1
|
Li J, Sun F, Zhang Y, Pan X, Li B, Zhang G, Zhou Q. MiR-103-3p regulates chondrocyte autophagy, apoptosis, and ECM degradation through the PI3K/Akt/mTOR pathway by targeting CPEB3. J Orthop Surg Res 2025; 20:324. [PMID: 40155964 PMCID: PMC11954267 DOI: 10.1186/s13018-025-05719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Chondrocyte apoptosis is associated with the severity of cartilage destruction and matrix degeneration in the progression of osteoarthritis. Increasing evidence indicates that autophagy has a significant cytoprotective effect against chondrocyte apoptosis. Here, we investigated the role of microRNA-103-3p (miR-103-3p) in regulating chondrocyte function and elucidated the underlying mechanism. METHODS MiR-103-3p expression in interleukin-1β (IL-1β)-stimulated chondrocytes was evaluated using RT-qPCR. The targets of miR-103-3p predicted by online databases were verified using biotin-based pulldown assay and luciferase reporter assay. IL-1β stimulated-chondrocytes were transfected with miR-103-3p inhibitor along with siRNA targeting cytoplasmic polyadenylation element-binding protein3 (siCPEB3), the autophagy inhibitor 3-MA, or the PI3K agonist 740 Y-P. Chondrocyte proliferation was evaluated using cell counting kit-8. Apoptosis was detected by flow cytometry. The levels of apoptosis-, extracellular matrix (ECM)-, autophagy-, and the PI3K/Akt/mTOR pathway-related proteins in chondrocytes were detected using immunoblotting or immunofluorescence. RESULTS We found that IL-1β stimulation upregulated miR-103-3p and downregulated CPEB3 in mouse chondrocytes. Inhibiting miR-103-3p reduced IL-1β-induced apoptosis and ECM macromolecule degradation while enhancing autophagy in chondrocytes. MiR-103-3p targeted CPEB3, and its downregulation rescued the expression of level in IL-1β stimulated-chondrocytes. MiR-103-3p downregulation inhibited the PI3K/Akt/mTOR pathway in IL-1β stimulated-chondrocytes by upregulating CPEB3. 3-MA, 740 Y-P, or CPEB3 knockdown counteracted the effect of miR-103-3p downregulation on chondrocyte apoptosis, ECM macromolecule degradation, and autophagy. CONCLUSION Overall, inhibition of miR-103-3p reduces IL-1β-induced apoptosis and ECM macromolecule degradation in chondrocytes by enhancing autophagy through the CPEB3/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hungshi, 435000, China
| | - Farui Sun
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hungshi, 435000, China
| | - Yuanjin Zhang
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hungshi, 435000, China
| | - Xian Pan
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hungshi, 435000, China
| | - Bo Li
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hungshi, 435000, China
| | - Guofu Zhang
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hungshi, 435000, China
| | - Qian Zhou
- Department of Geriatrics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Tianjin Avenue No. 141, Huangshigang District, 435000, Hungshi, Hubei Province, China.
| |
Collapse
|
2
|
Bhutada S, Hoyle A, Piuzzi NS, Apte SS. Degradomics defines proteolysis information flow from human knee osteoarthritis cartilage to matched synovial fluid and the contributions of secreted proteases ADAMTS5, MMP13 and CMA1 to articular cartilage breakdown. Osteoarthritis Cartilage 2025; 33:116-127. [PMID: 39293776 DOI: 10.1016/j.joca.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Proteolytic cartilage extracellular matrix breakdown is a major mechanism of articular cartilage loss in osteoarthritis (OA) pathogenesis. We sought to determine the overlap of proteolytic peptides in matched knee OA cartilage and synovial fluid on a proteome-wide scale to increase the prospective biomarker repertoire and to attribute proteolytic cleavages to specific secreted proteases. DESIGN Matched human knee OA cartilage and synovial fluid (n = 5) were analyzed by N-terminomics using Terminal Amine Isotopic Labeling of Substrates (TAILS), comprising labeling and enrichment of protein N-termini, high-resolution mass spectrometry and positional peptide mapping. Donor non-OA articular cartilage was digested with CMA1, MMP13 or ADAMTS5, and TAILS was used to identify cleavage sites, which were matched against cartilage and synovial fluid degradomes. RESULTS Of over 20,000 cleaved peptides in the combined OA cartilage and synovial fluid degradomes, 677 peptides, originating from 153 proteins, were present in all cartilage and synovial fluid samples. CMA1, MMP13 and ADAMTS5 digestion of cartilage identified numerous cleavage sites for each protease and distinct cleavage site preferences. Peptides resulting from the activities of these proteases were detected in OA cartilage and synovial fluid. CONCLUSIONS Proteolytic fragments from both cartilage and circulating proteins are detectable by synovial fluid degradomics. CMA1, MMP13 and ADAMTS5 activity profiles in cartilage are distinct from each other and the previously determined HtrA1 profile. This work expands the proteolytic biomarker space for OA investigation, suggests that multiple, diverse proteases contribute to cartilage destruction, and demonstrates that their specific contributions can each be defined by multiple biomarkers.
