1
|
Marrannes R. Computer model of unstirred layer and intracellular pH changes. Determinants of unstirred layer pH. J Biol Phys 2013; 39:515-64. [PMID: 23860924 DOI: 10.1007/s10867-013-9309-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/19/2013] [Indexed: 11/25/2022] Open
Abstract
Transmembrane acid-base fluxes affect the intracellular pH and unstirred layer pH around a superfused biological preparation. In this paper the factors influencing the unstirred layer pH and its gradient are studied. An analytical expression of the unstirred layer pH gradient in steady state is derived as a function of simultaneous transmembrane fluxes of (weak) acids and bases with the dehydration reaction of carbonic acid in equilibrium. Also a multicompartment computer model is described consisting of the extracellular bulk compartment, different unstirred layer compartments and the intracellular compartment. With this model also transient changes and the influence of carbonic anhydrase (CA) can be studied. The analytical expression and simulations with the multicompartment model demonstrate that in steady state the unstirred layer pH and its gradient are influenced by the size and type of transmembrane flux of acids and bases, their dissociation constant and diffusion coefficient, the concentration, diffusion coefficient and type of mobile buffers and the activity and location of CA. Similar principles contribute to the amplitude of the unstirred layer pH transients. According to these models an immobile buffer does not influence the steady-state pH, but reduces the amplitude of pH transients especially when these are fast. The unstirred layer pH provides useful information about transmembrane acid-base fluxes. This paper gives more insight how the unstirred layer pH and its transients can be interpreted. Methodological issues are discussed.
Collapse
|
2
|
Carbonic anhydrases CA4 and CA14 both enhance AE3-mediated Cl--HCO3- exchange in hippocampal neurons. J Neurosci 2009; 29:3252-8. [PMID: 19279262 DOI: 10.1523/jneurosci.0036-09.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbonic anhydrase (CA) activity in the brain extracellular space is attributable mainly to isoforms CA4 and CA14. In brain, these enzymes have been studied mostly in the context of buffering activity-dependent extracellular pH transients. Yet evidence from others has suggested that CA4 acts in a complex with anion exchangers (AEs) to facilitate Cl(-)-HCO(3)(-) exchange in cotransfected cells. To investigate whether CA4 or CA14 plays such a role in hippocampal neurons, we studied NH(4)(+)-induced alkalinization of the cytosol, which is mitigated by Cl(-) entry and HCO(3)(-) exit. The NH(4)(+)-induced alkalinization was enhanced when the extracellular CAs were inhibited by the poorly permeant CA blocker, benzolamide, or by inhibitory antibodies specific for either CA4 or CA14. The NH(4)(+)-induced alkalinization was also increased with inhibition of anion exchange by 4,4*-diisothiocyanostilbene-2,2*-disulfonic acid, or by eliminating Cl(-) from the medium. No effect of benzolamide was seen under these conditions, in which no Cl(-)-HCO(3)(-) exchange was possible. Quantitative PCR on RNA from the neuronal cultures indicated that AE3 was the predominant AE isoform. Single-cell PCR also showed that Slc4a3 (AE3) transcripts were abundant in isolated neurons. In hippocampal neurons dissociated from AE3-null mice, the NH(4)(+)-induced alkalinization was much larger than that seen in neurons from wild-type mice, suggesting little or no Cl(-)-HCO(3)(-) exchange in the absence of AE3. Benzolamide had no effect on the NH(4)(+)-induced alkalinization in the AE3 knock-out neurons. Our results indicate that CA4 and CA14 both play important roles in the regulation of intracellular pH in hippocampal neurons, by facilitating AE3-mediated Cl(-)-HCO(3)(-) exchange.
Collapse
|
3
|
Scheibe RJ, Mundhenk K, Becker T, Hallerdei J, Waheed A, Shah GN, Sly WS, Gros G, Wetzel P. Carbonic anhydrases IV and IX: subcellular localization and functional role in mouse skeletal muscle. Am J Physiol Cell Physiol 2008; 294:C402-12. [DOI: 10.1152/ajpcell.00228.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subcellular localization of carbonic anhydrase (CA) IV and CA IX in mouse skeletal muscle fibers has been studied immunohistochemically by confocal laser scanning microscopy. CA IV has been found to be located on the plasma membrane as well as on the sarcoplasmic reticulum (SR) membrane. CA IX is not localized in the plasma membrane but in the region of the t-tubular (TT)/terminal SR membrane. CA IV contributes 20% and CA IX 60% to the total CA activity of SR membrane vesicles isolated from mouse skeletal muscles. Our aim was to examine whether SR CA IV and TT/SR CA IX affect muscle contraction. Isolated fiber bundles of fast-twitch extensor digitorum longus and slow-twitch soleus muscle from mouse were investigated for isometric twitch and tetanic contractions and by a fatigue test. The muscle functions of CA IV knockout (KO) fibers and of CA IX KO fibers do not differ from the function of wild-type (WT) fibers. Muscle function of CA IV/XIV double KO mice unexpectedly shows a decrease in rise and relaxation time and in force of single twitches. In contrast, the CA inhibitor dorzolamide, whether applied to WT or to double KO muscle fibers, leads to a significant increase in rise time and force of twitches. It is concluded that the function of mouse skeletal muscle fibers expressing three membrane-associated CAs, IV, IX, and XIV, is not affected by the lack of one isoform but is possibly affected by the lack of all three CAs, as indicated by the inhibition studies.
Collapse
|
4
|
Abstract
Intracellular pH (pHi) in sheep cardiac Purkinje fibres is controlled by sarcolemmal Na+/H+ and Cl-/HCO3- exchange. At normal pHo (7.4), Na+/H+ exchange mediates an acid efflux whenever pHi falls and Cl-/HCO3- exchange mediates an equivalent acid influx in response to a rise in pHi. Intracellular pH is also influenced by Ca2+i, which can activate force development leading to the anaerobic production of lactic acid. This is evident after an increase in stimulation rate which reversibly reduces both pHi and extracellular surface pH (pHs). Rate-dependent pHi changes are inhibited following inhibition of glycolysis, indicating that they are caused by accumulation of lactic acid. In some cases, the efflux of lactic acid may provide a faster method for recovery of pHi from a metabolic acidosis than that provided by Na+/H+ exchange. Finally, direct pHi measurement in isolated mammalian ventricular myocytes suggests that the intrinsic intracellular buffering power (beta) of ventricular tissue may be considerably lower than previously believed. An accurate knowledge of beta is essential for calculating net membrane fluxes of acid equivalents from changes in pHi.
Collapse
|
5
|
Broch-Lips M, Overgaard K, Praetorius HA, Nielsen OB. Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat skeletal muscles. J Appl Physiol (1985) 2007; 103:494-503. [PMID: 17446415 DOI: 10.1152/japplphysiol.00049.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevated plasma HCO(3)(-) can improve exercise endurance in humans. This effect has been related to attenuation of the work-induced reduction in muscle pH, which is suggested to improve performance via at least two mechanisms: 1) less inhibition of muscle enzymes and 2) reduced opening of muscle K(ATP) channels with less ensuing reduction in excitability. Aiming at determining whether the ergogenic effect of HCO(3)(-) is related to effects on muscles, we examined the effect of elevating extracellular HCO(3)(-) from 25 to 40 mM (pH from 7.4 to 7.6) on fatigue, intracellular pH (pH(i)), and K(+) efflux in isolated rat skeletal muscles contracting isometrically. Fatigue induced by 30-Hz stimulation at 30 and 37 degrees C was similar between soleus muscles incubated in high and normal HCO(3)(-) concentrations. In extensor digitorum longus muscles stimulated at 60 Hz, elevated HCO(3)(-) did not affect fatigue at 30 degrees C. In soleus muscles, 30-Hz stimulation induced a approximately 0.2 unit reduction in pH(i), as determined by using the pH-sensitive probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. This reduction in pH(i) was not affected by elevated HCO(3)(-). Estimation of K(+) efflux using (86)Rb(+) showed that elevated HCO(3)(-) did not affect K(+) efflux at rest or during contractions. Similarly, other modifications of the intra- and extracellular pH had little effect on K(+) efflux during contraction. In conclusion, elevated extracellular HCO(3)(-) had no significant effect on muscle fatigue, pH(i), and K(+) efflux. These findings indicate that alternative mechanisms must be considered for the ergogenic effect of HCO(3)(-) observed in integral exercise studies.
Collapse
|
6
|
Scheibe RJ, Gros G, Parkkila S, Waheed A, Grubb JH, Shah GN, Sly WS, Wetzel P. Expression of membrane-bound carbonic anhydrases IV, IX, and XIV in the mouse heart. J Histochem Cytochem 2006; 54:1379-91. [PMID: 16924128 PMCID: PMC3958124 DOI: 10.1369/jhc.6a7003.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 07/26/2006] [Indexed: 01/27/2023] Open
Abstract
Expression of membrane-bound carbonic anhydrases (CAs) of CA IV, CA IX, CA XII, and CA XIV has been investigated in the mouse heart. Western blots using microsomal membranes of wild-type hearts demonstrate a 39-, 43-, and 54-kDa band representing CA IV, CA IX, and CA XIV, respectively, but CA XII could not be detected. Expression of CA IX in the CA IV/CA XIV knockout animals was further confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Cardiac cells were immunostained using anti-CA/FITC and anti-alpha-actinin/TRITC, as well as anti-CA/FITC and anti-SERCA2/TRITC. Subcellular CA localization was investigated by confocal laser scanning microscopy. CA localization in the sarcolemmal (SL) membrane was examined by double immunostaining using anti-CA/FITC and anti-MCT-1/TRITC. CAs showed a distinct distribution pattern in the sarcoplasmic reticulum (SR) membrane. CA XIV is predominantly localized in the longitudinal SR, whereas CA IX is mainly expressed in the terminal SR/t-tubular region. CA IV is present in both SR regions, whereas CA XII is not found in the SR. In the SL membrane, only CA IV and CA XIV are present. We conclude that CA IV and CA XIV are associated with the SR as well as with the SL membrane, CA IX is located in the terminal SR/t-tubular region, and CA XII is not present in the mouse heart. Therefore, the unique subcellular localization of CA IX and CA XIV in cardiac myocytes suggests different functions of both enzymes in excitation-contraction coupling.
