1
|
Crystal GJ, Pagel PS. Perspectives on the History of Coronary Physiology: Discovery of Major Principles and Their Clinical Correlates. J Cardiothorac Vasc Anesth 2025; 39:220-243. [PMID: 39278733 DOI: 10.1053/j.jvca.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Coronary circulation plays an essential role in delivering oxygen and metabolic substrates to satisfy the considerable energy demand of the heart. This article reviews the history that led to the current understanding of coronary physiology, beginning with William Harvey's revolutionary discovery of systemic blood circulation in the 17th century, and extending through the 20th century when the major mechanisms regulating coronary blood flow (CBF) were elucidated: extravascular compressive forces, metabolic control, pressure-flow autoregulation, and neural pathways. Pivotal research studies providing evidence for each of these mechanisms are described, along with their clinical correlates. The authors describe the major role played by researchers in the 19th century, who formulated basic principles of hemodynamics, such as Poiseuille's law, which provided the conceptual foundation for experimental studies of CBF regulation. Targeted research studies in coronary physiology began in earnest around the turn of the 20th century. Despite reliance on crude experimental techniques, the pioneers in coronary physiology made groundbreaking discoveries upon which our current knowledge is predicated. Further advances in coronary physiology were facilitated by technological developments, including methods to measure phasic CBF and its regional distribution, and by biochemical discoveries, including endothelial vasoactive molecules and adrenergic receptor subtypes. The authors recognize the invaluable contribution made by basic scientists toward the understanding of CBF regulation, and the enormous impact that this fundamental information has had on improving clinical diagnosis, decision-making, and patient care.
Collapse
Affiliation(s)
- George J Crystal
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL.
| | - Paul S Pagel
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| |
Collapse
|
2
|
Sytha SP, Self TS, Heaps CL. K + channels in the coronary microvasculature of the ischemic heart. CURRENT TOPICS IN MEMBRANES 2022; 90:141-166. [PMID: 36368873 PMCID: PMC10494550 DOI: 10.1016/bs.ctm.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic heart disease is the leading cause of death and a major public health and economic burden worldwide with expectations of predicted growth in the foreseeable future. It is now recognized clinically that flow-limiting stenosis of the large coronary conduit arteries as well as microvascular dysfunction in the absence of severe stenosis can each contribute to the etiology of ischemic heart disease. The primary site of coronary vascular resistance, and control of subsequent coronary blood flow, is found in the coronary microvasculature, where small changes in radius can have profound impacts on myocardial perfusion. Basal active tone and responses to vasodilators and vasoconstrictors are paramount in the regulation of coronary blood flow and adaptations in signaling associated with ion channels are a major factor in determining alterations in vascular resistance and thereby myocardial blood flow. K+ channels are of particular importance as contributors to all aspects of the regulation of arteriole resistance and control of perfusion into the myocardium because these channels dictate membrane potential, the resultant activity of voltage-gated calcium channels, and thereby, the contractile state of smooth muscle. Evidence also suggests that K+ channels play a significant role in adaptations with cardiovascular disease states. In this review, we highlight our research examining the role of K+ channels in ischemic heart disease and adaptations with exercise training as treatment, as well as how our findings have contributed to this area of study.
Collapse
Affiliation(s)
- Sharanee P Sytha
- Department of Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Trevor S Self
- Department of Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States; Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
3
|
Raza ST, Singh SP, Rizvi S, Zaidi A, Srivastava S, Hussain A, Mahdi F. Association of eNOS (G894T, rs1799983) and KCNJ11 (E23K, rs5219) gene polymorphism with coronary artery disease in North Indian population. Afr Health Sci 2021; 21:1163-1171. [PMID: 35222579 PMCID: PMC8843271 DOI: 10.4314/ahs.v21i3.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Endothelial nitric oxide synthase (eNOS) and potassium voltage-gated channel subfamily J member 11 (KCNJ11) could be the candidate genes for coronary artery disease (CAD). This study investigated the relationship of the eNOS (rs1799983) and KCNJ11 (rs5219) polymorphisms with the presence and severity of CAD in the North Indian population. Methods This study included 300 subjects, 150 CAD cases and 150 healthy controls. Single nucleotide polymorphism was evaluated by Polymerase chain reaction and Restriction fragment length polymorphism (PCR-RFLP). Analysis was performed by SPSS (version 21.0). Results We observed that KK genotype of KCNJ11E23K (rs5219) polymorphism (P=0.0001) genotypes and K allele (P=0.0001) was found to be a positive risk factor and strongly associated with CAD. In the case of eNOSG894T (rs1799983) there was no association found with CAD. Conclusion These results illustrate the probability of associations between SNPs and CAD although specific genetic polymorphisms affecting ion channel function and expression have still to be clarified by further investigations involving larger cohorts.
Collapse
Affiliation(s)
- Syed Tasleem Raza
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow, India
| | - Sachendra P Singh
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow, India
| | - Saliha Rizvi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow, India
| | - Alina Zaidi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow, India
| | - Sanchita Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow, India
| | - Arif Hussain
- Department of Molecular biology, Manipal Academy of Higher Education
| | - Farzana Mahdi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow, India
| |
Collapse
|
4
|
Tune JD, Goodwill AG, Kiel AM, Baker HE, Bender SB, Merkus D, Duncker DJ. Disentangling the Gordian knot of local metabolic control of coronary blood flow. Am J Physiol Heart Circ Physiol 2019; 318:H11-H24. [PMID: 31702972 DOI: 10.1152/ajpheart.00325.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition that coronary blood flow is tightly coupled with myocardial metabolism has been appreciated for well over half a century. However, exactly how coronary microvascular resistance is tightly coupled with myocardial oxygen consumption (MV̇o2) remains one of the most highly contested mysteries of the coronary circulation to this day. Understanding the mechanisms responsible for local metabolic control of coronary blood flow has been confounded by continued debate regarding both anticipated experimental outcomes and data interpretation. For a number of years, coronary venous Po2 has been generally accepted as a measure of myocardial tissue oxygenation and thus the classically proposed error signal for the generation of vasodilator metabolites in the heart. However, interpretation of changes in coronary venous Po2 relative to MV̇o2 are quite nuanced, inherently circular in nature, and subject to confounding influences that remain largely unaccounted for. The purpose of this review is to highlight difficulties in interpreting the complex interrelationship between key coronary outcome variables and the arguments that emerge from prior studies performed during exercise, hemodilution, hypoxemia, and alterations in perfusion pressure. Furthermore, potential paths forward are proposed to help to facilitate further dialogue and study to ultimately unravel what has become the Gordian knot of the coronary circulation.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexander M Kiel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Hana E Baker
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School Erasmus University Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Walter-Brendel Center of Experimental Medicine, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.,German Centre for Cardiovascular Research, Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School Erasmus University Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Pagel PS, Crystal GJ. The Discovery of Myocardial Preconditioning Using Volatile Anesthetics: A History and Contemporary Clinical Perspective. J Cardiothorac Vasc Anesth 2018; 32:1112-1134. [DOI: 10.1053/j.jvca.2017.12.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/24/2022]
|
6
|
Feng Y, Liu J, Wang M, Liu M, Shi L, Yuan W, Ye J, Hu D, Wan J. The E23K variant of the Kir6.2 subunit of the ATP-sensitive potassium channel increases susceptibility to ventricular arrhythmia in response to ischemia in rats. Int J Cardiol 2017; 232:192-198. [DOI: 10.1016/j.ijcard.2017.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
|
7
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
8
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Garrott K, Kuzmiak-Glancy S, Wengrowski A, Zhang H, Rogers J, Kay MW. K ATP channel inhibition blunts electromechanical decline during hypoxia in left ventricular working rabbit hearts. J Physiol 2017; 595:3799-3813. [PMID: 28177123 DOI: 10.1113/jp273873] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Heart function is critically dependent upon the balance of energy production and utilization. Sarcolemmal ATP-sensitive potassium channels (KATP channels) in cardiac myocytes adjust contractile function to compensate for the level of available energy. Understanding the activation of KATP channels in working myocardium during high-stress situations is crucial to the treatment of cardiovascular disease, especially ischaemic heart disease. Using a new optical mapping approach, we measured action potentials from the surface of excised contracting rabbit hearts to assess when sarcolemmal KATP channels were activated during physiologically relevant workloads and during gradual reductions in myocardial oxygenation. We demonstrate that left ventricular pressure is closely linked to KATP channel activation and that KATP channel inhibition with a low concentration of tolbutamide prevents electromechanical decline when oxygen availability is reduced. As a result, KATP channel inhibition probably exacerbates a mismatch between energy demand and energy production when myocardial oxygenation is low. ABSTRACT Sarcolemmal ATP-sensitive potassium channel (KATP channel) activation in isolated cells is generally understood, although the relationship between myocardial oxygenation and KATP activation in excised working rabbit hearts remains unknown. We optically mapped action potentials (APs) in excised rabbit hearts to test the hypothesis that hypoxic changes would be more severe in left ventricular (LV) working hearts (LWHs) than Langendorff (LANG) perfused hearts. We further hypothesized that KATP inhibition would prevent those changes. Optical APs were mapped when measuring LV developed pressure (LVDP), coronary flow rate and oxygen consumption in LANG and LWHs. Hearts were paced to increase workload and perfusate was deoxygenated to study the effects of myocardial hypoxia. A subset of hearts was perfused with 1 μm tolbutamide (TOLB) to identify the level of AP duration (APD) shortening attributed to KATP channel activation. During sinus rhythm, APD was shorter in LWHs compared to LANG hearts. APD in both LWHs and LANG hearts dropped steadily during deoxygenation. With TOLB, APDs in LWHs were longer at all workloads and APD reductions during deoxygenation were blunted in both LWHs and LANG hearts. At 50% perfusate oxygenation, APD and LVDP were significantly higher in LWHs perfused with TOLB (199 ± 16 ms; 92 ± 5.3 mmHg) than in LWHs without TOLB (109 ± 14 ms, P = 0.005; 65 ± 6.5 mmHg, P = 0.01). Our results indicate that KATP channels are activated to a greater extent in perfused hearts when the LV performs pressure-volume work. The results of the present study demonstrate the critical role of KATP channels in modulating myocardial function over a wide range of physiological conditions.
