1
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Antonyshyn JA, MacQuarrie KD, McFadden MJ, Gramolini AO, Hofer SOP, Santerre JP. Paracrine cross-talk between human adipose tissue-derived endothelial cells and perivascular cells accelerates the endothelialization of an electrospun ionomeric polyurethane scaffold. Acta Biomater 2024; 175:214-225. [PMID: 38158104 DOI: 10.1016/j.actbio.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The ex vivo endothelialization of small diameter vascular prostheses can prolong their patency. Here, we demonstrate that heterotypic interactions between human adipose tissue-derived endothelial cells and perivascular cells can be exploited to accelerate the endothelialization of an electrospun ionomeric polyurethane scaffold. The scaffold was used to physically separate endothelial cells from perivascular cells to prevent their diffuse neo-intimal hyperplasia and spontaneous tubulogenesis, yet enable their paracrine cross-talk to accelerate the integration of the endothelial cells into a temporally stable endothelial lining of a continuous, elongated, and aligned morphology. Perivascular cells stimulated endothelial basement membrane protein production and suppressed their angiogenic and inflammatory activation to accelerate this biomimetic morphogenesis of the endothelium. These findings demonstrate the feasibility and underscore the value of exploiting heterotypic interactions between endothelial cells and perivascular cells for the fabrication of an endothelial lining intended for small diameter arterial reconstruction. STATEMENT OF SIGNIFICANCE: Adipose tissue is an abundant, accessible, and uniquely dispensable source of endothelial cells and perivascular cells for vascular tissue engineering. While their spontaneous self-assembly into microvascular networks is routinely exploited for the vascularization of engineered tissues, it threatens the temporal stability of an endothelial lining intended for small diameter arterial reconstruction. Here, we demonstrate that an electrospun polyurethane scaffold can be used to physically separate endothelial cells from perivascular cells to prevent their spontaneous capillary morphogenesis, yet enable their cross-talk to promote the formation of a stable endothelium. Our findings demonstrate the feasibility of engineering an endothelial lining from human adipose tissue, poising it for the rapid ex vivo endothelialization of small diameter vascular prostheses in an autologous, patient-specific manner.
Collapse
Affiliation(s)
- Jeremy A Antonyshyn
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Kate D MacQuarrie
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Meghan J McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Stefan O P Hofer
- Division of Plastic, Reconstructive, and Aesthetic Surgery, University of Toronto, Toronto, Canada; Departments of Surgery and Surgical Oncology, University Health Network, Toronto, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada; Faculty of Dentistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Chandurkar MK, Mittal N, Royer-Weeden SP, Lehmann SD, Rho Y, Han SJ. Low Shear in Short-Term Impacts Endothelial Cell Traction and Alignment in Long-Term. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.558732. [PMID: 37790318 PMCID: PMC10542130 DOI: 10.1101/2023.09.20.558732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Within the vascular system, endothelial cells (ECs) are exposed to fluid shear stress (FSS), a mechanical force exerted by blood flow that is critical for regulating cellular tension and maintaining vascular homeostasis. The way ECs react to FSS varies significantly; while high, laminar FSS supports vasodilation and suppresses inflammation, low or disturbed FSS can lead to endothelial dysfunction and increase the risk of cardiovascular diseases. Yet, the adaptation of ECs to dynamically varying FSS remains poorly understood. This study focuses on the dynamic responses of ECs to brief periods of low FSS, examining its impact on endothelial traction-a measure of cellular tension that plays a crucial role in how endothelial cells respond to mechanical stimuli. By integrating traction force microscopy (TFM) with a custom-built flow chamber, we analyzed how human umbilical vein endothelial cells (HUVECs) adjust their traction in response to shifts from low to high shear stress. We discovered that initial exposure to low FSS prompts a marked increase in traction force, which continues to rise over 10 hours before slowly decreasing. In contrast, immediate exposure to high FSS causes a quick spike in traction followed by a swift reduction, revealing distinct patterns of traction behavior under different shear conditions. Importantly, the direction of traction forces and the resulting cellular alignment under these conditions indicate that the initial shear experience dictates long-term endothelial behavior. Our findings shed light on the critical influence of short-lived low-shear stress experiences in shaping endothelial function, indicating that early exposure to low FSS results in enduring changes in endothelial contractility and alignment, with significant consequences for vascular health and the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Mohanish K. Chandurkar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Nikhil Mittal
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Shaina P. Royer-Weeden
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Steven D. Lehmann
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Yeonwoo Rho
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
4
|
Stefopoulos G, Lendenmann T, Schutzius TM, Giampietro C, Roy T, Chala N, Giavazzi F, Cerbino R, Poulikakos D, Ferrari A. Bistability of Dielectrically Anisotropic Nematic Crystals and the Adaptation of Endothelial Collectives to Stress Fields. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102148. [PMID: 35344288 PMCID: PMC9165505 DOI: 10.1002/advs.202102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Endothelial monolayers physiologically adapt to flow and flow-induced wall shear stress, attaining ordered configurations in which elongation, orientation, and polarization are coherently organized over many cells. Here, with the flow direction unchanged, a peculiar bi-stable (along the flow direction or perpendicular to it) cell alignment is observed, emerging as a function of the flow intensity alone, while cell polarization is purely instructed by flow directionality. Driven by the experimental findings, the parallelism between endothelia is delineated under a flow field and the transition of dual-frequency nematic liquid crystals under an external oscillatory electric field. The resulting physical model reproduces the two stable configurations and the energy landscape of the corresponding system transitions. In addition, it reveals the existence of a disordered, metastable state emerging upon system perturbation. This intermediate state, experimentally demonstrated in endothelial monolayers, is shown to expose the cellular system to a weakening of cell-to-cell junctions to the detriment of the monolayer integrity. The flow-adaptation of monolayers composed of healthy and senescent endothelia is successfully predicted by the model with adjustable nematic parameters. These results may help to understand the maladaptive response of in vivo endothelial tissues to disturbed hemodynamics and the progressive functional decay of senescent endothelia.
Collapse
Affiliation(s)
- Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Tobias Lendenmann
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Thomas M. Schutzius
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Experimental Continuum MechanicsEMPA, Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129Dübendorf8600Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process EngineeringETH ZurichLeonhardstrasse 21Zurich8092Switzerland
| | - Tamal Roy
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoVia F.lli Cervi 93Segrate20090Italy
| | - Roberto Cerbino
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5ViennaAustria
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Experimental Continuum MechanicsEMPA, Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129Dübendorf8600Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process EngineeringETH ZurichLeonhardstrasse 21Zurich8092Switzerland
| |
Collapse
|
5
|
Porras Hernández AM, Barbe L, Pohlit H, Tenje M, Antfolk M. Confocal imaging dataset to assess endothelial cell orientation during extreme glucose conditions. Sci Data 2022; 9:26. [PMID: 35087120 PMCID: PMC8795398 DOI: 10.1038/s41597-022-01130-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Confocal microscopy offers a mean to extract quantitative data on spatially confined subcellular structures. Here, we provide an imaging dataset of confocal z-stacks on endothelial cells spatially confined on lines with different widths, visualizing the nucleus, F-actin, and zonula occludens-1 (ZO-1), as well as the lines. This dataset also includes confocal images of spatially confined endothelial cells challenged with different glucose conditions. We have validated the image quality by established analytical means using the MeasureImageQuality module of the CellProfilerTM software. We envision that this dataset could be used to extract data on both a population and a single cell level, as well as a learning set for the development of new image analysis tools.
