thiols (NPSH) and oxidative damage biomarkers thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC). RESULTS AMPH administration resulted in a marked hyperactivity and increased oxidative stress, as manifested by increased SOD activity, decreased activities of CAT and GPx, reduced levels of NPSH and increased levels of TBARS and PC. The administration of anti-ouabain antibodies, which reduced the AMPH-induced hyperactivity, protected against the concomitant oxidative stress in the brain. CONCLUSIONS Our results demonstrate that oxidative stress participates in the effects of endogenous CS on manic-like behavior induced by AMPH. These finding support the notion that CS and oxidative stress may be associated with the pathophysiology of mania and BD.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tzuri Lifschytz
- Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hagit Cohen Ben-Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
26
|
Blaustein MP. The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na + pump endocrine system. Am J Physiol Cell Physiol 2017; 314:C3-C26. [PMID: 28971835 DOI: 10.1152/ajpcell.00196.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two prescient 1953 publications set the stage for the elucidation of a novel endocrine system: Schatzmann's report that cardiotonic steroids (CTSs) are all Na+ pump inhibitors, and Szent-Gyorgi's suggestion that there is an endogenous "missing screw" in heart failure that CTSs like digoxin may replace. In 1977 I postulated that an endogenous Na+ pump inhibitor acts as a natriuretic hormone and simultaneously elevates blood pressure (BP) in salt-dependent hypertension. This hypothesis was based on the idea that excess renal salt retention promoted the secretion of a CTS-like hormone that inhibits renal Na+ pumps and salt reabsorption. The hormone also inhibits arterial Na+ pumps, elevates myocyte Na+ and promotes Na/Ca exchanger-mediated Ca2+ gain. This enhances vasoconstriction and arterial tone-the hallmark of hypertension. Here I describe how those ideas led to the discovery that the CTS-like hormone is endogenous ouabain (EO), a key factor in the pathogenesis of hypertension and heart failure. Seminal observations that underlie the still-emerging picture of the EO-Na+ pump endocrine system in the physiology and pathophysiology of multiple organ systems are summarized. Milestones include: 1) cloning the Na+ pump isoforms and physiological studies of mutated pumps in mice; 2) discovery that Na+ pumps are also EO-triggered signaling molecules; 3) demonstration that ouabain, but not digoxin, is hypertensinogenic; 4) elucidation of EO's roles in kidney development and cardiovascular and renal physiology and pathophysiology; 5) discovery of "brain ouabain", a component of a novel hypothalamic neuromodulatory pathway; and 6) finding that EO and its brain receptors modulate behavior and learning.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Departments of Physiology and Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
27
|
Ouabain affects cell migration via Na,K-ATPase-p130cas and via nucleus-centrosome association. PLoS One 2017; 12:e0183343. [PMID: 28817661 PMCID: PMC5560699 DOI: 10.1371/journal.pone.0183343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023] Open
Abstract
Na,K-ATPase is a membrane protein that catalyzes ATP to maintain transmembrane sodium and potassium gradients. In addition, Na,K-ATPase also acts as a signal-transducing receptor for cardiotonic steroids such as ouabain and activates a number of signalling pathways. Several studies report that ouabain affects cell migration. Here we used ouabain at concentrations far below those required to block Na,K-ATPase pump activity and show that it significantly reduced RPE cell migration through two mechanisms. It causes dephosphorylation of a 130 kD protein, which we identify as p130cas. Src is involved, because Src inhibitors, but not inhibitors of other kinases tested, caused a similar reduction in p130cas phosphorylation and ouabain increased the association of Na,K-ATPase and Src. Knockdown of p130cas by siRNA reduced cell migration. Unexpectedly, ouabain induced separation of nucleus and centrosome, also leading to a block in cell migration. Inhibitor and siRNA experiments show that this effect is mediated by ERK1,2. This is the first report showing that ouabain can regulate cell migration by affecting nucleus-centrosome association.