Collapse
Affiliation(s)
- Renate J. Scheibe
- Zentrum Physiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Gerolf Gros
- Zentrum Physiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Seppo Parkkila
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Jeffrey H. Grubb
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Gul N. Shah
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Petra Wetzel
- Zentrum Physiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
7
|
Howarth FC, Qureshi A, Singh J. Effects of acidosis on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin-induced diabetic rats. Mol Cell Biochem 2005; 261:227-33. [PMID: 15362508 DOI: 10.1023/b:mcbi.0000028760.81889.98] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have investigated the effects of acute acidosis on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin (STZ)-induced diabetic rat. Shortening and intracellular Ca2+ were measured in electrically stimulated myocytes superfused with either normal Tyrode solution pH adjusted to either 7.4 (control solution) or 6.4 (acid solution). Experiments were performed at 35-36 degrees C. At 8-12 weeks after treatment, the rats that received STZ had lower body and heart weights compared to controls, and blood glucose was characteristically increased. Contractile defects in myocytes from diabetic rat were characterized by prolonged time to peak shortening. Superfusion of myocytes from control and diabetic rats with acid solution caused a significant reduction in the amplitude of shortening; however, the magnitude of the response was not altered by STZ treatment. Acid solution also caused significant and quantitatively similar reductions in the amplitude of Ca2+ transients in myocytes from control and diabetic rats. Effects of acute acidosis on amplitude of myocyte contraction and Ca2+ transient were not significantly altered by STZ treatment. Altered myofilament sensitivity to Ca2+ and altered mechanisms of sarcoplasmic reticulum Ca2+ transport might partly underlie the acidosis-evoked reduction in amplitude of shortening in myocytes from control and STZ-induced diabetic rat.
Collapse
Affiliation(s)
- Frank Christopher Howarth
- Department of Physiology, Faculty of Medicine, & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | | | | |
Collapse
|
8
|
Decostre V, Gailly P, Debaix H, Colson-Van Schoor M, Cao ML, Gillis JM. Intracellular pH regulation in isolated fast-twitch skeletal muscle from dystrophin-deficient mouse. Neuromuscul Disord 2002; 12:447-56. [PMID: 12031618 DOI: 10.1016/s0960-8966(01)00304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In muscles from anaesthetized dystrophin-deficient mdx mice, exercise results in a stronger acidification and a slower intracellular pH recovery compared to control mice. We examined whether this observation could be attributed to defective H+-carriers in dystrophin-lacking muscles. Immunohistochemistry and Western blots revealed no defect in mdx muscles for the presence of the lactate-/H+co-transporter MCT4 and of the Na+/H+ antiporter NHE1, the main H+-carriers active in fast-twitch skeletal muscle after exercise. Functional tests of the H+-transporters, on isolated muscles submitted to identical flow of superfusion, were performed in conditions meant to lower intracellular pH: repetitive electrical stimulation or NH4Cl pre-pulse. These revealed no defect in intracellular pH recovery in mdx muscles. Therefore, we conclude that impaired intracellular pH regulation in anaesthetized mdx mice is not attributable to a reduced presence or activity of H+-extruders. We propose that CO2 washout might be slowed down in vivo in mdx muscles because of the defective vascular response in contracting muscles from these mice.
Collapse
Affiliation(s)
- V Decostre
- Département de Physiologie, Faculté de Médecine, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Wetzel P, Hasse A, Papadopoulos S, Voipio J, Kaila K, Gros G. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres. J Physiol 2001; 531:743-56. [PMID: 11251055 PMCID: PMC2278498 DOI: 10.1111/j.1469-7793.2001.0743h.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. In skeletal muscle an extracellular sarcolemmal carbonic anhydrase (CA) has been demonstrated. We speculate that this CA accelerates the interstitial CO2/HCO3- buffer system so that H+ ions can be rapidly delivered or buffered in the interstitial fluid. Because > 80 % of the lactate which crosses the sarcolemmal membrane is transported by the H+-lactate cotransporter, we examined the contributions of extracellular and intracellular CA to lactic acid transport, using ion-selective microelectrodes for measurements of intracellular pH (pHi) and fibre surface pH (pHs) in rat extensor digitorum longus (EDL) and soleus fibres. 2. Muscle fibres were exposed to 20 mM sodium lactate in the absence and presence of the CA inhibitors benzolamide (BZ), acetazolamide (AZ), chlorzolamide (CZ) and ethoxzolamide (EZ). The initial slopes (dpHs/dt, dpHi/dt) and the amplitudes (DeltapHs, DeltapHi) of pH changes were quantified. From dpHi/dt, DeltapHi and the total buffer factor (BFtot) the lactate fluxes (mM min-1) and intracellular lactate concentrations ([lactate]i) were estimated. 3. BFtot was obtained as the sum of the non-HCO3- buffer factor (BFnon-HCO3) and the HCO3- buffer factor (BFHCO3). BFnon-HCO3 was 35 +/- 4 mM pH-1 for the EDL (n = 14) and 86 /- 16 mM pH-1 for the soleus (n = 14). 4. In soleus, 10 mM cinnamate inhibited lactate influx by 44 % and efflux by 30 %; in EDL, it inhibited lactate influx by 37 % and efflux by 20 %. Cinnamate decreased [lactate]i, in soleus by 36 % and in EDL by 45 %. In soleus, 1 mM DIDS reduced lactate influx by 18 % and efflux by 16 %. In EDL, DIDS lowered the influx by 27 % but had almost no effect on efflux. DIDS reduced [lactate]i by 20 % in soleus and by 26 % in EDL. 5. BZ (0.01 mM) and AZ (0.1 mM), which inhibit only the extracellular sarcolemmal CA, led to a significant increase in dpHs/dt and pHs by about 40 %-150 % in soleus and EDL. BZ and AZ inhibited the influx and efflux of lactate by 25 %-50 % and reduced [lactate]i by about 40 %. The membrane-permeable CA inhibitors CZ (0.5 mM) and EZ (0.1 mM), which inhibit the extracellular as well as the intracellular CAs, exerted no greater effects than the poorly permeable inhibitors BZ and AZ did. 6. In soleus, 10 mM cinnamate inhibited the lactate influx by 47 %. Addition of 0.01 mM BZ led to a further inhibition by only 10 %. BZ alone reduced the influx by 37 %. 7. BZ (0.01 mM) had no influence on the Km value of the lactate transport, but led to a decrease in maximal transport rate (Vmax). In EDL, BZ reduced Vmax by 50 % and in soleus by about 25 %. 8. We conclude that the extracellular sarcolemmal CA plays an important role in lactic acid transport, while internal CA has no effect, a difference most likely attributable to the high internal vs. low extracellular BF(non-HCO3). The fact that the effects of cinnamate and BZ are not additive indicates that the two inhibitors act at distinct sites on the same transport pathway for lactic acid.
Collapse
Affiliation(s)
- P Wetzel
- Zentrum Physiologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Cell damage of the Langendorff-perfused rat heart in response to a decrease of both [Ca2+]e and [H+]e is described. At pHe = 7.7, lactate dehydrogenase (LDH) release could be induced during perfusion with media of reduced [Ca2+]e (0.1-0.4 mmol/l). Decreasing pHe to normal abolished LDH release. The gap junction channel blocker heptanol (2 mmol/l) also reduced enzyme release, and polyethylene glycol (9% PEG6000) totally prevented cell damage. Elevation of buffer capacity of perfusion media or perfusion flow both increased LDH release. Cell damage could also be aggravated by substituting 10 mmol/l of [Na+]e by foreign cations. At [Ca2+]e = 0.1 mmol/l and pHe = 7.7, [Ca2+]i and [Na+]i of non-lysed cells were markedly increased (in HCO3/CO2 buffered media to about 7.0 micromol/l and 36 mmol/l, respectively; in HEPES-buffered media, to about 5.0 micromol/l and 55 mmol/l; physiological values of [Ca2+]i and [Na+]i are around 0.1 micromol/l and 10 mmol/l, respectively), whereas pHi was not appreciably elevated. In contrast to myocytes in the intact heart, [Ca2+]i of isolated cardiomyocytes under similar conditions was decreased to about 75 nmol/l and LDH release was negligible; pHi of isolated cardiomyocytes, as in intact myocardium, did not change appreciably. The results indicate that Ca2+ overload is produced at lowered [Ca2+]e and [H+]e by an influx of Ca2+ through gap junctional leaks.