Collapse
Affiliation(s)
- Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA; Musculoskeletal Research Center, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Hoyle
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Nicolas S Piuzzi
- Musculoskeletal Research Center, Cleveland Clinic, Cleveland, OH, USA; Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA; Musculoskeletal Research Center, Cleveland Clinic, Cleveland, OH, USA; Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Ghamrawi A, Basso R, Shakik N, Haddad L, Nasr Z, Harmouch C. Wharton's Jelly Mesenchymal Stem Cells: Shaping the Future of Osteoarthritis Therapy with Advancements in Chitosan-Hyaluronic Acid Scaffolds. Stem Cells Dev 2025; 34:1-16. [PMID: 39605205 DOI: 10.1089/scd.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in cartilage regeneration and osteoarthritis treatment. It covers key factors influencing chondrogenesis, including growth factors, cytokines, and hypoxia, focusing on precise timing. The effectiveness of three-dimensional cultures and scaffold-based strategies in chondrogenic differentiation is discussed. Specific biomaterials such as chitosan and hyaluronic acid are highlighted for tissue engineering. The document reviews clinical applications, incorporating evidence from animal research and early trials and molecular and histological assessments of chondrogenic differentiation processes. It addresses challenges and strategies for optimizing MSC-derived chondrocyte therapy, emphasizing the immunomodulatory properties of these cells. The review concludes as a comprehensive road map for future research and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Ahed Ghamrawi
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Rasha Basso
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Nour Shakik
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Haddad
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Chaza Harmouch
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| |
Collapse
|
4
|
Jenei-Lanzl Z, Zaucke F. Osteoarthritis year in review 2024: Biology. Osteoarthritis Cartilage 2025; 33:58-66. [PMID: 39461410 DOI: 10.1016/j.joca.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Osteoarthritis (OA) research is a fast-growing and extremely wide field, in which a substantial increase in knowledge has been achieved over the last year. It covers many different topics, however, a PubMed search using the terms 'osteoarthritis' and 'biology' resulted in only a limited number of studies that were published between April 2023 and April 2024. In order to identify OA-relevant studies that focus on mechanistic studies of biological processes at the tissue, cellular, and molecular level, the following keywords were included as search terms: tissue interactions, single cell sequencing, transcriptomics, extracellular matrix, signaling, ion channels, and pain. The final selection of publications presented in this 'year in review' was influenced by the personal preferences of the authors, and eventually three larger key themes emerged: 1) Joint tissue interactions covering meniscus, subchondral bone, fat tissue, synovium, and synovial fluid. 2) Degeneration of the cartilage extracellular matrix and generation of bioactive fragments. 3) Receptors, ion channels, signaling pathways, and cellular metabolism. Many of the studies summarized here identified novel potential targets for OA treatment, and promising results were already obtained addressing these targets in different animal models. It will be exciting to see which findings can be translated into future clinical studies and eventually lead to novel treatment approaches for human OA.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Wang J, Yang J, Fang Y, Lou C, Yu H, Li Y, Lv J, Chen H, Cai L, Zheng W. Vinpocetine protects against osteoarthritis by inhibiting ferroptosis and extracellular matrix degradation via activation of the Nrf2/GPX4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156115. [PMID: 39368343 DOI: 10.1016/j.phymed.2024.156115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a progressive joint condition marked by the slow degradation of articular cartilage. Vinpocetine (Vin), a synthetic derivative of vincamine derived from the vinca plant, exhibits anti-inflammatory and antioxidant properties. Nevertheless, the specific role and mechanism of Vin in the treatment of OA remain largely unexplored. OBJECTIVES The study is designed to uncover the impacts of Vin on tert‑butyl hydroperoxide (TBHP)-induced ferroptosis and to explore its potential role and underlying mechanisms in the treatment of OA. Concurrently, we established an OA mouse model through medial meniscal instability surgery to assess the therapeutic effects of Vin in vivo. METHODS Through network pharmacology analysis, we have identified the key targets and potential pathways of Vin. To simulate an oxidative stress-induced OA environment in vitro, we induced chondrocyte injury using TBHP. We tested how Vin affects chondrocytes under TBHP induction by DHE and DCFH-DA probes, BODIPY-C11 and FerroOrange staining, mitochondrial function assessment, Western blotting, co-immunoprecipitation, and immunofluorescence techniques. Simultaneously, we established an OA mouse model through medial meniscal instability surgery to assess the in vivo therapeutic effects of Vin. In this model, we used X-ray and micro-CT imaging, SO staining, TB staining, H&E staining, and immunohistochemistry to analyze the role of Vin in detail. RESULTS This study demonstrated that Vin effectively suppressed TBHP-induced ferroptosis and extracellular matrix (ECM) degradation and significantly lessened mitochondrial damage associated with ferroptosis. In the OA mouse model, Vin improved cartilage degeneration, subchondral remodeling, synovitis, and ECM degradation. Vin worked by activating the Nrf2/GPX4 pathway and inhibiting the Keap1-Nrf2 interaction. This study focused on the function of ferroptosis in OA and its influence on chondrocyte damage and disease progression, offering novel perspectives on potential treatments. CONCLUSION Vin activated the Nrf2/GPX4 pathway, thereby slowing OA progression, inhibiting ferroptosis, and preventing ECM degradation.