Collapse
Affiliation(s)
- Kara Garrott
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Sarah Kuzmiak-Glancy
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Anastasia Wengrowski
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Hanyu Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jack Rogers
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Bain S, Druyts E, Balijepalli C, Baxter CA, Currie CJ, Das R, Donnelly R, Khunti K, Langerman H, Leigh P, Siliman G, Thorlund K, Toor K, Vora J, Mills EJ. Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycaemic drugs: A Bayesian meta-analysis of survival data. Diabetes Obes Metab 2017; 19:329-335. [PMID: 27862902 DOI: 10.1111/dom.12821] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 02/01/2023]
Abstract
AIM To conduct a systematic review and meta-analysis to determine the risk of cardiovascular events and all-cause mortality associated with sulphonylureas (SUs) vs other glucose lowering drugs in patients with T2DM (T2DM). MATERIALS AND METHODS A systematic review of Medline, Embase, Cochrane and clinicaltrials.gov was conducted for studies comparing SUs with placebo or other antihyperglycaemic drugs in patients with T2DM. A cloglog model was used in the Bayesian framework to obtain comparative hazard ratios (HRs) for the different interventions. For the analysis of observational data, conventional fixed-effect pairwise meta-analyses were used. RESULTS The systematic review identified 82 randomized controlled trials (RCTs) and 26 observational studies. Meta-analyses of RCT data showed an increased risk of all-cause mortality and cardiovascular-related mortality for SUs compared with all other treatments combined (HR 1.26, 95% confidence interval [CI] 1.10-1.44 and HR 1.46, 95% CI 1.21-1.77, respectively). The risk of myocardial infarction was significantly higher for SUs compared with dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose co-transporter-2 inhibitors (HR 2.54, 95% CI 1.14-6.57 and HR 41.80, 95% CI 1.64-360.4, respectively). The risk of stroke was significantly higher for SUs than for DPP-4 inhibitors, glucagon-like peptide-1 agonists, thiazolidinediones and insulin. CONCLUSIONS The present meta-analysis showed an association between SU therapy and a higher risk of major cardiovascular disease-related events compared with other glucose lowering drugs. Results of ongoing RCTs, which should be available in 2018, will provide definitive results on the risk of cardiovascular events and all-cause mortality associated with SUs vs other antihyperglycaemic drugs.
Collapse
Affiliation(s)
- Steve Bain
- Diabetes Research Group, College of Medicine, Swansea University, Swansea, UK
| | - Eric Druyts
- Precision Health Economics, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chakrapani Balijepalli
- Precision Health Economics, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | | | - Craig J Currie
- Global Epidemiology, Pharmatelligence, Cardiff, UK
- Institute of Population Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | - Kristian Thorlund
- Precision Health Economics, Vancouver, Canada
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada
| | | | - Jiten Vora
- Royal Liverpool University Hospital, Liverpool, UK
| | - Edward J Mills
- Precision Health Economics, Vancouver, Canada
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada
| |
Collapse
|
11
|
Almabrouk TAM, Ugusman AB, Katwan OJ, Salt IP, Kennedy S. Deletion of AMPKα1 attenuates the anticontractile effect of perivascular adipose tissue (PVAT) and reduces adiponectin release. Br J Pharmacol 2016; 174:3398-3410. [PMID: 27668984 DOI: 10.1111/bph.13633] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Perivascular adipose tissue (PVAT) surrounds most blood vessels and secretes numerous active substances, including adiponectin, which produce a net anticontractile effect in healthy individuals. AMPK is a key mediator of cellular energy balance and may mediate the vascular effects of adiponectin. In this study, we investigated the role of AMPK within PVAT in mediating the anticontractile effect of PVAT. EXPERIMENTAL APPROACH Endothelium-denuded aortic rings from wild-type (WT; Sv129) and α1 AMPK knockout (KO) mice were mounted on a wire myograph. Dose-response curves to the AMPK-independent vasodilator cromakalim were studied in vessels with and without PVAT, and effect of pre-incubation with conditioned media and adiponectin on relaxation was also studied. The effect of AMPKα1 KO on the secretory profile of PVAT was assessed by elisa. KEY RESULTS Thoracic aortic PVAT from KO mice was morphologically indistinct from that of WT and primarily composed of brown adipose tissue. PVAT augmented relaxation to cromakalim in WT but not KO aortic rings. Addition of WT PVAT augmented relaxation in KO aortic rings but KO PVAT had no effect in WT rings. PVAT from KO mice secreted significantly less adiponectin and addition of adiponectin to either KO or WT aortic rings without PVAT augmented relaxation to cromakalim. An adiponectin blocking peptide significantly attenuated relaxation in WT rings with PVAT but not in KO rings. CONCLUSIONS AND IMPLICATIONS AMPKα1 has a critical role in maintaining the anticontractile actions of PVAT; an effect independent of the endothelium but likely mediated through altered adiponectin secretion or sensitivity. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Tarek A M Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya
| | - Azizah B Ugusman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Omar J Katwan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Valensi P, Slama G. Review: Sulphonylureas and cardiovascular risk: facts and controversies. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514060060040301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cardiovascular complications are the principal cause of death in type 2 diabetes. The importance of glycaemic control in preventing cardiovascular complications has been demonstrated. However, some oral antidiabetic agents and especially some sulphonylureas (SU) have been accused of having a deleterious effect on cardiovascular risk. A retrospective analysis of the administrative database of Saskatchewan Health for 5,795 subjects, identified by their first-ever dispensation for an oral antidiabetic agent, suggests that a higher exposure to SUs was associated with increased mortality. Nevertheless, the effects of SUs on cardiac ATP-sensitive potassium channels in experimental studies vary between agents and studies, so that the clinical relevance of this phenomenon is unclear. Moreover, 11 years of follow-up of patients randomised to glibenclamide or chlorpropamide in the United Kingdom Prospective Diabetes Study demonstrated no adverse effects on a range of cardiovascular end points. Despite SU structural differences and differences in binding to cardiac SU receptors, the clinical evidence base does not support the selection of one sulphonylurea over another on the basis of ischaemic preconditioning, possibly because ischaemic preconditioning may be blunted or absent in diabetes. The main objective remains the prevention or delay of diabetic complications through improvement of glycaemic control together with other cardiovascular risk factors.