Collapse
Affiliation(s)
- F Diederichs
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| |
Collapse
|
11
|
Camilión de Hurtado MC, Alvarez BV, Pérez NG, Cingolani HE. Role of an electrogenic Na(+)-HCO3- cotransport in determining myocardial pHi after an increase in heart rate. Circ Res 1996; 79:698-704. [PMID: 8831493 DOI: 10.1161/01.res.79.4.698] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The contribution of electrogenic Na(+)-HCO3- cotransport to pHi regulation during changes in heart rate was explored in cat papillary muscles loaded with BCECF-AM in bicarbonate-free (HEPES) medium and in CO2/HCO3(-)-buffered medium. Stepwise increments in the frequency of contraction from 15 to 100 bpm induced a reversible increase in the pHi from 7.13 +/- 0.03 to 7.36 +/- 0.03 (P < .05, n = 5) in the presence of CO2/ HCO3- buffer. The same increase in the frequency of stimulation, however, decreased pHi from 7.10 +/- 0.02 to 6.91 +/- 0.06 (P < .05, n = 5), in the absence of bicarbonate. Moreover, in CO2/HCO3(-)-superfused muscles pretreated with SITS (0.1 mmol/L), this effect of increasing the contraction frequency was reversed, and a decrease of pHi from 7.03 +/- 0.04 to 6.88 +/- 0.06 (P < .05, n = 4) was observed when the pacing rate was increased stepwise from 15 to 100 bpm. High [K+]o-induced depolarization of cell membrane alkalinized myocardial cells in the presence of HCO3- ions, whereas acidification was observed as a consequence of hyperpolarization induced by low external [K+]o. Myocardial resting membrane potential became hyperpolarized upon exposure to HCO3(-)-buffered media. This HCO3(-)-induced hyperpolarization was not blocked by the inhibition of Na+,K(+)-ATPase activity by ouabain (0.5 mumol/L) but was prevented by SITS. The results suggested that membrane depolarization during cardiac action potential causes an increase in electrogenic Na(+)-HCO3- cotransport. Such depolarizations occurring as a consequence of increases in heart rate would thus, by means of elevated bicarbonate influxes, substantially increase the myocardial cell's ability to recover from an enhanced proton production.
Collapse
Affiliation(s)
- M C Camilión de Hurtado
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina
| | | | | | | |
Collapse
|
12
|
Pérez NG, Alvarez BV, Camilión de Hurtado MC, Cingolani HE. pHi regulation in myocardium of the spontaneously hypertensive rat. Compensated enhanced activity of the Na(+)-H+ exchanger. Circ Res 1995; 77:1192-200. [PMID: 7586232 DOI: 10.1161/01.res.77.6.1192] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To elucidate the mechanisms controlling pHi in myocardium of the spontaneously hypertensive rat (SHR), experiments were performed in papillary muscles (isometrically contracting at 0.2 Hz) from SHR and age-matched normotensive Wistar-Kyoto (WKY) rats loaded with the pH-sensitive fluorescent probe BCECF-AM. An enhanced activity of the Na(+)-H+ exchanger was detected in the hypertrophic myocardium of SHR. This conclusion was based on the following: (1) The myocardial pHi was more alkaline in SHR (7.23 +/- 0.03) than in WKY rats (7.10 +/- 0.03) (P < .05) in HEPES buffer. (2) SITS (0.1 mmol/L in HEPES buffer) did not alter pHi in the SHR (pHi 7.26 +/- 0.03 and 7.28 +/- 0.03 before and after SITS, respectively). (3) The fall in pHi observed after 20 minutes of Na(+)-H+ exchanger inhibition [5 mumol/L 5-(N-ethyl-N-isopropyl)amiloride (EIPA)] was greater in SHR (-0.16 +/- 0.01) than in WKY rats (-0.09 +/- 0.02, P < 0.05). (4) The velocity of pHi recovery from an intracellular acid load was faster in SHR than in WKY rats (0.068 +/- 0.02 versus 0.014 +/- 0.002 pH units/min at pHi 6.99, P < .05). (5) After EIPA inhibition, the rate of pHi recovery from the same acid load decreased to a similar value in both rat strains (0.0032 +/- 0.002 pH units/min in SHR and 0.0032 +/- 0.002 pH units/min in WKY rats). Under the more physiological HCO3(-)-CO2 buffer, no significant difference in steady state myocardial pHi was detected between rat strains (7.15 +/- 0.03 in SHR and 7.11 +/- 0.05 in WKY rats).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N G Pérez
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina
| | | | | | | |
Collapse
|
13
|
Clarke K, Stewart LC, Neubauer S, Balschi JA, Smith TW, Ingwall JS, Nédélec JF, Humphrey SM, Kléber AG, Springer CS. Extracellular volume and transsarcolemmal proton movement during ischemia and reperfusion: a 31P NMR spectroscopic study of the isovolumic rat heart. NMR IN BIOMEDICINE 1993; 6:278-286. [PMID: 8217528 DOI: 10.1002/nbm.1940060407] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have measured, directly and simultaneously, changes in extracellular volume and intra- and extracellular pH during ischemia in the isolated rat heart using 31P NMR spectroscopy. Hearts were perfused with buffer containing 15 mM sodium phenylphosphonate at pH 7.4. Wash in and wash out experiments showed that phenylphosphonate entered only the extracellular (interstitial, vascular and chamber) space of the heart and had no adverse effects on myocardial energetics, contractile function or coronary flow rate. Hearts were subjected to 28 min of total, global ischemia, during which the phenylphosphonate resonance area in the 31P NMR spectra decreased by 83%, indicating that extracellular fluid had moved rapidly from the heart to the bath surrounding the heart, partly as a result of vascular collapse. A separate, morphological study confirmed that 95% of the vasculature had collapsed by 28 min ischemia. Intra- and extracellular pH were determined from the chemical shifts of the P(i) and the phenylphosphonate resonances, respectively. In the pre-ischemic rat heart, intracellular pH was 7.15 +/- 0.03 and extracellular pH was 7.39 +/- 0.03. By 4 min of ischemia, intra- and extracellular pH were the same and decreased concomitantly throughout the remainder of ischemia to final values of 6.09 +/- 0.19 and 6.16 +/- 0.23, respectively. On reperfusion, the extracellular volume and pH returned to pre-ischemic levels within 1 min, but restoration of intracellular pH took > 2.5 min. Thus, a large volume of extracellular fluid moves out of the rat heart to the surrounding bath and the intra- and extracellular pH become the same during total, global ischemia.
Collapse
Affiliation(s)
- K Clarke
- NMR Laboratory for Physiological Chemistry, Brigham and Women's Hospital, Boston, MA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- L Landow
- Department of Anesthesiology, University of Massachusetts Medical Center, Worcester 01655
| | | |
Collapse
|
15
|
Sonett J, Baker LS, Hsi C, Knox MA, Visner MS, Landow L. Sodium bicarbonate versus Carbicarb in canine myocardial hypercarbic acidosis. J Crit Care 1993; 8:1-11. [PMID: 8343853 DOI: 10.1016/0883-9441(93)90027-i] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The objective of this study was to compare the in vivo effects of sodium bicarbonate (NaHCO3) and Carbicarb infusion on regional contractile performance and acid-base status in the setting of hypercarbic acidosis. Animals (N = 9) were anesthetized and paralyzed using sodium pentothal, halothane, and pancuronium bromide, and mechanically ventilated with an air-O2 mixture so that arterial PO2 was > or = 300 mm Hg. Following beta-adrenergic blockade, alveolar ventilation was gradually reduced over a 50-minute period to increase arterial PCO2 to 60 to 80 mm Hg. Each of the following solutions was then infused in consecutive order directly into the left anterior descending artery coronary artery for 15 minutes: (1) 8.4% NaHCO3 at 2 mL/min; (2) 5% sodium chloride at 2 mL/min, equivalent to NaHCO3 in osmolality; (3) 6.3% Carbicarb at 0.5 mL/min, equivalent to NaHCO3 in buffer capacity; and (4) 6.3% Carbicarb at 2 mL/min, equivalent to NaHCO3 in volume. Regional stroke work analog (ultrasonic dimension transducers), interstitial myocardial pH (Khuri electrode), coronary blood flow (doppler flow probe), and hemodynamic/metabolic variables (heart rate, blood pressure, arterial and coronary venous blood gases) were measured at 1, 5, 10, and 15 minutes during each infusion and 10 minutes after the infusion was discontinued, ie, at 25 minutes. Animals were allowed to recover for 45 minutes between interventions. Values at each time point were compared with baseline for statistical significance. Small reductions in interstitial myocardial pH (P < .05) and stroke work (P > .05) were observed within 1 minute of NaHCO3 administration. Both parameters increased significantly from baseline levels thereafter, ie, interstitial myocardial pH at 5 minutes and stroke work at 15 minutes. Infusion of Carbicarb invariably was associated with an increase (P < .05) in interstitial myocardial pH. Stroke work increased (P < .05) during low-dose Carbicarb administration, but infusion of the higher dose was accompanied by a biphasic response, ie, an increase (P < .05) from 0 to 5 minutes, followed by a gradual decrease that achieved statistical significance 10 minutes after termination of the infusion. End-diastolic length was inversely proportional to changes in stroke work, and coronary blood flow varied directly with changes in coronary venous Pco2. Myocardial O2 consumption decreased (P < .05) during Carbicarb infusion, but changes during NaHCO3 did not reach statistical significance. Our findings lend support to the hypothesis that intramyocardial pH determines myocardial function independent of CO2 production by buffer therapy.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Sonett
- Department of Anesthesiology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | |
Collapse
|
16
|
Frey G, Schlue WR. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system. J Physiol 1993; 462:627-43. [PMID: 8331595 PMCID: PMC1175319 DOI: 10.1113/jphysiol.1993.sp019573] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Neutral-carrier pH-sensitive microelectrodes were used to investigate intracellular pH (pHi) recovery from alkalinization in leech Retzius neurones in Hepes- and in CO2-HCO3(-)-buffered solution. The Retzius neurones were alkaline loaded by the addition and subsequent removal of 16 mM acetate, by changing from 5% CO2-27 mM HCO3- to 2% CO2-11 mM HCO3- or by changing from CO2-HCO3(-)- to Hepes-buffered solution. 2. In Hepes-buffered solution (pH 7.4) the mean pHi was 7.29 +/- 0.11 and the mean membrane potential -44.7 +/- 5.9 mV (mean +/- S.D.; n = 83). 3. The rate of pHi recovery from alkalinization increased with decreasing pH of the bathing medium (pHb). pHi changed about 0.30 pH units for a pHb unit change. 4. A decrease of extracellular buffer concentration (Hepes concentration lowered from 20 to 5 mM) caused an acidification of extracellular and intracellular pH and an acceleration of pHi recovery from alkalinization. 5. A depolarization of the Retzius cell membrane-induced by increasing the K+ concentration of the bathing medium from 4 to 20 mM (delta Em = 16.5 +/- 5.5 mV) or from 4 to 40 mM (delta Em = 24.8 +/- 3.5 mV)--evoked a decrease of pHi and an acceleration of pHi recovery from alkalinization. 6. The H+ current blocker Zn2+ (0.5 mM) inhibited pHi recovery from alkalinization at resting membrane potential as well as during depolarization. The inhibition was more pronounced during depolarization. 7. In Cl(-)-free, CO2-HCO3(-)-buffered solution pHi recovery from an alkaline load by changing from 5% CO2-27 mM HCO3- to 2% CO2-11 mM HCO3- was slowed by 48-71%. The rate of pHi recovery from an alkaline load induced by changing from CO2-HCO3- to Hepes buffer was reduced by 33-56% in Cl(-)-free solution. The removal of external Cl- did not affect pHi recovery in Hepes-buffered solution. 8. The pHi recovery from alkalinization was DIDS-insensitive in CO2-HCO3(-)- as in Hepes-buffered solutions and was not slowed in the absence of external Na+. 9. It is concluded that in Retzius neurones pHi recovery from alkalinization is mediated by a passive voltage-dependent H+ influx along the electrochemical proton gradient. In the presence of CO2-HCO3- buffer a DIDS-insensitive Cl(-)-HCO3- exchanger additionally regulates pHi after an intracellular alkaline load. It cannot be excluded that intracellular processes (e.g. H+ release from organelles, metabolic H+ production) are also involved in pHi recovery from alkalinization.