Collapse
Affiliation(s)
- Ana María Porras Hernández
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent Barbe
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hannah Pohlit
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Maria Antfolk
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Kania BF, Wrońska D, Szpręgiel I, Bracha U. Glutamate as a Stressoric Factor for the Ex Vivo Release of Catecholamines from the Rabbit Medial Prefrontal Cortex (mPFC). Life (Basel) 2021; 11:1386. [PMID: 34947917 PMCID: PMC8703736 DOI: 10.3390/life11121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
One of the major roles of glutamic acid (Glu) is to serve as an excitatory neurotransmitter within the central nervous system (CNS). This amino acid influences the activity of several brain areas, including the thalamus, brainstem, spinal cord, basal ganglia, and pons. Catecholamines (CAs) are synthesized in the brain and adrenal medulla and by some sympathetic nerve fibers. CAs, including dopamine (DA), norepinephrine (NE), and epinephrine (E), are the principal neurotransmitters that mediate a variety of CNS functions, such as motor control, cognition, emotion, memory processing, pain, stress, and endocrine modulation. This study aims to investigate the effects of the application of various Glu concentrates (5, 50, and 200 µM) on CAs release from rabbit medial prefrontal cortex (mPFC) slices and compare any resulting correlations with CAs released from the hypothalamus during 90 min of incubation. Medial prefrontal cortex samples were dissected from decapitated, twelve-week-old female rabbits. The results demonstrated that Glu differentially influences the direct release of CAs from the mPFC and the indirect release of CAs from the hypothalamus. When under stress, the hypothalamus, a central brain structure of the HPA axis, induces and adapts such processes. Generally, there was an inhibitory effect of Glu on CAs release from mPFC slices. Our findings show that the effect arises from Glu's action on higher-order motivational structures, which may indicate its contribution to the stress response by modulating the amount of CAs released.
Collapse
Affiliation(s)
- Bogdan Feliks Kania
- Veterinary Institute, University Center for Veterinary Medicine Jagiellonian University & Agriculture University, Hugon Kollataj Agricultural University in Cracow, 30-059 Krakow, Poland
| | - Danuta Wrońska
- Department of Physiology and Endocrinology of Animals, Faculty of Animal Sciences, Hugon Kollataj Agricultural University in Cracow, 30-059 Krakow, Poland; (D.W.); (I.S.)
| | - Izabela Szpręgiel
- Department of Physiology and Endocrinology of Animals, Faculty of Animal Sciences, Hugon Kollataj Agricultural University in Cracow, 30-059 Krakow, Poland; (D.W.); (I.S.)
| | - Urszula Bracha
- Center of Experimental and Innovative Medicine, Hugon Kollataj Agricultural University in Cracow, 30-248 Krakow, Poland;
| |
Collapse
|
7
|
Morel S, Schilling S, Diagbouga MR, Delucchi M, Bochaton-Piallat ML, Lemeille S, Hirsch S, Kwak BR. Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities. Front Physiol 2021; 12:727338. [PMID: 34721060 PMCID: PMC8551710 DOI: 10.3389/fphys.2021.727338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Intracranial aneurysms (IAs) result from abnormal enlargement of the arterial lumen. IAs are mostly quiescent and asymptomatic, but their rupture leads to severe brain damage or death. As the evolution of IAs is hard to predict and intricates medical decision, it is essential to improve our understanding of their pathophysiology. Wall shear stress (WSS) is proposed to influence IA growth and rupture. In this study, we investigated the effects of low and supra-high aneurysmal WSS on endothelial cells (ECs). Methods: Porcine arterial ECs were exposed for 48 h to defined levels of shear stress (2, 30, or 80 dyne/cm2) using an Ibidi flow apparatus. Immunostaining for CD31 or γ-cytoplasmic actin was performed to outline cell borders or to determine cell architecture. Geometry measurements (cell orientation, area, circularity and aspect ratio) were performed on confocal microscopy images. mRNA was extracted for RNAseq analysis. Results: ECs exposed to low or supra-high aneurysmal WSS were more circular and had a lower aspect ratio than cells exposed to physiological flow. Furthermore, they lost the alignment in the direction of flow observed under physiological conditions. The effects of low WSS on differential gene expression were stronger than those of supra-high WSS. Gene set enrichment analysis highlighted that extracellular matrix proteins, cytoskeletal proteins and more particularly the actin protein family were among the protein classes the most affected by shear stress. Interestingly, most genes showed an opposite regulation under both types of aneurysmal WSS. Immunostainings for γ-cytoplasmic actin suggested a different organization of this cytoskeletal protein between ECs exposed to physiological and both types of aneurysmal WSS. Conclusion: Under both aneurysmal low and supra-high WSS the typical arterial EC morphology molds to a more spherical shape. Whereas low WSS down-regulates the expression of cytoskeletal-related proteins and up-regulates extracellular matrix proteins, supra-high WSS induces opposite changes in gene expression of these protein classes. The differential regulation in EC gene expression observed under various WSS translate into a different organization of the ECs’ architecture. This adaptation of ECs to different aneurysmal WSS conditions may affect vascular remodeling in IAs.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sabine Schilling
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland.,Institute of Tourism and Mobility, Lucerne School of Business, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Mannekomba R Diagbouga
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Matteo Delucchi
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sven Hirsch
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Brain microvasculature endothelial cell orientation on micropatterned hydrogels is affected by glucose level variations. Sci Rep 2021; 11:19608. [PMID: 34608232 PMCID: PMC8490407 DOI: 10.1038/s41598-021-99136-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
This work reports on an effort to decipher the alignment of brain microvasculature endothelial cells to physical constrains generated via adhesion control on hydrogel surfaces and explore the corresponding responses upon glucose level variations emulating the hypo- and hyperglycaemic effects in diabetes. We prepared hydrogels of hyaluronic acid a natural biomaterial that does not naturally support endothelial cell adhesion, and specifically functionalised RGD peptides into lines using UV-mediated linkage. The width of the lines was varied from 10 to 100 µm. We evaluated cell alignment by measuring the nuclei, cell, and F-actin orientations, and the nuclei and cell eccentricity via immunofluorescent staining and image analysis. We found that the brain microvascular endothelial cells aligned and elongated to these physical constraints for all line widths. In addition, we also observed that varying the cell medium glucose levels affected the cell alignment along the patterns. We believe our results may provide a platform for further studies on the impact of altered glucose levels in cardiovascular disease.