Collapse
|
28
|
Alpha 2 Na +,K +-ATPase silencing induces loss of inflammatory response and ouabain protection in glial cells. Sci Rep 2017; 7:4894. [PMID: 28687727 PMCID: PMC5501845 DOI: 10.1038/s41598-017-05075-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/24/2017] [Indexed: 12/12/2022] Open
Abstract
Ouabain (OUA) is a cardiac glycoside that binds to Na+,K+-ATPase (NKA), a conserved membrane protein that controls cell transmembrane ionic concentrations and requires ATP hydrolysis. At nM concentrations, OUA activates signaling pathways that are not related to its typical inhibitory effect on the NKA pump. Activation of these signaling pathways protects against some types of injury of the kidneys and central nervous system. There are 4 isoforms of the alpha subunit of NKA, which are differentially distributed across tissues and may have different physiological roles. Glial cells are important regulators of injury and inflammation in the brain and express the α1 and α2 NKA isoforms. This study investigated the role of α2 NKA in OUA modulation of the neuroinflammatory response induced by lipopolysaccharide (LPS) in mouse primary glial cell cultures. LPS treatment increased lactate dehydrogenase release, while OUA did not decrease cell viability and blocked LPS-induced NF-κB activation. Silencing α2 NKA prevented ERK and NF-κB activation by LPS. α2 NKA also regulates TNF-α and IL-1β levels. The data reported here indicate a significant role of α2 NKA in regulating central LPS effects, with implications in the associated neuroinflammatory processes.
Collapse
|
29
|
Cui X, Xie Z. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 2017; 22:molecules22060990. [PMID: 28613263 PMCID: PMC6152704 DOI: 10.3390/molecules22060990] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| |
Collapse
|
30
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
31
|
Lopachev AV, Lopacheva OM, Osipova EA, Vladychenskaya EA, Smolyaninova LV, Fedorova TN, Koroleva OV, Akkuratov EE. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells. Cell Biochem Funct 2017; 34:367-77. [PMID: 27338714 DOI: 10.1002/cbf.3199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Cardiotonic steroid (CTS) ouabain is a well-established inhibitor of Na,K-ATPase capable of inducing signalling processes including changes in the activity of the mitogen activated protein kinases (MAPK) in various cell types. With increasing evidence of endogenous CTS in the blood and cerebrospinal fluid, it is of particular interest to study ouabain-induced signalling in neurons, especially the activation of MAPK, because they are the key kinases activated in response to extracellular signals and regulating cell survival, proliferation and apoptosis. In this study we investigated the effect of ouabain on the level of phosphorylation of three MAPK (ERK1/2, JNK and p38) and on cell survival in the primary culture of rat cerebellar cells. Using Western blotting we described the time course and concentration dependence of phosphorylation for ERK1/2, JNK and p38 in response to ouabain. We discovered that ouabain at a concentration of 1 μM does not cause cell death in cultured neurons while it changes the phosphorylation level of the three MAPK: ERK1/2 is phosphorylated transiently, p38 shows sustained phosphorylation, and JNK is dephosphorylated after a long-term incubation. We showed that ERK1/2 phosphorylation increase does not depend on ouabain-induced calcium increase and p38 activation. Changes in p38 phosphorylation, which is independent from ERK1/2 activation, are calcium dependent. Changes in JNK phosphorylation are calcium dependent and also depend on ERK1/2 and p38 activation. Ten-micromolar ouabain leads to cell death, and we conclude that different effects of 1-μM and 10-μM ouabain depend on different ERK1/2 and p38 phosphorylation profiles. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexander V Lopachev
- Research Center of Neurology, Moscow, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olga M Lopacheva
- Research Center of Neurology, Moscow, Russia.,Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia
| | - Ekaterina A Osipova
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Department of Chemical Enzymology, Moscow, Russia
| | | | - Larisa V Smolyaninova
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia.,Lomonosov Moscow State University, Faculty of Biology, Department of Biochemistry, Moscow, Russia
| | | | - Olga V Koroleva
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny E Akkuratov
- St. Petersburg State University, Institute of Translational Biomedicine, St. Petersburg, Russia
| |
Collapse
|
32
|
Akkuratov EE, Wu J, Sowa D, Shah ZA, Liu L. Ouabain-Induced Signaling and Cell Survival in SK-N-SH Neuroblastoma Cells Differentiated by Retinoic Acid. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2016; 14:1343-9. [PMID: 26295826 PMCID: PMC5388798 DOI: 10.2174/1871527314666150821103008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022]
Abstract
Ouabain stimulates activation of various signaling cascades such as protein kinase B (Akt) and Extracellular-signaling-regulated kinase 1/2 (ERK 1/2) in various cell lines. Retinoic acid (RA) is commonly used to induce neuroblastoma differentiation in cultures. Upon RA administration, human neuroblastoma cell line, SK-N-SH demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Here we report that ouabain-induced signaling is altered under the action of 1 μM RA in human neuroblastoma SK-N-SH cells. RA increased the expression of p110α subunit of phosphoinositide 3-kinase (PI3K), Akt and β1 subunit of Na+/K+-ATPase. Ouabain activated Akt and ERK 1/2 in differentiated SK-N-SH cells; this effect was not observed in non-differentiated SK-N-SH cells. Long-term incubation of non-differentiated SK-N-SH with 1 μM ouabain led to a decrease in the number of cells; this effect was reduced in differentiated SK-N-SH cells. Taken together, these results suggest that ouabain leads to cell death in neuroblastoma cells rather than neuronal cells due to the different response to ouabain manifested by activation of Akt and ERK 1/2.