Collapse
Affiliation(s)
- Jinwu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jin Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yangbo Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Leyi Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
6
|
Jin P, Liu H, Chen X, Liu W, Jiang T. From Bench to Bedside: The Role of Extracellular Vesicles in Cartilage Injury Treatment. Biomater Res 2024; 28:0110. [PMID: 39583872 PMCID: PMC11582190 DOI: 10.34133/bmr.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Cartilage repair is the key to the treatment of joint-related injury. However, because cartilage lacks vessels and nerves, its self-repair ability is extremely low. Extracellular vesicles (EVs) are bilayer nanovesicles with membranes mainly composed of ceramides, cholesterol, phosphoglycerides, and long-chain free fatty acids, containing DNA, RNA, and proteins (such as integrins and enzymes). For mediating intercellular communication and regulating mechanisms, EVs have been shown by multiple studies to be effective treatment options for cartilage repair. This review summarizes recent findings of different sources (mammals, plants, and bacteria) and uses of EVs in cartilage repair, mechanisms of EVs captured by injured chondrocytes, and quantification and storage of EVs, which may provide scientific guidance for promoting the development of EVs in the field of cartilage injury treatment.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Huan Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Xichi Chen
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University,
Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma; Hainan Provincial Stem Cell Research Institute; Hainan Academy of Medical Sciences,
Hainan Medical University, Haikou 571199, China
| |
Collapse
|
7
|
Su S, Tian R, Jiao Y, Zheng S, Liang S, Liu T, Tian Z, Cao X, Xing Y, Ma C, Ni P, Yu F, Jiang T, Wang J. Ubiquitination and deubiquitination: Implications for the pathogenesis and treatment of osteoarthritis. J Orthop Translat 2024; 49:156-166. [PMID: 40226783 PMCID: PMC11993839 DOI: 10.1016/j.jot.2024.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 01/12/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that affects multiple cells and associated extracellular matrix (ECM). Chondrocytes and chondroextracellular matrix together constitute articular cartilage tissue. Any factors that affect the activity of chondrocytes and destroy the metabolic balance of the chondrocyte ECM will lead to the inability of articular cartilage to perform normal functions. The articular subchondral bone and articular cartilage must be coordinated to resist enough friction and mechanical stress, so the articular subchondral bone lesion will aggravate the articular cartilage defect and vice versa. Synoviocytes, including fibroblast-like synoviocytes (FLSs) and synovial macrophages at the joint, are also important factors that cause low-grade chronic progressive inflammation of OA. Regulation of phenotype transformation of synovial macrophages has become another possible target for the clinical treatment of OA. Ubiquitination and deubiquitination are the main post-translational protein modification pathways in the human body, which are widely involved in multiple signaling pathways and physiological processes. Naturally, they also play a very important regulatory role in the occurrence and development of OA. These effects are summarized in this review, including (A) regulating the aging and apoptosis of chondrocytes, FLSs and osteoblasts; (B) regulation of ECM degradation; (C) regulation of macrophage phenotypic transformation; (D) modulation of skeletal muscle and adipose tissues. Ubiquitination targeting drugs for OA treatment are also listed. Depending on the high efficiency of ubiquitination and deubiquitination, understanding OA-related ubiquitination pathways can help design more efficient drugs to treat OA and provide more potential targets for clinical treatment. The Translational Potential of This Article. In this paper, the ubiquitination-related pathways in osteoarthritis (OA), including aging, apoptosis and autophagy in chondrocytes, osteoblasts, FLSs and macrophages were investigated. In particular, several ubiquitination-related targets are expected to be effective approaches for OA clinical treatment. In addition, in the process of OA occurrence and development, the complex relationship between the local joint area and other tissues including skeletal muscle and adipose tissue is also discussed. These myokines and adipokines from musculoskeletal tissues are all expected to become efficient targets for OA treatment apart from the joint itself. In addition, those myokines secreted by cardiovascular tissues would show potential therapeutic effects as well. What if altering the contents for these ubiquitination-related targets in the serum through exercise will provide a new idea for OA therapy or prevent OA from deteriorating continuously?