Collapse
|
9
|
Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021; 4:764. [PMID: 34155305 PMCID: PMC8217569 DOI: 10.1038/s42003-021-02285-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells (ECs) lining all blood vessels are subjected to large mechanical stresses that regulate their structure and function in health and disease. Here, we review EC responses to substrate-derived biophysical cues, namely topography, curvature, and stiffness, as well as to flow-derived stresses, notably shear stress, pressure, and tensile stresses. Because these mechanical cues in vivo are coupled and are exerted simultaneously on ECs, we also review the effects of multiple cues and describe burgeoning in vitro approaches for elucidating how ECs integrate and interpret various mechanical stimuli. We conclude by highlighting key open questions and upcoming challenges in the field of EC mechanobiology.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Claire Leclech
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Alessia Castagnino
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
10
|
Leclech C, Natale CF, Barakat AI. The basement membrane as a structured surface - role in vascular health and disease. J Cell Sci 2020; 133:133/18/jcs239889. [PMID: 32938688 DOI: 10.1242/jcs.239889] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The basement membrane (BM) is a thin specialized extracellular matrix that functions as a cellular anchorage site, a physical barrier and a signaling hub. While the literature on the biochemical composition and biological activity of the BM is extensive, the central importance of the physical properties of the BM, most notably its mechanical stiffness and topographical features, in regulating cellular function has only recently been recognized. In this Review, we focus on the biophysical attributes of the BM and their influence on cellular behavior. After a brief overview of the biochemical composition, assembly and function of the BM, we describe the mechanical properties and topographical structure of various BMs. We then focus specifically on the vascular BM as a nano- and micro-scale structured surface and review how its architecture can modulate endothelial cell structure and function. Finally, we discuss the pathological ramifications of the biophysical properties of the vascular BM and highlight the potential of mimicking BM topography to improve the design of implantable endovascular devices and advance the burgeoning field of vascular tissue engineering.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Carlo F Natale
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France.,Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Abdul I Barakat
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
11
|
Hagen MW, Hinds MT. The Effects of Topographic Micropatterning on Endothelial Colony-Forming Cells. Tissue Eng Part A 2020; 27:270-281. [PMID: 32600119 DOI: 10.1089/ten.tea.2020.0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Artificial small-diameter vascular grafts remain an unmet need in modern medicine, due to the thrombosis and neointimal hyperplasia that plague currently available synthetic devices. Tissue engineering techniques, including in vitro endothelialization, could offer a solution to this problem. A potential minimally invasive source of patient autologous endothelium is endothelial colony-forming cells (ECFCs), endothelial-like outgrowth products of circulating progenitors. While ECFCs respond to shear stress similar to mature endothelial cells (ECs), their response to luminal topographic micropatterning (TMP), a biomaterial modification with the potential to flow-independently, enhance the attachment, migration, gene expression, and function of mature ECs, remains unstudied. In this study, case-matched carotid endothelial cells (CaECs) and blood-derived ECFCs are statically cultured on polyurethane substrates with micropatterned pitches (pitch = peak to peak distance) ranging from 3-to 14 μm. On all pattern pitches tested, both CaECs and ECFCs showed significant and robust alignment to the angle of the micropatterns. Using a novel cell-by-cell image analysis technique, it was found that actin fibers similarly and significantly aligned to the angle of micropatterned features on all pitches tested. Microtubules analyzed through the same novel approach showed significant alignment on most pitches examined, with a greater variation in fiber angle overall. Interestingly, only CaECs showed significant cellular elongation, and notably to a lower degree than previously seen either in vivo due to flow or in vitro due to spatial growth restriction micropatterning, but consistent with earlier studies of TMP. Neither cell type displayed any significant micropattern-driven changes in the expression of KLF-2 or the downstream adhesion molecules it regulates. These results demonstrate that TMP flow-independently affects ECFC morphology, but that alignment alone is insufficient to drive protective changes in EC and ECFC function.
Collapse
Affiliation(s)
- Matthew W Hagen
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA.,Work was performed at Oregon Health and Science University, Portland, Oregon, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA.,Work was performed at Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
12
|
Natale CF, Lafaurie-Janvore J, Ventre M, Babataheri A, Barakat AI. Focal adhesion clustering drives endothelial cell morphology on patterned surfaces. J R Soc Interface 2019; 16:20190263. [PMID: 31480922 DOI: 10.1098/rsif.2019.0263] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In many cell types, shape and function are intertwined. In vivo, vascular endothelial cells (ECs) are typically elongated and aligned in the direction of blood flow; however, near branches and bifurcations where atherosclerosis develops, ECs are often cuboidal and have no preferred orientation. Thus, understanding the factors that regulate EC shape and alignment is important. In vitro, EC morphology and orientation are exquisitely sensitive to the composition and topography of the substrate on which the cells are cultured; however, the underlying mechanisms remain poorly understood. Different strategies of substrate patterning for regulating EC shape and orientation have been reported including adhesive motifs on planar surfaces and micro- or nano-scale gratings that provide substrate topography. Here, we explore how ECs perceive planar bio-adhesive versus microgrooved topographic surfaces having identical feature dimensions. We show that while the two types of patterned surfaces are equally effective in guiding and directing EC orientation, the cells are considerably more elongated on the planar patterned surfaces than on the microgrooved surfaces. We also demonstrate that the key factor that regulates cellular morphology is focal adhesion clustering which subsequently drives cytoskeletal organization. The present results promise to inform design strategies of novel surfaces for the improved performance of implantable cardiovascular devices.
Collapse
Affiliation(s)
- C F Natale
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France.,Interdisciplinary Research Centre on Biomedical Materials (CRIB), University of Naples Federico II, Naples 80125, Italy
| | - J Lafaurie-Janvore
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France
| | - M Ventre
- Interdisciplinary Research Centre on Biomedical Materials (CRIB), University of Naples Federico II, Naples 80125, Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy
| | - A Babataheri
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France
| | - A I Barakat
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France.,School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Hagen MW, Hinds MT. Static spatial growth restriction micropatterning of endothelial colony forming cells influences their morphology and gene expression. PLoS One 2019; 14:e0218197. [PMID: 31188903 PMCID: PMC6561595 DOI: 10.1371/journal.pone.0218197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Endothelialization of small diameter synthetic vascular grafts is a potential solution to the thrombosis and intimal hyperplasia that plague current devices. Endothelial colony forming cells, which are blood-derived and similar to mature endothelial cells, are a potential cell source. Anisotropic spatial growth restriction micropatterning has been previously shown to affect the morphology and function of mature endothelial cells in a manner similar to unidirectional fluid shear stress. To date, endothelial colony forming cells have not been successfully micropatterned. This study addresses the hypothesis that micropatterning of endothelial colony forming cells will induce morphological elongation, cytoskeletal alignment, and changes in immunogenic and thrombogenic-related gene expression. METHODS Spatially growth restrictive test surfaces with 25 μm-wide lanes alternating between collagen-I and a blocking polymer were created using microfluidics. Case-matched endothelial colony forming cells and control mature carotid endothelial cells were statically cultured on either micropatterned or non-patterned surfaces. Cell elongation was quantified using shape index. Using confocal microscopy, cytoskeletal alignment was visualized and density and apoptotic rate were determined. Gene expression was measured using quantitative PCR to measure KLF-2, eNOS, VCAM-1, and vWF. RESULTS Endothelial colony forming cells were successfully micropatterned for up to 50 hours. Micropatterned cells displayed elongation and actin alignment. Micropatterning increased the packing densities of both cell types, but did not affect apoptotic rate, which was lower in endothelial colony forming cells. KLF-2 gene expression was increased in micropatterned relative to non-patterned endothelial colony forming cells after 50 hours. No significant differences were seen in the other genes tested. CONCLUSIONS Endothelial colony forming cells can be durably micropatterned using spatial growth restriction. Micropatterning has a significant effect on the gross and subcellular morphologies of both cell types. Further study is required to fully understand the effect of micropatterning on endothelial colony forming cell gene expression.
Collapse
Affiliation(s)
- Matthew W. Hagen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
- * E-mail:
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
| |
Collapse
|
14
|
Chu HR, Sun YC, Gao Y, Guan XM, Yan H, Cui XD, Zhang XY, Li X, Li H, Cheng M. Function of Krüppel‑like factor 2 in the shear stress‑induced cell differentiation of endothelial progenitor cells to endothelial cells. Mol Med Rep 2019; 19:1739-1746. [PMID: 30628700 DOI: 10.3892/mmr.2019.9819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/15/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to evaluate the effects of Krüppel‑like factor 2 (KLF2) on the differentiation of endothelial progenitor cells (EPCs) to endothelial cells (ECs) induced by shear stress, and to investigate the corresponding mechanisms. Cultured rat late EPCs were exposed to shear stress (12 dyn/cm2) for different lengths of time. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to measure the initial KLF2 mRNA levels in each group. Subsequently, the EPCs were treated with anti‑integrin β1 or β3 antibodies to block integrin β1 and β3, respectively, or cytochalasin D to destroy F‑actin, and the subsequent expression levels of KLF2 in EPCs were measured. Then, KLF2 small interfering RNAs (siRNAs) were transfected into EPCs, and RT‑qPCR was used to measure the mRNA expression level of KLF2. Additionally, flow cytometry was applied to evaluate the protein levels of cluster of differentiation 31 (CD31) and the von Willebrand factor (vWF), and the regulatory effects of KLF2 in the promoter region of vWF were determined via a luciferase assay. High shear stress upregulated KLF2 expression, while blocking integrin β1/β3 or destroying F‑actin resulted in a corresponding decrease in KLF2 expression. Downregulation of KLF2 expression by siKLF2 inhibited the differentiation of EPCs to ECs under shear stress conditions, while the expression of EC‑specific markers decreased, including CD31 and vWF. Various lengths of the vWF promoter region induced vWF expression, and EPCs co‑transfected with KLF2 significantly increased the vWF expression levels compared with the group treated with vWF alone (P<0.01). In conclusion, shear stress may upregulate KLF2 expression, which may be associated with the integrin‑actin cytoskeleton system. Most importantly, the shear stress‑induced differentiation of EPCs may be mediated by KLF2.