Collapse
Affiliation(s)
- Paul Valensi
- Department of Endocrinology, Diabetology, Nutrition, Jean Verdier Hospital, AP-HP, Paris-Nord University, Bondy-France,
| | - Gérard Slama
- Diabetology Department, Hotel-Dieu Hospital, 1 place du Parvis Notre-Dame, Paris 75004, France
| |
Collapse
|
13
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
14
|
Jameel MN, Xiong Q, Mansoor A, Bache RJ, Zhang J. ATP sensitive K(+) channels are critical for maintaining myocardial perfusion and high energy phosphates in the failing heart. J Mol Cell Cardiol 2016; 92:116-21. [PMID: 26854629 DOI: 10.1016/j.yjmcc.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Congestive heart failure (CHF) is associated with intrinsic alterations of mitochondrial oxidative phosphorylation which lead to increased myocardial cytosolic free ADP. ATP sensitive K(+) channels (KATP) act as metabolic sensors that are important for maintaining coronary blood flow (MBF) and in mediating the response of the myocardium to stress. Coronary adenosine receptors (AdR) are not normally active but cause vasodilation during myocardial ischemia. This study examined the myocardial energetic response to inhibition of KATP and AdR in CHF. CHF (as evidenced by LVEDP>20mmHg) was produced in adult mongrel dogs (n=12) by rapid ventricular pacing for 4weeks. MBF was measured with radiolabeled microspheres during baseline (BL), AdR blockade with 8-phenyltheophylline (8-PT; 5mg/kg iv), and KATP blockade with glibenclamide (GLB; 20μg/kg/min ic). High energy phosphates were examined with (31)P magnetic resonance spectroscopy (MRS) while myocardial oxygenation was assessed from the deoxymyoglobin signal (Mb-δ) using (1)H MRS. During basal conditions the phosphocreatine (PCr)/ATP ratio (1.73±0.15) was significantly lower than in previously studied normal dogs (2.42±0.11) although Mb-δ was undetectable. 8-PT caused ≈21% increase in MBF with no change in PCr/ATP. GLB caused a 33±0.1% decrease in MBF with a decrease in PCr/ATP from 1.65±0.17 to 1.11±0.11 (p<0.0001). GLB did not change the pseudo-first-order rate constant of ATP production via CK (kf), but the ATP production rate via CK was reduced by 35±0.08%; this was accompanied by an increase in Pi/PCr and appearance of a Mb-δ signal indicating tissue hypoxia. Thus, in the failing heart the balance between myocardial ATP demands and oxygen delivery is critically dependent on functioning KATP channels.
Collapse
Affiliation(s)
- Mohammad N Jameel
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Qiang Xiong
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Abdul Mansoor
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Robert J Bache
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jianyi Zhang
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
16
|
Sulfonylurea use is associated with larger infarct size in patients with diabetes and ST-elevation myocardial infarction. Int J Cardiol 2015; 202:126-30. [PMID: 26386939 DOI: 10.1016/j.ijcard.2015.08.213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Animal models have demonstrated that sulfonylureas increase the size of myocardial infarction; however, data in humans is scarce. This study evaluated the association between sulfonylurea use and infarct size in diabetes patients with ST-elevation myocardial infarction (STEMI). METHODS Consecutive STEMI patients admitted in Edmonton, Canada between 2006 and 2011 were enrolled in a regional prospective registry program. Patients with type 2 diabetes were identified from this group and the maximum recorded troponin I (max cTnI) within the first 48 h of chest pain onset was used as the primary outcome to quantify infarct size. The relationship between preadmission sulfonylurea use and max cTnI was assessed using multivariable linear regression to adjust for patient demographics, cardiovascular risk factors, clinical data on admission, ischemia time, reperfusion therapy and preadmission drugs. RESULTS There were 560 STEMI patients with type 2 diabetes; mean (standard deviation; SD) age was 63.3 (12.8) years, 395 (70.5%) were male, 216 (38.6%) received primary percutaneous intervention, and 211 (37.7%) received thrombolysis. The max cTnI was higher in 146 sulfonylurea users compared to 414 non-sulfonylurea users (mean (SD): 49.8 (74.3) ng/mL versus 39.9 (50.4) ng/mL, respectively; adjusted between-group difference: 12.9 ng/mL; 95% CI 0.3-25.5; p=0.044). CONCLUSION This study adds further evidence to the proposed causal relationship between sulfonylureas and adverse cardiovascular events by observing a significant difference in infarct size among type 2 diabetes patients presenting with STEMI. Clinicians should consider this association when prescribing sulfonylureas to manage patients with type 2 diabetes.
Collapse
|
17
|
Abdelmoneim AS, Eurich DT, Light PE, Senior PA, Seubert JM, Makowsky MJ, Simpson SH. Cardiovascular safety of sulphonylureas: over 40 years of continuous controversy without an answer. Diabetes Obes Metab 2015; 17:523-532. [PMID: 25711240 DOI: 10.1111/dom.12456] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/10/2015] [Accepted: 02/20/2015] [Indexed: 12/12/2022]
Abstract
More than 40 years after publication of the University Group Diabetes Program trial, the cardiovascular safety of sulphonylureas is still contentious. Although several hypotheses linking sulphonylureas to adverse cardiovascular effects exist, none provide conclusive evidence. Adding to the controversy, current clinical trials and observational studies provide inconsistent, and sometimes conflicting, evidence for the cardiovascular effects of sulphonylureas. Overall, observational evidence suggests that an increased risk of adverse cardiovascular outcomes is associated with sulphonylureas; however, these data may be subject to residual confounding and bias. Although evidence from randomized controlled trials has suggested a neutral effect, the majority of these studies were not specifically designed to assess the effect of sulphonylureas on adverse cardiovascular event risk. Current ongoing large clinical trials may provide some clarity on the cardiovascular safety of sulphonylureas, but the results are not expected for several years. With the continued uncertainties concerning the cardiovascular safety of all antidiabetic drugs, a clear answer with regard to sulphonylureas is warranted. The objectives of the present article were to provide an overview of the controversy surrounding sulphonylurea-related cardiovascular effects, to discuss the limitations of the current literature, and to provide recommendations for future studies aiming to elucidate the true relationship between sulphonylureas and adverse cardiovascular effects in people with type 2 diabetes.
Collapse
Affiliation(s)
- A S Abdelmoneim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - D T Eurich
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - P E Light
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - P A Senior
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - J M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - M J Makowsky
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - S H Simpson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Telinius N, Kim S, Pilegaard H, Pahle E, Nielsen J, Hjortdal V, Aalkjaer C, Boedtkjer DB. The contribution of K(+) channels to human thoracic duct contractility. Am J Physiol Heart Circ Physiol 2014; 307:H33-43. [PMID: 24778167 DOI: 10.1152/ajpheart.00921.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In smooth muscle cells, K(+) permeability is high, and this highly influences the resting membrane potential. Lymph propulsion is dependent on phasic contractions generated by smooth muscle cells of lymphatic vessels, and it is likely that K(+) channels play a critical role in regulating contractility in this tissue. The aim of this study was to investigate the contribution of distinct K(+) channels to human lymphatic vessel contractility. Thoracic ducts were harvested from 43 patients and mounted in a wire myograph for isometric force measurements or membrane potential recordings with an intracellular microelectrode. Using K(+) channel blockers and activators, we demonstrate a functional contribution to human lymphatic vessel contractility from all the major classes of K(+) channels [ATP-sensitive K(+) (KATP), Ca(2+)-activated K(+), inward rectifier K(+), and voltage-dependent K(+) channels], and this was confirmed at the mRNA level. Contraction amplitude, frequency, and baseline tension were altered depending on which channel was blocked or activated. Microelectrode impalements of lymphatic vessels determined an average resting membrane potential of -43.1 ± 3.7 mV. We observed that membrane potential changes of <5 mV could have large functional effects with contraction frequencies increasing threefold. In general, KATP channels appeared to be constitutively open since incubation with glibenclamide increased contraction frequency in spontaneously active vessels and depolarized and initiated contractions in previously quiescent vessels. The largest change in membrane voltage was observed with the KATP opener pinacidil, which caused 24 ± 3 mV hyperpolarization. We conclude that K(+) channels are important modulators of human lymphatic contractility.
