1
|
Song J, Lee Y, Kim MS, Ha G, Jang W, Batjargal U, Kim Y, Kim HJ, Lee J. High throughput drug screening platform utilizing capillary and artery cell layered models based on tumor-vascular cell interactions. LAB ON A CHIP 2025; 25:2349-2363. [PMID: 40177711 DOI: 10.1039/d4lc00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Interactions between tumors and adjacent blood vessels are critical in the tumor microenvironment (TME) for influencing angiogenesis and hematogenous metastasis. Understanding these interactions within the native TME is vital for targeting various tumors, including brain tumors, due to the complexities of the blood-brain barrier. Developing an accurate tumor model that includes cell-cell and cell-matrix interactions, as well as blood flow-induced shear stress, is essential for high-throughput screening (HTS) of anti-cancer drugs. Here, we developed a glioblastoma (GBM) model surrounded by vascular cells. The arterial model was constructed by encapsulating GBM spheroids with layers of human smooth muscle cells (SMCs) and human umbilical vein endothelial cells (HUVECs), while the capillary cell layered model used only HUVECs. Comparative analysis with tumors from different organs revealed the significant role for platelet endothelial cell adhesion molecule (PECAM) in GBM-blood vascular cell interactions. Cytokine secretion analysis demonstrated PECAM's impact on tumor-specific angiogenic potential. Testing with anti-cancer drugs revealed increased expression of PECAM-associated proteins, drug resistance cytokines, and genes associated with tumor progression and metastasis. Additionally, we developed a HTS platform by encapsulating these tumor models in hydrogels and subjecting them to media circulation, effectively mimicking the dynamic TME, suitable for cancer treatment research and drug development.
Collapse
Affiliation(s)
- Jihyeon Song
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| | - Yeji Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| | - Min-Seok Kim
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
| | - Giheon Ha
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| | - WonJun Jang
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Ulziituya Batjargal
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Younggyun Kim
- Department of Bioengineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Han-Jun Kim
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| |
Collapse
|
2
|
Mascharak S, Griffin M, Talbott HE, Guo JL, Parker J, Morgan AG, Valencia C, Kuhnert MM, Li DJ, Liang NE, Kratofil RM, Daccache JA, Sidhu I, Davitt MF, Guardino N, Lu JM, Abbas DB, Deleon NMD, Lavin CV, Adem S, Khan A, Chen K, Henn D, Spielman A, Cotterell A, Akras D, Downer M, Tevlin R, Lorenz HP, Gurtner GC, Januszyk M, Naik S, Wan DC, Longaker MT. Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model. Sci Transl Med 2025; 17:eadt6387. [PMID: 39970235 DOI: 10.1126/scitranslmed.adt6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annah Grace Morgan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxwell Michael Kuhnert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel M Kratofil
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph A Daccache
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA
| | - Michael F Davitt
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Lu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darren B Abbas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M D Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher V Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandeep Adem
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Spielman
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Asha Cotterell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deena Akras
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Peter Lorenz
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Malyaran H, Radermacher C, Craveiro RB, Kühnel MP, Jonigk D, Wolf M, Neuss S. Angiogenic potential in periodontal stem cells from upper and lower jaw: A pilot study. J Periodontol 2024; 95:662-672. [PMID: 38708919 DOI: 10.1002/jper.24-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing. Compared to the mandible, the maxilla heals quicker and more efficiently. Angiogenesis is key in tissue regeneration including dental tissues, yet few studies focus on the angiogenic potential of PDLSC, none of which considered the differences between upper and lower jaw PDLSC (u-PDLSC and l-PDLSC, respectively). METHODS Here we studied the angiogenic potential of u-PDLSC and l-PDLSC and compared the results to well-established mesenchymal stem cells (MSC). Cells were characterized in terms of surface markers, proliferation, and vascular endothelial growth factor (VEGF) secretion, and angiogenic assays were performed. Newly formed capillaries were stained with CD31, and their expression of platelet endothelial cell adhesion molecule (PECAM-1), angiopoietin 2 (ANGPT2), and vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) were measured. RESULTS Periodontal stem cells from the upper jaw showed a higher proliferation capacity, secreted more VEGF, and formed capillary networks faster and denser than l-PDLSC. Gene expression of angiogenesis-related genes was significantly higher in u-PDLSC than in l-PDLSC or MSC, given that culture conditions were suitable. CONCLUSION The oral cavity is a valuable source of stem cells, particularly PDLSC, which are promising for oral tissue engineering due to their robust growth, lifelong accessibility, low immunogenicity, and strong differentiation potential. Notably, u-PDLSC exhibit higher VEGF secretion and accelerate capillary formation compared to l-PDLSC or MSC. This study suggests a potential molecular mechanism in capillary formation, emphasizing the significance of precise location isolation of PDLSC.
Collapse
Affiliation(s)
- Hanna Malyaran
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Department of Orthodontics, University Hospital of RWTH Aachen, Aachen, Germany
| | - Chloé Radermacher
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Department of Orthodontics, University Hospital of RWTH Aachen, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital of RWTH Aachen, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation. iScience 2024; 27:110083. [PMID: 38872974 PMCID: PMC11170199 DOI: 10.1016/j.isci.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Richard Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
5
|
Paloschi V, Pauli J, Winski G, Wu Z, Li Z, Botti L, Meucci S, Conti P, Rogowitz F, Glukha N, Hummel N, Busch A, Chernogubova E, Jin H, Sachs N, Eckstein H, Dueck A, Boon RA, Bausch AR, Maegdefessel L. Utilization of an Artery-on-a-Chip to Unravel Novel Regulators and Therapeutic Targets in Vascular Diseases. Adv Healthc Mater 2024; 13:e2302907. [PMID: 37797407 PMCID: PMC11468405 DOI: 10.1002/adhm.202302907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Indexed: 10/07/2023]
Abstract
In this study, organ-on-chip technology is used to develop an in vitro model of medium-to-large size arteries, the artery-on-a-chip (AoC), with the objective to recapitulate the structure of the arterial wall and the relevant hemodynamic forces affecting luminal cells. AoCs exposed either to in vivo-like shear stress values or kept in static conditions are assessed to generate a panel of novel genes modulated by shear stress. Considering the crucial role played by shear stress alterations in carotid arteries affected by atherosclerosis (CAD) and abdominal aortic aneurysms (AAA) disease development/progression, a patient cohort of hemodynamically relevant specimens is utilized, consisting of diseased and non-diseased (internal control) vessel regions from the same patient. Genes activated by shear stress follow the same expression pattern in non-diseased segments of human vessels. Single cell RNA sequencing (scRNA-seq) enables to discriminate the unique cell subpopulations between non-diseased and diseased vessel portions, revealing an enrichment of flow activated genes in structural cells originating from non-diseased specimens. Furthermore, the AoC served as a platform for drug-testing. It reproduced the effects of a therapeutic agent (lenvatinib) previously used in preclinical AAA studies, therefore extending the understanding of its therapeutic effect through a multicellular structure.
Collapse
Affiliation(s)
- Valentina Paloschi
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Jessica Pauli
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Greg Winski
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Zhiyuan Wu
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Department of Vascular SurgeryBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing10073P. R. China
| | - Zhaolong Li
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Lorenzo Botti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | - Sandro Meucci
- Micronit MicrotechnologiesEnschede15 7521The Netherlands
| | - Pierangelo Conti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | | | - Nadiya Glukha
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Nora Hummel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Albert Busch
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Division of Vascular and Endovascular SurgeryDepartment for VisceralThoracic and Vascular SurgeryMedical Faculty Carl Gustav Carus and University HospitalTechnical University Dresden01069DresdenGermany
| | | | - Hong Jin
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Nadja Sachs
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Hans‐Henning Eckstein
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Anne Dueck
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Institute of Pharmacology and ToxicologyTechnical University of Munich80333MunichGermany
| | - Reinier A. Boon
- Department of PhysiologyAmsterdam Cardiovascular Sciences (ACS)Amsterdam UMCVU University Medical CenterAmsterdam1081 HVThe Netherlands
- Institute of Cardiovascular RegenerationCenter of Molecular MedicineGoethe‐University60323FrankfurtGermany
- German Center for Cardiovascular Research DZHKPartner Site Frankfurt Rhine‐Main10785BerlinGermany
| | - Andreas R. Bausch
- Department of Cellular BiophysicsTechnical University of Munich80333MunichGermany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| |
Collapse
|
6
|
Bodio C, Milesi A, Lonati PA, Chighizola CB, Mauro A, Pradotto LG, Meroni PL, Borghi MO, Raschi E. Fibroblasts and Endothelial Cells in Three-Dimensional Models: A New Tool for Addressing the Pathogenesis of Systemic Sclerosis as a Prototype of Fibrotic Vasculopathies. Int J Mol Sci 2024; 25:2780. [PMID: 38474040 DOI: 10.3390/ijms25052780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Two-dimensional in vitro cultures have represented a milestone in biomedical and pharmacological research. However, they cannot replicate the architecture and interactions of in vivo tissues. Moreover, ethical issues regarding the use of animals have triggered strategies alternative to animal models. The development of three-dimensional (3D) models offers a relevant tool to investigate disease pathogenesis and treatment, modeling in vitro the in vivo environment. We aimed to develop a dynamic 3D in vitro model for culturing human endothelial cells (ECs) and skin fibroblasts, simulating the structure of the tissues mainly affected in systemic sclerosis (SSc), a prototypical autoimmune fibrotic vasculopathy. Dermal fibroblasts and umbilical vein ECs grown in scaffold or hydrogel, respectively, were housed in bioreactors under flow. Fibroblasts formed a tissue-like texture with the deposition of a new extracellular matrix (ECM) and ECs assembled tube-shaped structures with cell polarization. The fine-tuned dynamic modular system allowing 3D fibroblast/EC culture connection represents a valuable model of the in vivo interplay between the main players in fibrotic vasculopathy as SSc. This model can lead to a more accurate study of the disease's pathogenesis, avoiding the use of animals, and to the development of novel therapies, possibly resulting in improved patient management.
Collapse
Affiliation(s)
- Caterina Bodio
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| | - Alessandra Milesi
- Laboratory of Clinical Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 28824 Piancavallo, Italy
| | - Paola Adele Lonati
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| | - Cecilia Beatrice Chighizola
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- U.O.C. Clinica Reumatologica Pediatrica, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Alessandro Mauro
- Laboratory of Clinical Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 28824 Piancavallo, Italy
- Department of Neuroscience, University of Turin, 10124 Turin, Italy
| | - Luca Guglielmo Pradotto
- Laboratory of Clinical Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 28824 Piancavallo, Italy
- Department of Neuroscience, University of Turin, 10124 Turin, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| | - Maria Orietta Borghi
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Elena Raschi
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, 20095 Cusano Milanino, Italy
| |
Collapse
|
7
|
Wittig F, Koch F, Pannenberg L, Bekeschus S, Ramer R, Hinz B. β-Caryophyllene Inhibits Endothelial Tube Formation by Modulating the Secretome of Hypoxic Lung Cancer Cells-Possible Role of VEGF Downregulation. Int J Mol Sci 2024; 25:810. [PMID: 38255884 PMCID: PMC10815222 DOI: 10.3390/ijms25020810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
β-Caryophyllene (BCP), a bicyclic sesquiterpene that is a component of the essential oils of various spice and food plants, has been described as a selective CB2 cannabinoid receptor agonist. In the present study, the effect of BCP on angiogenesis was investigated. It was found that conditioned media (CM) from BCP-treated hypoxic A549 lung cancer cells exhibited a concentration-dependent inhibitory effect on human umbilical vein endothelial cell (HUVEC) tube formation induced by CM from vehicle-treated hypoxic A549 cells. There was an associated concentration-dependent decrease in the proangiogenic factor vascular endothelial growth factor (VEGF) in the CM, with both BCP inhibitory effects (tube formation, VEGF secretion) being CB2 receptor-dependent. A reduction of the transcription factor hypoxia-inducible factor 1α (HIF-1α) was furthermore detected. The antiangiogenic and VEGF-lowering properties of BCP were confirmed when CM from another lung cancer cell line, H358, were tested. When directly exposed to HUVECs, BCP showed no significant effect on tube formation, but at 10 µM, impaired VEGF receptor 2 (VEGFR2) phosphorylation triggered by recombinant VEGF in a CB2 receptor-independent manner. In summary, BCP has a dual antiangiogenic effect on HUVECs, manifested in the inhibition of tube formation through modulation of the tumor cell secretome and additionally in the inhibition of VEGF-induced VEGFR2 activation. Because the CB2 agonist has no psychoactive properties, BCP should continue to be evaluated preclinically for further antitumor effects.