Collapse
Affiliation(s)
- Hai-Rong Chu
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu-Cong Sun
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu Gao
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiu-Mei Guan
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hong Yan
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiao-Dong Cui
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiao-Yun Zhang
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Li
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hong Li
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Min Cheng
- Medicine Research Center, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
15
|
Riesinger L, Saemisch M, Nickmann M, Methe H. CD34 + circulating cells display signs of immune activation in patients with acute coronary syndrome. Heart Vessels 2018; 33:1559-1569. [PMID: 30003322 DOI: 10.1007/s00380-018-1220-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/06/2018] [Indexed: 01/20/2023]
Abstract
Bone marrow-derived endothelial progenitor cells (EPC) are released into the peripheral blood in situations of vascular repair/angiogenesis. Regulation of vascular repair and angiogenesis by EPC depends not only on the number of circulating EPC but also on their functionality. As endothelial cells can act as antigen-presenting cells in coronary artery disease (CAD), we postulated that EPC can be immune activated here as well. CD34+-EPC were isolated from peripheral blood of patients with ST-elevation myocardial infarction (STEMI, n = 12), non-STEMI/unstable angina (UA, n = 15), and stable CAD (SA, n = 18). Expression of HLA-DR, adhesion and costimulatory molecules by isolated CD34+-EPC were compared with levels in healthy controls (n = 18). There were no significant differences in VCAM-1 and CD80 expression by peripheral circulating CD34+-EPC between the four groups, yet expression of CD86 was highest in UA (p < 0.05). ICAM-1 expression was lowest in SA (p < 0.01). CD34+-EPC constitutively expressed HLA-DR across all groups. Of note, patients pretreated with HMG-CoA reductase inhibitors exhibited lower expression of VCAM-1 by CD34+-EPC throughout all patient groups; furthermore, statins significantly limited ex vivo-induced upregulation of ICAM-1 by TNF-alpha. To the best of our knowledge, this is the first study to examine the expression of immune markers in peripheral circulating CD34+-EPC ex vivo. We demonstrate that CD34+-EPC display different patterns of adhesion and costimulatory molecules in various states of CAD. Expression levels were affected by pretreatment with statins. Hence, immune activity of peripheral circulating CD34+ cells might play a pathophysiologic role in evolution of CAD.
Collapse
Affiliation(s)
- Lisa Riesinger
- Department of Cardiology, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Saemisch
- Department of Cardiology, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Internal Medicine, Kliniken Neumarkt, Neumarkt, Germany
| | - Markus Nickmann
- Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany
| | - Heiko Methe
- Department of Cardiology, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Andrews AM, Lutton EM, Cannella LA, Reichenbach N, Razmpour R, Seasock MJ, Kaspin SJ, Merkel SF, Langford D, Persidsky Y, Ramirez SH. Characterization of human fetal brain endothelial cells reveals barrier properties suitable for in vitro modeling of the BBB with syngenic co-cultures. J Cereb Blood Flow Metab 2018; 38:888-903. [PMID: 28534661 PMCID: PMC5987936 DOI: 10.1177/0271678x17708690] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endothelial cells (ECs) form the basis of the blood-brain barrier (BBB), a physical barrier that selectively restricts transport into the brain. In vitro models can provide significant insight into BBB physiology, mechanisms of human disease pathology, toxicology, and drug delivery. Given the limited availability of primary human adult brain microvascular ECs ( aBMVECs), human fetal tissue offers a plausible alternative source for multiple donors and the opportunity to build syngenic tri-cultures from the same host. Previous efforts to culture fetal brain microvascular ECs ( fBMVECs) have not been successful in establishing mature barrier properties. Using optimal gestational age for isolation and flow cytometry cell sorting, we show for the first time that fBMVECs demonstrate mature barrier properties. fBMVECs exhibited similar functional phenotypes when compared to aBMVECs for barrier integrity, endothelial activation, and gene/protein expression of tight junction proteins and transporters. Importantly, we show that tissue used to culture fBMVECs can also be used to generate a syngenic co-culture, creating a microfluidic BBB on a chip. The findings presented provide a means to overcome previous challenges that limited successful barrier formation by fBMVECs. Furthermore, the source is advantageous for autologous reconstitution of the neurovascular unit for next generation in vitro BBB modeling.
Collapse
Affiliation(s)
- Allison M Andrews
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,2 The Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Evan M Lutton
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lee A Cannella
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,2 The Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nancy Reichenbach
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Roshanak Razmpour
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Matthew J Seasock
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Steven J Kaspin
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Steven F Merkel
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,2 The Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Dianne Langford
- 3 Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yuri Persidsky
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,2 The Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Servio H Ramirez
- 1 Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,2 The Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,4 The Shriners Hospitals Pediatric Research Center, Philadelphia, PA, USA
| |
Collapse
|
17
|
Cutiongco MFA, Chua BMX, Neo DJH, Rizwan M, Yim EKF. Functional differences between healthy and diabetic endothelial cells on topographical cues. Biomaterials 2018; 153:70-84. [PMID: 29125983 PMCID: PMC5724387 DOI: 10.1016/j.biomaterials.2017.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
The endothelial lining of blood vessels is severely affected in type II diabetes. Yet, there is still a paucity on the use of diabetic endothelial cells for study and assessment of implantable devices targeting vascular disease. This critically impairs our ability to determine appropriate topographical cues to be included in implantable devices that can be used to maintain or improve endothelial cell function in vivo. Here, the functional responses of healthy and diabetic human coronary arterial endothelial cells were studied and observed to differ depending on topography. Gratings (2 μm) maintained normal endothelial functions such as adhesiveness, angiogenic capacity and cell-cell junction formation, and reduced immunogenicity of healthy cells. However, a significant and consistent effect was not observed in diabetic cells. Instead, diabetic endothelial cells cultured on the perpendicularly aligned multi-scale hierarchical gratings (250 nm gratings on 2 μm gratings) drastically reduced the uptake of oxidized low-density lipoprotein, decreased immune activation, and accelerated cell migration. Concave microlens (1.8 μm diameter) topography was additionally observed to overwhelmingly deteriorate diabetic endothelial cell function. The results of this study support a new paradigm and approach in the design and testing of implantable devices and biomedical interventions for diabetic patients.