Collapse
Affiliation(s)
- G Frey
- Institut für Zoologie/Lehrstuhl für Neurobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | |
Collapse
|
17
|
Lagadic-Gossmann D, Buckler KJ, Vaughan-Jones RD. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. J Physiol 1992; 458:361-84. [PMID: 1302269 PMCID: PMC1175160 DOI: 10.1113/jphysiol.1992.sp019422] [Citation(s) in RCA: 194] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. Intracellular pH (pHi) was recorded ratiometrically in isolated guinea-pig ventricular myocytes using the pH-sensitive fluoroprobe, carboxy-SNARF-1 (carboxy-seminaphthorhodafluor). 2. Following an intracellular acid load (10 mM NH4 Cl removal), pHi recovery in HEPES-buffered Tyrode solution was inhibited by 1.5 mM amiloride (Na(+)-H+ antiport blocker). In the presence of amiloride, switching from HEPES buffer to HCO3-/CO2 (pHo of both solutions = 7.4) stimulated a pHi recovery towards more alkaline levels. 3. Amiloride-resistant, HCO(3-)-dependent pHi recovery was inhibited by removal of external Na+ (replaced by N-methyl-D-glucamine), whereas removal of external Cl- (replaced by glucuronate, leading to depletion of internal Cl-), removal of external K+, or decreasing external Ca2+ by approximately tenfold had no inhibitory effect. These results suggest that the amiloride-resistant recovery is due to a Na(+)-HCO3- cotransport into the cell. 4. The stilbene derivative DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid, 500 microM) slowed Na(+)-HCO(3-)-dependent pHi recovery. 5. Intracellular pH increased in Cl(-)-free solution and this increase still occurred in Na(+)-free solution indicating that it is not caused via Na(+)-HCO3- symport and is more likely to be due to Cl- efflux in exchange for HCO3- influx on a sarcolemmal Cl(-)-HCO3- exchanger. The lack of any significant pHi recovery from intracellular acidosis in Na(+)-free solution suggests that this exchanger does not contribute to acid-equivalent extrusion. 6. Possible voltage sensitivity and electrogenicity of the co-transport were examined by using the whole-cell patch clamp technique in combination with SNARF-1 recordings of pHi. Stepping the holding potential from -110 to -40 mV did not affect amiloride-resistant pHi recovery from acidosis. Moreover, following an intracellular acid load, the activation of Na(+)-HCO3- co-influx (by switching from HEPES to HCO3-/CO2 buffer) produced no detectable outward current (outward current would be expected if the coupling of HCO3- with Na+ were > 1.0). 7. Intracellular intrinsic buffering power (beta i) was assessed as a function of pHi (beta i computed from the decrease of pHi following reduction of extracellular NH4 Cl in amiloride-containing solution). beta i in the ventricular myocyte increases roughly linearly with a decrease in pHi according the following equation: beta i = -28(pHi) +222.6. 8. Comparison of acid-equivalent efflux via Na(+)-HCO3- symport and Na(+)-H+ antiport showed that, following an intracellular acidosis, the symport accounts for about 40% of total acid efflux, the other 60% being carried by the antiport.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
18
|
Veith CM, Thalhammer T, Felberbauer FX, Graf J. Relationship of hepatic cholate transport to regulation of intracellular pH and potassium. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:51-61. [PMID: 1730021 DOI: 10.1016/0005-2736(92)90056-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Modulation of hepatic cholate transport by transmembrane pH-gradients and during interferences with the homeostatic regulation of intracellular pH and K+ was studied in the isolated perfused rat liver. Within the concentration range studied uptake into the liver was saturable and appeared to be associated with release of OH- and uptake of K+. Perfusate acidification ineffectually stimulated uptake. Application of NH4Cl caused intracellular alkalinization, release of K+ and stimulation of cholate uptake, withdrawal of NH4Cl resulted in intracellular acidification, regain of K+ and inhibition of cholate uptake. Inhibition of Na+/H(+)-exchange with amiloride reduced basal release of acid equivalents into the perfusate, initiated K(+)-release, and inhibited both, control cholate uptake and its recovery following intracellular acidification. K(+)-free perfusion caused K(+)-release and inhibited cholate uptake. K(+)-readmission resulted in brisk K(+)-uptake and recovery of cholate transport. Both effects were inhibited by amiloride. Interference with cholate transport through modulation of pH homeostasis by diisothiocyanostilbenedisulfonate (DIDS) could not be demonstrated because DIDS affected bile acid transport directly. Biliary bile acid secretion was stimulated by intracellular alkalinization and by activation of K(+)-transport. Uncoupling of the mutual interference between pH-dependent cholate uptake and K(+)-transport by amiloride indicates tertiary active transport of cholate. In this, Na+/K(+)-ATPase provides the transmembrane Na(+)-gradient to sustain Na+/H(+)-exchange which maintains the transmembrane pH-gradient and thus supports cholate uptake. Effects of canalicular bile acid secretion are consistent with a saturable, electrogenic transport.
Collapse
Affiliation(s)
- C M Veith
- Department of General and Experimental Pathology, University of Vienna, Austria
| | | | | | | |
Collapse
|
19
|
Szatkowski M, Schlue WR. Mechanisms of pH recovery from intracellular acid loads in the leech connective glial cell. Glia 1992; 5:193-200. [PMID: 1534066 DOI: 10.1002/glia.440050305] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We used double-barrelled, neutral carrier, pH-sensitive microelectrodes to study the mechanisms by which the intracellular pH (pHi) is regulated in the connective glial cells of the medicinal leech. In HEPES-buffered, nominally CO2/HCO3(-)-free solutions the recovery of pHi from intracellular acidosis is Na(+)-dependent and reduced by at least half in the presence of amiloride, suggesting the action of Na+:H+ exchange. The rate of pHi recovery by this mechanism can be increased by raising the extracellular buffering power or by increasing extracellular pH. The presence of CO2/HCO3(-)-greatly increases the rate of pHi recovery from intracellular acidosis. This CO2/HCO3(-)-stimulated recovery is also dependent on external Na+, largely Cl(-)-independent, inhibited by DIDS, and accompanied by membrane hyperpolarization. This is consistent with it being mediated by the electrogenic cotransport of Na+ and HCO3- into the cells. A Cl(-)-dependent component to Na(+)- and HCO3(-)-dependent regulation is most easily explained by the added presence of a Na(+)-dependent exchange of HCO3- and Cl-.
Collapse
Affiliation(s)
- M Szatkowski
- Institut für Zoologie, Universität Düsseldorf, Germany
| | | |
Collapse
|
20
|
Affiliation(s)
- W R Schlue
- Institut für Zoologie/Neurobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
21
|
Blatter LA, McGuigan JA. Intracellular pH regulation in ferret ventricular muscle. The role of Na-H exchange and the influence of metabolic substrates. Circ Res 1991; 68:150-61. [PMID: 1845852 DOI: 10.1161/01.res.68.1.150] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aspects of pH regulation in ferret ventricular cells have been investigated by using pH- and sodium-selective microelectrodes in bicarbonate-free Tyrode's solution. An acid load was produced by the transient application of NH4Cl (10 or 20 mmol/l). A complete recovery from an acid load was still observed after multiple applications of NH4Cl, but amiloride (0.75 or 1 mmol/l), a blocker of the Na-H exchanger, increased the acidification and inhibited the recovery. Measurements of intracellular sodium concentration showed a transient decrease during the application of NH4Cl and a transient increase above control values during recovery from acidification. This increase was inhibited by amiloride. Intracellular sodium loading (strophanthidin [low calcium-low potassium Tyrode's solution]) did not initially cause an intracellular pH (pHi) change, but the acidification induced by amiloride under those circumstances was larger. Reducing extracellular sodium concentration from 155 to 5 or to 1.5 mmol/l caused an acidification. Changing extracellular pH (pHo) from 6.4 to 8.4 caused an average linear change in pHi in the same direction of 0.085 pHi units/pHo units. The mean intracellular buffering capacity measured with the NH4Cl method and with the proton extrusion mechanism blocked by amiloride was 36 +/- 15 mmol pH-1.l-1 (mean +/- SD), approximately half that of previous estimations. Changing the metabolic substrate from glucose to pyruvate in the superfusing solution caused an acidification of 0.21 pH units. This could be partially blocked by alpha-cyano-4-hydroxycinnamate, a finding consistent with a pyruvate-H+ cotransport and/or a pyruvate-OH- countertransport system being present in ventricular cells. The results of the present study show that ventricular cells can effectively buffer hydrogen ions and that an Na-H exchange system plays a major role in the regulation of pHi.
