1
|
Zhu T, Liu Y, Du J, Lei C, Wang C, Li S, Song H. Effects of short-term salt exposure on gill damage, serum components and gene expression patterns in juvenile Largemouth bass (Micropterus salmoides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101365. [PMID: 39603077 DOI: 10.1016/j.cbd.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The Largemouth bass (Micropterus salmoides; LMB) is a freshwater fish that plays a significant role in aquaculture, and its cultural base is expanding into inland saline water areas. To study the effect of short-term salt exposure on LMB, fish with an average body weight of 11.69 (±1.82) g were cultured for 14 days at three different salt concentrations (0 ‰, 6 ‰, and 12 ‰). After 14 days, the second gill arch was collected for tissue sectioning and transcriptome sequencing, while serum samples were collected to analyze serum components. The results showed that the mortality rate in the 0 ‰ and 6 ‰ groups was 0 %, whereas the mortality rate in the 12 ‰ group was 62 %. In the gill tissue sections, no apparent damage was observed in the 0 ‰ and 6 ‰ groups. However, in the 12 ‰ group, the secondary lamellae became shorter, thicker, and exhibited a disordered arrangement. The serum component test results showed that osmolality and K+ significantly increased in the 12 ‰ group, while Na+, K+, and Cl- concentrations showed slight increases, but the differences were not significant. Comparative transcriptome analysis revealed that, along the salinity gradient, gene expression exhibited five profiles. Genes related to ion transport and immunity were highly expressed in the 6 ‰ and 12 ‰ groups, while genes associated with biosynthesis and ATP production showed decreased expression levels as salinity increased. Notably, seven solute carrier genes, two Na+/K+-ATPase genes, and two insulin-like growth factor genes were significantly highly expressed in the 12 ‰ salinity group, playing important roles in the transmembrane transport of ions. Based on the results, the LMB can acclimatize to a salt concentration of at least 6 ‰. However, exposure to 12 ‰ salinity can lead to a series of adverse effects, including organ damage, reduced energy metabolism efficiency, and disruption of ion homeostasis.
Collapse
Affiliation(s)
- Tao Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinxing Du
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Caixia Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chenghui Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shengjie Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongmei Song
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
2
|
Gibson JS, Rees DC. Emerging drug targets for sickle cell disease: shedding light on new knowledge and advances at the molecular level. Expert Opin Ther Targets 2023; 27:133-149. [PMID: 36803179 DOI: 10.1080/14728222.2023.2179484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION In sickle cell disease (SCD), a single amino acid substitution at β6 of the hemoglobin (Hb) chain replaces glutamate with valine, forming HbS instead of the normal adult HbA. Loss of a negative charge, and the conformational change in deoxygenated HbS molecules, enables formation of HbS polymers. These not only distort red cell morphology but also have other profound effects so that this simple etiology belies a complex pathogenesis with multiple complications. Although SCD represents a common severe inherited disorder with life-long consequences, approved treatments remain inadequate. Hydroxyurea is currently the most effective, with a handful of newer treatments, but there remains a real need for novel, efficacious therapies. AREAS COVERED This review summarizes important early events in pathogenesis to highlight key targets for novel treatments. EXPERT OPINION A thorough understanding of early events in pathogenesis closely associated with the presence of HbS is the logical starting point for identification of new targets rather than concentrating on more downstream effects. We discuss ways of reducing HbS levels, reducing the impact of HbS polymers, and of membrane events perturbing cell function, and suggest using the unique permeability of sickle cells to target drugs specifically into those more severely compromised.