Collapse
Affiliation(s)
- Marie F A Cutiongco
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore, 117411; Department of Biomedical Engineering, Block E4 #04-08, 4 Engineering Drive 3, National University of Singapore, 117583, Singapore
| | - Bryan M X Chua
- Department of Biomedical Engineering, Block E4 #04-08, 4 Engineering Drive 3, National University of Singapore, 117583, Singapore
| | - Dawn J H Neo
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore, 117411
| | - Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore, 117411; Department of Biomedical Engineering, Block E4 #04-08, 4 Engineering Drive 3, National University of Singapore, 117583, Singapore; Department of Surgery, National University of Singapore, Singapore; Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1.
| |
Collapse
|
18
|
Qi YX, Han Y, Jiang ZL. Mechanobiology and Vascular Remodeling: From Membrane to Nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:69-82. [PMID: 30315540 DOI: 10.1007/978-3-319-96445-4_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to hemodynamic forces in vivo, including flow shear stress and cyclic stretch caused by the blood flow. Numerous researches revealed that during various cardiovascular diseases such as atherosclerosis, hypertension, and vein graft, abnormal (pathological) mechanical forces play crucial roles in the dysfunction of ECs and VSMCs, which is the fundamental process during both vascular homeostasis and remodeling. Hemodynamic forces trigger several membrane molecules and structures, such as integrin, ion channel, primary cilia, etc., and induce the cascade reaction processes through complicated cellular signaling networks. Recent researches suggest that nuclear envelope proteins act as the functional homology of molecules on the membrane, are important mechanosensitive molecules which modulate chromatin location and gene transcription, and subsequently regulate cellular functions. However, the studies on the roles of nucleus in the mechanotransduction process are still at the beginning. Here, based on the recent researches, we focused on the nuclear envelope proteins and discussed the roles of pathological hemodynamic forces in vascular remodeling. It may provide new insight into understanding the molecular mechanism of vascular physiological homeostasis and pathophysiological remodeling and may help to develop hemodynamic-based strategies for the prevention and management of vascular diseases.
Collapse
Affiliation(s)
- Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Cortella LRX, Cestari IA, Guenther D, Lasagni AF, Cestari IN. Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation. ACTA ACUST UNITED AC 2017; 12:065010. [PMID: 28762961 DOI: 10.1088/1748-605x/aa8353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface-induced thrombosis and lack of endothelialization are major drawbacks that hamper the widespread application of polyurethanes for the fabrication of implantable cardiovascular devices. Endothelialization of the blood-contacting surfaces of these devices may avoid thrombus formation and may be implemented by strategies that introduce micro and submicron patterns that favor adhesion and growth of endothelial cells. In this study, we used laser radiation to directly introduce topographical patterns in the low micrometer range on castor oil-based polyurethane, which is currently employed to fabricate cardiovascular devices. We have investigated cell adhesion, proliferation, morphology and alignment in response to these topographies. Reported results show that line-like and pillar-like patterns improved adhesion and proliferation rate of cultured endothelial cells. The line-like pattern with 1 μm groove periodicity was the most efficient to enhance cell adhesion and induced marked polarization and alignment. Our study suggests the viability of using laser radiation to functionalize PU-based implants by the introduction of specific microtopography to facilitate the development of a functional endothelium on target surfaces.
Collapse
Affiliation(s)
- L R X Cortella
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900-São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
20
|
Kupreishvili K, Stooker W, Emmens RW, Vonk ABA, Sipkens JA, van Dijk A, Eijsman L, Quax PH, van Hinsbergh VWM, Krijnen PAJ, Niessen HWM. PX-18 Protects Human Saphenous Vein Endothelial Cells under Arterial Blood Pressure. Ann Vasc Surg 2017; 42:293-298. [PMID: 28300679 DOI: 10.1016/j.avsg.2016.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Arterial blood pressure-induced shear stress causes endothelial cell apoptosis and inflammation in vein grafts after coronary artery bypass grafting. As the inflammatory protein type IIA secretory phospholipase A2 (sPLA2-IIA) has been shown to progress atherosclerosis, we hypothesized a role for sPLA2-IIA herein. METHODS The effects of PX-18, an inhibitor of both sPLA2-IIA and apoptosis, on residual endothelium and the presence of sPLA2-IIA were studied in human saphenous vein segments (n = 6) perfused at arterial blood pressure with autologous blood for 6 hrs. RESULTS The presence of PX-18 in the perfusion blood induced a significant 20% reduction in endothelial cell loss compared to veins perfused without PX18, coinciding with significantly reduced sPLA2-IIA levels in the media of the vein graft wall. In addition, PX-18 significantly attenuated caspase-3 activation in human umbilical vein endothelial cells subjected to shear stress via mechanical stretch independent of sPLA2-IIA. CONCLUSIONS In conclusion, PX-18 protects saphenous vein endothelial cells from arterial blood pressure-induced death, possibly also independent of sPLA2-IIA inhibition.
Collapse
Affiliation(s)
- Koba Kupreishvili
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Wim Stooker
- Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiac Surgery, OLVG, Amsterdam, The Netherlands
| | - Reindert W Emmens
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Alexander B A Vonk
- Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Jessica A Sipkens
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke van Dijk
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Leon Eijsman
- Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul H Quax
- Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Victor W M van Hinsbergh
- Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands.
| | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Shin YM, Shin HJ, Heo Y, Jun I, Chung YW, Kim K, Lim YM, Jeon H, Shin H. Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation. J Mater Chem B 2017; 5:318-328. [DOI: 10.1039/c6tb02258h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laser ablated nanofibers with micropattern regulated adhesion and orientation of HUVEC and also contributed to generate an aligned endothelial monolayer.
Collapse
Affiliation(s)
- Young Min Shin
- Department of Bioengineering
- Hanyang University
- Seongdong-gu
- Republic of Korea
- Institute of Cell & Tissue Engineering
| | - Hyeok Jun Shin
- Department of Bioengineering
- Hanyang University
- Seongdong-gu
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Yunhoe Heo
- Department of Bioengineering
- Hanyang University
- Seongdong-gu
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Indong Jun
- Center for Biomaterials
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- Republic of Korea
| | - Yong-Woo Chung
- Center for Biomaterials
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- Republic of Korea
| | - Kyeongsoo Kim
- Department of Bioengineering
- Hanyang University
- Seongdong-gu
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Youn Mook Lim
- Research Division for Industry and Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute
- Jeongeup
- Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering
- Hanyang University
- Seongdong-gu
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| |
Collapse
|
22
|
Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017; 8:2041731417731546. [PMID: 28989698 PMCID: PMC5624345 DOI: 10.1177/2041731417731546] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/19/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.
Collapse
Affiliation(s)
- Tarek M Bedair
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Mahmoud A ElNaggar
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
23
|
Cutiongco MFA, Goh SH, Aid-Launais R, Le Visage C, Low HY, Yim EKF. Planar and tubular patterning of micro and nano-topographies on poly(vinyl alcohol) hydrogel for improved endothelial cell responses. Biomaterials 2016; 84:184-195. [PMID: 26828683 DOI: 10.1016/j.biomaterials.2016.01.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 11/28/2022]
Abstract
Poly(vinyl alcohol) hydrogel (PVA) is a widely used material for biomedical devices, yet there is a need to enhance its biological functionality for in vitro and in vivo vascular application. Significance of surface topography in modulating cellular behaviour is increasingly evident. However, hydrogel patterning remains challenging. Using a casting method, planar PVA were patterned with micro-sized features. To achieve higher patterning resolution, nanoimprint lithography with high pressure and temperature was used. In vitro experiment showed enhanced human endothelial cell (EC) density and adhesion on patterned PVA. Additional chemical modification via nitrogen gas plasma on patterned PVA further improved EC density and adhesion. Only EC monolayer grown on plasma modified PVA with 2 μm gratings and 1.8 μm concave lens exhibited expression of vascular endothelial cadherin, indicating EC functionality. Patterning of the luminal surface of tubular hydrogels is not widely explored. The study presents the first method for simultaneous tubular molding and luminal surface patterning of hydrogel. PVA graft with 2 μm gratings showed patency and endothelialization, while unpatterned grafts were occluded after 20 days in rat aorta. The reproducible, high yield and high-fidelity methods enable planar and tubular patterning of PVA and other hydrogels to be used for biomedical applications.
