1
|
Tsuji J, Thomson T, Brown C, Ghosh S, Theurkauf WE, Weng Z, Schwartz LM. Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death. Front Genet 2022; 12:775369. [PMID: 35003216 PMCID: PMC8730325 DOI: 10.3389/fgene.2021.775369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, ∼27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5’ uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.
Collapse
Affiliation(s)
- Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Travis Thomson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Christine Brown
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| | - Subhanita Ghosh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Schwartz
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
2
|
Brooks DS, Vishal K, Bawa S, Alder A, Geisbrecht ER. Integration of proteomic and genetic approaches to assess developmental muscle atrophy. J Exp Biol 2021; 224:272703. [PMID: 34647571 DOI: 10.1242/jeb.242698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
Muscle atrophy, or a decline in muscle protein mass, is a significant problem in the aging population and in numerous disease states. Unraveling molecular signals that trigger and promote atrophy may lead to a better understanding of treatment options; however, there is no single cause of atrophy identified to date. To gain insight into this problem, we chose to investigate changes in protein profiles during muscle atrophy in Manduca sexta and Drosophila melanogaster. The use of insect models provides an interesting parallel to probe atrophic mechanisms as these organisms undergo a normal developmental atrophy process during the pupal transition stage. Leveraging the inherent advantages of each model organism, we first defined protein signature changes during M. sexta intersegmental muscle (ISM) atrophy and then used genetic approaches to confirm their functional importance in the D. melanogaster dorsal internal oblique muscles (DIOMs). Our data reveal an upregulation of proteasome and peptidase components and a general downregulation of proteins that regulate actin filament formation. Surprisingly, thick filament proteins that comprise the A-band are increased in abundance, providing support for the ordered destruction of myofibrillar components during developmental atrophy. We also uncovered the actin filament regulator ciboulot (Cib) as a novel regulator of muscle atrophy. These insights provide a framework towards a better understanding of global changes that occur during atrophy and may eventually lead to therapeutic targets.
Collapse
Affiliation(s)
- David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Adrienne Alder
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
3
|
Tsuji J, Thomson T, Chan E, Brown CK, Oppenheimer J, Bigelow C, Dong X, Theurkauf WE, Weng Z, Schwartz LM. High-resolution analysis of differential gene expression during skeletal muscle atrophy and programmed cell death. Physiol Genomics 2020; 52:492-511. [PMID: 32926651 DOI: 10.1152/physiolgenomics.00047.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Skeletal muscles can undergo atrophy and/or programmed cell death (PCD) during development or in response to a wide range of insults, including immobility, cachexia, and spinal cord injury. However, the protracted nature of atrophy and the presence of multiple cell types within the tissue complicate molecular analyses. One model that does not suffer from these limitations is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. Three days before the adult eclosion (emergence) at the end of metamorphosis, the ISMs initiate a nonpathological program of atrophy that results in a 40% loss of mass. The ISMs then generate the eclosion behavior and initiate a nonapoptotic PCD during the next 30 h. We have performed a comprehensive transcriptomics analysis of all mRNAs and microRNAs throughout ISM development to better understand the molecular mechanisms that mediate atrophy and death. Atrophy involves enhanced protein catabolism and reduced expression of the genes involved in respiration, adhesion, and the contractile apparatus. In contrast, PCD involves the induction of numerous proteases, DNA methylases, membrane transporters, ribosomes, and anaerobic metabolism. These changes in gene expression are largely repressed when insects are injected with the insect steroid hormone 20-hydroxyecdysone, which delays death. The expression of the death-associated proteins may be greatly enhanced by reductions in specific microRNAs that function to repress translation. This study not only provides fundamental new insights into basic developmental processes, it may also represent a powerful resource for identifying potential diagnostic markers and molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Elizabeth Chan
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| | - Christine K Brown
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| | | | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts
| | - Xianjun Dong
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
4
|
Ramani Sattiraju S, Jama A, Alshudukhi AA, Edward Townsend N, Reynold Miranda D, Reese RR, Voss AA, Ren H. Loss of membrane integrity drives myofiber death in lipin1-deficient skeletal muscle. Physiol Rep 2020; 8:e14620. [PMID: 33113595 PMCID: PMC7592881 DOI: 10.14814/phy2.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Mutations in lipin1 are suggested to be a common cause of massive rhabdomyolysis episodes in children; however, the molecular mechanisms involved in the regulation of myofiber death caused by the absence of lipin1 are not fully understood. Loss of membrane integrity is considered as an effective inducer of cell death in muscular dystrophy. In this study, we utilized a mouse line with selective homozygous lipin1 deficiency in the skeletal muscle (Lipin1Myf5cKO ) to determine the role of compromised membrane integrity in the myofiber death in lipin1-deficient muscles. We found that Lipin1Myf5cKO muscles had significantly elevated proapoptotic factors (Bax, Bak, and cleaved caspase-9) and necroptotic proteins such as RIPK1, RIPK3, and MLKL compared with WT mice. Moreover, Lipin1Myf5cKO muscle had significantly higher membrane disruptions, as evidenced by increased IgG staining and elevated uptake of Evans Blue Dye (EBD) and increased serum creatine kinase activity in Lipin1Myf5cKO muscle fibers. EBD-positive fibers were strongly colocalized with apoptotic or necroptotic myofibers, suggesting an association between compromised plasma membrane integrity and cell death pathways. We further show that the absence of lipin1 leads to a significant decrease in the absolute and specific muscle force (normalized to muscle mass). Our work indicates that apoptosis and necroptosis are associated with a loss of membrane integrity in Lipin1Myf5cKO muscle and that myofiber death and dysfunction may cause a decrease in contractile force.