Collapse
Affiliation(s)
- John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, UK
| |
Collapse
|
3
|
Rivera A, Nasburg JA, Shim H, Shmukler BE, Kitten J, Wohlgemuth JG, Dlott JS, Snyder LM, Brugnara C, Wulff H, Alper SL. The erythroid K-Cl cotransport inhibitor [(dihydroindenyl)oxy]acetic acid blocks erythroid Ca 2+-activated K + channel KCNN4. Am J Physiol Cell Physiol 2022; 323:C694-C705. [PMID: 35848620 PMCID: PMC9448282 DOI: 10.1152/ajpcell.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Red cell volume is a major determinant of HbS concentration in sickle cell disease. Cellular deoxy-HbS concentration determines the delay time, the interval between HbS deoxygenation and deoxy-HbS polymerization. Major membrane transporter protein determinants of sickle red cell volume include the SLC12/KCC K-Cl cotransporters KCC3/SLC12A6 and KCC1/SLC12A4, and the KCNN4/KCa3.1 Ca2+-activated K+ channel (Gardos channel). Among standard inhibitors of KCC-mediated K-Cl cotransport, only [(dihydroindenyl)oxy]acetic acid (DIOA) has been reported to lack inhibitory activity against the related bumetanide-sensitive erythroid Na-K-2Cl cotransporter NKCC1/SLC12A2. DIOA has been often used to inhibit K-Cl cotransport when studying the expression and regulation of other K+ transporters and K+ channels. We report here that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also abrogate activity of the KCNN4/KCa3.1 Gardos channel in human and mouse red cells and in human sickle red cells. DIOA inhibition of A23187-stimulated erythroid K+ uptake (Gardos channel activity) was chloride-independent and persisted in mouse red cells genetically devoid of the principal K-Cl cotransporters KCC3 and KCC1. DIOA also inhibited YODA1-stimulated, chloride-independent erythroid K+ uptake. In contrast, DIOA exhibited no inhibitory effect on K+ influx into A23187-treated red cells of Kcnn4-/- mice. DIOA inhibition of human KCa3.1 was validated (IC50 42 µM) by whole cell patch clamp in HEK-293 cells. RosettaLigand docking experiments identified a potential binding site for DIOA in the fenestration region of human KCa3.1. We conclude that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also block the KCNN4/KCa3.1 Gardos channel in normal and sickle red cells.
Collapse
Affiliation(s)
- Alicia Rivera
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Joshua A Nasburg
- Department of Pharmacology, School of Medicine, University of California, Davis, California
| | - Heesung Shim
- Department of Pharmacology, School of Medicine, University of California, Davis, California
| | - Boris E Shmukler
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Zhao Y, Shen J, Wang Q, Ruiz Munevar MJ, Vidossich P, De Vivo M, Zhou M, Cao E. Structure of the human cation-chloride cotransport KCC1 in an outward-open state. Proc Natl Acad Sci U S A 2022; 119:e2109083119. [PMID: 35759661 PMCID: PMC9271165 DOI: 10.1073/pnas.2109083119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Cation-chloride cotransporters (CCCs) catalyze electroneutral symport of Cl- with Na+ and/or K+ across membranes. CCCs are fundamental in cell volume homeostasis, transepithelia ion movement, maintenance of intracellular Cl- concentration, and neuronal excitability. Here, we present a cryoelectron microscopy structure of human K+-Cl- cotransporter (KCC)1 bound with the VU0463271 inhibitor in an outward-open state. In contrast to many other amino acid-polyamine-organocation transporter cousins, our first outward-open CCC structure reveals that opening the KCC1 extracellular ion permeation path does not involve hinge-bending motions of the transmembrane (TM) 1 and TM6 half-helices. Instead, rocking of TM3 and TM8, together with displacements of TM4, TM9, and a conserved intracellular loop 1 helix, underlie alternate opening and closing of extracellular and cytoplasmic vestibules. We show that KCC1 intriguingly exists in one of two distinct dimeric states via different intersubunit interfaces. Our studies provide a blueprint for understanding the mechanisms of CCCs and their inhibition by small molecule compounds.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Jiemin Shen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Qinzhe Wang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | | | | | - Marco De Vivo