Collapse
Affiliation(s)
- Marie F A Cutiongco
- Department of Biomedical Engineering, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | - Seok Hong Goh
- Department of Biomedical Engineering, National University of Singapore, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore
| | | | - Catherine Le Visage
- INSERM, U1148, Laboratory for Vascular Translational Science, Paris, France; INSERM, U791, Center for OstesArticular and Dental Tissue Engineering, Nantes, France
| | - Hong Yee Low
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore; Engineering Product Development Cluster, Singapore University of Technology and Design, Singapore.
| | - Evelyn K F Yim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Department of Surgery, National University of Singapore, Singapore; Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
24
|
Nakayama KH, Joshi PA, Lai ES, Gujar P, Joubert LM, Chen B, Huang NF. Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function. Regen Med 2015; 10:745-55. [PMID: 26440211 DOI: 10.2217/rme.15.45] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We developed an aligned bi-layered vascular graft derived from human induced pluripotent stem cells (iPSCs) that recapitulates the cellular composition, orientation, and anti-inflammatory function of blood vessels. MATERIALS & METHODS The luminal layer consisted of longitudinal-aligned nanofibrillar collagen containing primary endothelial cells (ECs) or iPSC-derived ECs (iPSC-ECs). The outer layer contained circumferentially oriented nanofibrillar collagen with primary smooth muscle cells (SMCs) or iPSC-derived SMCs(iPSC-SMCs). RESULTS On the aligned scaffolds, cells organized F-actin assembly within 8º from the direction of nanofibrils. When compared to randomly-oriented scaffolds, EC-seeded aligned scaffolds had significant reduced inflammatory response, based on adhesivity to monocytes. CONCLUSION This study highlights the importance of anisotropic scaffolds in directing cell form and function, and has therapeutic significance as physiologically relevant blood vessels.
Collapse
Affiliation(s)
- Karina H Nakayama
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.,Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305-5407, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Prajakta A Joshi
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.,Department of Biological Sciences, San Jose State University, San Jose, CA 95112, USA
| | - Edwina S Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Prachi Gujar
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Lydia-M Joubert
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA 94305, USA
| | - Bertha Chen
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA 94305, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.,Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305-5407, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
25
|
Ding Y, Yang M, Yang Z, Luo R, Lu X, Huang N, Huang P, Leng Y. Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography. Acta Biomater 2015; 15:150-63. [PMID: 25541345 DOI: 10.1016/j.actbio.2014.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 11/17/2022]
Abstract
A wide variety of environmental cues provided by the extracellular matrix, including biophysical and biochemical cues, are responsible for vascular cell behavior and function. In particular, substrate topography and surface chemistry have been shown to regulate blood and vascular compatibility individually. The combined impact of chemical and topographic cues on blood and vascular compatibility, and the interplay between these two types of cues, are subjects that are currently being explored. In the present study, a facile polydopamine-mediated approach is introduced for immobilization of heparin on topographically patterned substrates, and the combined effects of these cues on blood compatibility and re-endothelialization are systematically investigated. The results show that immobilized heparin and substrate topography cooperatively modulate anti-coagulation activity, endothelial cell (EC) attachment, proliferation, focal adhesion formation and endothelial marker expression. Meanwhile, the substrate topography is the primary determinant of cell alignment and elongation, driving in vivo-like endothelial organization. Importantly, combining immobilized heparin with substrate topography empowers substantially greater competitive ability of ECs over smooth muscle cells than each cue individually. Moreover, a model is proposed to elucidate the cooperative interplay between immobilized heparin and substrate topography in regulating cell behavior.
Collapse
Affiliation(s)
- Yonghui Ding
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Meng Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhilu Yang
- Key Laboratory of Advanced Technology of Materials, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Rifang Luo
- Key Laboratory of Advanced Technology of Materials, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xiong Lu
- Key Laboratory of Advanced Technology of Materials, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Nan Huang
- Key Laboratory of Advanced Technology of Materials, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Pingbo Huang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yang Leng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
26
|
Anderson DEJ, Glynn JJ, Song HK, Hinds MT. Engineering an endothelialized vascular graft: a rational approach to study design in a non-human primate model. PLoS One 2014; 9:e115163. [PMID: 25526637 PMCID: PMC4272299 DOI: 10.1371/journal.pone.0115163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
After many years of research, small diameter, synthetic vascular grafts still lack the necessary biologic integration to perform ideally in clinical settings. Endothelialization of vascular grafts has the potential to improve synthetic graft function, and endothelial outgrowth cells (EOCs) are a promising autologous cell source. Yet no work has established the link between endothelial cell functions and outcomes of implanted endothelialized grafts. This work utilized steady flow, oscillatory flow, and tumor necrosis factor stimulation to alter EOC phenotype and enable the formulation of a model to predict endothelialized graft performance. To accomplish this, EOC in vitro expression of coagulation and inflammatory markers was quantified. In parallel, in non-human primate (baboon) models, the platelet and fibrinogen accumulation on endothelialized grafts were quantified in an ex vivo shunt, or the tissue ingrowth on implanted grafts were characterized after 1mth. Oscillatory flow stimulation of EOCs increased in vitro coagulation markers and ex vivo platelet accumulation. Steady flow preconditioning did not affect platelet accumulation or intimal hyperplasia relative to static samples. To determine whether in vitro markers predict implant performance, a linear regression model of the in vitro data was fit to platelet accumulation data-correlating the markers with the thromboprotective performance of the EOCs. The model was tested against implant intimal hyperplasia data and found to correlate strongly with the parallel in vitro analyses. This research defines the effects of flow preconditioning on EOC regulation of coagulation in clinical vascular grafts through parallel in vitro, ex vivo, and in vivo analyses, and contributes to the translatability of in vitro tests to in vivo clinical graft performance.
Collapse
Affiliation(s)
- Deirdre E. J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
| | - Jeremy J. Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
| | - Howard K. Song
- Division of Cardiothoracic Surgery, Oregon Health & Science University, Portland, OR, United States of America
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zeng Z, Inoue K, Sun H, Leng T, Feng X, Zhu L, Xiong ZG. TRPM7 regulates vascular endothelial cell adhesion and tube formation. Am J Physiol Cell Physiol 2014; 308:C308-18. [PMID: 25472964 DOI: 10.1152/ajpcell.00275.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a nonselective cation channel with an α-kinase domain in its COOH terminal, known to play a role in diverse physiological and pathological processes such as Mg2+ homeostasis, cell proliferation, and hypoxic neuronal injury. Increasing evidence suggests that TRPM7 contributes to the physiology/pathology of vascular systems. For example, we recently demonstrated that silencing TRPM7 promotes growth and proliferation and protects against hyperglycemia-induced injury in human umbilical vein endothelial cells (HUVECs). Here we investigated the potential effects of TRPM7 on morphology, adhesion, migration, and tube formation of vascular endothelial cells and the potential underlying mechanism. We showed that inhibition of TRPM7 function in HUVECs by silencing TRPM7 decreases the density of TRPM7-like current and cell surface area and inhibits cell adhesion to Matrigel. Silencing TRPM7 also promotes cell migration, wound healing, and tube formation. Further studies showed that the extracellular signal-regulated kinase (ERK) pathway is involved in the change of cell morphology and the increase in HUVEC migration induced by TRPM7 silencing. We also demonstrated that silencing TRPM7 enhances the phosphorylation of myosin light chain (MLC) in HUVECs, which might be involved in the enhancement of cell contractility and motility. Collectively, our data suggest that the TRPM7 channel negatively regulates the function of vascular endothelial cells. Further studies on the underlying mechanism may facilitate the development of the TRPM7 channel as a target for the therapeutic intervention of vascular diseases.