Collapse
Affiliation(s)
| | - Abdulrahman Jama
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| | | | | | | | - Rebecca R Reese
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| | - Andrew A. Voss
- Department of Biological SciencesWright State UniversityDaytonOHUSA
| | - Hongmei Ren
- Department of Biochemistry and Molecular BiologyWright State UniversityDaytonOHUSA
| |
Collapse
|
5
|
Schwartz LM. Skeletal Muscles Do Not Undergo Apoptosis During Either Atrophy or Programmed Cell Death-Revisiting the Myonuclear Domain Hypothesis. Front Physiol 2019; 9:1887. [PMID: 30740060 PMCID: PMC6356110 DOI: 10.3389/fphys.2018.01887] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscles are the largest cells in the body and are one of the few syncytial ones. There is a longstanding belief that a given nucleus controls a defined volume of cytoplasm, so when a muscle grows (hypertrophy) or shrinks (atrophy), the number of myonuclei change accordingly. This phenomenon is known as the “myonuclear domain hypothesis.” There is a general agreement that hypertrophy is accompanied by the addition of new nuclei from stem cells to help the muscles meet the enhanced synthetic demands of a larger cell. However, there is a considerable controversy regarding the fate of pre-existing nuclei during atrophy. Many researchers have reported that atrophy is accompanied by the dramatic loss of myonuclei via apoptosis. However, since there are many different non-muscle cell populations that reside within the tissue, these experiments cannot easily distinguish true myonuclei from those of neighboring mononuclear cells. Recently, two independent models, one from rodents and the other from insects, have demonstrated that nuclei are not lost from skeletal muscle fibers when they undergo either atrophy or programmed cell death. These and other data argue against the current interpretation of the myonuclear domain hypothesis and suggest that once a nucleus has been acquired by a muscle fiber it persists.
Collapse
Affiliation(s)
- Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
6
|
Schwartz LM, Brown C, McLaughlin K, Smith W, Bigelow C. The myonuclear domain is not maintained in skeletal muscle during either atrophy or programmed cell death. Am J Physiol Cell Physiol 2016; 311:C607-C615. [PMID: 27558160 DOI: 10.1152/ajpcell.00176.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022]
Abstract
Skeletal muscle mass can increase during hypertrophy or decline dramatically in response to normal or pathological signals that trigger atrophy. Many reports have documented that the number of nuclei within these cells is also plastic. It has been proposed that a yet-to-be-defined regulatory mechanism functions to maintain a relatively stable relationship between the cytoplasmic volume and nuclear number within the cell, a phenomenon known as the "myonuclear domain" hypothesis. While it is accepted that hypertrophy is typically associated with the addition of new nuclei to the muscle fiber from stem cells such as satellite cells, the loss of myonuclei during atrophy has been controversial. The intersegmental muscles from the tobacco hawkmoth Manduca sexta are composed of giant syncytial cells that undergo sequential developmental programs of atrophy and programmed cell death at the end of metamorphosis. Since the intersegmental muscles lack satellite cells or regenerative capacity, the tissue is not "contaminated" by these nonmuscle nuclei. Consequently, we monitored muscle mass, cross-sectional area, nuclear number, and cellular DNA content during atrophy and the early phases of cell death. Despite a ∼75-80% decline in muscle mass and cross-sectional area during the period under investigation, there were no reductions in nuclear number or DNA content, and the myonuclear domain was reduced by ∼85%. These data suggest that the myonuclear domain is not an intrinsic property of skeletal muscle and that nuclei persist through atrophy and programmed cell death.