Collapse
|
19
|
Zhou X, Teng B, Tilley S, Ledent C, Mustafa SJ. Metabolic hyperemia requires ATP-sensitive K+ channels and H2O2 but not adenosine in isolated mouse hearts. Am J Physiol Heart Circ Physiol 2014; 307:H1046-55. [PMID: 25108010 DOI: 10.1152/ajpheart.00421.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that adenosine-mediated H2O2 production and opening of ATP-sensitive K(+) (KATP) channels contributes to coronary reactive hyperemia. The present study aimed to investigate the roles of adenosine, H2O2, and KATP channels in coronary metabolic hyperemia (MH). Experiments were conducted on isolated Langendorff-perfused mouse hearts using combined pharmacological approaches with adenosine receptor (AR) knockout mice. MH was induced by electrical pacing at graded frequencies. Coronary flow increased linearly from 14.4 ± 1.2 to 20.6 ± 1.2 ml·min(-1)·g(-1) with an increase in heart rate from 400 to 650 beats/min in wild-type mice. Neither non-selective blockade of ARs by 8-(p-sulfophenyl)theophylline (8-SPT; 50 μM) nor selective A2AAR blockade by SCH-58261 (1 μM) or deletion affected MH, although resting flow and left ventricular developed pressure were reduced. Combined A2AAR and A2BAR blockade or deletion showed similar effects as 8-SPT. Inhibition of nitric oxide synthesis by N-nitro-l-arginine methyl ester (100 μM) or combined 8-SPT administration failed to reduce MH, although resting flows were reduced (by ∼20%). However, glibenclamide (KATP channel blocker, 5 μM) decreased not only resting flow (by ∼45%) and left ventricular developed pressure (by ∼36%) but also markedly reduced MH by ∼94%, resulting in cardiac contractile dysfunction. Scavenging of H2O2 by catalase (2,500 U/min) also decreased resting flow (by ∼16%) and MH (by ∼24%) but to a lesser extent than glibenclamide. Our results suggest that while adenosine modulates coronary flow under both resting and ischemic conditions, it is not required for MH. However, H2O2 and KATP channels are important local control mechanisms responsible for both coronary ischemic and metabolic vasodilation.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia
| | - Bunyen Teng
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia
| | - Stephen Tilley
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | | | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia;
| |
Collapse
|
20
|
|
21
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Martelli A, Manfroni G, Sabbatini P, Barreca ML, Testai L, Novelli M, Sabatini S, Massari S, Tabarrini O, Masiello P, Calderone V, Cecchetti V. 1,4-Benzothiazine ATP-Sensitive Potassium Channel Openers: Modifications at the C-2 and C-6 Positions. J Med Chem 2013; 56:4718-28. [DOI: 10.1021/jm400435a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alma Martelli
- Dipartimento di Farmacia, Università degli Studi di Pisa, Via Bonanno
6, 56126 Pisa, Italy
| | - Giuseppe Manfroni
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Paola Sabbatini
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Lara Testai
- Dipartimento di Farmacia, Università degli Studi di Pisa, Via Bonanno
6, 56126 Pisa, Italy
| | - Michela Novelli
- Dipartimento
di Ricerca Traslazionale
e delle Nuove Tecnologie in Medicina e Chirurgia, Università degli Studi di Pisa, Via Roma, 55, 56126 Pisa, Italy
| | - Stefano Sabatini
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Serena Massari
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Pellegrino Masiello
- Dipartimento
di Ricerca Traslazionale
e delle Nuove Tecnologie in Medicina e Chirurgia, Università degli Studi di Pisa, Via Roma, 55, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Dipartimento di Farmacia, Università degli Studi di Pisa, Via Bonanno
6, 56126 Pisa, Italy
| | - Violetta Cecchetti
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| |
Collapse
|
23
|
Park WS, Hong DH, Son YK, Kim MH, Jeong SH, Kim HK, Kim N, Han J. Alteration of ATP-sensitive K+ channels in rabbit aortic smooth muscle during left ventricular hypertrophy. Am J Physiol Cell Physiol 2012; 303:C170-8. [PMID: 22572849 DOI: 10.1152/ajpcell.00041.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the impairment of ATP-sensitive K(+) (K(ATP)) channels in aortic smooth muscle cells (ASMCs) from isoproterenol-induced hypertrophied rabbits. The amplitude of K(ATP) channels induced by the K(ATP) channel opener pinacidil (10 μM) was greater in ASMCs from control than from hypertrophied animals. In phenylephrine-preconstricted aortic rings, pinacidil induced relaxation in a dose-dependent manner. The dose-dependent curve was shifted to the right in the hypertrophied (EC(50): 17.80 ± 3.28 μM) compared with the control model (EC(50): 6.69 ± 2.40 μM). Although the level of Kir6.2 subtype expression did not differ between ASMCs from the control and hypertrophied models, those of the Kir6.1 and SUR2B subtypes were decreased in the hypertrophied model. Application of the calcitonin-gene related peptide (100 nM) and adenylyl cyclase activator forskolin (10 μM), which activates protein kinase A (PKA) and consequently K(ATP) channels, induced a K(ATP) current in both control and hypertrophied animals; however, the K(ATP) current amplitude did not differ between the two groups. Furthermore, PKA expression was not altered between the control and hypertrophied animals. These results suggests that the decreased K(ATP) current amplitude and K(ATP) channel-induced vasorelaxation in the hypertrophied animals were attributable to the reduction in K(ATP) channel expression but not to changes in the intracellular signaling mechanism that activates the K(ATP) current.
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca(2+) ion membrane gradients makes Ca(2+) signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca(2+) regulates many cellular ATP-consuming reactions such as muscle contraction, exocytosis, biosynthesis, and neuronal signaling. Thus, Ca(2+) becomes a logical candidate as a signaling molecule for modulating ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca(2+) gradient across their inner membrane, providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial Ca(2+) concentrations, identification of transport mechanisms, and the proximity of mitochondria to Ca(2+) release sites further supports the notion that Ca(2+) can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca(2+) plays a role in the regulation of ATP generation and potentially contributes to the orchestration of cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca(2+), which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca(2+) on mitochondrial energy conversion. Numerous noninvasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption, and workloads suggest significant effects of Ca(2+) on other elements of NADH generation as well as downstream elements of oxidative phosphorylation, including the F(1)F(O)-ATPase and the cytochrome chain. These other potential elements of Ca(2+) modification of mitochondrial energy conversion will be the focus of this review. Though most specific molecular mechanisms have yet to be elucidated, it is clear that Ca(2+) provides a balanced activation of mitochondrial energy metabolism that exceeds the alteration of dehydrogenases alone.
Collapse
Affiliation(s)
- Brian Glancy
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
25
|
Duncker DJ, Bache RJ, Merkus D. Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol 2012; 52:802-13. [DOI: 10.1016/j.yjmcc.2011.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/18/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
|
26
|
|
27
|
Laughlin MH, Korthuis RJ, Duncker DJ, Bache RJ. Control of Blood Flow to Cardiac and Skeletal Muscle During Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120116] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Xiao D, Longo LD, Zhang L. Role of KATP and L-type Ca2+ channel activities in regulation of ovine uterine vascular contractility: effect of pregnancy and chronic hypoxia. Am J Obstet Gynecol 2010; 203:596.e6-12. [PMID: 20817142 PMCID: PMC2993850 DOI: 10.1016/j.ajog.2010.07.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Our objective was to determine whether the pregnancy and high altitude long-term hypoxia-mediated changes in uterine artery contractility were regulated by K(ATP) and L-type Ca(2+) channel activities. STUDY DESIGN Uterine arteries were isolated from nonpregnant and near-term pregnant ewes that had been maintained at sea level (∼300 m) or exposed to high altitude (3801 m) for 110 days. Isometric tension was measured in a tissue bath. RESULTS Pregnancy increased diazoxide, but not verapamil-induced relaxations. Long-term hypoxia attenuated diazoxide-induced relaxations in near-term pregnant uterine arteries, but enhanced verapamil-induced relaxations in nonpregnant uterine arteries. Diazoxide decreased the maximal response (E(max)) of phenylephrine-induced contractions in near-term pregnant uterin arteries but not nonpregnant uterine arteries in normoxic sheep. In contrast, diazoxide had no effect on phenylephrine-induced E(max) in near-term pregnant uterine arteries but decreased it in nonpregnant uterine arteries in long-term hypoxia animals. Verapamil decreased the E(max) and pD(2) (-logEC(50)) of phenylephrine-induced contractions in both nonpregnant uterine arteries and near-term pregnant uterine arteries in normoxic and long-term hypoxia animals, except nonpregnant uterine arteries of normoxic animals in which verapamil showed no effect on the pD(2). CONCLUSION The results suggest that pregnancy selectively increases K(ATP), but not L-type Ca(2+) channel activity. Long-term hypoxia decreases the K(ATP) channel activity, which may contribute to the enhanced uterine vascular myogenic tone observed in pregnant sheep at high altitude hypoxia.
Collapse
Affiliation(s)
- Daliao Xiao
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | |
Collapse
|
29
|
Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90:799-829. [PMID: 20664073 DOI: 10.1152/physrev.00027.2009] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.
Collapse
Affiliation(s)
- Thomas P Flagg
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
30
|
Davies LM, Purves GI, Barrett-Jolley R, Dart C. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity. J Physiol 2010; 588:3255-66. [PMID: 20624795 DOI: 10.1113/jphysiol.2010.194779] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP) channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of K(ATP) channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 +/- 8.3 pA pF(1), n = 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 +/- 35.9 pA pF(1), n = 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell K(ATP) currents, indicating that a significant proportion of vascular K(ATP) channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 +/- 0.01 to 0.005 +/- 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type K(ATP) channel activity. Since caveolin expression is regulated by cellular free cholesterol and plasma levels of low-density lipoprotein (LDL), this interaction may have implications in both the physiological and pathophysiological control of vascular function.
