1
|
Lai Y, Tang Z, Du Z, Zeng Q, Xia Y, Chen S, Li X, Cheng Q, Mei M, He W. Attenuation of Hypertension and protection of vascular inflammation in hyperaldosteronism: GPER1 as potential therapeutic candidate when MR antagonist is less satisfying? Endocrine 2025; 87:1276-1284. [PMID: 39565544 PMCID: PMC11845544 DOI: 10.1007/s12020-024-04106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Hyperaldosteronism is an endocrine disorder leading to persistent and severe hypertension. G protein-coupled estrogen receptor 1(GPER1) is regarded as a potential receptor of aldosterone (ALDO). OBJECTIVE This study aimed to investigate the effects of GPER1 on aldosterone (ALDO)-induced hypertension and inflammation in mice. METHODS GPER1-knockout (KO) and wild-type (WT) C57BL/6j mice were divided into control (CON, normal saline treatment), ALDO (subcutaneous injections of 600 g/kg/d ALDO), and ALDO + eplerenone (EPL) (subcutaneous injections of 600 g/kg/d ALDO and 100 mg/kg/d EPL) groups (n = 5 per group). Fourteen days after drug administration, the heart rate and tail blood pressure of the mice in the different groups were measured. S100A8 and IL-1β protein expression in arterial tissues were detected by western blotting, NLRP3 expression was assessed using immunofluorescence, and CD68 expression was investigated using immunohistochemistry. RESULTS GPER1 deficiency alleviated ALDO-induced diastolic blood pressure (P< 0.05). In addition, the protein expression levels of IL-1β, S100A8, and CD68 showed significant decreases in the arterial tissues of GPER1-KO mice after combination treatment with ALDO and EPL (all P < 0.05). CONCLUSION We discovered attenuation of hypertension and vascular inflammation of GPER1 KO mice only on the basis of mineralocorticoid receptor (MR) blocking. Collectively, our study indicates that GPER1 might become a therapeutic target of hyperaldosteronism in controlling the residual risk of cardiovascular disease when MR antagonist alone is not satisfying.
Collapse
Affiliation(s)
- Yulian Lai
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziwei Tang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhipeng Du
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xia
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shangbin Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfeng Cheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Mei
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
3
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
4
|
Dong M, Liu J, Liu C, Wang H, Sun W, Liu B. CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacol Res 2022; 185:106480. [PMID: 36191879 DOI: 10.1016/j.phrs.2022.106480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
Abstract
The development of gene-editing technology has been one of the biggest advances in biomedicine over the past two decades. Not only can it be used as a research tool to build a variety of disease models for the exploration of disease pathogenesis at the genetic level, it can also be used for prevention and treatment. This is done by intervening with the expression of target genes and carrying out precise molecular targeted therapy for diseases. The simple and flexible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing technology overcomes the limitations of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). For this reason, it has rapidly become a preferred method for gene editing. As a new gene intervention method, CRISPR/Cas9 has been widely used in the clinical treatment of tumours and rare diseases; however, its application in the field of cardiovascular diseases is currently limited. This article reviews the application of the CRISPR/Cas9 editing technology in cardiovascular disease research and treatment, and discusses the limitations and prospects of this technology.
Collapse
Affiliation(s)
- Mengying Dong
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Jiangen Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People's Hospital, 33 Wenyi Road, ShenYang, China, 110016
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| |
Collapse
|
5
|
Armitage LH, Stimpson SE, Santostefano KE, Sui L, Ogundare S, Newby BN, Castro-Gutierrez R, Huber MK, Taylor JP, Sharma P, Radichev IA, Perry DJ, Fredette NC, Savinov AY, Wallet MA, Terada N, Brusko TM, Russ HA, Chen J, Egli D, Mathews CE. Use of Induced Pluripotent Stem Cells to Build Isogenic Systems and Investigate Type 1 Diabetes. Front Endocrinol (Lausanne) 2021; 12:737276. [PMID: 34858326 PMCID: PMC8630743 DOI: 10.3389/fendo.2021.737276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a disease that arises due to complex immunogenetic mechanisms. Key cell-cell interactions involved in the pathogenesis of T1D are activation of autoreactive T cells by dendritic cells (DC), migration of T cells across endothelial cells (EC) lining capillary walls into the islets of Langerhans, interaction of T cells with macrophages in the islets, and killing of β-cells by autoreactive CD8+ T cells. Overall, pathogenic cell-cell interactions are likely regulated by the individual's collection of genetic T1D-risk variants. To accurately model the role of genetics, it is essential to build systems to interrogate single candidate genes in isolation during the interactions of cells that are essential for disease development. However, obtaining single-donor matched cells relevant to T1D is a challenge. Sourcing these genetic variants from human induced pluripotent stem cells (iPSC) avoids this limitation. Herein, we have differentiated iPSC from one donor into DC, macrophages, EC, and β-cells. Additionally, we also engineered T cell avatars from the same donor to provide an in vitro platform to study genetic influences on these critical cellular interactions. This proof of concept demonstrates the ability to derive an isogenic system from a single donor to study these relevant cell-cell interactions. Our system constitutes an interdisciplinary approach with a controlled environment that provides a proof-of-concept for future studies to determine the role of disease alleles (e.g. IFIH1, PTPN22, SH2B3, TYK2) in regulating cell-cell interactions and cell-specific contributions to the pathogenesis of T1D.
Collapse
Affiliation(s)
- Lucas H. Armitage
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Scott E. Stimpson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Katherine E. Santostefano
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Cellular Reprogramming, College of Medicine, University of Florida, Gainesville, FL, United States
- Century Therapeutics, iPSC Biology, Philadelphia, PA, United States
| | - Lina Sui
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, United States
| | - Similoluwa Ogundare
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Brittney N. Newby
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Roberto Castro-Gutierrez
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mollie K. Huber
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Jared P. Taylor
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Prerana Sharma
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Ilian A. Radichev
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Natalie C. Fredette
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Cellular Reprogramming, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Alexei Y. Savinov
- Children’s Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
- Century Therapeutics, Immunology, Philadelphia, PA, United States
| | - Naohiro Terada
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Cellular Reprogramming, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Holger A. Russ
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Dieter Egli
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- University of Florida Diabetes Institute, University of Florida, Gainesville, FL, United States
- Center for Cellular Reprogramming, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Guo H, Liu L, Nishiga M, Cong L, Wu JC. Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends Genet 2021; 37:1109-1123. [PMID: 34509299 DOI: 10.1016/j.tig.2021.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Genetic variants play an important role in conferring risk for cardiovascular diseases (CVDs). With the rapid development of next-generation sequencing (NGS), thousands of genetic variants associated with CVDs have been identified by genome-wide association studies (GWAS), but the function of more than 40% of genetic variants is still unknown. This gap of knowledge is a barrier to the clinical application of the genetic information. However, determining the pathogenicity of a variant of uncertain significance (VUS) is challenging due to the lack of suitable model systems and accessible technologies. By combining clustered regularly interspaced short palindromic repeats (CRISPR) and human induced pluripotent stem cells (iPSCs), unprecedented advances are now possible in determining the pathogenicity of VUS in CVDs. Here, we summarize recent progress and new strategies in deciphering pathogenic variants for CVDs using CRISPR-edited human iPSCs.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci 2021; 22:E525. [PMID: 33430254 PMCID: PMC7825655 DOI: 10.3390/ijms22020525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERβ), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Matheus L. C. A. Tacco
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Sophia C. P. Marinho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
- Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|