Collapse
Affiliation(s)
| | - Christine Brown
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Kevin McLaughlin
- Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Wendy Smith
- Department of Biology, Northeastern University, Boston, Massachusetts; and
| | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
7
|
Peron S, Zordan MA, Magnabosco A, Reggiani C, Megighian A. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:173-83. [PMID: 19427393 DOI: 10.1016/j.cbpa.2009.04.626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/16/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
Abstract
The neuromuscular system of Drosophila melanogaster has been studied for many years for its relative simplicity and because of the genetic and molecular versatilities. Three main types of striated muscles are present in this dipteran: fibrillar muscles, tubular muscles and supercontractile muscles. The visceral muscles in adult flies and the body wall segmental muscles in embryos and larvae belong to the group of supercontractile muscles. Larval body wall muscles have been the object of detailed studies as a model for neuromuscular junction function but have received much less attention with respect to their mechanical properties and to the control of contraction. In this review we wish to assess available information on the physiology of the Drosophila larval muscular system. Our aim is to establish whether this system has the requisites to be considered a good model in which to perform a functional characterization of Drosophila genes, with a known muscular expression, as well as Drosophila homologs of human genes, the dysfunction of which, is known to be associated with human hereditary muscle pathologies.
Collapse
Affiliation(s)
- Samantha Peron
- Department of Anatomy and Physiology, University of Padua, Italy
| | | | | | | | | |
Collapse
|
8
|
Myer A, Mason HA, Smith W, Brown C, Schwartz LM. Differential control of cell death and gene expression during two distinct phases of hormonally-regulated muscle death in the tobacco hawkmoth Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:314-320. [PMID: 19135059 DOI: 10.1016/j.jinsphys.2008.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/05/2008] [Accepted: 12/09/2008] [Indexed: 05/27/2023]
Abstract
In larvae of the tobacco hawkmoth Manduca sexta, the intersegmental muscles (ISMs) span eight abdominal segments and represent the major muscle group. Following pupation, the ISMs in the first two and last two segments undergo programmed cell death (PCD), while the remaining four segments persist until the time of adult eclosion, when they too undergo PCD. ISM death at adult eclosion is initiated by a decline in the circulating ecdysteroid titer and requires de novo gene expression. In this study we have investigated the hormonal regulation and the patterns of gene expression that accompany both early and late ISM death. We find that distinct endocrine cues regulate these two periods of muscle death. Even though the middle segments of ISMs are exposed to the same endocrine environment as the adjacent cells that die following pupation, they do not express death-associated transcripts until they are specifically signaled to die following adult eclosion. These data indicate that subsets of homologous muscles appear to make segment-specific decisions to couple their endogenous cell death programs to distinctly different developmental cues. Nevertheless, once cell death is initiated, they utilize many of the same molecular components.
Collapse
Affiliation(s)
- Anita Myer
- Program of Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States
| | | | | | | | | |
Collapse
|
9
|
Abstract
Striated skeletal is subject to nonlethal cycles of atrophy in response to a variety of physiological and pathological stimuli, including: starvation, disuse, denervation and inflammation. These cells can also undergo cell death in response to appropriate developmental signals or specific pathological insults. Most of the insights gained into the control of vertebrate skeletal muscle atrophy and death have resulted from experimental interventions rather than natural processes. In contrast, the intersegmental muscles (ISMs) of moths are giant cells that initiate sequential and distinct programs of atrophy and death at the end of metamorphosis as a normal component of development. This model has provided fundamental information about the control, biochemistry, molecular biology and anatomy of naturally occurring atrophy and death in vivo. The ISMs have provided a good complement to studies in vertebrates and may provide insights into clinically relevant disorders.