Collapse
Affiliation(s)
- Lowri M Davies
- Biosciences Building, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
31
|
Tosaka R, Tosaka S, Cho S, Maekawa T, Hara T, Sumikawa K. Direct effect of mild hypothermia on the coronary vasodilation induced by an ATP-sensitive K channel opener, a nitric oxide donor and isoflurane in isolated rat hearts. J Anesth 2010; 24:564-8. [PMID: 20414687 DOI: 10.1007/s00540-010-0941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 03/19/2010] [Indexed: 11/29/2022]
Abstract
PURPOSE Deliberate mild hypothermia (MHT) is applied for cerebroprotection after cardiopulmonary resuscitation and during cardiac surgery. MHT has been shown to alter both contractility and relaxation of blood vessels in the brain. However, the effects of MHT on drug-induced vasodilation are not fully understood. The aim of this study was to clarify the effects of MHT on the coronary vasodilation induced by cromakalim (an ATP-sensitive K channel opener), S-nitroso acetyl-penicillamine (SNAP; a nitric oxide donor), and isoflurane in isolated rat hearts. METHODS Male SD rat hearts were isolated and perfused with Krebs-Henseleit buffer. Coronary flow was measured with the coronary perfusion pressure kept at 60 mmHg, and coronary vascular resistance (CVR) was calculated. After cardiac arrest was induced by tetrodotoxin, the hearts were allocated to one of three temperature groups: 37, 34, and 31 degrees C (n = 7 for each). All groups received 0.01, 0.1, and 1.0 microM of either cromakalim or SNAP or were exposed to isoflurane at 1MAC and 2MAC. Finally, 50 mM of adenosine was administered to obtain maximal coronary vasodilation. RESULTS CVR significantly increased after cardiac arrest, but did not change after the application of each temperature. Cromakalim, SNAP and isoflurane significantly decreased CVR in each temperature group. There were no significant differences in CVR among the three temperature groups with any of the test drugs. CONCLUSION These results indicate that cromakalim-, SNAP-, and isoflurane-induced coronary vasodilation are not affected by MHT.
Collapse
Affiliation(s)
- Reiko Tosaka
- Department of Anesthesiology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Purves GI, Kamishima T, Davies LM, Quayle JM, Dart C. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels. J Physiol 2009; 587:3639-50. [PMID: 19491242 DOI: 10.1113/jphysiol.2009.173534] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2'-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 +/- 4.7% inhibition (mean +/- S.E.M.; n = 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2'-O-Me-cAMP caused a transient 171.0 +/- 18.0 nM (n = 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2'-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow.
Collapse
Affiliation(s)
- Gregor I Purves
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | |
Collapse
|
33
|
Wan J, Jiang X, Bai J, Shen D, Wang T. The effects of E23K polymorphism in Kir6.2 subunit on insulin sensitivity in skeletal muscle cells by long-chain fatty acyl CoA. Biochem Biophys Res Commun 2009; 381:496-501. [PMID: 19233137 DOI: 10.1016/j.bbrc.2009.02.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 02/02/2023]
Abstract
ATP-sensitive K(+) (K(ATP)) channels couple intermediary metabolism to cellular activity. Genetic disruption of these channels impairs glucose homeostasis. Similar effects occur from a single-nucleotide polymorphism of the Kir6.2 subunit seen in greater than 50% of the human population, which causes a point mutation of Glu23 to lysine. This E23K variant shows higher susceptibility to diabetes due to mechanisms that are not fully understood. This study was designed to examine the dysregulation of E23K on insulin sensitivity in the presence of long-chain fatty acyl CoA (LC-CoA), a major active form of free fatty acids. Physiological concentrations of LC-CoA decreased insulin sensitivity in E23K-transfected L6 muscle cells by increasing the activation of negative regulators in the insulin signaling pathway. LC-CoA also reduced IRS-1 and Akt phosphorylation and glucose transport. This effect was not due to the expression of the E23K mutant on cell membrane. Our results indicate that E23K could impair insulin sensitivity, thus predisposing E23K carriers to insulin resistance.
Collapse
Affiliation(s)
- Jun Wan
- Institute of Cardiovascular Research, Renmin Hospital of Wuhan University, China.
| | | | | | | | | |
Collapse
|
34
|
Duncker DJ, de Beer VJ, Merkus D. Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction. Med Biol Eng Comput 2008; 46:485-97. [PMID: 18320249 PMCID: PMC2329737 DOI: 10.1007/s11517-008-0315-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/23/2008] [Indexed: 01/08/2023]
Abstract
The mechanism underlying the progressive deterioration of left ventricular (LV) dysfunction after myocardial infarction (MI) towards overt heart failure remains incompletely understood, but may involve impairments in coronary blood flow regulation within remodelled myocardium leading to intermittent myocardial ischemia. Blood flow to the remodelled myocardium is hampered as the coronary vasculature does not grow commensurate with the increase in LV mass and because extravascular compression of the coronary vasculature is increased. In addition to these factors, an increase in coronary vasomotor tone, secondary to neurohumoral activation and endothelial dysfunction, could also contribute to the impaired myocardial oxygen supply. Consequently, we explored, in a series of studies, the alterations in regulation of coronary resistance vessel tone in remodelled myocardium of swine with a 2 to 3-week-old MI. These studies indicate that myocardial oxygen balance is perturbed in remodelled myocardium, thereby forcing the myocardium to increase its oxygen extraction. These perturbations do not appear to be the result of blunted β-adrenergic or endothelial NO-mediated coronary vasodilator influences, and are opposed by an increased vasodilator influence through opening of KATP channels. Unexpectedly, we observed that despite increased circulating levels of noradrenaline, angiotensin II and endothelin-1, α-adrenergic tone remained negligible, while the coronary vasoconstrictor influences of endogenous endothelin and angiotensin II were virtually abolished. We conclude that, early after MI, perturbations in myocardial oxygen balance are observed in remodelled myocardium. However, adaptive alterations in coronary resistance vessel control, consisting of increased vasodilator influences in conjunction with blunted vasoconstrictor influences, act to minimize the impairments of myocardial oxygen balance.
Collapse
Affiliation(s)
- Dirk J Duncker
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
Abstract
Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (∼5-fold), as hemoglobin concentration and oxygen extraction (which is already 70–80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains capillary density at a level commensurate with the degree of exercise-induced physiological myocardial hypertrophy. Nevertheless, training alters the distribution of coronary vascular resistance so that more capillaries are recruited, resulting in an increase in the permeability-surface area product without a change in capillary numerical density. Maintenance of α- and ß-adrenergic tone in the presence of lower circulating catecholamine levels appears to be due to increased receptor responsiveness to adrenergic stimulation. Exercise training also alters local control of coronary resistance vessels. Thus arterioles exhibit increased myogenic tone, likely due to a calcium-dependent protein kinase C signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, training augments endothelium-dependent vasodilation throughout the coronary microcirculation. This enhanced responsiveness appears to result principally from an increased expression of nitric oxide (NO) synthase. Finally, physical conditioning decreases extravascular compressive forces at rest and at comparable levels of exercise, mainly because of a decrease in heart rate. Impedance to coronary inflow due to an epicardial coronary artery stenosis results in marked redistribution of myocardial blood flow during exercise away from the subendocardium towards the subepicardium. However, in contrast to the traditional view that myocardial ischemia causes maximal microvascular dilation, more recent studies have shown that the coronary microvessels retain some degree of vasodilator reserve during exercise-induced ischemia and remain responsive to vasoconstrictor stimuli. These observations have required reassessment of the principal sites of resistance to blood flow in the microcirculation. A significant fraction of resistance is located in small arteries that are outside the metabolic control of the myocardium but are sensitive to shear and nitrovasodilators. The coronary collateral system embodies a dynamic network of interarterial vessels that can undergo both long- and short-term adjustments that can modulate blood flow to the dependent myocardium. Long-term adjustments including recruitment and growth of collateral vessels in response to arterial occlusion are time dependent and determine the maximum blood flow rates available to the collateral-dependent vascular bed during exercise. Rapid short-term adjustments result from active vasomotor activity of the collateral vessels. Mature coronary collateral vessels are responsive to vasodilators such as nitroglycerin and atrial natriuretic peptide, and to vasoconstrictors such as vasopressin, angiotensin II, and the platelet products serotonin and thromboxane A2. During exercise, ß-adrenergic activity and endothelium-derived NO and prostanoids exert vasodilator influences on coronary collateral vessels. Importantly, alterations in collateral vasomotor tone, e.g., by exogenous vasopressin, inhibition of endogenous NO or prostanoid production, or increasing local adenosine production can modify collateral conductance, thereby influencing the blood supply to the dependent myocardium. In addition, vasomotor activity in the resistance vessels of the collateral perfused vascular bed can influence the volume and distribution of blood flow within the collateral zone. Finally, there is evidence that vasomotor control of resistance vessels in the normally perfused regions of collateralized hearts is altered, indicating that the vascular adaptations in hearts with a flow-limiting coronary obstruction occur at a global as well as a regional level. Exercise training does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. In addition to ischemia, the pressure gradient between vascular beds, which is a determinant of the flow rate and therefore the shear stress on the collateral vessel endothelium, may also be important in stimulating growth of collateral vessels.