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
5
|
Shmukler BE, Rivera A, Nishimura K, Hsu A, Wohlgemuth JG, Dlott JS, Michael Snyder L, Brugnara C, Alper SL. Erythroid-specific inactivation of Slc12a6/Kcc3 by EpoR promoter-driven Cre expression reduces K-Cl cotransport activity in mouse erythrocytes. Physiol Rep 2022; 10:e15186. [PMID: 35274823 PMCID: PMC8915159 DOI: 10.14814/phy2.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Investigation of erythrocytes from spontaneous or engineered germ‐line mutant mice has been instrumental in characterizing the physiological functions of components of the red cell cytoskeleton and membrane. However, the red blood cell expresses some proteins whose germline loss‐of‐function is embryonic‐lethal, perinatal‐lethal, or confers reduced post‐weaning viability. Promoter regions of erythroid‐specific genes have been used to engineer erythroid‐specific expression of Cre recombinase. Through breeding with mice carrying appropriately spaced insertions of loxP sequences, generation of erythroid‐specific knockouts has been carried out for signaling enzymes, transcription factors, peptide hormones, and single transmembrane span signaling receptors. We report here the use of Cre recombinase expression driven by the erythropoietin receptor (EpoR) promoter to generate EpoR‐Cre;Kcc3f/f mice, designed to express erythroid‐specific knockout of the KCC3 K‐Cl cotransporter encoded by Kcc3/Slc12A6. We confirm KCC3 as the predominant K‐Cl cotransporter of adult mouse red cells in mice with better viability than previously exhibited by Kcc3−/− germline knockouts. We demonstrate roughly proportionate preservation of K‐Cl stimulation by hypotonicity, staurosporine, and urea in the context of reduced, but not abrogated, K‐Cl function in EpoR‐Cre;Kcc3f/f mice. We also report functional evidence suggesting incomplete recombinase‐mediated excision of the Kcc3 gene in adult erythroid tissues.
Collapse
Affiliation(s)
- Boris E Shmukler
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Alicia Rivera
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Katherine Nishimura
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ann Hsu
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L Alper
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lu DCY, Hannemann A, Gibson JS. Does Plasma Inhibit the Activity of KCl Cotransport in Red Cells From LK Sheep? Front Physiol 2022; 13:904280. [PMID: 35685289 PMCID: PMC9171837 DOI: 10.3389/fphys.2022.904280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Red cells from LK sheep represent an important paradigm for control of KCl cotransport activity, as well as being important to sheep erythroid function. A previous report (Godart et al., 1997) suggested that autologous plasma markedly inhibits red cell KCC activity and identified the presence of the bicarbonate/CO2 buffer system as the probable cause. Findings were restricted, however, to red cells from patients with sickle cell disease (SCD) swollen anisotonically and carried out at a very high O2 tension (c.700 mmHg). It was therefore important to investigate the generality of the effect described and whether it was also relevant to the two main stimuli for KCC activity encountered most often by circulating red cells in vivo - low pH in active muscle beds during exercise and high urea concentrations in the renal medulla during antidiuresis. Results confirm that inhibition was significant in response to anisotonic swelling with KCC activity in MOPS-buffered saline (MBS) vs. bicarbonate-buffered saline (BBS) and in MBS vs. plasma both reduced (by about 25 and 50%, respectively). By contrast, however, inhibition was absent at low pH and in high concentrations of urea. These findings suggest therefore that red cell KCC activity represents an important membrane permeability in vivo in red cells suspended in plasma. They are relevant, in particular, to sheep red cells, and may also be important by extension to those of other species and to the abnormal red cells found in human patients with SCD.