Collapse
Affiliation(s)
- Shibo Su
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Ruijiao Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shudan Zheng
- Plastic Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Siqiang Liang
- Zhongke Comprehensive Medical Transformation Center Research Institute (Hainan) Co., Ltd, Haikou, 571199, China
| | - Tianyi Liu
- Department of Pharmacology, Zibo Hospital of Traditional Chinese Medicine, Zibo, 255300, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Jining, 272002, China
| | - Xiuhong Cao
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Yanlong Xing
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Chuqing Ma
- The Second Clinical College, Hainan Medical University, Haikou, 571199, China
| | - Panli Ni
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Fabiao Yu
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Juan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Provincial Stem Cell Research Institute, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
8
|
Hu W, Yang J, Liu L, Li D, Zhao Y, Wang A. Exploring Trends and Gaps in Osteoarthritis Biomarker Research (1999-2024): A Citation Analysis of Top 50 Cited Articles. Cartilage 2024:19476035241288660. [PMID: 39422972 PMCID: PMC11556567 DOI: 10.1177/19476035241288660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
PURPOSE This study aimed to comprehensively analyze the landscape of osteoarthritis (OA) biomarker research through the citation analysis of top-cited articles, identifying trends and gaps in this field. METHODS The Web of Science Core Collection was utilized to retrieve the top 50 cited articles on OA biomarkers. Data extraction included publication characteristics, citation metrics, and biomarker categorization. Statistical analyses were conducted to discern correlations and assess significance. RESULTS The top 50 cited articles spanned the years 1999 to 2020, and collectively cited 4849 articles, accumulating a total of 6177 citations, resulting in an average of 123.5 citations per document. Citations per article varied between 78 and 359, with a citation density ranging from 3.9 to 23.93. Analysis of the top 50 cited articles revealed comparable impact between recent and older publications. Predominant trends included cartilage-related and blood-based biomarkers, while inflammation-related, radiomics, and multi-omics emerged as potential future research directions. In BIPEDS classification, gaps were identified in biomarkers evaluating intervention efficacy and safety. CONCLUSION Despite significant advancements, there is no universally acknowledged biomarker for OA. Addressing gaps in biomarker exploration is crucial for enhancing OA management strategies. This study provides insights into prevailing trends and future research directions in OA biomarkers, guiding future investigations and therapeutic development.
Collapse
Affiliation(s)
- Wenjin Hu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Dongchao Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yun Zhao
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Aiguo Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
9
|
Sim YE, Kim CL, Kim DH, Hong JA, Lee IJ, Kwak JY, Kang LJ, Mo JS. Rosmarinic acid promotes cartilage regeneration through Sox9 induction via NF-κB pathway inhibition in mouse osteoarthritis progression. Heliyon 2024; 10:e38936. [PMID: 39444399 PMCID: PMC11497390 DOI: 10.1016/j.heliyon.2024.e38936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Background The natural polyphenolic compound known as Rosmarinic acid (RosA) can be found in various plants. Although its potential health benefits have been extensively studied, its effect on osteoarthritis (OA) progression and cartilage regeneration function still needs to be fully elucidated in OA animal models. This study elucidated the effect of RosA on OA progression and cartilage regeneration. Methods In vitro assessments were conducted using RT-PCR, qRT-PCR, Western blotting, and ELISA to measure the effects of RosA. The molecular mechanisms of RosA were determined by analyzing the translocation of p65 into the nucleus using immunocytochemistry (ICC). Histological analysis of cartilage explant was performed using alcian blue staining and immunohistochemistry (IHC). For in vivo analysis, the destabilization of the medial meniscus (DMM)-induced OA mouse model was utilized to evaluate cartilage destruction through Safranin-O staining. The expression of catabolic and anabolic factors in mice knee joints was quantified by immunohistochemistry. Results The expression of catabolic factors in chondrocytes was significantly impeded by RosA. It also suppressed the NF-κB signaling pathway by decreasing phosphorylation of p65 and reducing degradation of IκB protein. In ex vivo experiments, RosA protected sulfated proteoglycan erosion triggered by IL-1β and suppressed the catabolic factors in cartilage explant. RosA treatment in animal models resulted in preventing cartilage destruction and reducing catabolic factors in the cartilage. RosA was also found to promote the expression of Sox9, Col2a1, and Acan in vitro, ex vivo, and in vivo analyses. Conclusions RosA attenuated the OA progression by suppressing the catabolic factors expression. These effects were facilitated through the suppression of the NF-κB signaling pathway. Additionally, it promotes cartilage regeneration by inducing anabolic factors. Therefore, RosA shows potential as an effective therapeutic agent for treating OA.