Collapse
Affiliation(s)
- Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.)
| | - Florian Koch
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.)
| | - Liza Pannenberg
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.)
| |
Collapse
|
8
|
Lee J, Jang J, Cha SR, Lee SB, Hong SH, Bae HS, Lee YJ, Yang SR. Recombinant Human Bone Morphogenetic Protein-2 Priming of Mesenchymal Stem Cells Ameliorate Acute Lung Injury by Inducing Regulatory T Cells. Immune Netw 2023; 23:e48. [PMID: 38188599 PMCID: PMC10767548 DOI: 10.4110/in.2023.23.e48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) possess immunoregulatory properties and their regulatory functions represent a potential therapy for acute lung injury (ALI). However, uncertainties remain with respect to defining MSCs-derived immunomodulatory pathways. Therefore, this study aimed to investigate the mechanism underlying the enhanced effect of human recombinant bone morphogenic protein-2 (rhBMP-2) primed ES-MSCs (MSCBMP2) in promoting Tregs in ALI mice. MSC were preconditioned with 100 ng/ml rhBMP-2 for 24 h, and then administrated to mice by intravenous injection after intratracheal injection of 1 mg/kg LPS. Treating MSCs with rhBMP-2 significantly increased cellular proliferation and migration, and cytokines array reveled that cytokines release by MSCBMP2 were associated with migration and growth. MSCBMP2 ameliorated LPS induced lung injury and reduced myeloperoxidase activity and permeability in mice exposed to LPS. Levels of inducible nitric oxide synthase were decreased while levels of total glutathione and superoxide dismutase activity were further increased via inhibition of phosphorylated STAT1 in ALI mice treated with MSCBMP2. MSCBMP2 treatment increased the protein level of IDO1, indicating an increase in Treg cells, and Foxp3+CD25+ Treg of CD4+ cells were further increased in ALI mice treated with MSCBMP2. In co-culture assays with MSCs and RAW264.7 cells, the protein level of IDO1 was further induced in MSCBMP2. Additionally, cytokine release of IL-10 was enhanced while both IL-6 and TNF-α were further inhibited. In conclusion, these findings suggest that MSCBMP2 has therapeutic potential to reduce massive inflammation of respiratory diseases by promoting Treg cells.
Collapse
Affiliation(s)
- Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Se Bi Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Han-Sol Bae
- Cellular Therapeutics Team, Daewoong Pharmaceutical, Yongin 17028, Korea
| | - Young Jin Lee
- Cellular Therapeutics Team, Daewoong Pharmaceutical, Yongin 17028, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
9
|
Kim SM, Yoo JY, Hong YH, Lee J, Kim JH, Lee JR. The effect of growth hormone on ovarian function recovery in a mouse model of ovarian insufficiency. Front Endocrinol (Lausanne) 2023; 14:1184977. [PMID: 37854196 PMCID: PMC10579899 DOI: 10.3389/fendo.2023.1184977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
Objectives To evaluate the effects and mechanisms of action of growth hormone (GH) in the recovery of ovarian function in ovarian insufficiency induced by cyclophosphamide (CP) in a mouse model. Materials and methods After inducing ovarian insufficiency by administering 400 mg/kg of CP intraperitoneally to 6-week-old ICR mice, the mice were divided into four groups (control, CP, 1 mg/kg GH, and 2 mg/kg GH) with 10 mice in each group. GH was administered a week later for 7 days. Five mice from each group were sacrificed the next day, and their ovaries were collected for histological examination. The remaining mice were superovulated for in vitro fertilization (IVF). The terminal deoxynucleotidyl transferase dUTP-nick end labeling assay was performed to detect apoptosis. Masson's trichrome staining was used to analyze the degree of fibrosis. To quantify angiogenesis, CD31 immunohistochemistry was performed. Angiogenesis-related gene expression profiles were assessed using quantitative reverse transcription polymerase chain reaction. Results CP induced the loss of non-growing (primordial and primary) follicles while GH significantly protected primordial follicles and increased follicular quality. The CP group showed a decrease in fertilization and blastocyst formation rates in IVF. In contrast, the GH treatment group showed dose-dependent enhanced IVF outcomes. Furthermore, GH treatment decreased apoptosis and stromal fibrosis and increased angiogenesis. Many genes involved in angiogenesis, especially Leptin (Lep), platelet endothelial cell adhesion molecule 1 (Pecam-1), and angiogenin (Ang) were up-regulated in the GH treatment groups. Conclusion GH treatment may promote the recovery of ovarian function in ovarian insufficiency induced by the administration of CP via decreasing apoptosis and stromal fibrosis and upregulating Lep, Pecam-1, and Ang genes.
Collapse
Affiliation(s)
- Su Mi Kim
- Department of Obstetrics and Gynecology, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jung Young Yoo
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Yeon Hee Hong
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
10
|
Investigation of SAMD1 ablation in mice. Sci Rep 2023; 13:3000. [PMID: 36810619 PMCID: PMC9944271 DOI: 10.1038/s41598-023-29779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
SAM domain-containing protein 1 (SAMD1) has been implicated in atherosclerosis, as well as in chromatin and transcriptional regulation, suggesting a versatile and complex biological function. However, its role at an organismal level is currently unknown. Here, we generated SAMD1-/- and SAMD1+/- mice to explore the role of SAMD1 during mouse embryogenesis. Homozygous loss of SAMD1 was embryonic lethal, with no living animals seen after embryonic day 18.5. At embryonic day 14.5, organs were degrading and/or incompletely developed, and no functional blood vessels were observed, suggesting failed blood vessel maturation. Sparse red blood cells were scattered and pooled, primarily near the embryo surface. Some embryos had malformed heads and brains at embryonic day 15.5. In vitro, SAMD1 absence impaired neuronal differentiation processes. Heterozygous SAMD1 knockout mice underwent normal embryogenesis and were born alive. Postnatal genotyping showed a reduced ability of these mice to thrive, possibly due to altered steroidogenesis. In summary, the characterization of SAMD1 knockout mice suggests a critical role of SAMD1 during developmental processes in multiple organs and tissues.
Collapse
|
11
|
Watanabe A, Kamata M, Shimizu T, Uchida H, Sakurai E, Suzuki S, Nakajima H, Niimura Y, Ito M, Egawa S, Nagata M, Fukaya S, Hayashi K, Fukuyasu A, Tanaka T, Ishikawa T, Tada Y. Serum levels of angiogenesis-related factors in patients with psoriasis. J Dermatol 2023; 50:222-228. [PMID: 36120723 DOI: 10.1111/1346-8138.16588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023]
Abstract
Psoriasis is characterized by increased dermal vascularity, indicating that aberrant angiogenesis is associated with the pathogenesis of psoriasis. Data on angiogenesis-related factors in psoriasis patients are limited. We explored serum levels of angiogenesis-related factors in patients with psoriasis, and investigated their association with clinical severity and laboratory data. Psoriasis patients visiting our hospital from April 2013 to April 2018 and healthy controls were included in this study. Serum levels of angiopoietin-1, fibroblast growth factor (FGF)-basic, epidermal growth factor (EGF), platelet endothelial cell adhesion molecule (PECAM)-1, placental growth factor, and vascular endothelial growth factor (VEGF) were measured by LEGENDplex. Serum samples obtained from 10 healthy controls, 18 patients with psoriasis vulgaris (PsV), 24 patients with psoriatic arthritis (PsA), and 13 patients with generalized pustular psoriasis (GPP) were analyzed. The serum angiopoietin-1 level was elevated in the PsV, PsA, and GPP patients. GPP patients had a higher serum VEGF level than healthy controls. In contrast, serum levels of EGF and PECAM-1 were lower in the PsV, PsA, and GPP patients than in healthy controls. The serum FGF-basic level was lower in the PsA and GPP patients than in healthy controls. Serum levels of FGF-basic in PsA and GPP patients, PECAM-1 in PsA patients, and VEGF in GPP patients became closer to the respective levels in healthy controls after systemic therapy. The serum FGF-basic level was positively correlated with the psoriasis area and severity index and the number of circulating eosinophils in GPP patients. The serum VEGF level was correlated positively with the serum C-reactive protein (CRP) level and erythrocyte sedimentation rate, and negatively with the serum albumin level in GPP patients. In conclusion, our exploratory study revealed that psoriasis affects serum levels of certain angiogenesis-related factors. Some of these factors could be biomarkers of treatment outcomes, clinical severity, and systemic inflammation.
Collapse
Affiliation(s)
- Ayu Watanabe
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masahiro Kamata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Teruo Shimizu
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hideaki Uchida
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Emi Sakurai
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shoya Suzuki
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hideyuki Nakajima
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiko Niimura
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Ito
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shota Egawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Mayumi Nagata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Saki Fukaya
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kotaro Hayashi
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsuko Fukuyasu
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takamitsu Tanaka
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takeko Ishikawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Vergara IA, Aivazian K, Carlino MS, Guminski AD, Maher NG, Shannon KF, Ch'ng S, Saw RPM, Long GV, Wilmott JS, Scolyer RA. Genomic Profiling of Metastatic Basal cell Carcinoma Reveals Candidate Drivers of Disease and Therapeutic Targets. Mod Pathol 2023; 36:100099. [PMID: 36788083 DOI: 10.1016/j.modpat.2023.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Basal cell carcinomas (BCCs) are human beings' most common malignant tumors. Most are easily managed by surgery or topical therapies, and metastasis is rare. Although BCCs can become locally advanced, metastatic BCCs are very uncommon and may be biologically distinct. We assessed the clinicopathologic characteristics of 17 patients with metastatic BCC and pursued whole-exome sequencing of tumor and germline DNA from 8 patients. Genomic profiling revealed aberrant activation of Hedgehog signaling and alterations in GLI transcriptional regulators and Notch and Hippo signaling. Matched local recurrences of primary BCCs and metastases from 3 patients provided evidence of a clonal origin in all cases. Mutations associated with YAP inhibition were found exclusively in 2 hematogenously-spread lung metastases, and metastatic BCCs were enriched for mutations in the YAP/TAZ-binding domain of TEAD genes. Accordingly, YAP/TAZ nuclear localization was associated with metastatic types and Hippo mutations, suggesting an enhanced oncogenic role in hematogenously-spread metastases. Mutations in RET, HGF, and phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (AKT) signaling were enriched compared with a cohort of low clinical-risk BCCs. Our results implicate Hippo and PI3K/AKT dysregulation in metastatic progression of BCCs, making these potential therapeutic targets in metastatic disease. The common clonal origin of matched recurrent and metastatic BCCs suggests that molecular profiling can assist in determining the nature/origin of poorly differentiated metastatic tumors of uncertain type. Genes and pathways enriched for mutations in this cohort are candidate drivers of metastasis and can be used to identify patients at high risk of metastasis who may benefit from aggressive local treatment and careful clinical follow-up.