Collapse
Affiliation(s)
- L A Blatter
- Department of Physiology, University of Berne, Switzerland
| | | |
Collapse
|
22
|
Abstract
The tolerance of the duodenal mucosa to luminal acid was investigated by measuring with a liquid sensor pH microelectrode technique the epithelial surface pH (pHs) and subepithelial tissue pH (pHt) in rat proximal (duodenal bulb, Brunner gland area) and distal duodenum exposed to luminal acid. Under basal conditions, pHs was roughly equal in both parts of the duodenum; proximal duodenum, 7.40 +/- 0.14 (mean +/- SEM) at the villus tip and 7.54 +/- 0.16 at the depth of crypt; distal duodenum, 7.46 +/- 0.19 and 7.55 +/- 0.09, respectively. Yet, exposure of the mucosa to luminal acid (10 mM HCl) provoked a significantly lesser decrease of pHs (0.25 +/- 0.13 vs 0.42 +/- 0.12 pH units) in the proximal duodenum, suggesting that the response of epithelial HCO3 secretion to luminal acid is stronger in that part of the duodenum. Further, the initial acidification of pHs was followed in the proximal duodenum by a secondary alkalinization of pHs, leading to normalization of pHs, which may suggest activation of compensatory protective mechanisms. pHt at the villus tip was likewise roughly equal in both parts of duodenum (7.29 +/- 0.05 vs 7.17 +/- 0.04), but, again, acidification of the luminal perfusate progressively from 10 to 100 mM HCl induced a much earlier and significantly more profound acidification in the distal than in the proximal duodenum. The possible contribution of Brunner glands to the greater mucosal tolerance to acid in the proximal duodenum was assessed by investigating whether stimulation or inhibition of Brunner gland secretion modulates the response of the duodenal mucosa to acid.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
23
|
Vaughan-Jones RD, Wu ML. Extracellular H+ inactivation of Na(+)-H+ exchange in the sheep cardiac Purkinje fibre. J Physiol 1990; 428:441-66. [PMID: 2172524 PMCID: PMC1181656 DOI: 10.1113/jphysiol.1990.sp018221] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. The inhibition of acid extrusion via Na(+)-H+ exchange caused by reducing pHo (extracellular pH) was examined in the sheep cardiac Purkinje fibre. Intracellular pH (pHi) and intracellular Na+ activity (alpha 1 Na) were recorded using ion-selective microelectrodes. Acid extrusion via Na(+)-H+ exchange was estimated from the pHi recovery rate (multiplied by intracellular buffering power, beta) in response to an internal acid load induced by 20 mM-NH4Cl removal (nominally CO2-HCO3-free media). 2. At a given pHi, acid extrusion decreased sigmoidally with decreases of pHo in the range 8.5 to 6.5 (50% inhibition of efflux occurred at a pHo between 7.0 and 7.5). This inhibition was associated with a parallel decrease in Na+ influx as evidenced from a decrease in the rise of alpha i Na measured during acid extrusion, suggesting inhibition of Na(+)-H+ exchange. 3. The background acid-loading rate (estimated by adding 1 mM-amiloride to inhibit Na(+)-H+ exchange and recording the initial rate of fall of pHi) was found to be unaffected in the steady state by changes of pHo. We therefore conclude that the slowing of pHi recovery at low pHo is due to direct inhibition of Na(+)-H+ exchange rather than to an increase of background acid loading. 4. Reducing pHo (constant pHi) inhibited acid efflux by producing a parallel shift of the efflux versus pHi relationship to lower values of pHi, consistent with a decrease in the apparent internal H+ ion affinity (pKi) of the system. 5. Raising pHi (constant pHo) also inhibited acid efflux, but this was associated with a rise in the pHo required for 50% maximal inhibition of acid efflux (pKo), consistent with an increase in apparent affinity for external H ions. Thus reduction of pHo reduces pKi (point 4) while reduction of pHi reduces pKo (point 5). 6. Inhibition by elevated Ho+ was not linearly related to the decrease in chemical driving force for Na(+)-H+ exchange, nor was it related to a reversal of the transmembrane H+ gradient. We found that efflux still occurred when pHo less than pHi. 7. Efflux was not a unique function of the transmembrane H+ ratio (i.e. pHo-pHi). At appropriate values of pHi and pHo, acid efflux could be kept constant despite a four-fold change in the transmembrane H+ ratio. 8. Inhibition by low pHo was a saturating function of Ho+ ions with a Hill coefficient of 1.2.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
24
|
Orchard CH, Kentish JC. Effects of changes of pH on the contractile function of cardiac muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C967-81. [PMID: 2193525 DOI: 10.1152/ajpcell.1990.258.6.c967] [Citation(s) in RCA: 454] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been known for over 100 years that acidosis decreases the contractility of cardiac muscle. However, the mechanisms underlying this decrease are complicated because acidosis affects every step in the excitation-contraction coupling pathway, including both the delivery of Ca2+ to the myofilaments and the response of the myofilaments to Ca2+. Acidosis has diverse effects on Ca2+ delivery. Actions that may diminish Ca2+ delivery include 1) inhibition of the Ca2+ current, 2) reduction of Ca2+ release from the sarcoplasmic reticulum, and 3) shortening of the action potential, when such shortening occurs. Conversely, Ca2+ delivery may be increased by the prolongation of the action potential that is sometimes observed and by the rise of diastolic Ca2+ that occurs during acidosis. This rise, which will increase the uptake and subsequent release of Ca2+ by the sarcoplasmic reticulum, may be due to 1) stimulation of Na+ entry via Na(+)-Ca2+ exchange; 2) direct inhibition of Na(+)-Ca2+ exchange; 3) mitochondrial release of Ca2+; and 4) displacement of Ca2+ from cytoplasmic buffer sites by H+. Acidosis inhibits myofibrillar responsiveness to Ca2+ by decreasing the sensitivity of the contractile proteins to Ca2+, probably by decreasing the binding of Ca2+ to troponin C, and by decreasing maximum force, possibly by a direct action on the cross bridges. Thus the final amount of force developed by heart muscle during acidosis is the complex sum of these changes.
Collapse
Affiliation(s)
- C H Orchard
- Department of Physiology, University of Leeds, United Kingdom
| | | |
Collapse
|
25
|
Vaughan-Jones RD, Wu ML. pH dependence of intrinsic H+ buffering power in the sheep cardiac Purkinje fibre. J Physiol 1990; 425:429-48. [PMID: 2170631 PMCID: PMC1189857 DOI: 10.1113/jphysiol.1990.sp018112] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. Intrinsic, intracellular H+ buffering power (beta) was estimated in the isolated sheep cardiac Purkinje fibre at various values of intracellular pH (pHi) in the range 6.2-7.5 and for various values of extracellular pH (pHo) in the range 6.5-8.5. Buffering power was calculated from the fall of pHi (recorded with an intracellular pH-selective microelectrode) induced by addition and removal of extracellular, permeant weak acids and bases (NH4Cl, trimethylamine chloride, sodium propionate). Experiments were performed under conditions nominally free of CO2-HCO3. 2. beta was estimated firstly following acid loads induced by NH4Cl removal (10-20 mM) under conditions where Na(+)-H+ exchange was operational (i.e. in Na(+)-containing Tyrode solution). At constant pHi, the value of beta appeared to double (from a control level of 39.7 mM) as pHo was increased from 7.5 to 8.5. Notably, raising pHo in this range greatly accelerated pHi recovery from an intracellular acid load, indicating stimulation of acid extrusion. It is likely that this stimulation results in an overestimation of beta because it blunts the intracellular acid load. The apparent elevation of beta at high pHo may therefore be an artifact. 3. Estimates of beta were compared (NH4Cl removal) before and after inhibiting Na(+)-H+ exchange in Na(+)-free solution or with amiloride (1 mM). The acid load was larger and in many (but not all) cases the apparent value of beta decreased after inhibition of acid extrusion. This indicates that, if Na(+)-H+ exchange is operational, it can result in an overestimate of beta. In amiloride, beta was 26.6 +/- 1.4 mM (n = 8) at a mean pHi of 6.84 +/- 0.03. 4. Small stepwise reductions of external NH4Cl (from 40 to 0 mM), in the presence of Na(+)-free solution plus 5 mM-BaCl2 at constant pHo, resulted in small stepwise reductions of pHi (approximately 0.1 units). When these were used to calculate beta, we observed that beta increased roughly linearly as pHi became more acid. For a pHi of 7.2, beta approximately 20 mM. 5. An almost identical relationship between beta and pHi was found when using the method of sodium propionate addition (10-50 mM): amiloride (1 mM) was present and pHi was manipulated to various test levels by changing pHo. This confirms that beta varies inversely with pHi and also that it is independent of pHo. We conclude that the apparent variation of beta with pHo observed earlier was indeed an artifact.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
26
|
Bountra C, Powell T, Vaughan-Jones RD. Comparison of intracellular pH transients in single ventricular myocytes and isolated ventricular muscle of guinea-pig. J Physiol 1990; 424:343-65. [PMID: 2167972 PMCID: PMC1189817 DOI: 10.1113/jphysiol.1990.sp018071] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. Intracellular pH was recorded (double-barrelled pH-selective microelectrodes) in single ventricular myocytes and whole papillary muscles isolated from guinea-pig heart. Both preparations were acid-loaded by various manoeuvres (addition and removal of external NH4Cl or CO2) in order that a comparison could be made of the size and speed of intracellular pH changes and hence of the apparent intracellular buffering power (beta). 2. For the same acid-loading procedure, the size of intracellular pH (pHi) changes was about threefold larger in the isolated myocyte than in whole papillary muscle. The rate of initial acid loading as well as the subsequent rate of pHi recovery (caused by acid extrusion from the cell) were also threefold faster in the myocyte. Estimates of apparent intrinsic (non-CO2) buffering power, based upon the size of pHi changes during acid loading, were 15-20 mmol l-1 for the myocyte and about 70 mmol l-1 for whole muscle. This latter value is similar to previous estimates of beta in heart. 3. When acid extrusion was reduced by applying a high dose of amiloride (1 mmol l-1), then the size of the pHi change during acid loading increased greatly in papillary muscle but changed much less in the myocyte; beta now appeared to be about 30 mmol l-1 in whole muscle but remained essentially unchanged in the myocyte. 4. We conclude that previous values for beta in cardiac muscle have been greatly overestimated because of the presence of sarcolemmal acid extrusion. Paradoxically, this error in estimating beta is far less evident in the isolated myocyte. We suggest that this is because a much more rapid acid loading is achievable in the myocyte so that acid loading will be blunted less by acid extrusion than in whole muscle. We present a simple mathematical model that demonstrates this phenomenon. We conclude that beta in ventricular muscle is likely to resemble that measured in the isolated myocyte, i.e. 15-20 mmol l-1. 5. Slow acid loading in whole ventricular muscle will also affect the kinetics of pHi changes. The model indicates that the rate of pHi recovery from an acid load in papillary muscle does not reflect the pHi dependence of acid extrusion. Instead, it is heavily influenced by the slow rate of acid loading. This emphasises that great care should be taken when interpreting the kinetics of pHi changes in multicellular ventricular preparations.