Collapse
Affiliation(s)
- Zhao Zeng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Ministry of Health Key Laboratory of Thrombosis and Hemostasis, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China; and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Koichi Inoue
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Huawei Sun
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Xuechao Feng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Li Zhu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Ministry of Health Key Laboratory of Thrombosis and Hemostasis, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China; and
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
28
|
Jones CM, Baker-Groberg SM, Cianchetti FA, Glynn JJ, Healy LD, Lam WY, Nelson JW, Parrish DC, Phillips KG, Scott-Drechsel DE, Tagge IJ, Zelaya JE, Hinds MT, McCarty OJT. Measurement science in the circulatory system. Cell Mol Bioeng 2013; 7:1-14. [PMID: 24563678 DOI: 10.1007/s12195-013-0317-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dynamics of the cellular and molecular constituents of the circulatory system are regulated by the biophysical properties of the heart, vasculature and blood cells and proteins. In this review, we discuss measurement techniques that have been developed to characterize the physical and mechanical parameters of the circulatory system across length scales ranging from the tissue scale (centimeter) to the molecular scale (nanometer) and time scales of years to milliseconds. We compare the utility of measurement techniques as a function of spatial resolution and penetration depth from both a diagnostic and research perspective. Together, this review provides an overview of the utility of measurement science techniques to study the spatial systems of the circulatory system in health and disease.
Collapse
Affiliation(s)
- Casey M Jones
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Department of Chemistry, Lewis & Clark College, Portland OR
| | | | - Flor A Cianchetti
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Laura D Healy
- Department of Cell & Developmental Biology, Oregon Health & Science University, Portland OR
| | - Wai Yan Lam
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Jonathan W Nelson
- Division of Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland OR
| | - Diana C Parrish
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland OR
| | - Kevin G Phillips
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | | | - Ian J Tagge
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Advanced Imaging Research Center, Oregon Health & Science University, Portland OR
| | - Jaime E Zelaya
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Department of Cell & Developmental Biology, Oregon Health & Science University, Portland OR ; Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland OR
| |
Collapse
|
29
|
Glynn JJ, Hinds MT. Endothelial outgrowth cells: function and performance in vascular grafts. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:294-303. [PMID: 24004404 DOI: 10.1089/ten.teb.2013.0285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The clinical need for vascular grafts continues to grow. Tissue engineering strategies have been employed to develop vascular grafts for patients lacking sufficient autologous vessels for grafting. Restoring a functional endothelium on the graft lumen has been shown to greatly improve the long-term patency of small-diameter grafts. However, obtaining an autologous source of endothelial cells for in vitro endothelialization is invasive and often not a viable option. Endothelial outgrowth cells (EOCs), derived from circulating progenitor cells in peripheral blood, provide an alternative cell source for engineering an autologous endothelium. This review aims at highlighting the role of EOCs in the regulation of processes that are central to vascular graft performance. To characterize EOC performance in vascular grafts, this review identifies the characteristics of EOCs, defines functional performance criteria for EOCs in vascular grafts, and summarizes the existing work in developing vascular grafts with EOCs.
Collapse
Affiliation(s)
- Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | | |
Collapse
|
30
|
Wang C, Baker BM, Chen CS, Schwartz MA. Endothelial cell sensing of flow direction. Arterioscler Thromb Vasc Biol 2013; 33:2130-6. [PMID: 23814115 DOI: 10.1161/atvbaha.113.301826] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Atherosclerosis-prone regions of arteries are characterized by complex flow patterns where the magnitude of shear stress is low and direction rapidly changes, termed disturbed flow. How endothelial cells sense flow direction and how it impacts inflammatory effects of disturbed flow are unknown. We therefore aimed to understand how endothelial cells respond to changes in flow direction. APPROACH AND RESULTS Using a recently developed flow system capable of changing flow direction to any angle, we show that responses of aligned endothelial cells are determined by flow direction relative to their morphological and cytoskeletal axis. Activation of the atheroprotective endothelial nitric oxide synthase pathway is maximal at 180° and undetectable at 90°, whereas activation of proinflammatory nuclear factor-κB is maximal at 90° and undetectable at 180°. Similar effects were observed in randomly oriented cells in naive monolayers subjected to onset of shear. Cells aligned on micropatterned substrates subjected to oscillatory flow were also examined. In this system, parallel flow preferentially activated endothelial nitric oxide synthase and production of nitric oxide, whereas perpendicular flow preferentially activated reactive oxygen production and nuclear factor-κB. CONCLUSIONS These data show that the angle between flow and the cell axis defined by their shape and cytoskeleton determines endothelial cell responses. The data also strongly suggest that the inability of cells to align in low and oscillatory flow is a key determinant of the resultant inflammatory activation.
Collapse
Affiliation(s)
- Chong Wang
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
31
|
Huang NF, Lai ES, Ribeiro AJS, Pan S, Pruitt BL, Fuller GG, Cooke JP. Spatial patterning of endothelium modulates cell morphology, adhesiveness and transcriptional signature. Biomaterials 2013; 34:2928-37. [PMID: 23357369 PMCID: PMC3581686 DOI: 10.1016/j.biomaterials.2013.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/04/2013] [Indexed: 01/08/2023]
Abstract
Microscale and nanoscale structures can spatially pattern endothelial cells (ECs) into parallel-aligned organization, mimicking their cellular alignment in blood vessels exposed to laminar shear stress. However, the effects of spatial patterning on the function and global transcriptome of ECs are incompletely characterized. We used both parallel-aligned micropatterned and nanopatterned biomaterials to evaluate the effects of spatial patterning on the phenotype of ECs, based on gene expression profiling, functional characterization of monocyte adhesion, and quantification of cellular morphology. We demonstrate that both micropatterned and aligned nanofibrillar biomaterials could effectively guide EC organization along the direction of the micropatterned channels or nanofibrils, respectively. The ability of ECs to sense spatial patterning cues were abrogated in the presence of cytoskeletal disruption agents. Moreover, both micropatterned and aligned nanofibrillar substrates promoted an athero-resistant EC phenotype by reducing endothelial adhesiveness for monocytes and platelets, as well as by downregulating the expression of adhesion proteins and chemokines. We further found that micropatterned ECs have a transcriptional signature that is unique from non-patterned ECs, as well as from ECs aligned by shear stress. These findings highlight the importance of spatial patterning cues in guiding EC organization and function, which may have clinical relevance in the development of vascular grafts that promote patency.
Collapse
Affiliation(s)
- Ngan F Huang
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
High Pulsatility Flow Induces Acute Endothelial Inflammation through Overpolarizing Cells to Activate NF-κB. Cardiovasc Eng Technol 2012; 4:26-38. [PMID: 23667401 DOI: 10.1007/s13239-012-0115-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Large artery stiffening and small artery inflammation are both well-known pathological features of pulmonary and systemic hypertension, but the relationship between them has been seldom explored. We previously demonstrated that stiffening-induced high pulsatility flow stimulated a pro-inflammatory response in distal pulmonary artery endothelial cells (PAEC). Herein, we hypothesized that high pulsatility flow activated PAEC pro-inflammatory responses are mediated through cell structural remodeling and cytoskeletal regulation of NF-κB translocation. To test this hypothesis, cells were exposed to low and high pulsatility flows with the same mean physiological flow shear stress. Results showed that unidirectional, high pulsatility flow led to continuous, high-level NF-κB activation, whereas low pulsatility flow induced only transient, minor NF-κB activation. Compared to cell shape under the static condition, low pulsatility flow induced cell elongation with a polarity index of 1.7, while high pulsatility flow further increased the cell polarity index to a value greater than 3. To explore the roles of cytoskeletal proteins in transducing high flow pulsatility into NF-κB activation, PAECs were treated with drugs that reduce the synthesis-breakdown dynamics of F-actin or microtubules (cytochalasin D, phalloidin, nocodazole, and taxol) prior to flow. Results showed that these pre-treatments suppressed NF-κB activation induced by high pulsatility flow, but drugs changing dynamics of F-actin enhanced NF-κB activation even under low pulsatility flow. Taxol was further circulated in the flow to examine its effect on cells. Results showed that circulating taxol (10nM) reduced PAEC polarity, NF-κB activation, gene expression of pro-inflammatory molecules (ICAM-1 and VCAM-1), and monocyte adhesion on the PAECs under high pulsatility flow. Therefore, taxol effectively reduced high pulsatility flow-induced PAEC overpolarization and pro-inflammatory responses via inhibiting cytoskeletal remodeling. This study suggests that stabilizing microtubule dynamics might bea potential therapeutic means of reducing endothelial inflammation caused by high pulsatility flow.