Collapse
Affiliation(s)
- Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karina Aivazian
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Department of Medicine, Blacktown Hospital, Blacktown, New South Wales, Australia; Department of Medicine, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Alexander D Guminski
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Nigel G Maher
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sydney Ch'ng
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Ganguly A, Swaminathan G, Garcia-Marques F, Regmi S, Yarani R, Primavera R, Chetty S, Bermudez A, Pitteri SJ, Thakor AS. Integrated transcriptome-proteome analyses of human stem cells reveal source-dependent differences in their regenerative signature. Stem Cell Reports 2023; 18:190-204. [PMID: 36493779 PMCID: PMC9860079 DOI: 10.1016/j.stemcr.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are gaining increasing prominence as an effective regenerative cellular therapy. However, ensuring consistent and reliable effects across clinical populations has proved to be challenging. In part, this can be attributed to heterogeneity in the intrinsic molecular and regenerative signature of MSCs, which is dependent on their source of origin. The present work uses integrated omics-based profiling, at different functional levels, to compare the anti-inflammatory, immunomodulatory, and angiogenic properties between MSCs from neonatal (umbilical cord MSC [UC-MSC]) and adult (adipose tissue MSC [AD-MSC], and bone marrow MSC [BM-MSC]) sources. Using multi-parametric analyses, we identified that UC-MSCs promote a more robust host innate immune response; in contrast, adult-MSCs appear to facilitate remodeling of the extracellular matrix (ECM) with stronger activation of angiogenic cascades. These data should help facilitate the standardization of source-specific MSCs, such that their regenerative signatures can be confidently used to target specific disease processes.
Collapse
Affiliation(s)
- Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Fernando Garcia-Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
14
|
RNF213 Loss-of-Function Promotes Angiogenesis of Cerebral Microvascular Endothelial Cells in a Cellular State Dependent Manner. Cells 2022; 12:cells12010078. [PMID: 36611871 PMCID: PMC9818782 DOI: 10.3390/cells12010078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Enhanced and aberrant angiogenesis is one of the main features of Moyamoya disease (MMD) pathogenesis. The ring finger protein 213 (RNF213) and the variant p.R4810K have been linked with higher risks of MMD and intracranial arterial occlusion development in east Asian populations. The role of RNF213 in diverse aspects of the angiogenic process, such as proliferation, migration and capillary-like formation, is well-known but has been difficult to model in vitro. To evaluate the effect of the RNF213 MMD-associated gene on the angiogenic activity, we have generated RNF213 knockout in human cerebral microvascular endothelial cells (hCMEC/D3-RNF213-/-) using the CRISPR-Cas9 system. Matrigel-based assay and a tri-dimensional (3D) vascularized model using the self-assembly approach of tissue engineering were used to assess the formation of capillary-like structures. Quite interestingly, this innovative in vitro model of MMD recapitulated, for the first time, disease-associated pathophysiological features such as significant increase in angiogenesis in confluent endothelial cells devoid of RNF213 expression. These cells, grown to confluence, also showed a pro-angiogenic signature, i.e., increased secretion of soluble pro-angiogenic factors, that could be eventually used as biomarkers. Interestingly, we demonstrated that that these MMD-associated phenotypes are dependent of the cellular state, as only noted in confluent cells and not in proliferative RNF213-deficient cells.
Collapse
|
15
|
The Reactive Astrocytes After Surgical Brain Injury Potentiates the Migration, Invasion, and Angiogenesis of C6 Glioma. World Neurosurg 2022; 168:e595-e606. [DOI: 10.1016/j.wneu.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
16
|
Floudas A, Smith CM, Tynan O, Neto N, Krishna V, Wade SM, Hanlon M, Cunningham C, Marzaioli V, Canavan M, Fletcher JM, Mullan RH, Cole S, Hao LY, Monaghan MG, Nagpal S, Veale DJ, Fearon U. Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis. Ann Rheum Dis 2022; 81:1224-1242. [PMID: 35701153 DOI: 10.1136/annrheumdis-2021-221761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Immune and stromal cell communication is central in the pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), however, the nature of these interactions in the synovial pathology of the two pathotypes can differ. Identifying immune-stromal cell crosstalk at the site of inflammation in RA and PsA is challenging. This study creates the first global transcriptomic analysis of the RA and PsA inflamed joint and investigates immune-stromal cell interactions in the pathogenesis of synovial inflammation. METHODS Single cell transcriptomic profiling of 178 000 synovial tissue cells from five patients with PsA and four patients with RA, importantly, without prior sorting of immune and stromal cells. This approach enabled the transcriptomic analysis of the intact synovial tissue and identification of immune and stromal cell interactions. State of the art data integration and annotation techniques identified and characterised 18 stromal and 14 immune cell clusters. RESULTS Global transcriptomic analysis of synovial cell subsets identifies actively proliferating synovial T cells and indicates that due to differential λ and κ immunoglobulin light chain usage, synovial plasma cells are potentially not derived from the local memory B cell pool. Importantly, we report distinct fibroblast and endothelial cell transcriptomes indicating abundant subpopulations in RA and PsA characterised by differential transcription factor usage. Using receptor-ligand interactions and downstream target characterisation, we identify RA-specific synovial T cell-derived transforming growth factor (TGF)-β and macrophage interleukin (IL)-1β synergy in driving the transcriptional profile of FAPα+THY1+ invasive synovial fibroblasts, expanded in RA compared with PsA. In vitro characterisation of patient with RA synovial fibroblasts showed metabolic switch to glycolysis, increased adhesion intercellular adhesion molecules 1 expression and IL-6 secretion in response to combined TGF-β and IL-1β treatment. Disrupting specific immune and stromal cell interactions offers novel opportunities for targeted therapeutic intervention in RA and PsA.
Collapse
Affiliation(s)
- Achilleas Floudas
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Conor M Smith
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Tynan
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Vinod Krishna
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Sarah M Wade
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Megan Hanlon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Clare Cunningham
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Viviana Marzaioli
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ronan H Mullan
- Department of Rheumatology, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Suzanne Cole
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Ling-Yang Hao
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| | - Sunil Nagpal
- Immunology, Janssen Research & Development, Spring House, PA, USA
| | - Douglas J Veale
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Clinical Medicine, Trinity Biomedical Science Institute, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Univeristy College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Serum of Post-COVID-19 Syndrome Patients with or without ME/CFS Differentially Affects Endothelial Cell Function In Vitro. Cells 2022; 11:cells11152376. [PMID: 35954219 PMCID: PMC9367589 DOI: 10.3390/cells11152376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
A proportion of COVID-19 reconvalescent patients develop post-COVID-19 syndrome (PCS) including a subgroup fulfilling diagnostic criteria of Myalgic encephalomyelitis/Chronic Fatigue Syndrome (PCS/CFS). Recently, endothelial dysfunction (ED) has been demonstrated in these patients, but the mechanisms remain elusive. Therefore, we investigated the effects of patients’ sera on endothelia cells (ECs) in vitro. PCS (n = 17), PCS/CFS (n = 13), and healthy controls (HC, n = 14) were screened for serum anti-endothelial cell autoantibodies (AECAs) and dysregulated cytokines. Serum-treated ECs were analysed for the induction of activation markers and the release of small molecules by flow cytometry. Moreover, the angiogenic potential of sera was measured in a tube formation assay. While only marginal differences between patient groups were observed for serum cytokines, AECA binding to ECs was significantly increased in PCS/CFS patients. Surprisingly, PCS and PCS/CFS sera reduced surface levels of several EC activation markers. PCS sera enhanced the release of molecules associated with vascular remodelling and significantly promoted angiogenesis in vitro compared to the PCS/CFS and HC groups. Additionally, sera from both patient cohorts induced the release of molecules involved in inhibition of nitric oxide-mediated endothelial relaxation. Overall, PCS and PCS/CFS patients′ sera differed in their AECA content and their functional effects on ECs, i.e., secretion profiles and angiogenic potential. We hypothesise a pro-angiogenic effect of PCS sera as a compensatory mechanism to ED which is absent in PCS/CFS patients.
Collapse
|
18
|
Ning L, Shim J, Tomov ML, Liu R, Mehta R, Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, Mahmoudi M, Goldsmith KC, Serpooshan V. A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumor-Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200244. [PMID: 35644929 PMCID: PMC9376856 DOI: 10.1002/advs.202200244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Indexed: 05/04/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in children resulting in substantial morbidity and mortality. A deeper understanding of the NB tumor microenvironment (TME) remains an area of active research but there is a lack of reliable and biomimetic experimental models. This study utilizes a 3D bioprinting approach, in combination with NB spheroids, to create an in vitro vascular model of NB for exploring the tumor function within an endothelialized microenvironment. A gelatin methacryloyl (gelMA) bioink is used to create multi-channel cubic tumor analogues with high printing fidelity and mechanical tunability. Human-derived NB spheroids and human umbilical vein endothelial cells (HUVECs) are incorporated into the biomanufactured gelMA and cocultured under static versus dynamic conditions, demonstrating high levels of survival and growth. Quantification of NB-EC integration and tumor cell migration suggested an increased aggressive behavior of NB when cultured in bioprinted endothelialized models, when cocultured with HUVECs, and also as a result of dynamic culture. This model also allowed for the assessment of metabolic, cytokine, and gene expression profiles of NB spheroids under varying TME conditions. These results establish a high throughput research enabling platform to study the TME-mediated cellular-molecular mechanisms of tumor growth, aggression, and response to therapy.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Jenny Shim
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Rui Liu
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Riya Mehta
- Department of BiologyEmory UniversityAtlantaGA30322USA
| | - Andrew Mingee
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Chunhui Xu
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Kelly C. Goldsmith
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
19
|
Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells Int 2022; 2022:4460041. [PMID: 35615696 PMCID: PMC9126670 DOI: 10.1155/2022/4460041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) dysfunction has been implicated in a variety of pathological conditions. The collection of ECs from patients is typically conducted postmortem or through invasive procedures, such as surgery and interventional procedures, hampering efforts to clarify the role of ECs in disease onset and progression. In contrast, endothelial colony-forming cells (ECFCs), also termed late endothelial progenitor cells, late outgrowth endothelial cells, blood outgrowth endothelial cells, or endothelial outgrowth cells, are obtained in a minimally invasive manner, namely, by the culture of human peripheral blood mononuclear cells in endothelial growth medium. ECFCs resemble mature ECs phenotypically, genetically, and functionally, making them excellent surrogates for ECs. Numerous studies have been performed that examined ECFC function in conditions such as coronary artery disease, diabetes mellitus, hereditary hemorrhagic telangiectasia, congenital bicuspid aortic valve disease, pulmonary arterial hypertension, venous thromboembolic disease, and von Willebrand disease. Here, we provide an updated review of studies using ECFCs that were performed to better understand the pathophysiology of disease. We also discuss the potential of ECFCs as disease biomarkers and the standardized methods to culture, quantify, and evaluate ECFCs and suggest the future direction of research in this field.
Collapse
|
20
|
Adjusted CT Image-Based Radiomic Features Combined with Immune Genomic Expression Achieve Accurate Prognostic Classification and Identification of Therapeutic Targets in Stage III Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14081895. [PMID: 35454802 PMCID: PMC9029745 DOI: 10.3390/cancers14081895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Using the covariate-adjusted tensor classification in the high-dimension (CATCH) model, we integrated adjusted radiomics-based CT images into RNA immune genomic expression data to achieve the accurate classification of recurrent CRC. The correlation between radiomic features and immune gene expression identifies potential therapeutic targets in CRC. We provide individualized cancer therapeutic strategies based on adjusted radiomic features in recurrent stage III CRC. Abstract To evaluate whether adjusted computed tomography (CT) scan image-based radiomics combined with immune genomic expression can achieve accurate stratification of cancer recurrence and identify potential therapeutic targets in stage III colorectal cancer (CRC), this cohort study enrolled 71 patients with postoperative stage III CRC. Based on preoperative CT scans, radiomic features were extracted and selected to build pixel image data using covariate-adjusted tensor classification in the high-dimension (CATCH) model. The differentially expressed RNA genes, as radiomic covariates, were identified by cancer recurrence. Predictive models were built using the pixel image and immune genomic expression factors, and the area under the curve (AUC) and F1 score were used to evaluate their performance. Significantly adjusted radiomic features were selected to predict recurrence. The association between the significantly adjusted radiomic features and immune gene expression was also investigated. Overall, 1037 radiomic features were converted into 33 × 32-pixel image data. Thirty differentially expressed genes were identified. We performed 100 iterations of 3-fold cross-validation to evaluate the performance of the CATCH model, which showed a high sensitivity of 0.66 and an F1 score of 0.69. The area under the curve (AUC) was 0.56. Overall, ten adjusted radiomic features were significantly associated with cancer recurrence in the CATCH model. All of these methods are texture-associated radiomics. Compared with non-adjusted radiomics, 7 out of 10 adjusted radiomic features influenced recurrence-free survival. The adjusted radiomic features were positively associated with PECAM1, PRDM1, AIF1, IL10, ISG20, and TLR8 expression. We provide individualized cancer therapeutic strategies based on adjusted radiomic features in recurrent stage III CRC. Adjusted CT scan image-based radiomics with immune genomic expression covariates using the CATCH model can efficiently predict cancer recurrence. The correlation between adjusted radiomic features and immune genomic expression can provide biological relevance and individualized therapeutic targets.