Collapse
Affiliation(s)
- C Bountra
- University Laboratory of Physiology, Oxford
| | | | | |
Collapse
|
27
|
Syková E, Svoboda J. Extracellular alkaline-acid-alkaline transients in the rat spinal cord evoked by peripheral stimulation. Brain Res 1990; 512:181-9. [PMID: 2354355 DOI: 10.1016/0006-8993(90)90625-l] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regional differences in extracellular pH (pHe) were found in unstimulated rat spinal cord using double-barrel pH-sensitive microelectrodes. The pHe in the lower dorsal horn (laminae III-VII) was about 7.15, i.e. by about 0.2 pH units lower than that measured in the cerebrospinal fluid. Transient acid shifts in pHe by 0.01-0.05 pH units were found when acute nociceptive stimuli (pinch, press, heat) were applied to the hind paw. Chemical or thermal injury evoked by subcutaneous injection of turpentine or by application of 1-3 ml of hot oil onto the hindpaw produced a long-term decrease in pHe base line in the lower dorsal horn by about 0.05-0.1 pH units. The decrease in pHe began 2-10 min after injury and persisted for more than 2 h. Electrical nerve stimulation (10-100 Hz, 20-60 s) elicited biphasic (acid-alkaline) or triphasic (alkaline-acid-alkaline) changes in pHe which have a similar depth profile as the concomitantly recorded increase in [K+]e. An initial alkaline shift by about 0.005 pH units was found to be significantly decreased by La3+, an H+ channel blocker. The dominating acid shift by about 0.1-0.2 pH units was accelerated and increased by acetazolamide (carbonic anhydrase inhibitor) showing that the high buffering capacity of the extracellular fluid may hamper the resolution of acid perturbations. Stimulation-evoked acid shifts were blocked by amiloride, SITS, DIDS and La3+ and therefore have a complex mechanism which includes Na+/H+ exchange, Cl-/HCO3- cotransport and/or Na+/Cl-/H+/HCO3- antiport and H+ efflux through voltage-sensitive H+ channels. The poststimulation alkaline shift (alkaline undershoot) was blocked by ouabain and reflects coupled clearance of K+ and H+ by active transport processes.
Collapse
Affiliation(s)
- E Syková
- Institute of Physiological Regulations, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
28
|
Leijendekker WJ, Elzinga G. Metabolic recovery of mouse extensor digitorum longus and soleus muscle. Pflugers Arch 1990; 416:22-7. [PMID: 2352837 DOI: 10.1007/bf00370217] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heat produced by a 1-s isometric tetanus of mouse extensor digitorum longus muscle (EDL; n = 6) and a 1.5-s isometric tetanus of soleus muscle (n = 7) was measured with thermopiles at 20 degrees C, and separated into initial heat (I) and recovery heat (R). In EDL the initial heat was 190 +/- 40 (SD) mJ g-1 and in soleus 52 +/- 9 (SD) mJ g-1. The recovery heat production rate immediately following the tetanus was almost zero in both muscles. It rose in 12 +/- 6 s (EDL) and in 30 +/- 3 s (soleus) to a maximum, to decrease thereafter monoexponentially with a time constant of 30.7 +/- 5.7 s (EDL) and 41.7 +/- 7.2 s (soleus). The measured recovery ratio (R/I) differed between EDL (0.95 +/- 0.14) and soleus (1.54 +/- 0.22). The value for soleus muscles was significantly different from the theoretical value of 1.13. EDL muscles were freeze-clamped at rest (n = 10) and during the recovery phase, 1 min after the onset of the tetanus (n = 10), to determine lactate and creatine phosphate. It was found that no significant amount of net lactate was produced. The amount of creatine phosphate reformed corresponded to the recovery heat produced. The results suggest that metabolic recovery after short tetani of EDL and soleus muscles occurs predominantly through oxidative phosphorylation, but knowledge of respiratory control in the living cell is insufficient to explain its slow onset immediately following contraction and the finding that EDL recovers faster than soleus.
Collapse
Affiliation(s)
- W J Leijendekker
- Laboratory for Physiology, Faculty of Medicine, Free University of Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Kiviluoto T, Paimela H, Mustonen H, Kivilaakso E. Intracellular pH in isolated Necturus antral mucosa exposed to luminal acid. Gastroenterology 1990; 98:901-8. [PMID: 2155845 DOI: 10.1016/0016-5085(90)90014-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Regulation of intracellular pH in gastric epithelial surface cells exposed to luminal acid was investigated in isolated Necturus antral mucosa using microelectrode technique. Exposure of the mucosa to luminal pH 2 acidified intracellular pH from 7.21 +/- 0.01 to 6.95 +/- 0.04 (N = 50). Removal of Na+ from the perfusates or addition of amiloride (1 mM) to serosal perfusate (containing HCO3-) had no influence on intracellular pH during exposure to pH 2 (N = 6), but removal of HCO3-/CO2 from or addition of 4, acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (0.5 mM) to the serosal perfusate (containing Na+) acidified intracellular pH from 7.02 +/- 0.03 to 6.45 +/- 0.15 (p less than 0.01, N = 10) and from 6.97 +/- 0.06 to 6.58 +/- 0.26 (p less than 0.01, N = 6), respectively, in 15 min. In tissues exposed to mucosal pH 6, epithelial surface pH was about 1.3 pH units higher than pH of the mucosal bulk solution. Removal of Cl-/HCO3- from the serosal perfusate acidified epithelial surface pH by about 0.5 pH units (p less than 0.01, N = 6), suggesting that serosal HCO3- sustains intracellular pH, at least in part, by generating an alkaline buffer layer at the epithelial surface. In the absence of HCO3-/CO2, a stable intracellular pH was obtained when the tissue was exposed to mucosal pH 2.7, but in this situation intracellular pH was sensitive to Na+ removal or amiloride addition, intracellular pH decreasing from 7.00 +/- 0.07 to 6.48 +/- 0.10 (p less than 0.01, N = 6) and from 6.86 +/- 0.06 to 6.32 +/- 0.01 (p less than 0.01, N = 7), respectively, in 15 min. The data suggest that in gastric epithelium exposed to luminal acid, physiological intracellular pH is primarily maintained by the buffer action of serosal HCO3- transported to the epithelial surface to impede the entry of luminal H+ into mucosal tissue. Removal of the sheltering HCO3- unmasks a second line, Na(+)-dependent and amiloride-sensitive intracellular pH regulatory mechanism, presumably a Na+/H+ antiport.