Highlights
• RA increases the expression of p110α subunit of PI3K, Akt and β1 subunit of Na+/K+-ATPase • Ouabain induces activation of Akt and ERK 1/2 in differentiated SK-N-SH cells but not in non-differentiated cells • 1 μM ouabain leads to a decrease in the number of cells in non-differentiated SK-N-SH • Reduction of ouabain-induced cell death in differentiated SK-N-SH
Collapse
Affiliation(s)
| | | | | | | | - Lijun Liu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
33
|
|
34
|
Tverskoi AM, Sidorenko SV, Klimanova EA, Akimova OA, Smolyaninova LV, Lopina OD, Orlov SN. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+. BIOCHEMISTRY (MOSCOW) 2016; 81:876-83. [DOI: 10.1134/s0006297916080083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Hodes A, Rosen H, Deutsch J, Lifschytz T, Einat H, Lichtstein D. Endogenous cardiac steroids in animal models of mania. Bipolar Disord 2016; 18:451-9. [PMID: 27393337 DOI: 10.1111/bdi.12413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/25/2016] [Accepted: 06/04/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a complex psychiatric disorder characterized by mania and depression. Alterations in brain Na(+) , K(+) -ATPase and cardiac steroids (CSs) have been detected in BD, raising the hypothesis of their involvement in this pathology. The present study investigated the behavioral and biochemical consequences of a reduction in endogenous brain CS activity in animal models of mania. METHODS Amphetamine (AMPH)-induced hyperactivity in BALB/c and black Swiss mice served as a model of mania. Behavior was evaluated in the open-field test in naïve mice or in mice treated with anti-ouabain antibodies. CS levels were determined by enzyme-linked immunosorbent assay (ELISA), using sensitive and specific anti-ouabain antibodies. Extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) phosphorylation levels in the frontal cortex were determined by western blot analysis. RESULTS Administration of AMPH to BALB/c and black Swiss mice resulted in a marked increase in locomotor activity, accompanied by a threefold increase in brain CSs. The lowering of brain CSs by the administration of anti-ouabain antibodies prevented the hyperactivity and the increase in brain CS levels. AMPH caused an increase in phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt) levels in the frontal cortex, which was significantly reduced by administration of the antibodies. A synthetic 'functional antagonist' of CSs, 4-(3'α-15'β-dihydroxy-5'β-estran-17'β-yl) furan-2-methyl alcohol, also resulted in attenuation of AMPH-induced hyperactivity. CONCLUSIONS These results are in accordance with the notion that malfunctioning of the Na(+) , K(+) -ATPase/CS system may be involved in the manifestation of mania and identify this system as a potential new target for drug development.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- Departments of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | - Tzuri Lifschytz
- Department of Psychiatry, Hadassah Hospital, Jerusalem, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
36
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
37
|
Marinobufagenin-induced vascular fibrosis is a likely target for mineralocorticoid antagonists. J Hypertens 2016; 33:1602-10. [PMID: 26136067 DOI: 10.1097/hjh.0000000000000591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Endogenous cardiotonic steroids, including marinobufagenin (MBG), stimulate vascular synthesis of collagen. Because mineralocorticoid antagonists competitively antagonize effect of cardiotonic steroids on the Na/K-ATPase, we hypothesized that spironolactone would reverse the profibrotic effects of MBG. METHODS Experiment 1: Explants of thoracic aortae and aortic vascular smooth muscle cells from Wistar rats were cultured for 24 h in the presence of vehicle or MBG (100 nmol/l) with or without canrenone (10 μmol/l), an active metabolite of spironolactone. Experiment 2: In 16 patients (56 ± 2 years) with resistant hypertension on a combined (lisinopril/amlodipine/hydrochlorothiazide) therapy, we determined arterial pressure, pulse wave velocity, plasma MBG, and erythrocyte Na/K-ATPase before and 6 months after addition of placebo (n = 8) or spironolactone (50 mg/day; n = 8) to the therapy. RESULTS In rat aortic explants and in vascular smooth muscle cells, pretreatment with MBG resulted in a two-fold rise in collagen-1, and a marked reduction in the sensitivity of the aortic rings to the vasorelaxant effect of sodium nitroprusside following endothelin-1-induced constriction (EC50 = 480 ± 67 vs. 23 ± 3 nmol/l in vehicle-treated rings; P < 0.01). Canrenone blocked effects of MBG on collagen synthesis and restored sensitivity of vascular rings to sodium nitroprusside (EC50 = 17 ± 1 nmol/l). Resistant hypertension patients exhibited elevated plasma MBG (0.42 ± 0.07 vs. 0.24 ± 0.03 nmol/l; P = 0.01) and reduced Na/K-ATPase activity (1.9 ± 0.15 vs. 2.8 ± 0.2 μmol Pi/ml per h, P < 0.01) vs. seven healthy individuals. Six-month administration of spironolactone, unlike placebo treatment, was associated with a decrease in pulse wave velocity and arterial pressure, and with restoration of Na/K-ATPase activity in the presence of unchanged MBG levels. CONCLUSION MBG-induced vascular fibrosis is a likely target for spironolactone.
Collapse
|
38
|
Venugopal J, Blanco G. Ouabain Enhances ADPKD Cell Apoptosis via the Intrinsic Pathway. Front Physiol 2016; 7:107. [PMID: 27047392 PMCID: PMC4805603 DOI: 10.3389/fphys.2016.00107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Progression of autosomal dominant polycystic kidney disease (ADPKD) is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3 nM) also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells). This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key “executioner” caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells). Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression.
Collapse
Affiliation(s)
- Jessica Venugopal
- Department of Molecular and Integrative Physiology and The Kidney Institute, University of Kansas Medical Center Kansas City, KS, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology and The Kidney Institute, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
39
|
Aperia A, Akkuratov EE, Fontana JM, Brismar H. Na+-K+-ATPase, a new class of plasma membrane receptors. Am J Physiol Cell Physiol 2016; 310:C491-5. [PMID: 26791490 DOI: 10.1152/ajpcell.00359.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)-K(+)-ATPase (NKA) differs from most other ion transporters, not only in its capacity to maintain a steep electrochemical gradient across the plasma membrane, but also as a receptor for a family of cardiotonic steroids, to which ouabain belongs. Studies from many groups, performed during the last 15 years, have demonstrated that ouabain, a member of the cardiotonic steroid family, can activate a network of signaling molecules, and that NKA will also serve as a signal transducer that can provide a feedback loop between NKA and the mitochondria. This brief review summarizes the current knowledge and controversies with regard to the understanding of NKA signaling.
Collapse
Affiliation(s)
- Anita Aperia
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - Evgeny E Akkuratov
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - Jacopo Maria Fontana
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
40
|
Banerjee M, Duan Q, Xie Z. SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase. PLoS One 2015; 10:e0142119. [PMID: 26551526 PMCID: PMC4638348 DOI: 10.1371/journal.pone.0142119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 01/08/2023] Open
Abstract
Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, United States of America
| | - Qiming Duan
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, Cleveland, Ohio, United States of America
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway. J Dev Orig Health Dis 2015; 7:91-101. [PMID: 26442628 DOI: 10.1017/s2040174415007242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.