Collapse
Affiliation(s)
- Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ji-Ae Hong
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research, Jeollanamdo, 59338, South Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
| | - Jong-Young Kwak
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jung-Soon Mo
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| |
Collapse
|
10
|
Kobak KA, Batushansky A, Jopkiewicz A, Peelor FF, Kinter MT, Miller BF, Griffin TM. Effect of biological sex and short-term high-fat diet on cellular proliferation, ribosomal biogenesis, and targeted protein abundance in murine articular cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100495. [PMID: 39040627 PMCID: PMC11260562 DOI: 10.1016/j.ocarto.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Objective To identify factors contributing to sex-differences in OA risk by evaluating the short-term effect of high-fat (HF) diet on sex-specific changes in cartilage cell proliferation, ribosomal biogenesis, and targeted extra-cellular and cellular protein abundance. Materials and methods Knee cartilage was harvested to the subchondral bone from 20-week-old female and male C57BL/6J mice fed a low-fat or HF diet for 4 weeks and labeled with deuterium oxide for 1, 3, 5, 7, 15, or 21 days. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Protein concentration was measured using targeted high resolution accurate mass spectrometry. Results HF diet increased the maximal deuterium incorporation into DNA from approximately 40 to 50%, albeit at a slower rate. These findings, which were magnified in female versus male mice, indicate a greater number of proliferating cells with longer half-lives under HF diet conditions. HF diet caused distinct sex-dependent effects on deuterium incorporation into RNA, increasing the fraction of ribosomes undergoing biogenesis in male mice and doubling the rate of ribosome biogenesis in female mice. HF diet altered cartilage protein abundance similarly in both sexes, except for matrilin-3, which was more abundant in HF versus LF conditions in female mice only. Overall, HF diet treatment had a stronger effect than sex on cartilage protein abundance, with most changes involving extracellular matrix and matrix-associated proteins. Conclusions Short-term HF diet broadly altered cartilage matrix protein abundance, while sex-dependent effects primarily involved differences in cell proliferation and ribosomal biogenesis.
Collapse
Affiliation(s)
- Kamil A. Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Anita Jopkiewicz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F. Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michael T. Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
11
|
Miao MZ, Lee JS, Yamada KM, Loeser RF. Integrin signalling in joint development, homeostasis and osteoarthritis. Nat Rev Rheumatol 2024; 20:492-509. [PMID: 39014254 PMCID: PMC11886400 DOI: 10.1038/s41584-024-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/18/2024]
Abstract
Integrins are key regulators of cell-matrix interactions during joint development and joint tissue homeostasis, as well as in the development of osteoarthritis (OA). The signalling cascades initiated by the interactions of integrins with a complex network of extracellular matrix (ECM) components and intracellular adaptor proteins orchestrate cellular responses necessary for maintaining joint tissue integrity. Dysregulated integrin signalling, triggered by matrix degradation products such as matrikines, disrupts this delicate balance, tipping the scales towards an environment conducive to OA pathogenesis. The interplay between integrin signalling and growth factor pathways further underscores the multifaceted nature of OA. Moreover, emerging insights into the role of endocytic trafficking in regulating integrin signalling add a new layer of complexity to the understanding of OA development. To harness the therapeutic potential of targeting integrins for mitigation of OA, comprehensive understanding of their molecular mechanisms across joint tissues is imperative. Ultimately, deciphering the complexities of integrin signalling will advance the ability to treat OA and alleviate its global burden.
Collapse
Affiliation(s)
- Michael Z Miao
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Shao Z, Gao H, Han Q, Ning E, Sheng L, Hao Y, Che H, Hu D, Wang C. Genetic insights into serum cathepsins as diagnostic and therapeutic targets in knee and hip osteoarthritis. Sci Rep 2024; 14:17553. [PMID: 39080459 PMCID: PMC11289477 DOI: 10.1038/s41598-024-68718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease due to the deterioration of cartilage structure and function, involving the progressive degradation of the cartilage extracellular matrix. Cathepsins, lysosomal cysteine proteases, play pivotal roles in various biological and pathological processes, particularly in protein degradation. Excess cathepsins levels are reported to contribute to the development of OA. However, the causal relationship between the cathepsin family and knee and hip OA remains uncertain. Therefore, this study utilized bidirectional Mendelian Randomization (MR) analyses to explore this causal association. Our results indicated that elevated serum levels of cathepsin O increase the overall risk of knee OA, while increased serum levels of cathepsin H enhance the risk of hip OA. Conversely, the reverse MR analyses did not reveal a reverse causal relationship between them. In summary, OA in different anatomical locations may genetically result from pathological elevations in different serum cathepsin isoforms, which could be utilized as diagnostic and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qinyi Han
- Department of Hand and Foot, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Eryu Ning
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Liting Sheng
- Phase I Clinical Trial Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Dan Hu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Chengqiang Wang
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg in Breisgau, Germany.