Collapse
|
36
|
|
37
|
Farouque HMO, Meredith IT. Effect of adenosine triphosphate-sensitive potassium channel inhibitors on coronary metabolic vasodilation. Trends Cardiovasc Med 2007; 17:63-8. [PMID: 17292049 DOI: 10.1016/j.tcm.2006.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 12/11/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel is a distinct type of potassium ion channel that is found in the vascular smooth muscle cells of a variety of mammalian species, including humans. The activity of K(ATP) channels is determined by many factors including cellular ATP and ADP levels, thus providing a link between cellular metabolism and vascular tone through its effects on membrane potential. Experimental studies using inhibitors of K(ATP) channels, such as the sulfonuylurea class of drugs, indicate that these channels modulate coronary vascular tone including the hyperaemia induced by increased myocardial metabolism. This review examines the evidence linking K(ATP) channels to the regulation of coronary vascular tone and the potential clinical implications of pharmacologic therapies that act on K(ATP) channels.
Collapse
Affiliation(s)
- H M Omar Farouque
- Department of Cardiology, Austin Health, Heidelberg, Victoria, 3084, Australia.
| | | |
Collapse
|
38
|
Chen X, Patel K, Connors SG, Mendonca M, Welch WJ, Wilcox CS. Acute antihypertensive action of Tempol in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2007; 293:H3246-53. [PMID: 17933967 DOI: 10.1152/ajpheart.00957.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute intravenous Tempol reduces mean arterial pressure (MAP) and heart rate (HR) in spontaneously hypertensive rats. We investigated the hypothesis that the antihypertensive action depends on generation of hydrogen peroxide, activation of heme oxygenase, glutathione peroxidase or potassium conductances, nitric oxide synthase, and/or the peripheral or central sympathetic nervous systems (SNSs). Tempol caused dose-dependent reductions in MAP and HR (at 174 micromol/kg; DeltaMAP, -57+/- 3 mmHg; and DeltaHR, -50 +/- 4 beats/min). The antihypertensive response was unaffected by the infusion of a pegylated catalase or by the inhibition of catalase with 3-aminotriazole, inhibition of glutathione peroxidase with buthionine sulfoximine, inhibition of heme oxygenase with tin mesoporphyrin, or inhibition of large-conductance Ca(2+)-activated potassium channels with iberiotoxin. However, the antihypertensive response was significantly (P < 0.01) blunted by 48% by the activation of adenosine 5'-triphosphate-sensitive potassium (K(ATP)) channels with cromakalim during maintenance of blood pressure with norepinephrine and by 31% by the blockade of these channels with glibenclamide, by 40% by the blockade of nitric oxide synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME), and by 40% by the blockade of ganglionic autonomic neurotransmission with hexamethonium. L-NAME and hexamethonium were additive, but glibenclamide and hexamethonium were less than additive. The central administration of Tempol was ineffective. The acute antihypertensive action of Tempol depends on the independent effects of potentiation of nitric oxide and inhibition of the peripheral SNS that involves the activation of K(ATP) channels.
Collapse
Affiliation(s)
- Xueguang Chen
- Division of Nephrology and Hypertension, Georgetown University, 3800 Reservoir Road N.W., Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
39
|
Malester B, Tong X, Ghiu I, Kontogeorgis A, Gutstein DE, Xu J, Hendricks-Munoz KD, Coetzee WA. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium: effects on coronary flow and endothelin-1 secretion. FASEB J 2007; 21:2162-72. [PMID: 17341678 DOI: 10.1096/fj.06-7821com] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
K(ATP) channels are involved in regulating coronary function, but the contribution of endothelial K(ATP) channels remains largely uncharacterized. We generated a transgenic mouse model to specifically target endothelial K(ATP) channels by expressing a dominant negative Kir6.1 subunit only in the endothelium. These animals had no obvious overt phenotype and no early mortality. Histologically, the coronary endothelium in these animals was preserved. There was no evidence of increased susceptibility to ergonovine-induced coronary vasospasm. However, isolated hearts from these animals had a substantially elevated basal coronary perfusion pressure. The K(ATP) channel openers, adenosine and levcromakalim, decreased the perfusion pressure whereas the K(ATP) channel blocker glibenclamide failed to produce a vasoconstrictive response. The inducible endothelial nitric oxide pathway was intact, as evidenced by vasodilation caused by bradykinin. In contrast, basal endothelin-1 release was significantly elevated in the coronary effluent from these hearts. Treatment of mice with bosentan (endothelin-1 receptor antagonist) normalized the coronary perfusion pressure, demonstrating that the elevated endothelin-1 release was sufficient to account for the increased coronary perfusion pressure. Pharmacological blockade of K(ATP) channels led to elevated endothelin-1 levels in the coronary effluent of isolated mouse and rat hearts as well as enhanced endothelin-1 secretion from isolated human coronary endothelial cells. These data are consistent with a role for endothelial K(ATP) channels to control the coronary blood flow by modulating the release of the vasoconstrictor, endothelin-1.
Collapse
Affiliation(s)
- Brian Malester
- Department of Pediatrics, NYU School of Medicine, 560 First Ave., New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sawmiller DR, Ashtari M, Urueta H, Leschinsky M, Henning RJ. Mechanisms of vasoactive intestinal peptide-elicited coronary vasodilation in the isolated perfused rat heart. Neuropeptides 2006; 40:349-55. [PMID: 17030371 DOI: 10.1016/j.npep.2006.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 07/24/2006] [Accepted: 07/26/2006] [Indexed: 11/22/2022]
Abstract
The present study investigated the potential role of vasoactive intestinal peptide (VIP) receptors, VPAC1 and VPAC2, in VIP-elicited coronary vasodilation of the isolated perfused rat heart. Additional studies determined the role of ATP-sensitive (K(ATP)) and voltage-gated K(+) (K(V)) channels in the VIP-elicited coronary vasodilation. Both the selective VPAC1 agonist, K15,R16,L27VIPl-7GRF8-27, and the selective VPAC2 agonist, RO25-1553, decreased coronary vascular resistance (CVR) in a dose-dependent manner, with EC(50) values of 1.67x10(-9)M and 7.11x10(-9)M, respectively (VPAC1 vs VPAC2 agonist, P<0.05). K15,R16,L27VIP1-7GRF8-27 and RO25-1553 maximally reduced CVR by -42+/-4% and -39+/-6% at 1x10(-8) and 3x10(-8)M, respectively. VIP at 1x10(-10)M decreased CVR by -14+/-2% in the absence (vehicle), by -11+/-3% in the presence of the nonselective VIP receptor antagonist VIP10-28 (1x10(-7)M; P>0.05 vs. vehicle) and by only -4+/-2% in the presence of the selective VPAC2 receptor antagonist PACAP6-38 (1x10(-7)M; P<0.05 vs. vehicle). In additional studies, VIP at 1x10(-10)M decreased CVR by -22+/-1% in the absence (control) and by only -10+/-2% in the presence of the nonselective K(+) channel blocker tetrabutylammonium (3x10(-4)M; P<0.05 vs. control). VIP reduced CVR by -4+/-1% in the presence of the K(ATP) channel blocker glibenclamide (3x10(-6)M; P<0.05 vs control) and by -28+/-2% in the presence of the K(V) channel blocker 4-aminopyridine (3x10(-4)M; P>0.05 vs control). Thus, selective VPAC1 and VPAC2 receptor activation in the coronary circulation produces vasodilation and the VIP-elicited coronary vasodilation involves activation of VPAC2 receptors and K(ATP) but not K(V) channels. In addition, VIP10-28 does not effectively block coronary vascular VIP receptors.