Collapse
|
42
|
de Rezende Corrêa G, Soares VHP, de Araújo-Martins L, Dos Santos AA, Giestal-de-Araujo E. Ouabain and BDNF Crosstalk on Ganglion Cell Survival in Mixed Retinal Cell Cultures. Cell Mol Neurobiol 2015; 35:651-60. [PMID: 25651946 PMCID: PMC11486238 DOI: 10.1007/s10571-015-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known and well-studied neurotrophin. Most biological effects of BDNF are mediated by the activation of TrkB receptors. This neurotrophin regulates several neuronal functions as cell proliferation, viability, and differentiation. Ouabain is a steroid that binds to the Na(+)/K(+) ATPase, inducing the activation of several intracellular signaling pathways. Previous data from our group described that ouabain treatment increases retinal ganglion cells survival (RGC). The aim of the present study was to evaluate, if this cardiac glycoside can have a synergistic effect with BDNF, the classical trophic factor for retinal ganglion cells, as well as investigate the intracellular signaling pathways involved. Our work demonstrated that the activation of Src, PLC, and PKCδ participates in the signaling cascade mediated by 50 ng/mL BDNF, since their selective inhibitors completely blocked the trophic effect of BDNF. We also demonstrated a synergistic effect on RGC survival when we concomitantly used ouabain (0.75 nM) and BDNF (10 ng/mL). Moreover, the signaling pathways involved in this synergistic effect include Src, PLC, PKCδ, and JNK. Our results suggest that the synergism between ouabain and BDNF occurs through the activation of the Src pathway, JNK, PLC, and PKCδ.
Collapse
Affiliation(s)
- Gustavo de Rezende Corrêa
- Departamento de Neurobiologia, Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro, CEP 24020-140, Brazil,
| | | | | | | | | |
Collapse
|
43
|
Krivoi II. Functional interactions of Na,K-ATPase with molecular environment. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s000635091405011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
44
|
Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne) 2014; 5:201. [PMID: 25506340 PMCID: PMC4246887 DOI: 10.3389/fendo.2014.00201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.
Collapse
Affiliation(s)
- Anastasia Hodes
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lichtstein
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
45
|
Akkuratov EE, Lopacheva OM, Kruusmägi M, Lopachev AV, Shah ZA, Boldyrev AA, Liu L. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons. Mol Neurobiol 2014; 52:1726-1734. [DOI: 10.1007/s12035-014-8975-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/29/2014] [Indexed: 11/29/2022]
|
46
|
Dvela-Levitt M, Ami HCB, Rosen H, Shohami E, Lichtstein D. Ouabain improves functional recovery following traumatic brain injury. J Neurotrauma 2014; 31:1942-7. [PMID: 25007121 DOI: 10.1089/neu.2014.3544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cardiac steroid ouabain binds to Na(+), K(+)-ATPase and inhibits its activity. Administration of the compound to animals and humans causes an increase in the force of contraction of heart muscle and stabilizes heart rate. In addition, this steroid promotes the growth of cardiac, vascular, and neuronal cells both in vitro and in vivo. We studied the effects of ouabain on mouse recovery following closed head injury (CHI), a model for traumatic brain injury. We show that chronic (three times a week), but not acute, intraperitoneal administration of a low dose (1 μg/kg) of ouabain significantly improves mouse recovery and functional outcome. The improvement in mouse performance was accompanied by a decrease in lesion size, estimated 43 d following the trauma. In addition, mice that underwent CHI and were treated with ouabain showed an increase in the number of proliferating cells in the subventricular zone and in the area surrounding the site of injury. Determination of the identity of the proliferating cells in the area surrounding the trauma showed that whereas there was no change in the proliferation of endothelial cells or astrocytes, neuronal cell proliferation almost doubled in the ouabain-treated mice in comparison with that of the vehicle animals. These results point to a neuroprotective effects of low doses of ouabain and imply its involvement in brain recovery and neuronal regeneration. This suggests that ouabain and maybe other cardiac steroids may be used for the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Moran Dvela-Levitt