Collapse
Affiliation(s)
- T Kiviluoto
- Second Department of Surgery, Helsinki University Central Hospital, Finland
| | | | | | | |
Collapse
|
30
|
Mason MJ, Mattsson K, Pasternack M, Voipio J, Kaila K. Postsynaptic fall in intracellular pH and increase in surface pH caused by efflux of formate and acetate anions through GABA-gated channels in crayfish muscle fibres. Neuroscience 1990; 34:359-68. [PMID: 1692112 DOI: 10.1016/0306-4522(90)90145-t] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
H(+)-selective microelectrodes and a two- or three-microelectrode voltage clamp were used to examine the influence of weak-acid, carboxylate anions on the actions of GABA on postsynaptic intracellular pH, surface pH and on membrane potential in fibres of the crayfish leg opener muscle. Substitution of 30 mM Cl- by formate or acetate promoted a GABA-induced decrease in intracellular pH, which was coupled to an increase in surface pH and to a depolarization. Such effects were not seen in the presence of an equivalent amount of lactate, methanesulphonate or glucuronate. Both the GABA-induced depolarization and the fall in internal pH promoted by formate and acetate were blocked by picrotoxin, and the fall in pH was reversibly inhibited by a K(+)-induced depolarization. The rate of the fall in intracellular pH produced by GABA (0.2 mM) was about 0.02 pH units/min in the presence of formate and 0.03 pH units/min in the presence of acetate. Under steady-state conditions, both 30 mM formate and acetate (but not lactate) induced a positive shift in the reversal potential of GABA-activated current, which was accounted for by a relative permeability vs Cl- of formate and acetate of 0.5 and 0.15, respectively. The conductance sequence of the anions was identical to the permeability sequence, i.e. Cl- greater than formate greater than acetate greater than lactate approximately equal to 0. This sequence is strictly correlated to the Stokes diameter of the anions. The relative permeabilities of the anions indicate that the effective diameter of the GABA-gated channel is about 0.5 nm. The fact that the GABA-induced acidosis was slower in the presence of formate than in the presence of acetate suggests that, in the former case, the rate-limiting step in the fall in internal pH is the entry of non-dissociated formic acid. All the above results are consistent with a scheme where GABA induces a channel-mediated efflux of permeant weak-acid anions, which gives rise to an inward (depolarizing) current and to an intracellular acidosis. A comparison of the permeability properties of crayfish and vertebrate GABA-gated channels suggests that effects similar to those seen in this work are likely to occur in mammalian and other vertebrate neurons in the presence of permeant weak-acid anions.
Collapse
Affiliation(s)
- M J Mason
- Department of Zoology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
31
|
Bountra C, Vaughan-Jones RD. Effect of intracellular and extracellular pH on contraction in isolated, mammalian cardiac muscle. J Physiol 1989; 418:163-87. [PMID: 2621616 PMCID: PMC1189964 DOI: 10.1113/jphysiol.1989.sp017833] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Intracellular pH (pHi) and Na+ activity were recorded (ion-selective microelectrodes) in guinea-pig papillary muscle and the sheep cardiac Purkinje fibre while simultaneously recording twitch tension. The effects of intracellular acidosis and alkalosis upon contraction were investigated. 2. A fall of pHi produced by reducing pHo was associated with a fall of twitch tension. Similarly, a rise of pHi produced by raising pHo produced a rise of twitch tension. The time course of the changes in tension correlated with the time course of changes of pHi rather than pHo. These results are consistent with previous work showing that acidosis inhibits contraction and that the inhibition depends upon a fall of pHi. 3. Changes of pHi were produced while maintaining pHo constant at 7.4. Removal of NH4Cl or addition of sodium acetate (pHo 7.4) reduced pHi but this gave either an increase of tension (papillary muscle) or an initial fall followed by a subsequent recovery of tension (Purkinje fibre). The increase or recovery of tension occurred despite the fact that there was an intracellular acid load. Thus, reducing pHi at constant pHo can increase tension whereas reducing pHi at low pHo (6.4, see paragraph 2) inhibits tension. 4. The increase of recovery of tension during intracellular acidosis produced at a constant pHo (7.4) was associated with a rise of intracellular sodium activity (aiNa). Amiloride (1.5 mmol/l), an inhibitor of Na(+)-H+ exchange, prevented the rise of aiNa during intracellular acidosis and also prevented the recovery of tension. It is concluded that the increase or recovery of tension at low pHi is secondary to a rise of aiNa caused by stimulation of Na(+)-H+ exchange. A rise of aiNa will elevate Ca2+ via sarcolemmal Na(+)-Ca2+ exchange and thus will elevate tension. 5. An intracellular acidosis produced by reducing pHo (6.4) does not elevate aiNa in the Purkinje fibre. In papillary muscle, aiNa rises but this occurs slowly and the rise is 50% smaller than that seen when the same intracellular acidosis is induced at normal pHo (7.4). The net depression of tension under these conditions thus correlates with the lack of a large rise of aiNa. 6. Knowing the quantitative dependence of tension upon both aiNa and pHi in the two tissues it is possible to predict the recovery of twitch tension during intracellular acidosis at constant pHo (7.4), using the changes of pHi and aiNa measured under these conditions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Bountra
- University Laboratory of Physiology, Oxford
| | | |
Collapse
|
32
|
Dresdner KP, Kline RP, Wit AL. Intracellular pH of canine subendocardial Purkinje cells surviving in 1-day-old myocardial infarcts. Circ Res 1989; 65:554-65. [PMID: 2766483 DOI: 10.1161/01.res.65.3.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A large reduction of intracellular potassium activity in depolarized subendocardial Purkinje fibers 24 hours after coronary artery ligation is accompanied by a much smaller increase in intracellular sodium activity. Similar intracellular ionic changes also occur during acute ischemia in ventricular muscle and are consistent with mechanisms based on intracellular acidification, which is known to occur in acutely ischemic muscle. To determine if canine subendocardial Purkinje cells 24 hours after myocardial infarction are also acidic, their intracellular pH, surface pH, and maximum diastolic potential (MDP) were measured with double-barrel pH-sensitive microelectrodes and compared with control fibers in noninfarcted hearts. In 12 mM bicarbonate Tyrode's solution (5% CO2-95% O2), the average intracellular pH was not significantly different (p greater than 0.25) for normal tissue (6.83 +/- 0.08, SD, MDP = -83.5 +/- 3.2 mV), for depolarized Purkinje fibers in infarct preparations during the first hour of superfusion (6.88 +/- 0.11, MDP = -47.8 +/- 11.8 mV), and for partially recovered Purkinje fibers in infarcts averaged over the third to sixth hours of superfusion (6.85 +/- 0.12, MDP = -74.5 +/- 9.6 mV). In 24 mM bicarbonate Tyrode's solution, infarct intracellular pH during both the first hour of superfusion (7.08 +/- 0.13, MDP = -57.6 +/- 15.7 mV) and during the third to sixth hours of superfusion (7.06 +/- 0.15, MDP = -76.5 +/- 9.6 mV) was significantly alkaline (p less than 0.0005) compared with average control pH (6.92 +/- 0.12, MDP = 82.1 +/- 3.7 mV). In 24 mM bicarbonate Tyrode's solution, the intracellular pH did vary with MDP (0.0032 pH units/mV). During superfusion of normal Purkinje fibers with hypoxic Tyrode's solution, intracellular pH acidified by 0.22 pH units as they depolarized. Therefore, intracellular acidification does not seem to be a cause of the depolarization of subendocardial Purkinje cells 24 hours after myocardial infarction.
Collapse
Affiliation(s)
- K P Dresdner
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
33
|
Szatkowski MS. The effect of extracellular weak acids and bases on the intracellular buffering power of snail neurones. J Physiol 1989; 409:103-20. [PMID: 2555474 PMCID: PMC1190434 DOI: 10.1113/jphysiol.1989.sp017487] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Intracellular pH (pHi) was measured in snail neurones using pH-sensitive glass microelectrodes. The influence of externally applied weak acids and bases on the total intracellular buffering power (beta T) was investigated by monitoring the pHi changes caused by the intracellular ionophoretic injection of HCl. 2. In the absence of weak acids or bases a reduction in the extracellular HEPES concentration had no effect on pHi or on beta T. It did, however, reduce slightly the rate of pHi recovery following HCl injection. 3. The presence of CO2 greatly increased beta T. However, as predicted for an open buffer system, the contributions to intracellular buffering by CO2 (beta CO2) decreased as pHi decreased. 4. When added to the superfusate, procaine, 4-aminopyridine, trimethylamine and NH4Cl (1-10 mM) all increased steady-state pHi. Procaine was fastest at increasing pHi and 4-aminopyridine the slowest. All four of these weak bases increased beta T. 5. The intracellular buffering action by these weak bases varied. HCl injection in the presence of procaine usually resulted in steady-state pHi changes with no pHi transients. In the presence of the other three weak bases HCl injections resulted in intracellular acidifications which were followed by pHi recovery-like transients. However, these were not blocked by SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid) or by CaCl2 and I thus conclude that these transients were as a result of slow or incomplete intracellular buffering by the weak bases. 6. In many cells there was a good correlation between the measured contributions to intracellular buffering by the weak bases (beta base) and those predicted assuming a simple two-compartment open system. In all cases, as predicted, beta base increased as pHi decreased. 7. I found a clear relationship between the concentration of external buffer (HEPES) and the rate at which weak bases, applied to the superfusate, were able to increase pHi. The greater the extracellular buffer concentration the greater was the speed of intracellular alkalinization. 8. Lowering the extracellular buffer concentration reduced the efficiency of intracellular buffering by weak bases in response to an intracellular acid load. HCl injection in the presence of weak base caused a larger initial intracellular acidification if the extracellular HEPES concentration was reduced. 9. In conclusion, both weak acids and weak bases can make very large, pHi-dependent contributions to intracellular buffering by way of open buffer systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M S Szatkowski
- Department of Physiology, School of Medical Sciences, University of Bristol
| |
Collapse
|
34
|
Kaila K, Mattsson K, Voipio J. Fall in intracellular pH and increase in resting tension induced by a mitochondrial uncoupling agent in crayfish muscle. J Physiol 1989; 408:271-93. [PMID: 2778730 PMCID: PMC1190403 DOI: 10.1113/jphysiol.1989.sp017459] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
1. The influence of the mitochondrial uncoupling agent carbonylcyanide-m-chlorophenylhydrazone (CCCP) upon resting tension and intracellular pH (pHi) was studied in the dactyl opener muscle of the crayfish. pHi was measured with liquid sensor H+-selective microelectrodes. 2. CCCP (10(-6)-10(-5) mol l-1) induced a reversible, tonic contracture which was associated with a depolarization of the membrane potential. Both effects were augmented by a fall and inhibited by a rise in extracellular pH. The action of CCCP on tension was not mimicked by cyanide + oligomycin or by cyanide + dicyclohexylcarbodiimide nor was it inhibited by pre-exposure to these agents. 3. CCCP produced an initial alkalosis of less than 0.1 units and thereafter a fall in pHi of 0.4-0.6 units during which the sarcolemmal H+ driving force decreased from 61 to 15 mV. The apparent influx of H+ due to CCCP had a maximum of 2.7 mequiv l-1 min-1. The CCCP-induced acidosis was unaffected by iodacetate (0.5 mmol l-1) but it was inhibited by a depolarization of the membrane potential. 4. The contraction caused by CCCP was not due to the simultaneous fall in pHi since an intracellular acidosis of equal magnitude, produced by propionate (50 mmol l-1), did not lead to force generation. In addition, propionate had an inhibitory effect on the depolarization and contracture caused by CCCP. 5. Both the depolarization and the contracture caused by CCCP were inhibited by gamma-aminobutyric acid (GABA). The contracture was blocked by Cd2+, Mn2+ and by a nominally Ca2+ -free medium but not by a pre-exposure to caffeine (20 mmol l-1). Cd2+ and Mn2+ had no influence on the fall of pHi caused by CCCP. 6. It is concluded that CCCP induces a sarcolemmal H+ conductance which leads to a fall in pHi and to a depolarization of the membrane potential. This depolarization activates sarcolemmal, voltage-dependent calcium channels and thereby induces an increase in tension. The initial alkalosis produced by CCCP may be due to a transient uptake of H+ by mitochondria.