Collapse
|
10
|
Dorfmann A, Trimmer BA, Woods WA. A constitutive model for muscle properties in a soft-bodied arthropod. J R Soc Interface 2007; 4:257-69. [PMID: 17251157 PMCID: PMC2359834 DOI: 10.1098/rsif.2006.0163] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we examine the mechanical properties of muscles in a soft-bodied arthropod under both passive and stimulated conditions. In particular, we examine the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, and show that its response is qualitatively similar to the behaviour of particle-reinforced rubber. Both materials are capable of large nonlinear elastic deformations, show a hysteretic behaviour and display stress softening during the first few cycles of repeated loading. The Manduca muscle can therefore be considered as different elastic materials during loading and unloading and is best described using the theory of pseudo-elasticity. We summarize the basic equations for transversely isotropic pseudo-elastic materials, first for general deformations and then for the appropriate uniaxial specialization. The constitutive relation proposed is in good agreement with the experimental data for both the passive and the stimulated conditions.
Collapse
Affiliation(s)
- A Dorfmann
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
11
|
Oliver RH, Albury ANJ, Mousseau TA. Programmed cell death in flight muscle histolysis of the house cricket. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:30-9. [PMID: 17118399 PMCID: PMC1936969 DOI: 10.1016/j.jinsphys.2006.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 09/21/2006] [Accepted: 09/29/2006] [Indexed: 05/12/2023]
Abstract
We have characterized the process of flight muscle histolysis in the female house cricket, Acheta domesticus, through analysis of alterations of tissue wet weight, total protein content, and percent shortening of the dorsal longitudinal flight muscles (DLMs). Our objectives were to (1) define the normal course of histolysis in the cricket, (2) analyze the effects of juvenile hormone (JH) removal and replacement, (3) determine the effects of cycloheximide treatment, and (4) examine patterns of protein expression during histolysis. Our results suggest that flight muscle histolysis in the house cricket is an example of an active, developmentally regulated cell death program induced by an endocrine signal. Initial declines of total protein in DLMs indicated the JH signal that induced histolysis occurred by Day 2 and that histolysis was essentially complete by Day 3. Significant reductions in tissue weight and percent muscle shortening were observed in DLMs from Day 3 crickets. Cervical ligation of Day 1 crickets prevented histolysis but this inhibition could be reversed by continual topical treatments with methoprene (an active JH analog) although ligation of Day 2 crickets did not prevent histolysis. A requirement for active protein expression was demonstrated by analysis of synthesis block by cycloheximide and short-term incorporation of (35)S-methionine. Treatment with cycloheximide prevented histolysis. Autofluorographic imaging of DLM proteins separated by electrophoresis revealed apparent coordinated regulation of protein expression.
Collapse
Affiliation(s)
- Rush H Oliver
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
12
|
Hazelett DJ, Weeks JC. Segment-specific muscle degeneration is triggered directly by a steroid hormone during insect metamorphosis. ACTA ACUST UNITED AC 2005; 62:164-77. [PMID: 15452849 DOI: 10.1002/neu.20077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During metamorphosis of the hawkmoth, Manduca sexta, some larval muscles degenerate while others are respecified for new functions. In larvae, accessory planta retractor muscles (APRMs) are present in abdominal segments 1 to 6 (A1 to A6). APRMs serve as proleg retractors in A3 to A6 and body wall muscles in A1 and A2. At pupation, all APRMs degenerate except those in A2 and A3, which are respecified to circulate hemolymph in pupae. The motoneurons that innervate APRMs, the APRs, likewise undergo segment-specific programmed cell death (PCD), as a direct, cell-autonomous response to the prepupal peak of ecdysteroids. The segment-specific patterns of APR and APRM death differ. The present study tested the hypothesis that APRM death is a direct, cell-autonomous response to the prepupal peak of ecdysteroids. Prevention of the prepupal peak prevented APRM degeneration, and replacement of the peak by infusion of 20-hydroxyecdysone restored the correct segment-specific pattern of APRM degeneration. Surgical denervation of APRMs did not perturb their segment-specific degeneration at pupation, indicating that signals from APRs are not required for the muscles' segment-specific responses to ecdysteroids. The possibility that instructive signals originate from APRMs' epidermal attachment points was tested by treating the epidermis with a juvenile hormone analog to prevent pupal development. This manipulation likewise did not alter APRM fate. We conclude that both the muscles and motoneurons in this motor system respond directly and cell-autonomously to prepupal ecdysteroids to produce a segment-specific pattern of PCD that is matched to the functional requirements of the pupal body.