Collapse
|
21
|
Chen R, Zhai YY, Sun L, Wang Z, Xia X, Yao Q, Kou L. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment. Asian J Pharm Sci 2022; 17:268-283. [PMID: 35582636 PMCID: PMC9091614 DOI: 10.1016/j.ajps.2022.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
|
22
|
Roy V, Ross JP, Pépin R, Cortez Ghio S, Brodeur A, Touzel Deschênes L, Le-Bel G, Phillips DE, Milot G, Dion PA, Guérin S, Germain L, Berthod F, Auger FA, Rouleau GA, Dupré N, Gros-Louis F. Moyamoya Disease Susceptibility Gene RNF213 Regulates Endothelial Barrier Function. Stroke 2022; 53:1263-1275. [PMID: 34991336 DOI: 10.1161/strokeaha.120.032691] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Variants in the ring finger protein 213 (RNF213) gene are known to be associated with increased predisposition to cerebrovascular diseases development. Genomic studies have identified RNF213 as a major risk factor of Moyamoya disease in East Asian descendants. However, little is known about the RNF213 (ring finger protein 213) biological functions or its associated pathogenic mechanisms underlying Moyamoya disease. METHODS To investigate RNF213 loss-of-function effect in endothelial cell, stable RNF213-deficient human cerebral endothelial cells were generated using the CRISPR-Cas9 genome editing technology. RESULTS In vitro assays, using RNF213 knockout brain endothelial cells, showed clear morphological changes and increased blood-brain barrier permeability. Downregulation and delocalization of essential interendothelial junction proteins involved in the blood-brain barrier maintenance, such as PECAM-1 (platelet endothelial cell adhesion molecule-1), was also observed. Brain endothelial RNF213-deficient cells also showed an abnormal potential to transmigration of leukocytes and secreted high amounts of proinflammatory cytokines. CONCLUSIONS Taken together, these results indicate that RNF213 could be a key regulator of cerebral endothelium integrity, whose disruption could be an early pathological mechanism leading to Moyamoya disease. This study also further reinforces the importance of blood-brain barrier integrity in the development of Moyamoya disease and other RNF213-associated diseases.
Collapse
Affiliation(s)
- Vincent Roy
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Jay P Ross
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Rémy Pépin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Sergio Cortez Ghio
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Alyssa Brodeur
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lydia Touzel Deschênes
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Gaëtan Le-Bel
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Daniel E Phillips
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Geneviève Milot
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Patrick A Dion
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Sylvain Guérin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lucie Germain
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Berthod
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François A Auger
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Guy A Rouleau
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Nicolas Dupré
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Gros-Louis
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| |
Collapse
|
23
|
Mehlferber MM, Jeffery ED, Saquing J, Jordan BT, Sheynkman L, Murali M, Genet G, Acharya BR, Hirschi KK, Sheynkman GM. Characterization of protein isoform diversity in human umbilical vein endothelial cells via long-read proteogenomics. RNA Biol 2022; 19:1228-1243. [PMID: 36457147 PMCID: PMC9721438 DOI: 10.1080/15476286.2022.2141938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
Endothelial cells (ECs) comprise the lumenal lining of all blood vessels and are critical for the functioning of the cardiovascular system. Their phenotypes can be modulated by alternative splicing of RNA to produce distinct protein isoforms. To characterize the RNA and protein isoform landscape within ECs, we applied a long read proteogenomics approach to analyse human umbilical vein endothelial cells (HUVECs). Transcripts delineated from PacBio sequencing serve as the basis for a sample-specific protein database used for downstream mass-spectrometry (MS) analysis to infer protein isoform expression. We detected 53,863 transcript isoforms from 10,426 genes, with 22,195 of those transcripts being novel. Furthermore, the predominant isoform in HUVECs does not correspond with the accepted "reference isoform" 25% of the time, with vascular pathway-related genes among this group. We found 2,597 protein isoforms supported through unique peptides, with an additional 2,280 isoforms nominated upon incorporation of long-read transcript evidence. We characterized a novel alternative acceptor for endothelial-related gene CDH5, suggesting potential changes in its associated signalling pathways. Finally, we identified novel protein isoforms arising from a diversity of RNA splicing mechanisms supported by uniquely mapped novel peptides. Our results represent a high-resolution atlas of known and novel isoforms of potential relevance to endothelial phenotypes and function.[Figure: see text].
Collapse
Affiliation(s)
- Madison M. Mehlferber
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Erin D. Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Jamie Saquing
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Ben T. Jordan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Leon Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mayank Murali
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bipul R. Acharya
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, the University of Manchester, UK
| | - Karen K. Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Gloria M. Sheynkman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
24
|
Rosa A, Giese W, Meier K, Alt S, Klaus-Bergmann A, Edgar LT, Bartels E, Collins R, Szymborska A, Coxam B, Bernabeu MO, Gerhardt H. Wasp controls oriented migration of endothelial cells to achieve functional vascular patterning. Development 2021; 149:273808. [PMID: 34931661 PMCID: PMC8918813 DOI: 10.1242/dev.200195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells, as well as the resulting regularity of vessel calibre, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in humans. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations. Summary: Regular diameter of developing veins and arteries in the zebrafish trunk is controlled by differential endothelial cell proliferation and WASp-driven directed cell migration.
Collapse
Affiliation(s)
- André Rosa
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Wolfgang Giese
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Katja Meier
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Silvanus Alt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Alexandra Klaus-Bergmann
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Lowell T Edgar
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Eireen Bartels
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Russell Collins
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Baptiste Coxam
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Miguel O Bernabeu
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.,The Bayes Centre, The University of Edinburgh, Edinburgh, United Kingdom. 5 Berlin Institute of Health (BIH), Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
25
|
Assessing the potential role of copper and cobalt in stimulating angiogenesis for tissue regeneration. PLoS One 2021; 16:e0259125. [PMID: 34705886 PMCID: PMC8550415 DOI: 10.1371/journal.pone.0259125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
The use of copper (Cu2+) and cobalt (Co2+) has been described to stimulate blood vessel formation, a key process for the success of tissue regeneration. However, understanding how different concentrations of these ions affect cellular response is important to design scaffolds for their delivery to better fine tune the angiogenic response. On the one hand, gene expression analysis and the assessment of tubular formation structures with human umbilical vein endothelial cells (HUVEC) revealed that high concentrations (10μM) of Cu2+ in early times and lower concentrations (0.1 and 1μM) at later times (day 7) enhanced angiogenic response. On the other hand, higher concentrations (25μM) of Co2+ during all time course increased the angiogenic gene expression and 0.5, 5 and 25μM enhanced the ability to form tubular structures. To further explore synergistic effects combining both ions, the non-toxic concentrations were used simultaneously, although results showed an increased cell toxicity and no improvement of angiogenic response. These results provide useful information for the design of Cu2+ or Co2+ delivery scaffolds in order to release the appropriate concentration during time course for blood vessel stimulation.
Collapse
|
26
|
Nair RV, Farrukh A, del Campo A. Light-Regulated Angiogenesis via a Phototriggerable VEGF Peptidomimetic. Adv Healthc Mater 2021; 10:e2100488. [PMID: 34110713 PMCID: PMC11468575 DOI: 10.1002/adhm.202100488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/06/2021] [Indexed: 12/31/2022]
Abstract
The application of growth factor based therapies in regenerative medicine is limited by the high cost, fast degradation kinetics, and the multiple functions of these molecules in the cell, which requires regulated delivery to minimize side effects. Here a photoactivatable peptidomimetic of the vascular endothelial growth factor (VEGF) that allows the light-controlled presentation of angiogenic signals to endothelial cells embedded in hydrogel matrices is presented. A photoresponsive analog of the 15-mer peptidomimetic Ac-KLTWQELYQLKYKGI-NH2 (abbreviated P QK) is prepared by introducing a 3-(4,5-dimethoxy-2-nitrophenyl)-2-butyl (DMNPB) photoremovable protecting group at the Trp4 residue. This modification inhibits the angiogenic potential of the peptide temporally. Light exposure of P QK modified hydrogels provide instructive cues to embedded endothelial cells and promote angiogenesis at the illuminated sites of the 3D culture, with the possibility of spatial control. P QK modified photoresponsive biomaterials offer an attractive approach for the dosed delivery and spatial control of pro-angiogenic factors to support regulated vascular growth by just using light as an external trigger.
Collapse
Affiliation(s)
- Roshna V. Nair
- INM − Leibniz Institute for New MaterialsSaarbrücken66123Germany
| | - Aleeza Farrukh
- INM − Leibniz Institute for New MaterialsSaarbrücken66123Germany
| | - Aránzazu del Campo
- INM − Leibniz Institute for New MaterialsSaarbrücken66123Germany
- Chemistry DepartmentSaarland UniversitySaarbrücken66123Germany
| |
Collapse
|
27
|
Khegay II. Vasopressin Receptors in Blood Vessels and Proliferation of Endotheliocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Wang W, Cao L, Wang X, Fan Y. Radix Paeoniae Rubra Ameliorates Lupus Nephritis in Lupus-Like Symptoms of Mrl Mice by Reducing Intercellular Cell Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1, and Platelet Endothelial Cell Adhesion Molecule-1 Expression. Comb Chem High Throughput Screen 2021; 23:675-683. [PMID: 32416674 DOI: 10.2174/1386207323666200517114802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Vasculitis is the basic pathological change of systemic lupus erythematosus (SLE). Radix Paeoniae Rubra (RPR), a traditional Chinese herb with the function of reducing blood stasis, has anti-inflammatory and immunoregulatory properties. This study explored the effects of RPR on the kidneys of lupus-like symptoms of mrl (MRL/lpr) mice from the perspective of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1). METHODS Eighteen MRL/lpr lupus model mice were randomly divided into three groups, the model control group, prednisone-treated group, and RPR-treated group, and 6 C57BL/ 6 mice were classified as a control group. After the mice had been treated for 12 weeks, the expression of ICAM-1, VCAM-1 and PECAM-1in the kidney was determined by immunohistochemistry and Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS After 12 weeks, there were significant differences in body weight in the model, prednisone and RPR groups compared with the normal group (P <0.05). Pathological observation: Compared with the model group, the proliferation of inflammatory cells infiltrated glomeruli and interstitial cells in prednisone and RPR groups were reduced, and renal pathological damage was reduced. Compared with the model group, urine protein level of prednisone and RPR groups were reduced with no significance (P> 0.05). The mRNA expression levels of ICAM-1 and VCAM-1 were significantly reduced in the prednisone group and RPR group compared with the model group (P <0.05 or P <0.01). Meanwhile, the immunohistochemistry expressions of ICAM-1 and VCAM- 1 expressed in the kidney were significantly reduced in the prednisone group and RPR group (P <0.01 or P <0.05). However, The mRNA expression level and the immunohistochemistry expressions of PECAM-1 expressed in the kidney were reduced in each treatment group (prednisone group and RPR group), but these differences were not significant (P>0.05). CONCLUSIONS ICAM-1, VCAM-1 and PECAM-1 expression in the model group was found to be significantly increased. In addition, RPR could reduce the expression of ICAM-1, VCAM-1 and PECAM-1 in MRL/lpr lupus mice as effectively as prednisone, which may result in the dosage reduction of prednisone, thus decreasing the toxicity and improving the efficacy of prednisone - based treatment of SLE.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Lingyong Cao
- The College of Basical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Yongsheng Fan
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
29
|
Briceño O, Peralta-Prado A, Garrido-Rodríguez D, Romero-Mora K, Chávez-Torres M, de la Barrera CA, Reyes-Terán G, Ávila-Ríos S. Characterization of CD31 expression in CD4+ and CD8+T cell subpopulations in chronic untreated HIV infection. Immunol Lett 2021; 235:22-31. [PMID: 33852965 DOI: 10.1016/j.imlet.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The platelet endothelial cell adhesion molecule-1 (PECAM-1) or CD31 has been involved in regulation of T-cell tolerance, activation, survival and homing in mice cells. However, there is limited knowledge about the expression pattern and role of this molecule in human T cells, particularly in conditions of chronic immune activation. OBJECTIVES We explored CD31 expression in T cell differentiation subsets of individuals with untreated HIV infection and in non-HIV-infected controls. We also assessed phenotypic differences between CD31+ and CD31- subsets in memory and terminally differentiated (TEMRA) CD4+ and CD8 + T cells. METHODS Forty-one individuals with untreated HIV infection and 34 non-HIV-infected controls were included in the study. We compared the expression of CD31 in CD4+ and CD8 + T cells across stages of differentiation in the two study groups by flow cytometry. We also analyzed the expression of CD57 (a marker of senescence), Ki67 (a marker of cycling cells), PD-1 (a marker of exhaustion), and CD38/HLA-DR (a marker of immune activation) on memory and TEMRA CD31+ and CD31- T cells. RESULTS CD31 expression was significantly higher in CD8 + T cells than in CD4 + T cells, measured as frequency, absolute numbers and median fluorescence intensity (MFI), in both study groups (p < 0.0001 in all cases). Intermediate differentiation subsets of CD4+ and CD8 + T cells expressed higher levels of CD31 in the context of HIV infection (p < 0.001 in all cases). CD31 expression frequency decreased with cellular differentiation of CD4+ and CD8 + T cells in both groups, but this decrease was steeper in individuals without HIV infection (CD4+: p < 0.001 and CD8+: p < 0.0001). As expected, memory and TEMRA CD4+ and CD8 + T cells expressed significantly higher levels of CD57, PD-1, Ki67 and CD38/HLA-DR in HIV-infected compared to non-HIV-infected individuals (p < 0.01 in all cases). CD31 expression was associated with lower activation of memory (but not TEMRA) CD4 + T cells in non-HIV-infected persons, an effect not observed in the HIV-infected group. CD31 expression on memory CD8 + T cells of HIV-infected individuals was associated higher levels of PD-1 (p = 0.0019) and CD38/HLADR (p = 0.0345), and higher PD-1 expression on CD8 + TEMRA (p = 0.0024), an effect not observed in non-HIV-infected individuals. CONCLUSION In the context of HIV-associated chronic immune activation, specifically on memory CD8 + T cells, CD31 expression was associated with higher PD-1 and CD38/HLA-DR co-expression, suggesting that CD31 expression may result from an insufficient attempt to contain T cell exhaustion and activation. CD31-targeted therapies may contribute to modulate these cellular responses.