Collapse
|
33
|
Anderson DE, Hinds MT. Extracellular matrix production and regulation in micropatterned endothelial cells. Biochem Biophys Res Commun 2012; 427:159-64. [DOI: 10.1016/j.bbrc.2012.09.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/07/2012] [Indexed: 12/21/2022]
|
34
|
Morgan JT, Wood JA, Shah NM, Hughbanks ML, Russell P, Barakat AI, Murphy CJ. Integration of basal topographic cues and apical shear stress in vascular endothelial cells. Biomaterials 2012; 33:4126-35. [PMID: 22417618 DOI: 10.1016/j.biomaterials.2012.02.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/26/2012] [Indexed: 11/19/2022]
Abstract
In vivo, vascular endothelial cells (VECs) are anchored to the underlying stroma through a specialization of the extracellular matrix, the basement membrane (BM) which provides a variety of substratum associated biophysical cues that have been shown to regulate fundamental VEC behaviors. VEC function and homeostasis are also influenced by hemodynamic cues applied to their apical surface. How the combination of these biophysical cues impacts fundamental VEC behavior remains poorly studied. In the present study, we investigated the impact of providing biophysical cues simultaneously to the basal and apical surfaces of human aortic endothelial cells (HAECs). Anisotropically ordered patterned surfaces of alternating ridges and grooves and isotropic holed surfaces of varying pitch (pitch = ridge or hole width + intervening groove or planar regions) were fabricated and seeded with HAECs. The cells were then subjected to a steady shear stress of 20 dyne/cm(2) applied either parallel or perpendicular to the direction of the ridge/groove topography. HAECs subjected to flow parallel to the ridge/groove topography exhibited protagonistic effects of the two stimuli on cellular orientation and elongation. In contrast, flow perpendicular to the substrate topography resulted in largely antagonistic effects. Interestingly, the behavior depended on the shape and size of the topographic features. HAECs exhibited a response that was less influenced by the substratum and primarily driven by flow on isotropically ordered holed surfaces of identical pitch to the anistropically ordered surfaces of alternating ridges and grooves. Simultaneous presentation of biophysical cues to the basal and apical aspects of cells also influenced nuclear orientation and elongation; however, the extent of nuclear realignment was more modest in comparison to cellular realignment regardless of the surface order of topographic features. Flow-induced HAEC migration was also influenced by the ridge/groove surface topographic features with significantly altered migration direction and increased migration tortuosity when flow was oriented perpendicular to the topography; this effect was also pitch-dependent. The present findings provide valuable insight into the interaction of biologically relevant apical and basal biophysical cues in regulating cellular behavior and promise to inform improved prosthetic design.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Morgan JT, Pfeiffer ER, Thirkill TL, Kumar P, Peng G, Fridolfsson HN, Douglas GC, Starr DA, Barakat AI. Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Mol Biol Cell 2011; 22:4324-34. [PMID: 21937718 PMCID: PMC3216658 DOI: 10.1091/mbc.e11-04-0287] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nesprin-3, a protein that links intermediate filaments to the nucleus, plays a role in vascular endothelial cell (EC) function. Nesprin-3 regulates EC morphology, perinuclear cytoskeletal organization, centrosome–nuclear connectivity, and flow-induced cell polarization and migration. Changes in blood flow regulate gene expression and protein synthesis in vascular endothelial cells, and this regulation is involved in the development of atherosclerosis. How mechanical stimuli are transmitted from the endothelial luminal surface to the nucleus is incompletely understood. The linker of nucleus and cytoskeleton (LINC) complexes have been proposed as part of a continuous physical link between the plasma membrane and subnuclear structures. LINC proteins nesprin-1, -2, and -4 have been shown to mediate nuclear positioning via microtubule motors and actin. Although nesprin-3 connects intermediate filaments to the nucleus, no functional consequences of nesprin-3 mutations on cellular processes have been described. Here we show that nesprin-3 is robustly expressed in human aortic endothelial cells (HAECs) and localizes to the nuclear envelope. Nesprin-3 regulates HAEC morphology, with nesprin-3 knockdown inducing prominent cellular elongation. Nesprin-3 also organizes perinuclear cytoskeletal organization and is required to attach the centrosome to the nuclear envelope. Finally, nesprin-3 is required for flow-induced polarization of the centrosome and flow-induced migration in HAECs. These results represent the most complete description to date of nesprin-3 function and suggest that nesprin-3 regulates vascular endothelial cell shape, perinuclear cytoskeletal architecture, and important aspects of flow-mediated mechanotransduction.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nayak L, Lin Z, Jain MK. "Go with the flow": how Krüppel-like factor 2 regulates the vasoprotective effects of shear stress. Antioxid Redox Signal 2011; 15:1449-61. [PMID: 20919941 PMCID: PMC3144441 DOI: 10.1089/ars.2010.3647] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Laminar shear stress is known to confer potent anti-inflammatory, antithrombotic, and antiadhesive effects by differentially regulating endothelial gene expression. The identification of Krüppel-like factor 2 as a flow-responsive molecule has greatly advanced our understanding of molecular mechanisms governing vascular homeostasis. This review summarizes the current understanding of Krüppel-like factor 2 action in endothelial gene expression and function.
Collapse
Affiliation(s)
- Lalitha Nayak
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
37
|
Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng 2011; 39:2329-45. [PMID: 21761242 DOI: 10.1007/s10439-011-0352-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/02/2011] [Indexed: 01/08/2023]
Abstract
The effects of flow on endothelial cells (ECs) have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of EC morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines EC micropatterning research by exploring both the many alternative methods used to alter EC morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in EC proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, are discussed.
Collapse
|
38
|
Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 2010; 123:4201-13. [DOI: 10.1242/jcs.075150] [Citation(s) in RCA: 530] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In situ, cells are highly sensitive to geometrical and mechanical constraints from their microenvironment. These parameters are, however, uncontrolled under classic culture conditions, which are thus highly artefactual. Micro-engineering techniques provide tools to modify the chemical properties of cell culture substrates at sub-cellular scales. These can be used to restrict the location and shape of the substrate regions, in which cells can attach, so-called micropatterns. Recent progress in micropatterning techniques has enabled the control of most of the crucial parameters of the cell microenvironment. Engineered micropatterns can provide a micrometer-scale, soft, 3-dimensional, complex and dynamic microenvironment for individual cells or for multi-cellular arrangements. Although artificial, micropatterned substrates allow the reconstitution of physiological in situ conditions for controlled in vitro cell culture and have been used to reveal fundamental cell morphogenetic processes as highlighted in this review. By manipulating micropattern shapes, cells were shown to precisely adapt their cytoskeleton architecture to the geometry of their microenvironment. Remodelling of actin and microtubule networks participates in the adaptation of the entire cell polarity with respect to external constraints. These modifications further impact cell migration, growth and differentiation.
Collapse
Affiliation(s)
- Manuel Théry
- Laboratoire de Physiologie Cellulaire et Végétale, iRTSV, CEA/CNRS/UJF/INRA, 17 Rue des Martyrs, 38054, Grenoble, France
| |
Collapse
|