Collapse
Affiliation(s)
- David C-Y Lu
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anke Hannemann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
PIEZO1 and the mechanism of the long circulatory longevity of human red blood cells. PLoS Comput Biol 2021; 17:e1008496. [PMID: 33690597 PMCID: PMC7946313 DOI: 10.1371/journal.pcbi.1008496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/06/2020] [Indexed: 01/16/2023] Open
Abstract
Human red blood cells (RBCs) have a circulatory lifespan of about four months. Under constant oxidative and mechanical stress, but devoid of organelles and deprived of biosynthetic capacity for protein renewal, RBCs undergo substantial homeostatic changes, progressive densification followed by late density reversal among others, changes assumed to have been harnessed by evolution to sustain the rheological competence of the RBCs for as long as possible. The unknown mechanisms by which this is achieved are the subject of this investigation. Each RBC traverses capillaries between 1000 and 2000 times per day, roughly one transit per minute. A dedicated Lifespan model of RBC homeostasis was developed as an extension of the RCM introduced in the previous paper to explore the cumulative patterns predicted for repetitive capillary transits over a standardized lifespan period of 120 days, using experimental data to constrain the range of acceptable model outcomes. Capillary transits were simulated by periods of elevated cell/medium volume ratios and by transient deformation-induced permeability changes attributed to PIEZO1 channel mediation as outlined in the previous paper. The first unexpected finding was that quantal density changes generated during single capillary transits cease accumulating after a few days and cannot account for the observed progressive densification of RBCs on their own, thus ruling out the quantal hypothesis. The second unexpected finding was that the documented patterns of RBC densification and late reversal could only be emulated by the implementation of a strict time-course of decay in the activities of the calcium and Na/K pumps, suggestive of a selective mechanism enabling the extended longevity of RBCs. The densification pattern over most of the circulatory lifespan was determined by calcium pump decay whereas late density reversal was shaped by the pattern of Na/K pump decay. A third finding was that both quantal changes and pump-decay regimes were necessary to account for the documented lifespan pattern, neither sufficient on their own. A fourth new finding revealed that RBCs exposed to levels of PIEZO1-medited calcium permeation above certain thresholds in the circulation could develop a pattern of early or late hyperdense collapse followed by delayed density reversal. When tested over much reduced lifespan periods the results reproduced the known circulatory fate of irreversible sickle cells, the cell subpopulation responsible for vaso-occlusion and for most of the clinical manifestations of sickle cell disease. Analysis of the results provided an insightful new understanding of the mechanisms driving the changes in RBC homeostasis during circulatory aging in health and disease. The average circulatory lifespan of human red blood cells is about four months, amounting to about 200000 capillary transits. Among the many documented age-related changes red cells experience during this long sojourn the most relevant to homeostasis control comprise progressive densification with late density reversal, decline in the activities of calcium and sodium-potassium pumps, and slow inverse changes in their original sodium and potassium contents. Early experimental results have long established the view that these changes result from the cumulative effects of myriad capillary transits. However, many aspects of this process remain inaccessible to in vivo investigation. This prompted us to attempt a modelling approach applying a dedicated extension to our original red cell model. The results relegated the cumulative mechanism to a secondary role and exposed surprising critical roles for the declining patterns of the calcium and sodium-potassium pumps, as if harnessed by evolution to extend the circulatory longevity of cells within volume ranges that enable optimal rheological performance. The mechanism the model revealed implicated complex interactions between PIEZO1, the calcium-activated potassium channel KCNN4, the anion exchanger AE1, and the calcium and sodium-potassium pumps. These studies proved the model potential for exploring red cell homeostasis in health and disease.