Collapse
Affiliation(s)
- Dennis J Hazelett
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403-1254, USA
| | | |
Collapse
|
13
|
Abstract
Muscle-fiber loss is a characteristic of many progressive neuromuscular disorders. Over the past decade, identification of a growing number of apoptosis-associated factors and events in pathological skeletal muscle provided increasing evidence that apoptotic cell-death mechanisms account significantly for muscle-fiber atrophy and loss in a wide spectrum of neuromuscular disorders. It became obvious that there is not one specific pathway for muscle fibers to undergo apoptotic degradation. In contrast, certain neuromuscular diseases seem to involve characteristic expression patterns of apoptosis-related factors and pathways. Furthermore, there are some characteristics of muscle-fiber apoptosis that rely on the muscle fiber itself as an extremely specified cell type. Multinucleated muscle fibers with successive muscle-fiber segments controlled by individual nuclei display some specifics different from apoptosis of mononucleated cells. This review focuses on the expression patterns of apoptosis-associated factors in different primary and secondary neuromuscular disorders and gives a synopsis of current knowledge.
Collapse
Affiliation(s)
- Dominique S Tews
- Edinger-Institute, Johann Wolfgang Goethe University Hospital, Deutschordenstrasse 46, D-60528 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Beramendi A, Peron S, Megighian A, Reggiani C, Cantera R. The inhibitorκB-ortholog Cactus is necessary for normal neuromuscular function in Drosophila melanogaster. Neuroscience 2005; 134:397-406. [PMID: 15975723 DOI: 10.1016/j.neuroscience.2005.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/22/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
The Drosophila inhibitor-kappaB ortholog Cactus acts as an inhibitor of the Rel-transcription factors Dorsal and Dif. In blastoderm cells and immune competent cells, Cactus inhibits Dorsal and Dif by preventing their nuclear localization. Cactus, Dorsal and Dif are also expressed in somatic muscles, where Cactus and Dorsal, but not Dif, are enriched at the neuromuscular junction. Mutations in dorsal cause neuromuscular defects and mislocalization of Cactus. Here, we investigated whether mutations in cactus affect the neuromuscular system and subcellular localization of Dorsal and Dif. Using locomotion assays, as well as physiological and immunochemical methods, we found that wild type Cactus is necessary for the normal function of the larval neuromuscular system. The phenotype comprises i) altered bouton numbers and impaired neurotransmitter release in the neuromuscular junctions in the abdominal segments, ii) muscular weakness and iii) poor locomotion performance, probably reflecting a general neuromuscular impairment. Interestingly, in cactus mutants the subcellular localization of Dorsal and Dif in muscle is not affected, whereas cactus protein is not detected in the nucleus. This suggests, together with the similarities between the phenotypes induced by cactus and dorsal mutations, that in larval muscles the function of Cactus might be cooperation to the transcriptional activity of Rel proteins more than their cytoplasmic retention. The similarities with inhibitor-kappaB/nuclear factor kappaB interactions and muscle pathology in mammals point to Drosophila as a suitable experimental system to clarify the complex interactions of these proteins in muscle postembryonic development and activity.
Collapse
Affiliation(s)
- A Beramendi
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Bayline RJ, Dean DM, Booker R. Inhibitors of ubiquitin-dependent proteolysis can delay programmed cell death of adult intersegmental muscles in the mothManduca sexta. Dev Dyn 2005; 233:445-55. [PMID: 15778985 DOI: 10.1002/dvdy.20351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the moth Manduca sexta, intersegmental muscles (ISMs) undergo rapid programmed cell death (PCD) within 48 hr of adult emergence. ISM PCD involves ubiquitin-dependent proteasomal degradation accompanied by the down-regulation of expression of actin genes and the up-regulation of degradative gene expression such as ubiquitin. Hemin chloride and N-acetyl-leu-leu-norleucinal (ALLN), both inhibitors of proteasomal activity, administered before adult emergence delayed PCD for up to 5 days in ISMs maintained from the larval stage, such as the dorsal internal medial muscle in abdominal segment 4 (DIM-A4). ISMs that developed during metamorphosis from respecified larval muscles such as the DIM-A2 were less dramatically affected. The increase in polyubiquitinated proteins and the decrease in actin mRNA expression accompanying maintained ISM PCD were delayed after inhibitor application. No changes were detected in respecified ISMs. These results reveal a regulatory role for proteasomal activity in an early stage of maintained ISM cell death.
Collapse
Affiliation(s)
- Ronald J Bayline
- Department of Biology, Washington and Jefferson College, Washington, Pennsylvania 15301, USA.
| | | | | |
Collapse
|