- 1 Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School , Jerusalem, Israel
| | | | | | | | | |
Collapse
|
47
|
Dvela-Levitt M, Cohen-Ben Ami H, Rosen H, Ornoy A, Hochner-Celnikier D, Granat M, Lichtstein D. Reduction in maternal circulating ouabain impairs offspring growth and kidney development. J Am Soc Nephrol 2014; 26:1103-14. [PMID: 25294233 DOI: 10.1681/asn.2014020130] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 08/13/2014] [Indexed: 12/20/2022] Open
Abstract
Ouabain, a steroid present in the circulation and in various tissues, was shown to affect the growth and viability of various cells in culture. To test for the possible influence of this steroid on growth and viability in vivo, we investigated the involvement of maternal circulating ouabain in the regulation of fetal growth and organ development. We show that intraperitoneal administration of anti-ouabain antibodies to pregnant mice resulted in a >80% decline in the circulating ouabain level. This reduction caused a significant decrease in offspring body weight, accompanied by enlargement of the offspring heart and inhibition of kidney and liver growth. Kidney growth inhibition was manifested by a decrease in the size and number of nephrons. After the reduction in maternal circulating ouabain, kidney expression of cyclin D1 was reduced and the expression of the α1 isoform of the Na(+), K(+)-ATPase was increased. In addition, the elevation of proliferation signals including ERK1/2, p-90RSK, Akt, PCNA, and Ki-67, and a reduction in apoptotic factors such as Bax, caspase-3, and TUNEL were detected. During human pregnancy, the circulating maternal ouabain level increased and the highest concentration of the steroid was found in the placenta. Furthermore, circulating ouabain levels in women with small-for-gestational age neonates were significantly lower than the levels in women with normal-for-gestational age newborns. These results support the notion that ouabain is a growth factor and suggest that a reduction in the concentration of this hormone during pregnancy may increase the risk of impaired growth and kidney development.
Collapse
Affiliation(s)
- Moran Dvela-Levitt
- Departments of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hagit Cohen-Ben Ami
- Departments of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- Microbiology and Molecular Genetics, and Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Asher Ornoy
- Departments of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | - David Lichtstein
- Departments of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
48
|
Lewis LK, Yandle TG, Hilton PJ, Jensen BP, Begg EJ, Nicholls MG. Endogenous ouabain is not ouabain. Hypertension 2014; 64:680-3. [PMID: 25001271 DOI: 10.1161/hypertensionaha.114.03919] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lynley K Lewis
- From the Christchurch Heart Institute (L.K.L., T.G.Y.) and Department of Medicine (E.J.B., M.G.N.), University of Otago-Christchurch, Christchurch, New Zealand; Department of Medicine, St Thomas' Hospital, London, United Kingdom (P.J.H.); and Division of Toxicology, Canterbury Health Laboratories, Christchurch, New Zealand (B.P.J.)
| | - Timothy G Yandle
- From the Christchurch Heart Institute (L.K.L., T.G.Y.) and Department of Medicine (E.J.B., M.G.N.), University of Otago-Christchurch, Christchurch, New Zealand; Department of Medicine, St Thomas' Hospital, London, United Kingdom (P.J.H.); and Division of Toxicology, Canterbury Health Laboratories, Christchurch, New Zealand (B.P.J.)
| | - Philip J Hilton
- From the Christchurch Heart Institute (L.K.L., T.G.Y.) and Department of Medicine (E.J.B., M.G.N.), University of Otago-Christchurch, Christchurch, New Zealand; Department of Medicine, St Thomas' Hospital, London, United Kingdom (P.J.H.); and Division of Toxicology, Canterbury Health Laboratories, Christchurch, New Zealand (B.P.J.)
| | - Berit P Jensen
- From the Christchurch Heart Institute (L.K.L., T.G.Y.) and Department of Medicine (E.J.B., M.G.N.), University of Otago-Christchurch, Christchurch, New Zealand; Department of Medicine, St Thomas' Hospital, London, United Kingdom (P.J.H.); and Division of Toxicology, Canterbury Health Laboratories, Christchurch, New Zealand (B.P.J.)