| |
Collapse
|
13
|
Lou C, Fang Y, Mei Y, Hu W, Sun L, Jin C, Chen H, Zheng W. Cucurbitacin B attenuates osteoarthritis development by inhibiting NLRP3 inflammasome activation and pyroptosis through activating Nrf2/HO-1 pathway. Phytother Res 2024; 38:3352-3369. [PMID: 38642047 DOI: 10.1002/ptr.8209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
Osteoarthritis (OA) is a complicated joint disorder characterized by inflammation that causes joint destruction. Cucurbitacin B (CuB) is a naturally occurring triterpenoid compound derived from plants in the Cucurbitaceae family. The aim of this study is to investigate the potential role and mechanisms of CuB in a mouse model of OA. This study identified the key targets and potential pathways of CuB through network pharmacology analysis. In vivo and in vitro studies confirmed the potential mechanisms of CuB in OA. Through network pharmacology, 54 potential targets for CuB in treating OA were identified. The therapeutic potential of CuB is associated with the nod-like receptor pyrin domain 3 (NLRP3) inflammasome and pyroptosis. Molecular docking results indicate a strong binding affinity of CuB to nuclear factor erythroid 2-related factor 2 (Nrf2) and p65. In vitro experiments demonstrate that CuB effectively inhibits the expression of pro-inflammatory factors induced by interleukin-1β (IL-1β), including cyclooxygenase-2, inducible nitric oxide synthase, IL-1β, and IL-18. CuB inhibits the degradation of type II collagen and aggrecan in the extracellular matrix (ECM), as well as the expression of matrix metalloproteinase-13 and a disintegrin and metalloproteinase with thrombospondin motifs-5. CuB protects cells by activating the Nrf2/hemeoxygenase-1 (HO-1) pathway and inhibiting nuclear factor-κB (NF-κB)/NLRP3 inflammasome-mediated pyroptosis. Moreover, in vivo experiments show that CuB can slow down cartilage degradation in an OA mouse model. CuB effectively prevents the progression of OA by inhibiting inflammation in chondrocytes and ECM degradation. This action is further mediated through the activation of the Nrf2/HO-1 pathway to inhibit NF-κB/NLRP3 inflammasome activation. Thus, CuB is a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yifan Mei
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| |
Collapse
|
14
|
Zeng L, Liu Y, Wang Q, Wan H, Meng X, Tu P, Chen H, Luo A, Hu P, Ding X. Botulinum toxin A attenuates osteoarthritis development via inhibiting chondrocyte ferroptosis through SLC7Al1/GPX4 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167215. [PMID: 38714267 DOI: 10.1016/j.bbadis.2024.167215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint degenerative disease, resulting in a significant societal burden. However, there is currently a lack of effective treatment option available. Previous studies have suggested that Botulinum toxin A (BONT/A), a macromolecular protein extracted from Clostridium Botulinum, may improve the pain and joint function in OA patients, but the mechanism remains elusive. This study was to investigate the impact and potential mechanism of BONT/A on OA in vivo and in vitro experiment. LPS increased the levels of ROS, Fe2+and Fe3+, as well as decreased GSH levels, the ratio of GSH / GSSH and mitochondrial membrane potential. It also enhanced the degeneration of extracellular matrix (ECM) and altered the ferroptosis-related protein expression in chondrocytes. BONT/A rescued LPS-induced decrease in collagen type II (Collagen II) expression and increase in matrix metalloproteinase 13 (MMP13), mitigated LPS-induced cytotoxicity in chondrocytes, abolished the accumulation of ROS and iron, upregulated GSH and the ratio of GSH/ GSSH, improved mitochondrial function, and promoted SLC7A11/GPX4 anti-ferroptosis system activation. Additionally, intra-articular injection of BONT/A inhibited the degradation of cartilage in OA model rats. This chondroprotective effect of BONT/A was reversed by erastin (a classical ferroptosis agonist) and enhanced by liproxstatin-1 (a classic ferroptosis inhibitor). Our research confirms that BONT/A alleviates the OA development by inhibiting the ferroptosis of chondrocytes, which revealed to be a potential therapeutic mechanism for BONT/A treating the OA.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanping Liu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Qingsong Wang
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Hongmei Wan
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Xiran Meng
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Panwen Tu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Huaxian Chen
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - PengChao Hu
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China.
| | - Xudong Ding
- Department of Rehabilitation Medicine, Clinical Medical Center for Rehabilitation Treatment of Dystonia Disease, Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China.
| |
Collapse
|
15
|
Fang Y, Lou C, Lv J, Zhang C, Zhu Z, Hu W, Chen H, Sun L, Zheng W. Sipeimine ameliorates osteoarthritis progression by suppression of NLRP3 inflammasome-mediated pyroptosis through inhibition of PI3K/AKT/NF-κB pathway: An in vitro and in vivo study. J Orthop Translat 2024; 46:1-17. [PMID: 38765604 PMCID: PMC11099199 DOI: 10.1016/j.jot.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Background Osteoarthritis (OA) is a chronic and degenerative condition that persists and progresses over time. Sipeimine (Sip), a steroidal alkaloid derived from Fritillariae Cirrhosae Bulbus, has attracted considerable attention due to its exceptional anti-inflammatory, analgesic, antioxidant, and anti-cancer characteristics. However, Sip's effects on OA and its mechanism still need further research. Methods This study utilized network pharmacology to identify initial targets for Sip. Functional associations of Sip in OA were clarified through Gene Ontology (GO) enrichment analysis, bioinformatically analyzing a list of targets. Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis assessed pathways linked to Sip's therapeutic efficacy in OA. Molecular docking techniques explored Sip's binding affinity with key targets. In vitro experiments assessed Sip's impact on lipopolysaccharide (LPS)-induced pro-inflammatory factors and its protective effects on collagen-II and aggrecan degradation within the extracellular matrix (ECM). Western blotting and fluorescence analyses were conducted to determine Sip-mediated signaling pathways. Moreover, in vivo experiments using a mouse OA model validated Sip's therapeutic efficacy. Results The results from network pharmacology revealed a total of 57 candidate targets for Sip in OA treatment. GO enrichment analysis demonstrated a robust correlation between Sip and inflammatory response, response to LPS and NF-κB-inducing kinase activity in OA. KEGG enrichment analysis highlighted the significance of NF-κB and PI3K-AKT pathways in Sip's therapeutic potential for OA. Furthermore, molecular docking results demonstrated Sip's robust binding affinity with p65 and PI3K. In vitro experiments demonstrated Sip's effectively suppressed the expression of pro-inflammatory factors induced by LPS, such as COX-2, iNOS, IL-1β, and IL-18. Besides, Sip counteracted the degradation of collagen-II and aggrecan within the ECM and the expression of MMP-13 and ADAMTS-5 mediated by LPS. The safeguarding effects of Sip were ascribed to its inhibition of PI3K/AKT/NF-κB pathway and NLRP3 inflammasome mediated pyroptosis. Additionally, in vivo experiments revealed that Sip could alleviate the subchondral remodeling, cartilage degeneration, synovitis as well as ECM degradation a mouse model of OA. Conclusion Sip exhibited potential in attenuating OA progression by suppressing the PI3K/AKT/NF-κB pathway, consequently inhibiting the activation of NLRP3 inflammasome and pyroptosis. The translational potential statement The translational potential of this articleThis study provides a biological rationale for the use of Sip as a potential candidate for OA treatment, provide a new concept for the cartilage targeted application of natural compounds.
Collapse
Affiliation(s)
- Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ziteng Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
16
|
Hawke TJ, Zaucke F. Exploring frontiers in musculoskeletal biology and bioengineering. Am J Physiol Cell Physiol 2024; 326:C659-C660. [PMID: 38252506 DOI: 10.1152/ajpcell.00037.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Affiliation(s)
- Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Zheng Z, Shang X, Sun K, Hou Y, Zhang X, Xu J, Liu H, Ruan Z, Hou L, Guo Z, Wang G, Xu F, Guo F. P21 resists ferroptosis in osteoarthritic chondrocytes by regulating GPX4 protein stability. Free Radic Biol Med 2024; 212:336-348. [PMID: 38176476 DOI: 10.1016/j.freeradbiomed.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Ferroptosis is involved in the pathogenesis of osteoarthritis (OA) while suppression of chondrocyte ferroptosis has a beneficial effect on OA. However, the molecular mechanism of ferroptosis in OA remains to be elucidated. P21, an indicator of aging, has been reported to inhibit ferroptosis, but the relationship between P21 and ferroptosis in OA remains unclear. Here, we aimed to investigate the expression and function of P21 in OA chondrocytes, and the involvement of P21 in the regulation of ferroptosis in chondrocytes. First, we demonstrated that high P21 expression was observed in the cartilage from OA patients and destabilized medial meniscus (DMM) mice, and in osteoarthritic chondrocytes induced by IL-1β, FAC and erastin. P21 knockdown exacerbated the reduction of Col2a1 and promoted the upregulation of MMP13 in osteoarthritic chondrocytes. Meanwhile, P21 knockdown exacerbated cartilage degradation in DMM-induced OA mouse models and decreased GPX4 expression in vivo. Furthermore, P21 knockdown sensitized chondrocytes to ferroptosis induced by erastin, which was closely associated with the accumulation of lipid peroxides. In mechanism, we demonstrated that P21 regulated the stability of GPX4 protein, and the regulation was independent of NRF2. Meanwhile, we found that P21 significantly affected the recruitment of GPX4 to linear ubiquitin chain assembly complex (LUBAC) and regulated the level of M1-linked ubiquitination of GPX4. Overall, our results suggest that P21 plays an essential anti-ferroptosis role in OA by regulating the stability of GPX4.
Collapse
Affiliation(s)
- Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Dong Y, Lin L, Ji Y, Cheng X, Zhang Z. Cabozantinib prevents AGEs-induced degradation of type 2 collagen and aggrecan in human chondrocytes. Aging (Albany NY) 2023; 15:13646-13654. [PMID: 38059882 PMCID: PMC10756107 DOI: 10.18632/aging.205186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 12/08/2023]
Abstract
Osteoarthritis (OA) is a joint degenerative disease commonly observed in the old population, lacks effective therapeutic methods, and markedly impacts the normal lives of patients. Degradation of extracellular matrix (ECM) is reported to participate in OA development, which is a potential target for treating OA. Cabozantinib is an inhibitor of tyrosine kinases and is recently claimed with suppressive properties against inflammation. Herein, the protective function of Cabozantinib on advanced glycation end products (AGEs)-induced damages to chondrocytes was tested. SW1353 chondrocytes were stimulated with 100 μg/ml AGEs with or without 10 and 20 μM Cabozantinib for 24 h. Signally increased reactive oxygen species (ROS) levels, declined reduced glutathione (GSH) levels, and elevated release of inflammatory cytokines were observed in AGEs-stimulated SW1353 chondrocytes, which were markedly reversed by Cabozantinib. Moreover, the notably reduced type II collagen and aggrecan levels, and increased matrix metalloproteinase-13 (MMP-13) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) levels in AGEs-stimulated SW1353 chondrocytes were largely rescued by Cabozantinib. The downregulated Sry-type high-mobility-group box 9 (SOX-9) observed in AGEs-stimulated SW1353 chondrocytes was abolished by Cabozantinib. Furthermore, the impact of Cabozantinib on type II collagen and aggrecan levels in AGEs-treated SW1353 chondrocytes was abrogated by silencing SOX-9. Collectively, Cabozantinib prevented AGEs-induced degradation of type 2 collagen and aggrecan in human chondrocytes by mediating SOX-9.