Collapse
Affiliation(s)
- Olivia Briceño
- Instituto Nacional de Enfermedades Respiratorias, Centro de Investigación en Enfermedades Infecciosas, México City, Mexico.
| | - Amy Peralta-Prado
- Instituto Nacional de Enfermedades Respiratorias, Centro de Investigación en Enfermedades Infecciosas, México City, Mexico
| | - Daniela Garrido-Rodríguez
- Instituto Nacional de Enfermedades Respiratorias, Centro de Investigación en Enfermedades Infecciosas, México City, Mexico
| | - Karla Romero-Mora
- Instituto Nacional de Enfermedades Respiratorias, Centro de Investigación en Enfermedades Infecciosas, México City, Mexico
| | - Monserrat Chávez-Torres
- Instituto Nacional de Enfermedades Respiratorias, Centro de Investigación en Enfermedades Infecciosas, México City, Mexico
| | - Claudia-Alvarado de la Barrera
- Instituto Nacional de Enfermedades Respiratorias, Centro de Investigación en Enfermedades Infecciosas, México City, Mexico
| | - Gustavo Reyes-Terán
- Coordinating Commission of the Mexican National Institutes of Health, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- Instituto Nacional de Enfermedades Respiratorias, Centro de Investigación en Enfermedades Infecciosas, México City, Mexico
| |
Collapse
|
30
|
Wesley UV, Sutton IC, Cunningham K, Jaeger JW, Phan AQ, Hatcher JF, Dempsey RJ. Galectin-3 protects against ischemic stroke by promoting neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation. J Cereb Blood Flow Metab 2021; 41:857-873. [PMID: 33736511 PMCID: PMC7983501 DOI: 10.1177/0271678x20931137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-stroke neurological deficits and mortality are often associated with vascular disruption and neuronal apoptosis. Galectin-3 (Gal3) is a potent pro-survival and angiogenic factor. However, little is known about its protective role in the cerebral ischemia/reperfusion (I/R) injury. We have previously shown significant up-regulation of Gal3 in the post-stroke rat brain, and that blocking of Gal3 with neutralizing antibody decreases the cerebral blood vessel density. Our current study demonstrates that intracerebral local delivery of the Gal3 into rat brain at the time of reperfusion exerts neuroprotection. Ischemic lesion volume and neuronal cell death were significantly reduced as compared with the vehicle-treated MCAO rat brains. Gal3 increased vessel density and neuronal survival after I/R in rat brains. Importantly, Gal3-treated groups showed significant improvement in motor and sensory functional recovery. Gal3 increased neuronal cell viability under in vitro oxygen-glucose deprivation conditions in association with increased phosphorylated-Akt, decreased phosphorylated-ERK1/2, and reduced caspase-3 activity. Gene expression analysis showed down regulation of pro-apoptotic and inflammatory genes including Fas-ligand, and upregulation of pro-survival and pro-angiogenic genes including Bcl-2, PECAM, and occludin. These results indicate a key role for Gal3 in neuro-vascular protection and functional recovery following ischemic stroke through modulation of angiogenic and apoptotic pathways.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Ian C Sutton
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | | | - Jacob W Jaeger
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Allan Q Phan
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - James F Hatcher
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
31
|
Bang HJ, Ahn MR. Antiangiogenic effect of pinobanksin on human umbilical vein endothelial cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Shukla RP, Urandur S, Banala VT, Marwaha D, Gautam S, Rai N, Singh N, Tiwari P, Shukla P, Mishra PR. Development of putrescine anchored nano-crystalsomes bearing doxorubicin and oleanolic acid: deciphering their role in inhibiting metastatic breast cancer. Biomater Sci 2021; 9:1779-1794. [PMID: 33443267 DOI: 10.1039/d0bm01033b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Angiogenesis driven tumor initiation and progression calls for a targeted therapy. Moreover, combined chemotherapy supplements the therapy to act on the cause of concern. In this study, we aimed to develop a targeted crystalsomes approach to delineate tumor cells against normal cells. Self-assembled crystalline monodispersed nanosized polyethylene-polyethylene glycol (PE-PEG)-based hollow crystalsomes were modified with pluronylated putrescine (Put-PF) and loaded with doxorubicin (Dox), synergistically in combination with oleanolic acid (OA) to target the glypican-1 (gp-1) receptor on tumor cells. The developed crystalsomes (Put-D + O@NCs) showed increased intracellular accumulation of Dox and OA in a synergistic combination inside the MDA-MB-231 cell lines. The developed crystalsomes marked an enhanced depolarization of the mitochondrial membrane potential and cell cycle arrest leading to apoptosis. Furthermore, the proposed therapy has a greater anti-angiogenesis activity with vascular endothelial growth factor (VEGF) dependent modulation in the proliferation, invasion, migration and tube formation of human endothelial umbilical vein cells (HUVECs) in vitro and in vivo in a BALB/c mouse model. Interestingly, the perseverance of the tumor boundary, inhibiting the expression and activity of the matrix metalloproteinase (MMPs) (>5.2-fold) with suppressed degradation of the extracellular matrix paves the way for significant inhibition of metastases. However, an intravenously administered Put-D + O@NCs showed an improved pharmacokinetic profile and exquisite inhibition of the 4T1 induced tumor with a significantly lower toxicity. In a nutshell, these findings highlight the important role of Put in the gp-1 receptor for specific targeting and synergistic delivery of Dox and OA through crystalsomes as a potential approach for the treatment of metastatic breast cancer using combined chemotherapy.
Collapse
Affiliation(s)
- Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Prashant Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India.
| |
Collapse
|
33
|
Ramadhani AH, Ahkam AH, Suharto AR, Jatmiko YD, Tsuboi H, Rifa'i M. Suppression of hypoxia and inflammatory pathways by Phyllanthus niruri extract inhibits angiogenesis in DMBA-induced breast cancer mice. Res Pharm Sci 2021; 16:217-226. [PMID: 34084208 PMCID: PMC8102930 DOI: 10.4103/1735-5362.310528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/07/2020] [Accepted: 02/20/2021] [Indexed: 11/05/2022] Open
Abstract
Background and purpose: Angiogenesis has been one of the hallmarks of cancer. In recent years, Phyllanthus niruri extract (PNE) was reported to inhibit angiogenesis by decreasing the levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) in breast cancer. However, the experimental results were confirmed in cancer cell lines only, whereas the anti-angiogenic activity in animal models has not been demonstrated. In this study, we tried to examine the anti-angiogenic activity of PNE on BALB/c strain mice models that were induced for breast cancer using the carcinogenic substance 7,12- dimethylbenz[a]anthracene (DMBA). Experimental approach: Experimental animals were divided into five different groups; vehicle, DMBA, PNE 500 mg/kg, PNE 1000 mg/kg; and PNE 2000 mg/kg. Mammary carcinogenesis was induced using a subcutaneous injection of 15 mg/kg of DMBA for 12 weeks. Afterward, oral PNE treatment was given for the following 5 weeks. VEGFA and HIF-1α were observed using immunohistochemistry. Endothelial cell markers CD31, CD146, and CD34 were observed using the fluorescent immunohistochemistry method. The levels of interleukin-6 (IL-6), IL-17, and C-X-C motif chemokine (CXCL12) were measured using flow cytometry. Findings/Results: The survival analysis indicated that PNE increased the survival rate of mice (P = 0.043, log-rank test) at all doses. The PNE treatment decreased the immunoreactive score of angiogenic factors (VEGF and HIF-1α), as well as the endothelial cell markers (CD31, CD146, and CD34). The PNE- treated groups also decreased the levels of inflammatory cytokines (IL-6, IL-17, and CXCL12) at all doses. Conclusion and implications: This finding suggests that PNE may inhibit the progression of angiogenesis in breast cancer mice by targeting the hypoxia and inflammatory pathways.