Collapse
Affiliation(s)
- K Kaila
- Department of Zoology, University of Helsinki, Finland
| | | | | |
Collapse
|
35
|
Grossie J, Collins C, Julian M. Bicarbonate and fast-twitch muscle: evidence for a major role in pH regulation. J Membr Biol 1988; 105:265-72. [PMID: 3221384 DOI: 10.1007/bf01871003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Internal pH (pHi) was analyzed in rat extensor digitorum longus (Edl) muscle at 30 degrees C with single-barrel liquid ion-selective electrodes. Average pHi in 284 cells was 7.197 +/- 0.006. Increases in CO2 from nominally 0 to 5% produced an acidification from which recovery took place. In different groups of cells, recovery from the 5% CO2 acidification was significantly inhibited by 100 microM 4,4' diisothiocyanatostilbene 2,2' disulfonic acid (DIDS), Cl removal, Na removal and 2 mM amiloride. Prepulsing with 20 mM NH4 in the presence of CO2/HCO3 typically reduced pHi to only about neutral, whereas 50 mM reduced pHi to 6.7-6.8. In the nominal absence of CO2/HCO3, 20 mM NH4 reduced pHi to about 6.7 from which recovery took place at about 58% of the rate seen in different cells in the presence of CO2/HCO3. In the presence of CO2/HCO3, cells prepulsed with 50 mM NH4 had fully recovered to an average pHi of 7.22 +/- 0.04 about 90 min after removal of NH4. However, 90 min after removal of 20 mM NH4 in the absence of CO2/HCO3, average pHi was significantly less (7.05 +/- 0.03). Intrinsic buffering capacity (beta i) was obtained during pulses of CO2, acetic acid or after an NH4 pulse. beta i was significantly reduced in the absence of HCO3, Cl or Na and HCO3. The data provide significant support for an important role of HCO3 in the control of pHi in fast-twitch muscle.
Collapse
Affiliation(s)
- J Grossie
- Department of Physiology, Ohio State University College of Medicine, Columbus 43210
| | | | | |
Collapse
|
36
|
Lagadic-Gossmann D, Chesnais JM, Feuvray D. Intracellular pH regulation in papillary muscle cells from streptozotocin diabetic rats: an ion-sensitive microelectrode study. Pflugers Arch 1988; 412:613-7. [PMID: 2850534 DOI: 10.1007/bf00583762] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intracellular pH regulation was studied in papillary muscle from STZ-induced diabetic rat hearts. In control bicarbonate solution there was no difference between the steady-state pHi values recorded from diabetic or normal papillary muscle. The addition of insulin had no effect on the pHi of either group. The amplitude of NH4+-induced alkalinization and the time course of recovery from alkalinization were similar in both normal and diabetic muscles. In both preparations, the recovery from alkalinization was similarly delayed by the disulfonic stilbene DIDS. This suggests the participation of a Cl-/HCO3- exchange in the recovery from alkalosis in rat myocardial cells that is not changed by diabetes. On the other hand, the amplitude of the acidification induced by the withdrawal of NH4+ was markedly increased in diabetic papillary muscles as compared to normal muscles. Moreover, there was a marked slowing down of the recovery from acidosis in the diabetics. The amplitude of NH+4 withdrawal-induced acidification was increased equally by amiloride in both normal and diabetic muscles. These findings suggest that diabetes is associated with a change in the activity of the amiloride-sensitive Na+/H+ exchange.
Collapse
|
37
|
Thomas RC. Changes in the surface pH of voltage-clamped snail neurones apparently caused by H+ fluxes through a channel. J Physiol 1988; 398:313-27. [PMID: 2455800 PMCID: PMC1191774 DOI: 10.1113/jphysiol.1988.sp017044] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. The surface and intracellular pH of snail neurones was recorded with microelectrodes while the membrane potential was reduced in 10 mV steps for a few seconds each or to positive values for periods of several minutes. 2. Depolarizations to positive membrane potentials caused rapid falls in surface pH (pHs) which varied from cell to cell and from one point to another on the surface of the same cell. 3. When pHi was normal or alkaline, the first few 10 mV steps of depolarization often caused a small pHs increase which changed to a decrease as the depolarization increased. The threshold potential at which the pHs increase changed to a decrease varied with pHi in a linear manner, so that at acid pHi values the threshold potential approached the normal resting potential. There was good agreement between the threshold and H+ equilibrium potentials calculated from pHi and pHs. 4. The size of the pHs decrease observed at a given pHi and depolarization depended on extracellular buffering power in a non-linear manner. Solutions buffered with 20 mM-NaHCO3 had similar surface buffering power to CO2-free solutions buffered with only 1-2 mM-HEPES, pH 7.5. 5. In 1 mM-HEPES pHs changes were larger, and pHi increases slower, than those seen in cells depolarized to the same potential in 20 mM-HEPES. The slowing of the rate of pHi increase suggests that the pHs changes occur all over the cell surface, and not only at the recording site. 6. With long-lasting depolarizations the size of the pHs decrease was proportional to the rate of pHi increase and thus, assuming a constant intracellular buffering power, to the rate of efflux of H+. 7. The results provide further evidence that snail neurones possess a channel permeable to H+ which is opened on depolarization. H+ efflux through this channel could cause rapid acidification of a confined extracellular space.
Collapse
Affiliation(s)
- R C Thomas
- Department of Physiology, University of Bristol
| |
Collapse
|
38
|
Kaila K, Vaughan-Jones RD. Influence of sodium-hydrogen exchange on intracellular pH, sodium and tension in sheep cardiac Purkinje fibres. J Physiol 1987; 390:93-118. [PMID: 2451001 PMCID: PMC1192168 DOI: 10.1113/jphysiol.1987.sp016688] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. The influence of sarcolemmal Na+-H+ exchange upon intracellular Na+ activity (aiNa), intracellular pH (pHi), extracellular surface pH (pHs) and tonic tension was investigated in sheep cardiac Purkinje fibres. Intracellular ion activities were measured with liquid sensor ion-selective micro-electrodes. A two-micro-electrode voltage-clamp was also used to control membrane potential while simultaneously recording tonic tension. 2. Inhibition of the sarcolemmal Na+-K+ pump by strophanthidin (10 mumol/l) produced a rise in aiNa, an increase in [Ca2+]i as evidenced by a rise in tonic tension, and a fall in pHi of 0.1-0.3 units. The intracellular acidosis has been shown previously to be linked to the rise in [Ca2+]i (Vaughan-Jones, Lederer & Eisner, 1983). 3. Amiloride (1-2 mmol/l), an inhibitor of Na+-H+ exchange, produced a small reversible decrease in pHi and aiNa. Both effects became more pronounced in strophanthidin-exposed fibres. In addition, pHi decreased during application of strophanthidin and this decrease was reversibly inhibited by amiloride. It is concluded that sarcolemmal Na+-H+ exchange is stimulated following inhibition of the Na+-K+ pump. 4. In strophanthidin-exposed fibres, a rise in [Ca2+]i resulted in an intracellular acidosis which could still be observed in the presence of amiloride (1 mmol/l). This suggests that the fall in pHi was not caused by a modulatory effect of [Ca2+]i on sarcolemmal Na+-H+ exchange. 5. Tetrodotoxin (TTX) produced a small fall in aiNa (ca. 0.5 mmol/l) which was not augmented in the presence of strophanthidin. Furthermore, the effects on aiNa of TTX and amiloride were additive. Thus the influence of amiloride on aiNa does not involve blockade of voltage-gated Na+ channels. 6. The stoicheiometry of Na+-H+ exchange, estimated from the rates of change of pHi and aiNa in amiloride, appeared to be electroneutral (1:1). The stoicheiometry was unaffected by changes in pHi. 7. In strophanthidin-exposed fibres (i.e. aiNa is elevated), the recovery of pHi from an intracellular acidosis (brought about by brief exposure to NH4Cl) was slowed greatly by amiloride (1-2 mmol/l). The rise in aiNa that occurred during pHi recovery was also reduced by amiloride. It is concluded that Na+-H+ exchange can be stimulated by a fall in pHi under conditions where aiNa is elevated. However, at a given pHi, its rate of recovery was slower in the presence than in the absence of strophanthidin.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Kaila
- University Laboratory of Physiology, Oxford
| | | |
Collapse
|