Collapse
Affiliation(s)
- Yang Dong
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Lianfang Lin
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Yuan Ji
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Xu Cheng
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Zhiwu Zhang
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| |
Collapse
|
19
|
Bačenková D, Trebuňová M, Demeterová J, Živčák J. Human Chondrocytes, Metabolism of Articular Cartilage, and Strategies for Application to Tissue Engineering. Int J Mol Sci 2023; 24:17096. [PMID: 38069417 PMCID: PMC10707713 DOI: 10.3390/ijms242317096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Hyaline cartilage, which is characterized by the absence of vascularization and innervation, has minimal self-repair potential in case of damage and defect formation in the chondral layer. Chondrocytes are specialized cells that ensure the synthesis of extracellular matrix components, namely type II collagen and aggregen. On their surface, they express integrins CD44, α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5, which are also collagen-binding components of the extracellular matrix. This article aims to contribute to solving the problem of the possible repair of chondral defects through unique methods of tissue engineering, as well as the process of pathological events in articular cartilage. In vitro cell culture models used for hyaline cartilage repair could bring about advanced possibilities. Currently, there are several variants of the combination of natural and synthetic polymers and chondrocytes. In a three-dimensional environment, chondrocytes retain their production capacity. In the case of mesenchymal stromal cells, their favorable ability is to differentiate into a chondrogenic lineage in a three-dimensional culture.
Collapse
Affiliation(s)
- Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (M.T.); (J.D.); (J.Ž.)
| | | | | | | |
Collapse
|
20
|
Hu H, Wang Z, Yang H, Bai Y, Zhu R, Cheng L. Hypoxic Preconditional Engineering Small Extracellular Vesicles Promoted Intervertebral Disc Regeneration by Activating Mir-7-5p/NF-Κb/Cxcl2 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304722. [PMID: 37870186 PMCID: PMC10724439 DOI: 10.1002/advs.202304722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Indexed: 10/24/2023]
Abstract
Chronic low back pain (LBP) caused by intervertebral disc (IVD) degradation is a serious socioeconomic burden that can cause severe disabilities. Addressing the underlying pathogenic mechanisms of IVD degeneration may inspire novel therapeutic strategy for LBP. Herein, hypoxic preconditioning improves both the biological function of MSCs in hostile microenvironments and enhances the production of small extracellular vesicles (sEVs) with desirable therapeutic functions. In vitro results reveal that hypoxic preconditional engineering sEVs (HP-sEVs) alleviate the inflammatory microenvironments of IVD degradation, enhance the proliferation of nucleus pulposus (NP) cells, and promote proteoglycan synthesis and collagen formation. Transcriptomic sequencing reveales the excellent therapeutic effects of HP-sEVs in promoting extracellular matrix regeneration through the delivery of microRNA(miR)-7-5p, which further suppresses p65 production and thus the inhibition of Cxcl2 production. Moreover, in vivo results further confirm the robust therapeutic role of HP-sEVs in promoting IVD regeneration through the same mechanism mediated by miR-7-5p delivery. In conclusion, this study provides a novel therapeutic strategy for treating IVD degradation and is thus valuable for understanding the mechanism-of-action of HP-sEVs in IVD regeneration associated with chronic lower back pain.
Collapse
Affiliation(s)
- Hongxing Hu
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Frontier Science Center for Stem Cell ResearchSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Frontier Science Center for Stem Cell ResearchSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationDepartment of OrthopedicsTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Clinical Center for Brain and Spinal Cord ResearchTongji UniversityShanghai200092China
| |
Collapse
|
21
|
Nyström A, Schaefer L. An American Journal of Physiology-Cell Physiology for the present and the future. Am J Physiol Cell Physiol 2023; 325:C1155-C1157. [PMID: 37746699 DOI: 10.1152/ajpcell.00455.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
22
|
Delpire E, Hawke TJ, Karthikeyan M, Kong W, Nyström A, Uchida S, Schaefer L. American Journal of Physiology-Cell Physiology in 2022: at a glance. Am J Physiol Cell Physiol 2023; 324:C553-C557. [PMID: 36645665 DOI: 10.1152/ajpcell.00009.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mythreye Karthikeyan
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University, Beijing, People's Republic of China
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|