Collapse
Affiliation(s)
- Abu Hanifah Ramadhani
- Biology Department, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Jl. Veteran Malang 65145, Malang, Indonesia
| | - Ahmad Hafidul Ahkam
- Biology Department, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Jl. Veteran Malang 65145, Malang, Indonesia
| | - Aditya Ragil Suharto
- Department of Natural Resources Management, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bangkok 10140, Thailand
| | - Yoga Dwi Jatmiko
- Biology Department, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Jl. Veteran Malang 65145, Malang, Indonesia
| | - Hideo Tsuboi
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Muhaimin Rifa'i
- Biology Department, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Jl. Veteran Malang 65145, Malang, Indonesia
| |
Collapse
|
34
|
Abdelgawad ME, Desterke C, Uzan G, Naserian S. Single-cell transcriptomic profiling and characterization of endothelial progenitor cells: new approach for finding novel markers. Stem Cell Res Ther 2021; 12:145. [PMID: 33627177 PMCID: PMC7905656 DOI: 10.1186/s13287-021-02185-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) are promising candidates for the cellular therapy of peripheral arterial and cardiovascular diseases. However, hitherto there is no specific marker(s) defining precisely EPCs. Herein, we are proposing a new in silico approach for finding novel EPC markers. Methods We assembled five groups of chosen EPC-related genes/factors using PubMed literature and Gene Ontology databases. This shortened database of EPC factors was fed into publically published transcriptome matrix to compare their expression between endothelial colony-forming cells (ECFCs), HUVECs, and two adult endothelial cell types (ECs) from the skin and adipose tissue. Further, the database was used for functional enrichment on Mouse Phenotype database and protein-protein interaction network analyses. Moreover, we built a digital matrix of healthy donors’ PBMCs (33 thousand single-cell transcriptomes) and analyzed the expression of these EPC factors. Results Transcriptome analyses showed that BMP2, 4, and ephrinB2 were exclusively highly expressed in EPCs; the expression of neuropilin-1 and VEGF-C were significantly higher in EPCs and HUVECs compared with other ECs; Notch 1 was highly expressed in EPCs and skin-ECs; MIR21 was highly expressed in skin-ECs; PECAM-1 was significantly higher in EPCs and adipose ECs. Moreover, functional enrichment of EPC-related genes on Mouse Phenotype and STRING protein database has revealed significant relations between chosen EPC factors and endothelial and vascular functions, development, and morphogenesis, where ephrinB2, BMP2, and BMP4 were highly expressed in EPCs and were connected to abnormal vascular functions. Single-cell RNA-sequencing analyses have revealed that among the EPC-regulated markers in transcriptome analyses, (i) ICAM1 and Endoglin were weekly expressed in the monocyte compartment of the peripheral blood; (ii) CD163 and CD36 were highly expressed in the CD14+ monocyte compartment whereas CSF1R was highly expressed in the CD16+ monocyte compartment, (iii) L-selectin and IL6R were globally expressed in the lymphoid/myeloid compartments, and (iv) interestingly, PLAUR/UPAR and NOTCH2 were highly expressed in both CD14+ and CD16+ monocytic compartments. Conclusions The current study has identified novel EPC markers that could be used for better characterization of EPC subpopulation in adult peripheral blood and subsequent usage of EPCs for various cell therapy and regenerative medicine applications.
Collapse
Affiliation(s)
- Mohamed Essameldin Abdelgawad
- Biochemistry & Molecular Biotechnology Division, Chemistry Department, Faculty of Science; Innovative Cellular Microenvironment Optimization Platform (ICMOP), Helwan University, Cairo, Egypt. .,Inserm UMR-S-MD 1197, Hôpital Paul Brousse - Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,Paris-Saclay University, Villejuif, France.
| | - Christophe Desterke
- Paris-Saclay University, Villejuif, France.,Inserm UMR-S-MD A9, Hôpital Paul Brousse, Villejuif, France
| | - Georges Uzan
- Inserm UMR-S-MD 1197, Hôpital Paul Brousse - Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- Inserm UMR-S-MD 1197, Hôpital Paul Brousse - Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,Paris-Saclay University, Villejuif, France. .,CellMedEx, Saint Maur des Fossés, France.
| |
Collapse
|
35
|
Zhang L, Jin L, Guo J, Bao K, Hu J, Zhang Y, Hou Z, Zhang L. Chronic Intermittent Hypobaric Hypoxia Enhances Bone Fracture Healing. Front Endocrinol (Lausanne) 2021; 11:582670. [PMID: 33664707 PMCID: PMC7921462 DOI: 10.3389/fendo.2020.582670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The effect of chronic intermittent hypobaric hypoxia (CIHH) on bone fracture healing is not elucidated. The present study aimed to investigate the role of CIHH on bone fracture healing and the mechanism. The Sprague-Dawley rats were randomly divided into the CIHH group and control group and monitored for 2, 4, or 8 weeks after femoral fracture surgery. Bone healing efficiency was significantly increased in the CIHH group as evidenced by higher high-density bone volume fractions, higher bone mineral density, higher maximum force, and higher stiffness. Histologically, the CIHH group exhibited superior bone formation, endochondral ossification, and angiogenic ability compared with the control group. The expression of HIF-1α and its downstream signaling proteins VEGF, SDF-1/CXCR4 axis were increased by the CIHH treatment. Moreover, the expression of RUNX2, osterix, and type I collagen in the callus tissues were also up-regulated in the CIHH group. In conclusion, our study demonstrated that CIHH treatment improves fracture healing, increases bone mineral density, and increases bone strength via the activation of HIF-1α and bone production-related genes.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Jin
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jialiang Guo
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai Bao
- Department of Orthopaedic Surgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinglue Hu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
36
|
Mathot F, Rbia N, Thaler R, Dietz AB, van Wijnen AJ, Bishop AT, Shin AY. Gene expression profiles of human adipose-derived mesenchymal stem cells dynamically seeded on clinically available processed nerve allografts and collagen nerve guides. Neural Regen Res 2021; 16:1613-1621. [PMID: 33433492 PMCID: PMC8323683 DOI: 10.4103/1673-5374.303031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It was hypothesized that mesenchymal stem cells (MSCs) could provide necessary trophic factors when seeded onto the surfaces of commonly used nerve graft substitutes. We aimed to determine the gene expression of MSCs when influenced by Avance® Nerve Grafts or NeuraGen® Nerve Guides. Human adipose-derived MSCs were cultured and dynamically seeded onto 30 Avance® Nerve Grafts and 30 NeuraGen® Nerve Guides for 12 hours. At six time points after seeding, quantitative polymerase chain reaction analyses were performed for five samples per group. Neurotrophic [nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), pleiotrophin (PTN), growth associated protein 43 (GAP43) and brain-derived neurotrophic factor (BDNF)], myelination [peripheral myelin protein 22 (PMP22) and myelin protein zero (MPZ)], angiogenic [platelet endothelial cell adhesion molecule 1 (PECAM1/CD31) and vascular endothelial cell growth factor alpha (VEGFA)], extracellular matrix (ECM) [collagen type alpha I (COL1A1), collagen type alpha III (COL3A1), Fibulin 1 (FBLN1) and laminin subunit beta 2 (LAMB2)] and cell surface marker cluster of differentiation 96 (CD96) gene expression was quantified. Unseeded Avance® Nerve Grafts and NeuraGen® Nerve Guides were used to evaluate the baseline gene expression, and unseeded MSCs provided the baseline gene expression of MSCs. The interaction of MSCs with the Avance® Nerve Grafts led to a short-term upregulation of neurotrophic (NGF, GDNF and BDNF), myelination (PMP22 and MPZ) and angiogenic genes (CD31 and VEGFA) and a long-term upregulation of BDNF, VEGFA and COL1A1. The interaction between MSCs and the NeuraGen® Nerve Guide led to short term upregulation of neurotrophic (NGF, GDNF and BDNF) myelination (PMP22 and MPZ), angiogenic (CD31 and VEGFA), ECM (COL1A1) and cell surface (CD96) genes and long-term upregulation of neurotrophic (GDNF and BDNF), angiogenic (CD31 and VEGFA), ECM genes (COL1A1, COL3A1, and FBLN1) and cell surface (CD96) genes. Analysis demonstrated MSCs seeded onto NeuraGen® Nerve Guides expressed significantly higher levels of neurotrophic (PTN), angiogenic (VEGFA) and ECM (COL3A1, FBLN1) genes in the long term period compared to MSCs seeded onto Avance® Nerve Grafts. Overall, the interaction between human MSCs and both nerve graft substitutes resulted in a significant upregulation of the expression of numerous genes important for nerve regeneration over time. The in vitro interaction of MSCs with the NeuraGen® Nerve Guide was more pronounced, particularly in the long term period (> 14 days after seeding). These results suggest that MSC-seeding has potential to be applied in a clinical setting, which needs to be confirmed in future in vitro and in vivo research.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roman Thaler
- Department of Orthopedic Surgery; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Wang X, Yang J, Gao X. Identification of key genes associated with lung adenocarcinoma by bioinformatics analysis. Sci Prog 2021; 104:36850421997276. [PMID: 33661044 PMCID: PMC10454774 DOI: 10.1177/0036850421997276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer, comprising around 40% of all lung cancer. Until now, the pathogenesis of LUAD has not been fully elucidated. In the current study, we comprehensively analyzed the dysregulated genes in lung adenocarcinoma by mining public datasets. Two sets of gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database. The dysregulated genes were identified by using the GEO2R online tool, and analyzed by R packages, Cytoscape software, STRING, and GPEIA online tools. A total of 275 common dysregulated genes were identified in two independent datasets, including 54 common up-regulated and 221 common down-regulated genes in LUAD. Gene Ontology (GO) enrichment analysis showed that these dysregulated genes were significantly enriched in 258 biological processes (BPs), 27 cellular components (CCs), and 21 molecular functions (MFs). Furthermore, protein-protein interaction (PPI) network analysis showed that PECAM1, ENG, KLF4, CDH5, and VWF were key genes. Survival analysis indicated that the low expression of ENG was associated with poor overall survival (OS) of LUAD patients. The low expression of PECAM1 was associated with poor OS and recurrence-free survival of LUAD patients. The cox regression model developed based on age, tumor stage, ENG, PECAM1 could effectively predict 5-year survival of LUAD patients. This study revealed some key genes, BPs, CCs, and MFs involved in LUAD, which would provide new insights into understanding the pathogenesis of LUAD. In addition, ENG and PECAM1 might serve as promising prognostic markers in LUAD.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, Jiangsu, China
| | - Jiaojiao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xueren Gao
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, Jiangsu, China
| |
Collapse
|
38
|
Khurana N, Pulsipher A, Jedrzkiewicz J, Ashby S, Pollard CE, Ghandehari H, Alt JA. Inflammation-driven vascular dysregulation in chronic rhinosinusitis. Int Forum Allergy Rhinol 2020; 11:976-983. [PMID: 33135871 DOI: 10.1002/alr.22723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Altered neovascularity is typically observed in chronic inflammatory diseases with overlapping pathophysiology to that observed in chronic rhinosinusitis (CRS). However, characterization of these inflammatory-induced vascular-mediated changes in CRS is limited. Understanding the underlying vascular changes in CRS will allow for strategic design and development of new drug-delivery technologies that exploit vascular permeability for increased extravasation into the target sinonasal tissues. METHODS Patients with CRS with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP) and non-CRS controls were enrolled in this prospective, observational study. The extent of angiogenesis in tissue was characterized using immunohistochemical and multiplex gene expression analyses. Vascular permeability, interendothelial junction structures, and endothelial barrier morphology were evaluated using transmission electron microscopy. RESULTS Sinonasal vascularity was increased significantly in CRSsNP and CRSwNP (p < 0.05) when compared with controls, as assessed by enumerating the platelet endothelial cell adhesion molecule (PECAM-1)-positive blood vessels. Pro-angiogenic gene expression, including PECAM1 and platelet-activating factor receptor, was elevated significantly in patients with CRSwNP when compared with controls (p < 0.05). The fenestration sizes between endothelial cells (17-280 nm) were larger in CRSwNP compared with CRSsNP (10-33 nm) patients and controls (4-12 nm). Global thinning of the endothelial cell lining was observed in CRS patients but not in controls. CONCLUSION Significant increases in vascularity, the pro-angiogenic gene, and protein expression and blood vessel morphogenesis were observed in CRS patients compared with controls. In addition, fenestration sizes between interendothelial junction structures were larger in CRS patients than in controls, suggesting inflammation-driven vascular dysregulation in CRS pathology.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT.,Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT.,Sinus and Skull Base Surgery Program, Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT
| | | | - Shaelene Ashby
- Sinus and Skull Base Surgery Program, Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT
| | - Chelsea E Pollard
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT.,Sinus and Skull Base Surgery Program, Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT.,Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT.,Sinus and Skull Base Surgery Program, Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT
| | - Jeremiah A Alt
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT.,Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT.,Sinus and Skull Base Surgery Program, Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT
| |
Collapse
|
39
|
Haralambiev L, Neuffer O, Nitsch A, Kross NC, Bekeschus S, Hinz P, Mustea A, Ekkernkamp A, Gümbel D, Stope MB. Inhibition of Angiogenesis by Treatment with Cold Atmospheric Plasma as a Promising Therapeutic Approach in Oncology. Int J Mol Sci 2020; 21:ijms21197098. [PMID: 32993057 PMCID: PMC7582386 DOI: 10.3390/ijms21197098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Cold atmospheric plasma (CAP) is increasingly used in the field of oncology. Many of the mechanisms of action of CAP, such as inhibiting proliferation, DNA breakage, or the destruction of cell membrane integrity, have been investigated in many different types of tumors. In this regard, data are available from both in vivo and in vitro studies. Not only the direct treatment of a tumor but also the influence on its blood supply play a decisive role in the success of the therapy and the patient’s further prognosis. Whether the CAP influences this process is unknown, and the first indications in this regard are addressed in this study. Methods: Two different devices, kINPen and MiniJet, were used as CAP sources. Human endothelial cell line HDMEC were treated directly and indirectly with CAP, and growth kinetics were performed. To indicate apoptotic processes, caspase-3/7 assay and TUNEL assay were used. The influence of CAP on cellular metabolism was examined using the MTT and glucose assay. After CAP exposure, tube formation assay was performed to examine the capillary tube formation abilities of HDMEC and their migration was messured in separate assays. To investigate in a possible mutagenic effect of CAP treatment, a hypoxanthine-guanine-phosphoribosyl-transferase assay with non malignant cell (CCL-93) line was performed. Results: The direct CAP treatment of the HDMEC showed a robust growth-inhibiting effect, but the indirect one did not. The MMT assay showed an apparent reduction in cell metabolism in the first 24 h after CAP treatment, which appeared to normalize 48 h and 72 h after CAP application. These results were also confirmed by the glucose assay. The caspase 3/7 assay and TUNEL assay showed a significant increase in apoptotic processes in the HDMEC after CAP treatment. These results were independent of the CAP device. Both the migration and tube formation of HDMEC were significant inhibited after CAP-treatment. No malignant effects could be demonstrated by the CAP treatment on a non-malignant cell line.