Collapse
MESH Headings
- Animals
- Coronary Circulation/drug effects
- Coronary Vessels/drug effects
- Heart/drug effects
- In Vitro Techniques
- KATP Channels
- Male
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Inwardly Rectifying/drug effects
- Potassium Channels, Voltage-Gated/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
- Receptors, Vasoactive Intestinal Peptide, Type II/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/agonists
- Receptors, Vasoactive Intestinal Polypeptide, Type I/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Vasoactive Intestinal Peptide/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Darrell R Sawmiller
- Department of Internal Medicine/Cardiology, University of South Florida Health Science Center, Tampa, FL 33612-4799, USA.
| | | | | | | | | |
Collapse
|
41
|
Takeda S, Komaru T, Takahashi K, Sato K, Kanatsuka H, Kokusho Y, Shirato K, Shimokawa H. Beating myocardium counteracts myogenic tone of coronary microvessels: involvement of ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol 2006; 291:H3050-7. [PMID: 16861700 DOI: 10.1152/ajpheart.00039.2006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic tone is intrinsic to vascular tissue and plays an important role in determining basal coronary resistance. However, the effect of the beating heart on myogenic tone is unknown. We investigated the effects of myocardium-derived vasoactive factors on the myogenic tone of coronary microvessels in the resting condition and during increased metabolism. Pressurized isolated coronary vessels (detector vessel, DV) of rabbits (n = 33, maximal inner diameter 201 +/- 8 microm) were gently placed on beating hearts of anesthetized dogs and observed with an intravital microscope equipped with a floating objective. To shut off the myocardium-derived vasoactive signals, we placed plastic film between DV and the heart. The intravascular pressure was changed from 120 to 60 cmH(2)O, and pressure-diameter curves were obtained with and without the contact of DV and the myocardium. The direct contact shifted the pressure-diameter curve upward (P < 0.05 vs. without contact), and myogenic tone was reduced by approximately 40%. When endothelium of DV was denuded, the shift persisted, but the degree of shift was reduced to 10% (P < 0.05 vs. with endothelium). The shift was abolished by glibenclamide, an ATP-sensitive potassium (K(ATP)) channel blocker. A similar upward shift was induced by rapid pacing, but the shift was not blocked by glibenclamide. We conclude that the beating myocardium counteracts myogenic tone by releasing transferable vasoactive signals that affect the endothelium and the vascular smooth muscle, and that the signals are solely mediated by the activation of K(ATP) channels, unlike the rapid pacing-induced vasoactive factors.
Collapse
Affiliation(s)
- Satoru Takeda
- Dept. of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Park WS, Han J, Kim N, Youm JB, Joo H, Kim HK, Ko JH, Earm YE. Endothelin-1 inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase C. J Cardiovasc Pharmacol 2006; 46:681-9. [PMID: 16220076 DOI: 10.1097/01.fjc.0000182846.08357.ed] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We studied inward rectifier K+ (Kir) channels in smooth muscle cells isolated from rabbit coronary arteries. In cells from small- (<100 microm, SCASMC) and medium-diameter (100 approximately 200 microm, MCASMC) coronary arteries, Kir currents were clearly identified (11.2 +/- 0.6 and 4.2 +/- 0.6 pA pF at -140 mV in SCASMC and MCASMC, respectively) that were inhibited by Ba(2+) (50 microm). By contrast, a very low Kir current density (1.6 +/- 0.4 pA pF) was detected in cells from large-diameter coronary arteries (>200 microm, LCASMC). The presence of Kir2.1 protein was confirmed in SCASMC in a Western blot assay. Endothelin-1 (ET-1) inhibited Kir currents in a dose-dependent manner. The inhibition of Kir currents by ET-1 was abolished by pretreatment with the protein kinase C (PKC) inhibitor staurosporine (100 nM) or GF 109203X (1 microm). The PKC activators phorbol 12,13-dibutyrate (PDBu) and 1-oleoyl-2-acetyl-sn-glycerol (OAG) reduced Kir currents. The ETA-receptor inhibitor BQ-123 prevented the ET-1-induced inhibition of Kir currents. The amplitudes of the ATP-dependent K+ (KATP), Ca(2+)-activated K+ (BKCa), and voltage-dependent K+ (KV) currents, and effects of ET-1 on these channels did not differ between SCASMC and LCASMC. From these results, we conclude that Kir channels are expressed at a higher density in SCASMC than in larger arteries and that the Kir channel activity is negatively regulated by the stimulation of ETA-receptors via the PKC pathway.
Collapse
MESH Headings
- Animals
- Barium/pharmacology
- Cells, Cultured
- Coronary Vessels/cytology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Endothelin-1/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Patch-Clamp Techniques
- Potassium Channels, Inwardly Rectifying/antagonists & inhibitors
- Protein Kinase C/metabolism
- Rabbits
Collapse
Affiliation(s)
- Won Sun Park
- Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics, College of Medicine, Biohealth Products Research Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Xiong C, Zheng F, Wan J, Zhou X, Yin Z, Sun X. The E23K polymorphism in Kir6.2 gene and coronary heart disease. Clin Chim Acta 2006; 367:93-7. [PMID: 16455067 DOI: 10.1016/j.cca.2005.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/25/2005] [Accepted: 11/26/2005] [Indexed: 02/02/2023]
Abstract
BACKGROUND The G to A mutation in the Kir 6.2, the ATP-sensitive potassium channel subunit, resulted a glutamate (E) to lysine (K) substitution at codon 23, and the A allele was shown to have a relationship with high risk to type 2 diabetes in previous study. Their role in coronary heart disease (CHD) has not been evaluated. We hypothesized that the polymorphism would be associated with increased susceptibility to CHD. METHODS The E23K gene polymorphism of Kir6.2 gene was analyzed by PCR-restriction site polymorphism (PCR-RSP) methods in 101 controls and 119 CHD patients. Serum lipids and C reactive protein concentrations were measured in all subjects. RESULTS Among the CHD patients, the frequency of the G allele was higher (63.4% vs. 56.9%, P>0.05) and the frequency of the A allele was lower (36.6% vs. 43.1%, P>0.05) than among controls. No significant differences were found in allele frequencies between CHD and controls (P>0.05), but there were significant differences in GG and combined (GA+AA) genotypes frequencies (42.0% vs. 28.7%, and 58.0% vs. 71.3%, P<0.050). CONCLUSIONS The E23K gene polymorphism in Kir6.2 gene appeared to be related to high susceptibility to CHD.
Collapse
Affiliation(s)
- Chenling Xiong
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | | | | | | | | | | |
Collapse
|
44
|
Sun Park W, Kyoung Son Y, Kim N, Boum Youm J, Joo H, Warda M, Ko JH, Earm YE, Han J. The protein kinase A inhibitor, H-89, directly inhibits KATP and Kir channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 2006; 340:1104-10. [PMID: 16403438 DOI: 10.1016/j.bbrc.2005.12.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/19/2005] [Indexed: 11/25/2022]
Abstract
The effects of the protein kinase A (PKA) inhibitor H-89 on ATP-sensitive K+ (KATP) and inward rectifier K+ (Kir) currents were examined in rabbit coronary arterial smooth muscle cells using the patch clamp technique. The H-89, in a dose-dependent manner, inhibited KATP and Kir currents with apparent Kd values of 1.19+/-0.18 and 3.78+/-0.37 microM, respectively. H-85, which is considered as an inactive form of H-89, inhibited KATP and Kir currents, similar to the result of H-89. KATP and Kir currents were not affected by either Rp-8-CPT-cAMPs, which is a membrane-permeable selective PKA inhibitor, or KT 5720, which is also known as a PKA inhibitor. Also, these two drugs did not significantly alter the effects of H-89 on the KATP and Kir currents. These results suggest that H-89 directly inhibits the KATP and Kir currents of rabbit coronary arterial smooth muscle cells independently of PKA inhibition.
Collapse
Affiliation(s)
- Won Sun Park
- Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics, College of Medicine, Biohealth Products Research Center, Cardiovascular and Metabolic disease Center, Inje University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maruyama I, Tomiyama Y, Maruyama K, Ojima K, Kobayashi K, Kobayashi M, Yamazaki Y, Kojima M, Shibata N. Effects of mitiglinide and sulfonylureas in isolated canine coronary arteries and perfused rat hearts. Eur J Pharmacol 2006; 531:194-200. [PMID: 16443212 DOI: 10.1016/j.ejphar.2005.11.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/23/2005] [Accepted: 11/28/2005] [Indexed: 11/23/2022]
Abstract
Our aim was to compare the cardiovascular effects of mitiglinide ((+)-monocalcium bis[(2S,3a,7a-cis)-alpha-benzylhexahydro-gamma-oxo-2-isoindolinebutyrate] dehydrate), a novel hypoglycemic drug, with those of glibenclamide and glimepiride, two sulfonylurea drugs. In isolated canine coronary arteries (organ-bath method), mitiglinide, glibenclamide, and glimepiride competitively antagonized the cromakalim-induced relaxation (pA2 values, 5.29, 7.36, and 7.49, respectively). In isolated perfused rat hearts (Langendorff method) subjected to a 12-min global ischemia followed by a 30-min reperfusion, mitiglinide (3 x 10(-6) mol/l) altered neither the change in coronary perfusion flow nor the alterations in cardiac functions associated with reperfusion. In contrast, both glibenclamide (3 x 10(-8) mol/l) and glimepiride (1 x 10(-7) mol/l) significantly reduced coronary perfusion flow after reperfusion. Moreover, at 30 min of reperfusion: (1) glibenclamide induced a significant increase in left ventricular end-diastolic pressure and significant decreases in left ventricular systolic pressure, left ventricular developed pressure, and the maximum first derivative of left ventricular pressure, while (2) glimepiride induced significant decreases in left ventricular developed pressure and the maximum first derivative of left ventricular pressure. Thus, the cardiovascular effects of mitiglinide (at least, in these rat and dog preparations) may be weaker than those of glibenclamide and glimepiride.