| | - Evan J Begg
- From the Christchurch Heart Institute (L.K.L., T.G.Y.) and Department of Medicine (E.J.B., M.G.N.), University of Otago-Christchurch, Christchurch, New Zealand; Department of Medicine, St Thomas' Hospital, London, United Kingdom (P.J.H.); and Division of Toxicology, Canterbury Health Laboratories, Christchurch, New Zealand (B.P.J.)
| | - M Gary Nicholls
- From the Christchurch Heart Institute (L.K.L., T.G.Y.) and Department of Medicine (E.J.B., M.G.N.), University of Otago-Christchurch, Christchurch, New Zealand; Department of Medicine, St Thomas' Hospital, London, United Kingdom (P.J.H.); and Division of Toxicology, Canterbury Health Laboratories, Christchurch, New Zealand (B.P.J.).
| |
Collapse
|
49
|
Relationship between ouabain and asthenozoospermia. ACTA ACUST UNITED AC 2014; 34:87-90. [PMID: 24496684 DOI: 10.1007/s11596-014-1236-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/24/2013] [Indexed: 10/25/2022]
Abstract
A growing number of researches have shown that ouabain can regulate mammalian sperm function and male reproduction by modulating the sperm motility, capacitation and acrosome reaction in vitro. This study further examined the relationship between ouabain and asthenozoospermia. In this study, the rat was intraperitoneally injected with ouabain at different concentrations (low-dose ouabain group: 12.5 μg/kg body weight per day, and high-dose ouabain group: 25 μg/kg body weight per day) for 30 days to establish the asthenozoospermia model. The sperms from 60 males with normal fertility were incubated with ouabain of gradient concentrations (10(-7)-10(-2) mol/L) for 4 h. The sperm motility was evaluated under a microscope. Moreover, the endogenous ouabain (EO) level was determined in seminal plasma of mild or severe asthenozoospermia patients and males with normal fertility by competitive inhibition ELISA. The results showed that the sperm motility was significantly diminished in the rats treated with different concentrations of ouabain. The number of motile sperms (grades a and b) was decreased greatly in a time- and dose-dependent manner in 10(-5)-10(-2) mol/L ouabain groups (P<0.01), while no obvious change in sperm motility was observed in 10(-7)-10(-6)mol/L groups even for 4-h incubation (P>0.05). Furthermore, the EO level was significantly increased in asthenozoospermia patients as compared with that in males with normal fertility (25.27±1.71 μg/L in mild asthenozoospermia patients, 26.52±1.82 μg/L in severe asthenozoospermia patients, 19.31±1.45 μg/L in normal fertility men) (P<0.01). In conclusion, rat asthenozoospermia was successfully established by intraperitoneal injection of ouabain, and 10(-5) mol/L ouabain was sufficient enough to inhibit sperm motility in vitro. Moreover, EO, a normal constituent of seminal plasma, was highly expressed in asthenozoospermia males as compared with normal fertility ones.
Collapse
|
50
|
Bricker NS, Cain CD, Shankel S. Natriuretic hormone: the ultimate determinant of the preservation of external sodium balance. Front Endocrinol (Lausanne) 2014; 5:212. [PMID: 25566186 PMCID: PMC4263174 DOI: 10.3389/fendo.2014.00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/24/2014] [Indexed: 11/13/2022] Open
Abstract
The present manuscript focuses on a putative natriuretic hormone. It includes the history of a long-term search for the pure molecule, ranging from partial purification to synthesis. It includes a description of seven different bioassay systems used, a resume of the sequential steps in purification, and a summary of a series of experimental protocols employed in the effort to define the biologic properties of the inhibitor of sodium (Na) transport. Two closely related molecules were purified and synthesized. Both are xanthurenic acid derivatives (xanthurenic acid 8-O-β-D-glucoside and xanthurenic acid 8-O-sulfate). It is concluded that one or both of these two low molecular weight compounds (MW: 368 and 284) meet many of the criteria for the final modulator of Na excretion.
Collapse
Affiliation(s)
- Neal S. Bricker
- School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- *Correspondence: Neal S. Bricker, 727 South Orange Grove Blvd., Suite 6, Pasadena, CA 91105, USA e-mail:
| | | | - Stewart Shankel
- Department of Medicine, School of Medicine, University of California at Riverside, Riverside, CA, USA
| |
Collapse
|