Collapse
Affiliation(s)
- Lyubomir Haralambiev
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; (O.N.); (A.N.); (N.C.K.); (P.H.); (A.E.); (D.G.)
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany
- Correspondence: ; Tel.: +49-3834-8622541
| | - Ole Neuffer
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; (O.N.); (A.N.); (N.C.K.); (P.H.); (A.E.); (D.G.)
| | - Andreas Nitsch
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; (O.N.); (A.N.); (N.C.K.); (P.H.); (A.E.); (D.G.)
| | - Nele C. Kross
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; (O.N.); (A.N.); (N.C.K.); (P.H.); (A.E.); (D.G.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany;
| | - Peter Hinz
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; (O.N.); (A.N.); (N.C.K.); (P.H.); (A.E.); (D.G.)
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.M.); (M.B.S.)
| | - Axel Ekkernkamp
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; (O.N.); (A.N.); (N.C.K.); (P.H.); (A.E.); (D.G.)
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany
| | - Denis Gümbel
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; (O.N.); (A.N.); (N.C.K.); (P.H.); (A.E.); (D.G.)
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.M.); (M.B.S.)
| |
Collapse
|
40
|
Stenhouse C, Hogg CO, Ashworth CJ. Novel relationships between porcine fetal size, sex, and endometrial angiogenesis†. Biol Reprod 2020; 101:112-125. [PMID: 31093645 DOI: 10.1093/biolre/ioz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 11/13/2022] Open
Abstract
It is hypothesized that growth restriction occurs due to inadequate vascularization of the feto-maternal interface. Evidence exists for sexual dimorphism in placental function although associations between fetal sex and the endometrium remain poorly investigated. This study investigated the relationship between porcine fetal size, sex and endometrial angiogenesis at multiple gestational days (GD). Endometrial samples supplying the lightest and closest to mean litter weight (CTMLW), male and female Large White X Landrace conceptuses or fetuses were obtained at GD18, 30, 45, 60, and 90 (n = 5-9 litters/GD). Immunohistochemistry for CD31 revealed a greater number of blood vessels in endometrium supplying females compared to those supplying males at GD45. Endometrial samples supplying the lightest fetuses had fewer blood vessels (GD60) and uterine glands (GD90) compared to those supplying the CTMLW fetuses. Quantitative PCR revealed decreased CD31 (GD60), HPSE and VEGFA (GD90) expression, alongside increased HIF1A (GD45) expression in endometrial samples supplying the lightest compared to the CTMLW fetuses. At GD30, PTGFR, CD31, and VEGFA mRNA expression was increased in samples supplying female fetuses compared to those supplying male fetuses. Intriguingly, decreased expression of ACP5, CD31, HIF1A, and VEGFA mRNAs was observed at GD60 in endometrial samples supplying female fetuses compared to those supplying their male littermates. Endothelial cell branching assays demonstrated impaired endothelial cell branching in response to conditioned media from endometrial samples supplying the lightest and female fetuses compared with the CTMLW and male fetuses, respectively. This study has highlighted that endometrial tissues supplying the lightest and female fetuses have impaired angiogenesis when compared with the CTMLW and female fetuses respectively. Importantly, the relationship between fetal size, sex and endometrial vascularity is dynamic and dependent upon the GD investigated.
Collapse
Affiliation(s)
- Claire Stenhouse
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Charis O Hogg
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| |
Collapse
|
41
|
Stenhouse C, Cortes-Araya Y, Hogg CO, Donadeu FX, Ashworth CJ. Associations between foetal size and ovarian development in the pig. Anim Reprod Sci 2020; 221:106589. [PMID: 32920249 DOI: 10.1016/j.anireprosci.2020.106589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023]
Abstract
It is estimated that intra-uterine growth restricted piglets represent 25 % of the total number of piglets born. Growth restricted female pigs have impaired reproductive performance postnatally. HHowever, when during gestation this phenotype arises is not known. With this study, the aim was to improve the understanding of foetal ovarian development in normal and small foetuses throughout gestation. Female Large White X Landrace foetuses were obtained at gestational day (GD) 45, 60 and 90 (n = 5-6 litters/GD). Histological analysis of GATA4 stained foetal ovaries at GD60 and 90 indicated there were fewer primary follicles (P ≤ 0.05) in the foetuses weighing the least compared to those with a weight similar to the mean for the litter (CTMLW) at GD90. Plasma oestradiol concentrations were less in the foetuses with lesser weights compared with greater weight foetuses at GD90 (P ≤ 0.05). The RNA was extracted from ovaries of the lesser weight and CTMLW foetuses at GD45, 60 and 90 and qPCR was performed to quantify relative abundance of 12 candidate mRNAs for which encoded proteins that modulate ovarian function and development. Gestational changes in relative abundances of CD31, PTGFR, SPP1 and VEGFA mRNA transcripts were observed. Relative abundance of KI67 (P = 0.066) and P53 (P ≤ 0.05) was less in ovaries of the lesser weight compared to CTMLW foetuses at GD60. There was a lesser relative abundance of PTGFR mRNA transcript in ovaries from the foetuses with lesser weight compared to CTMLW foetuses at GD45 and 60 (P ≤ 0.05). These findings indicate that postnatal differences in the reproductive potential of growth restricted females are programmed early in gestation. It is hoped that further investigation will improve the understanding of the relationship between prenatal reproductive development and postnatal reproductive performance.
Collapse
Affiliation(s)
- Claire Stenhouse
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Yennifer Cortes-Araya
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Charis O Hogg
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - F Xavier Donadeu
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
42
|
Jabeen M, Boisgard AS, Danoy A, El Kholti N, Salvi JP, Boulieu R, Fromy B, Verrier B, Lamrayah M. Advanced Characterization of Imiquimod-Induced Psoriasis-Like Mouse Model. Pharmaceutics 2020; 12:pharmaceutics12090789. [PMID: 32825447 PMCID: PMC7558091 DOI: 10.3390/pharmaceutics12090789] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Many autoimmune disorders such as psoriasis lead to the alteration of skin components which generally manifests as unwanted topical symptoms. One of the most widely approved psoriasis-like animal models is the imiquimod (IMQ)-induced mouse model. This representation mimics various aspects of the complex cutaneous pathology and could be appropriate for testing topical treatment options. We perform a thorough characterization of this model by assessing some parameters that are not fully described in the literature, namely a precise description of skin disruption. It was evaluated by transepidermal water loss measurements and analyses of epidermis swelling as a consequence of keratinocyte hyperproliferation. The extent of neo-angiogenesis and hypervascularity in dermis were highlighted by immunostaining. Moreover, we investigated systemic inflammation through cytokines levels, spleen swelling and germinal centers appearance in draining lymph nodes. The severity of all parameters was correlated to IMQ concentration in skin samples. This study outlines new parameters of interest useful to assess this model. We highlight the skin barrier disruption and report a systemic inflammatory reaction occurring at distance both in spleen and lymph nodes. These newly identified biological endpoints could be exploited to investigate the efficacy of therapeutic candidates for psoriasis and more extensively for several other skin inflammatory diseases.
Collapse
Affiliation(s)
- Mehwish Jabeen
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Anne-Sophie Boisgard
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Alix Danoy
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Naima El Kholti
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Jean-Paul Salvi
- UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Université de Lyon, Université Lyon 1, 69373 Lyon CEDEX 08, France; (J.-P.S.); (R.B.)
| | - Roselyne Boulieu
- UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Université de Lyon, Université Lyon 1, 69373 Lyon CEDEX 08, France; (J.-P.S.); (R.B.)
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, 69002 Lyon, France
| | - Bérengère Fromy
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Bernard Verrier
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
| | - Myriam Lamrayah
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, CNRS/Université Claude Bernard Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon CEDEX 07, France; (M.J.); (A.-S.B.); (A.D.); (N.E.K.); (B.F.); (B.V.)
- Correspondence:
| |
Collapse
|
43
|
Seo HJ, Lee S, Kim JE, Jang JH. Behavior of Human Umbilical Vein Endothelial Cells on Titanium Surfaces Functionalized with VE-Cadherin Extracellular 1-4 Domains. Protein Pept Lett 2020; 27:895-903. [PMID: 32310035 DOI: 10.2174/0929866527666200420103016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiogenesis is essential for the optimal functioning of orthopedic medical implants. Protein functionalization of implant surfaces can improve tissue integration through proper vascularization and prevent implant failure in patients lacking sufficient angiogenesis. OBJECTIVE The aim of this study was to evaluate the angiogenic activity of titanium surfaces functionalized with recombinant VE-cadherin extracelluar1-4 (VE-CADEC1-4) protein in human umbilical vein endothelial cells (HUVECs). METHODS After titanium discs were coated with recombinant VE-CADEC1-4 protein at appropriate concentrations, the behavior of HUVECs on the VE-CADEC1-4-functionalized titanium discs were evaluated by cell adhesion assay, proliferation assay, and real-time RT-PCR. RESULTS Recombinant VE-CADEC1-4-functionalized titanium surfaces improved the adhesion of HUVECs by 1.8-fold at the optimal concentration, and the proliferative activity was 1.3-fold higher than the control at 14 days. In addition, when angiogenesis markers were confirmed by real-time RT-PCR, PECAM-1 increased approximately 1.2-fold, TEK approximately 1.4-fold, KDR approximately 1.6-fold, and Tie-1 approximately 2.1-fold compared to the control. CONCLUSION Recombinant VE-CADEC1-4-functionalized titanium surfaces improved cell adhesion, proliferation, and angiogenic differentiation of HUVECs, suggesting that the VE-CADEC1-4-functionalization of titanium surfaces can offer angiogenic surfaces with the potential to improve bone healing in orthopedic applications.
Collapse
Affiliation(s)
- Hye-Jin Seo
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, South Korea
| | - SuJin Lee
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, South Korea
| | - Ji-Eun Kim
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, South Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, South Korea
| |
Collapse
|
44
|
Forghani A, Koduru SV, Chen C, Leberfinger AN, Ravnic DJ, Hayes DJ. Differentiation of Adipose Tissue-Derived CD34+/CD31- Cells into Endothelial Cells In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:101-110. [PMID: 33344757 PMCID: PMC7747864 DOI: 10.1007/s40883-019-00093-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
In this study, CD34+/CD31- progenitor cells were isolated from the stromal vascular fraction (SVF) of adipose tissue using magnetic activated cell sorting. The endothelial differentiation capability of these cells in vitro was evaluated by culturing them in vascular endothelial growth factor (VEGF) induced medium for 14 days. Viability, proliferation, differentiation and tube formation of these cells were evaluated. Cell viability study revealed that both undifferentiated and endothelial differentiated cells remained healthy for 14 days. However, the proliferation rate was higher in undifferentiated cells compared to endothelial differentiated ones. Upregulation of endothelial characteristic genes (Von Willebrand Factor (vWF) and VE Cadherin) was observed in 2D culture. However, PECAM (CD31) was only found to be upregulated after the cells had formed tube-like structures in 3D Matrigel culture. These results indicate that adipose derived CD34+/CD31- cells when cultured in VEGF induced medium, are capable differentiation into endothelial-like lineages. Tube formation of the cells started 3h after seeding the cells on Matrigel and formed more stable and connected network 24 h post seeding in presence of VEGF.