Collapse
Affiliation(s)
- Itaru Maruyama
- Research and Development Division, Kissei Pharmaceutical Co. Ltd., 4365-1, Kashiwabara, Hotaka, Azumino, Nagano, 399-8304, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zatta AJ, Headrick JP. Mediators of coronary reactive hyperaemia in isolated mouse heart. Br J Pharmacol 2005; 144:576-87. [PMID: 15655499 PMCID: PMC1576037 DOI: 10.1038/sj.bjp.0706099] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Mechanisms regulating coronary tone under basal conditions and during reactive hyperaemia following transient ischaemia were assessed in isolated mouse hearts. 2. Blockade of NO-synthase (50 muM L-NAME), K(ATP) channels (5 muM glibenclamide), A(2A) adenosine receptors (A(2A)ARs; 100 nM SCH58261), prostanoid synthesis (100 muM indomethacin), and EDHF (100 nM apamin+100 nM charybdotoxin) all reduced basal flow approximately 40%. Effects of L-NAME, glibenclamide, and apamin+charybdotoxin were additive, whereas coadministration of SCH58261 and indomethacin with these inhibitors failed to further limit flow. 3. Substantial hyperaemia was observed after 5-40 s occlusions, with flow increasing to a peak of 48+/-1 ml min(-1) g(-1). Glibenclamide most effectively inhibited peak flows (up to 50%) while L-NAME was ineffective. 4. With longer occlusions (20-40 s), glibenclamide alone was increasingly ineffective, reducing peak flows by approximately 15% after 20 s occlusion, and not altering peak flow after 40 s occlusion. However, cotreatment with L-NAME+glibenclamide inhibited peak hyperaemia by 70 and 25% following 20 and 40 s occlusions, respectively. 5. In contrast to peak flow changes, sustained dilation and flow repayment over 60 s was almost entirely K(ATP) channel and NO dependent (each contributing equally) with all occlusion durations. 6. Antagonism of A(2A)ARs with SCH58261 reduced hyperaemia 20-30% whereas inhibition of prostanoid synthesis was ineffective. Effects of A(2A)AR antagonism were absent in hearts treated with L-NAME and glibenclamide, supporting NO and K(ATP)-channel-dependent effects of A(2A)ARs. 7. EDHF inhibition alone exerted minor effects on hyperaemia and only with longer occlusions. However, residual hyperaemia after 40 s occlusion in hearts treated with L-NAME+glibenclamide+SCH58261+indomethacin was abrogated by cotreatment with apamin+charybdotoxin. 8. Data support a primary role for K(ATP) channels and NO in mediating sustained dilation after coronary occlusion. While K(ATP) channels (and not NO) are also important in mediating initial peak flow adjustments after brief 5-10 s occlusions, their contribution declines with longer 20-40 s occlusions. Intrinsic activation of A(2A)ARs is important in triggering K(ATP) channel/NO-dependent hyperaemia. Synergistic effects of combined inhibitors implicate interplay between mediators, with compensatory changes occurring in K(ATP) channel, NO, and/or EDHF responses when one is individually blocked.
Collapse
Affiliation(s)
- Amanda J Zatta
- Heart Foundation Research Centre, School of Health Science, Griffith University Gold Coast Campus, Southport, QLD 4217, Australia
| | - John P Headrick
- Heart Foundation Research Centre, School of Health Science, Griffith University Gold Coast Campus, Southport, QLD 4217, Australia
- Author for correspondence:
| |
Collapse
|
47
|
Park WS, Ko EA, Han J, Kim N, Earm YE. Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells. J Cardiovasc Pharmacol 2005; 45:99-108. [PMID: 15654257 DOI: 10.1097/01.fjc.0000150442.49051.f7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the effects of the vasoconstrictor endothelin-1 (ET-1) on the whole-cell ATP-sensitive K+ (KATP) currents of smooth muscle cells that were isolated enzymatically from rabbit coronary artery (CASMCs) and pulmonary artery (PASMCs). The size of the KATP current did not differ significantly between CASMCs and PASMCs. ET-1 reduced the KATP current in a concentration-dependent manner, and this inhibition was greater in PASMCs than in CASMCs (half-inhibition values of 12.20 nM and 1.98 nM in CASMCs and PASMCs, respectively). However, the level of inhibition induced by other vasoconstrictors (angiotensin II, norepinephrine, and serotonin) were not significantly different between CASMCs and PASMCs. Pretreatment with the protein kinase C (PKC) inhibitors staurosporine (100 nM) and GF 109203X (1 microM) prevented ET-1-induced inhibition of the KATP current in both arterial smooth muscle cell preparations. The PKC activators phorbol-12,13-dibutyrate (PDBu) and 1-olelyl-2-acetyl-sn-glycerol (OAG) reduced the KATP current in dose-dependent manner. Although the numbers of ET receptors were not significantly different between the 2 arterial smooth muscle cell preparations, the effects of PDBu and OAG were greater on PASMCs. ET-1-induced inhibition of the KATP current was unaffected by the PKA inhibitor Rp-cAMPs (100 microM) and PKA inhibitory peptide (5 microM).
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology and National Research Laboratory for Cellular Signaling, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
48
|
Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC PHYSIOLOGY 2005; 5:1. [PMID: 15647111 PMCID: PMC546210 DOI: 10.1186/1472-6793-5-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 01/12/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND Electrophysiological data suggest that cardiac KATP channels consist of Kir6.2 and SUR2A subunits, but the distribution of these (and other KATP channel subunits) is poorly defined. We examined the localization of each of the KATP channel subunits in the mouse and rat heart. RESULTS Immunohistochemistry of cardiac cryosections demonstrate Kir6.1 protein to be expressed in ventricular myocytes, as well as in the smooth muscle and endothelial cells of coronary resistance vessels. Endothelial capillaries also stained positive for Kir6.1 protein. Kir6.2 protein expression was found predominantly in ventricular myocytes and also in endothelial cells, but not in smooth muscle cells. SUR1 subunits are strongly expressed at the sarcolemmal surface of ventricular myocytes (but not in the coronary vasculature), whereas SUR2 protein was found to be localized predominantly in cardiac myocytes and coronary vessels (mostly in smaller vessels). Immunocytochemistry of isolated ventricular myocytes shows co-localization of Kir6.2 and SUR2 proteins in a striated sarcomeric pattern, suggesting t-tubular expression of these proteins. Both Kir6.1 and SUR1 subunits were found to express strongly at the sarcolemma. The role(s) of these subunits in cardiomyocytes remain to be defined and may require a reassessment of the molecular nature of ventricular KATP channels. CONCLUSIONS Collectively, our data demonstrate unique cellular and subcellular KATP channel subunit expression patterns in the heart. These results suggest distinct roles for KATP channel subunits in diverse cardiac structures.
Collapse
|
49
|
Abstract
At rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption. Despite intensive research the local feedback control mechanism remains unknown. Physiological local metabolic control is not due to adenosine, ATP-dependent K(+) channels, nitric oxide, prostaglandins, or inhibition of endothelin. Adenosine and ATP-dependent K(+) channels are involved in pathophysiological ischemic or hypoxic coronary dilation and myocardial protection during ischemia. Sympathetic beta-adrenoceptor-mediated feedforward arteriolar vasodilation contributes approximately 25% of the increase in coronary blood flow during exercise. Sympathetic alpha-adrenoceptor-mediated vasoconstriction in medium and large coronary arteries during exercise helps maintain blood flow to the vulnerable subendocardium when cardiac contractility, heart rate, and myocardial oxygen consumption are high. In conclusion, several potential mediators of local metabolic control of the coronary circulation have been evaluated without success. More research is needed.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|
50
|
Shivkumar K, Valderrabano M. Use of potassium channel openers for pharmacologic modulation of cardiac excitability. J Cardiovasc Electrophysiol 2004; 15:821-3. [PMID: 15250870 DOI: 10.1046/j.1540-8167.2004.04324.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|