Collapse
Affiliation(s)
- Anoosha Forghani
- Department of Biomedical Engineering, Millennium Science Complex, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Srinivas V Koduru
- Department of Surgery, College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Cong Chen
- Department of Biomedical Engineering, Millennium Science Complex, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ashley N Leberfinger
- Department of Surgery, College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Dino J Ravnic
- Department of Surgery, College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Millennium Science Complex, Pennsylvania State University, University Park, Pennsylvania, USA
- Materials Research Institute, Materials Characterization Lab, Millennium Science Complex, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
45
|
Wang B, Lv X, Li Z, Zhang M, Yao J, Sheng N, Lu M, Wang H, Chen S. Urethra-inspired biomimetic scaffold: A therapeutic strategy to promote angiogenesis for urethral regeneration in a rabbit model. Acta Biomater 2020; 102:247-258. [PMID: 31734410 DOI: 10.1016/j.actbio.2019.11.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
Limited angiogenesis and epithelialization make urethral regeneration using conventional tissue-engineered grafts a great challenge. Consequently, inspired from the native urethra, bacterial cellulose (BC) and bladder acellular matrix (BAM) were combined to design a three dimensional (3D) biomimetic scaffold. The developed BC/BAM scaffold was engineered for accelerating urethral regeneration by enhancing angiogenesis and epithelialization. The BC/BAM scaffold reveals the closest mimic of native urethra in terms of the 3D porous nanofibrous structure and component including collagen, glycosaminoglycans, and intrinsic vascular endothelial growth factor (VEGF). In vitro studies showed that the bioinspired BC/BAM scaffold promoted in vitro angiogenesis by facilitating human umbilical vein endothelial cells (HUVECs) growth, expression of endothelial function related proteins and capillary-like tube formation. Effect of the BC/BAM scaffold on angiogenesis and epithelialization was studied by its implantation in a rabbit urethral defect model for 1 and 3 months. Results demonstrated that the improved blood vessels formation in the urethra-inspired BC/BAM scaffold significantly promoted epithelialization and accelerated urethral regeneration. The urethra-inspired BC/BAM scaffold provides us a new design approach to construct grafts for urethral regeneration. STATEMENT OF SIGNIFICANCE: Findings in urethral regeneration demonstrate that an ideal tissue-engineered urethra should have adequate angiogenesis to support epithelialization for urethral regeneration in vivo. In this study, inspired from the native urethra, a bioinspired bacterial cellulose/bladder acellular matrix (BC/BAM) scaffold was developed to promote angiogenesis and epithelialization. The designed scaffold showed the closest physical structure and component to natural urethra, which is beneficial to angiogenesis and regeneration of urethral epithelium. This is the first time to utilize BC and dissolved BAM to develop biomimetic scaffold in urethral tissue engineering. Our biomimetic strategy on urethra graft design provided enhanced angiogenesis and epithelialization to achieve an accelerated and successful rabbit urethral repair. We believe that our urethra-inspired biomimetic scaffold would provide new insights into the design of urethral tissue engineering grafts.
Collapse
|
46
|
Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage. Nat Commun 2020; 11:42. [PMID: 31896748 PMCID: PMC6940362 DOI: 10.1038/s41467-019-13894-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
DNA damage and metabolic disorders are intimately linked with premature disease onset but the underlying mechanisms remain poorly understood. Here, we show that persistent DNA damage accumulation in tissue-infiltrating macrophages carrying an ERCC1-XPF DNA repair defect (Er1F/−) triggers Golgi dispersal, dilation of endoplasmic reticulum, autophagy and exosome biogenesis leading to the secretion of extracellular vesicles (EVs) in vivo and ex vivo. Macrophage-derived EVs accumulate in Er1F/− animal sera and are secreted in macrophage media after DNA damage. The Er1F/− EV cargo is taken up by recipient cells leading to an increase in insulin-independent glucose transporter levels, enhanced cellular glucose uptake, higher cellular oxygen consumption rate and greater tolerance to glucose challenge in mice. We find that high glucose in EV-targeted cells triggers pro-inflammatory stimuli via mTOR activation. This, in turn, establishes chronic inflammation and tissue pathology in mice with important ramifications for DNA repair-deficient, progeroid syndromes and aging. DNA damage is associated with metabolic disorders, but the mechanism in unclear. Here, the authors show that persistent DNA damage induced by lack of the endonuclease XPF-ERCC1 triggers extracellular vesicle biogenesis in tissue infiltrating macrophages, and that vesicle uptake stimulates glucose uptake in recipient cells, leading to increased inflammation.
Collapse
|
47
|
Comparison of the linking arm effect on the biological performance of a CD31 agonist directly grafted on L605 CoCr alloy by a plasma-based multistep strategy. Biointerphases 2019; 14:051009. [PMID: 31675791 DOI: 10.1116/1.5120902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stents are cardiovascular implants deployed on atherosclerotic arteries that aid in reopening, sustaining, and avoiding their collapse. Nevertheless, postimplantation complications exist, and the risk of the renewal of the plaque subsists. Therefore, enhanced properties are mandatory requirements for clinics. For that purpose, a novel approach allowing the direct-grafting of bioactive molecules on cobalt-chromium devices (L605) has been developed. This original strategy involves the direct plasma functionalization of metallic surfaces with primary amines (-NH2). These groups act as anchor points to covalently graft biomolecules of interest, herein a peptide derived from CD31 (P23) with proendothelialization and antithrombotic properties. However, the biological activity of the grafted peptide could be impacted by its conformation. For this study, glutaric anhydride (GA), a short chain spacer, and polyethylene glycol (PEG) with antifouling properties were used as linking arms (LAs). The covalent grafting of the CD31 agonist on L605 by different LAs (GA-P23 and PEG-P23) was confirmed by XPS and ToF-SIMS analyses. The biological performance of these functionalized surfaces showed that, compared to the electropolished (EP) alloy, grafting the P23 with both LA increases adhesion and proliferation of endothelial cells (ECs) since day 1: EP = 68 ± 10%, GA-P23 = 101 ± 7%, and PEG-P23 = 106 ± 5% of cell viability. Moreover, ECs formed a complete monolayer at the surface, preventing clot formation (hemoglobin-free >80%). The potential of this plasma-based strategy for cardiovascular applications was confirmed by promoting a fast re-endothelialization, by improving the hemocompatibility of the alloy when coupled with the CD31 agonist and by its transfer onto commercial L605 stents, as confirmed by ToF-SIMS.
Collapse
|
48
|
Mathot F, Rbia N, Thaler R, Bishop AT, Van Wijnen AJ, Shin AY. Gene expression profiles of differentiated and undifferentiated adipose derived mesenchymal stem cells dynamically seeded onto a processed nerve allograft. Gene 2019; 724:144151. [PMID: 31626959 DOI: 10.1016/j.gene.2019.144151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Differentiation of mesenchymal stem cells (MSCs) into Schwann-like cells onto processed nerve allografts may support peripheral nerve repair. The purpose of this study was to understand the biological characteristics of undifferentiated and differentiated MSCs before and after seeding onto a processed nerve allograft by comparing gene expression profiles. METHODS MSCs from Lewis rats were cultured in maintenance media or differentiated into Schwann-like cells. Both treatment groups were dynamically seeded onto decellularized nerve allografts derived from Sprague-Dawley rats. Gene expression was quantified by quantitative polymerase chain reaction (qPCR) analysis of representative biomarkers, including neurotrophic (GDNF, PTN, GAP43, PMP22), angiogenic (CD31, VEGF1), extracellular matrix (ECM) (COL1A1, COL3A1, FBLN1, LAMB2) or cell cycle (CAPS3, CCBN2) genes. Gene expression values were statistically evaluated using a 2-factor ANOVA with repeated measures. RESULTS Baseline gene expression of undifferentiated and differentiated MSCs was significantly altered upon interaction with processed nerve allografts. Interaction between processed allografts and undifferentiated MSCs enhanced expression of neurotrophic (NGF, GDNF, PMP22), ECM (FBLN1, LAMB2) and regulatory cell cycle genes (CCNB2) during a 7-day time course. Interactions of differentiated MSCs with nerve allografts enhanced expression of neurotrophic (NGF, GDNF, GAP43), angiogenic (VEGF1), ECM (FBLN1) and regulatory cell cycle genes (CASP3, CCNB2) within one week. CONCLUSIONS Dynamic seeding onto processed nerve allografts modulates temporal gene expression profiles of differentiated and undifferentiated MSCs. These changes in gene expressions may support the reparative functions of MSCs in supporting nerve regeneration in different stages of axonal growth.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roman Thaler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J Van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA.
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
49
|
Li X, Hao F, Hu X, Wang H, Dai B, Wang X, Liang H, Cang M, Liu D. Generation of Tβ4 knock-in Cashmere goat using CRISPR/Cas9. Int J Biol Sci 2019; 15:1743-1754. [PMID: 31360116 PMCID: PMC6643211 DOI: 10.7150/ijbs.34820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The cashmere goat breed is known to provide excellent quality cashmere. Here, we attempted to breed high-yielding cashmere goats by specifically inserting the Tβ4 gene into the goat CCR5 locus and provided an animal model for future research. We successfully obtained Tβ4 knock-in goat without any screening and fluorescent markers using CRISPR/Cas9 technology. A series of experiments were performed to examine physical conditions and characteristics of the Tβ4 knock-in goat. The goat exhibited an increase in cashmere yield by 74.5% without affecting the fineness and quality. Additionally, RNA-seq analysis indicated that Tβ4 may promote hair growth by affecting processes such as vasoconstriction, angiogenesis, and vascular permeability around secondary hair follicles. Together, our study can significantly improve the breeding of cashmere goat and thereby increase economic efficiency.
Collapse
Affiliation(s)
- Xiaocong Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Xiao Hu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Bai Dai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Ming Cang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| |
Collapse
|
50
|
Effects of direct high sodium exposure at endothelial cell migration. Biochem Biophys Res Commun 2019; 514:1257-1263. [PMID: 31113617 DOI: 10.1016/j.bbrc.2019.05.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023]
Abstract
The present study aimed to test the hypothesis that high sodium affects the migratory phenotype of endothelial cells (EC) and investigates mechanisms involved independently of hemodynamic factors. Cell migration was evaluated by Wound-Healing at conditions: High Sodium (HS; 160 mM) and Control (CT; 140 mM). O2- production was evaluated by DHE. NADPH oxidase activity was determined by chemiluminescence assay. Expression of adhesion molecules was analyzed by RT-PCR. Shear Stress was performed using a rhythmic shake. Nitric oxide production was measured by Griess reaction. HS-induced impairment in EC migration while both Candesartan and DPI prevented it. HS increased NADPH oxidase activity, which was blocked by Candesartan. Also, HS increased O2- production that was inhibited by Candesartan. HS decreased adhesion molecules expression via ROS (Integrin Alpha 5, Integrin Beta 1, Integrin Beta 3, VE-Cadherin and PECAM) and via AT1R (PECAM). The nitric oxide production induced by shear stress was decreased after EC exposure to HS while both Candesartan and DPI prevented it. Conclusion: This study demonstrated that HS reduced EC migration by AT1R and ROS derived from NADPH Oxidase and mitochondria. The HS reduction in adhesion molecules expression modulated by ROS and AT1R may help to explain the impairment in migration capacity. Also, HS affected EC functionality by reducing their nitric oxide production in response to shear stress.
Collapse
|