Collapse
|
8
|
Fortea E, Accardi A. A quantitative flux assay for the study of reconstituted Cl - channels and transporters. Methods Enzymol 2021; 652:243-272. [PMID: 34059284 DOI: 10.1016/bs.mie.2021.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The recent deluge of high-resolution structural information on membrane proteins has not been accompanied by a comparable increase in our ability to functionally interrogate these proteins. Current functional assays often are not quantitative or are performed in conditions that significantly differ from those used in structural experiments, thus limiting the mechanistic correspondence between structural and functional experiments. A flux assay to determine quantitatively the functional properties of purified and reconstituted Cl- channels and transporters in membranes of defined lipid compositions is described. An ion-sensitive electrode is used to measure the rate of Cl- efflux from proteoliposomes reconstituted with the desired protein and the fraction of vesicles containing at least one active protein. These measurements enable the quantitative determination of key molecular parameters such as the unitary transport rate, the fraction of proteins that are active, and the molecular mass of the transport protein complex. The approach is illustrated using CLC-ec1, a CLC-type H+/Cl- exchanger as an example. The assay enables the quantitative study of a wide range of Cl- transporting molecules and proteins whose activity is modulated by ligands, voltage, and membrane composition as well as the investigation of the effects of compounds that directly inhibit or activate the reconstituted transport systems. The present assay is readily adapted to the study of transport systems with diverse substrate specificities and molecular characteristics, and the necessary modifications needed are discussed.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States; Department of Biochemistry, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
9
|
Flores B, Delpire E. Osmotic Response of Dorsal Root Ganglion Neurons Expressing Wild-Type and Mutant KCC3 Transporters. Cell Physiol Biochem 2021; 54:577-590. [PMID: 32506846 DOI: 10.33594/000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Loss-of-Function (LOF) of the potassium chloride cotransporter 3 (KCC3) results in hereditary sensorimotor neuropathy with Agenesis of the Corpus Callosum (HSMN/ACC). Our KCC3 knockout mouse recapitulated axonal swelling and tissue vacuolization observed in autopsies of individuals with HSMN/ACC. We previously documented the first human case of a KCC3 gain-of-function (GOF) in which the patient also exhibited severe peripheral neuropathy. Furthermore, the GOF mouse model exhibited shrunken axons implicating the cotransporter in cell volume homeostasis. It is unclear how both KCC3 LOF and GOF lead to peripheral neuropathy. Thus, we sought to study differences in cell volume regulation of dorsal root ganglion neurons isolated from different mouse lines. METHODS Using wide-field microscopy, we measured calcein fluorescence intensity through pinhole measurements at the center of cells and compared cell swelling and cell volume regulation/recovery of wild-type, LOF, and GOF dorsal root ganglia neurons, as well as wild-type neurons treated with a KCC-specific inhibitor. RESULTS In contrast to control neurons that swell and volume regulate under a hypotonic challenge, neurons lacking KCC3 swell but fail to volume regulate. Similar data were observed in wild-type neurons treated with the KCC inhibitor. We also show that sensory neurons expressing a constitutively active KCC3 exhibited a blunted swelling phase compared to wild-type neurons, questioning the purely osmotic nature of the swelling phase. CONCLUSION These findings demonstrate the integral role of KCC3 in cell volume homeostasis and support the idea that cell volume homeostasis is critical to the health of peripheral nerves.
Collapse
Affiliation(s)
- Bianca Flores
- Department of Anesthesiology and Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Delpire
- Department of Anesthesiology and Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, TN, USA,
| |
Collapse
|
10
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
11
|
Yang X, Wang Q, Cao E. Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy. Nat Commun 2020; 11:1016. [PMID: 32081947 PMCID: PMC7035313 DOI: 10.1038/s41467-020-14790-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
The secondary active cation-chloride cotransporters (CCCs) utilize the existing Na+ and/or K+ gradients to move Cl- into or out of cells. NKCC1 is an intensively studied member of the CCC family and plays fundamental roles in regulating trans-epithelial ion movement, cell volume, chloride homeostasis and neuronal excitability. Here, we report a cryo-EM structure of human NKCC1 captured in a partially loaded, inward-open state. NKCC1 assembles into a dimer, with the first ten transmembrane (TM) helices harboring the transport core and TM11-TM12 helices lining the dimer interface. TM1 and TM6 helices break α-helical geometry halfway across the lipid bilayer where ion binding sites are organized around these discontinuous regions. NKCC1 may harbor multiple extracellular entryways and intracellular exits, raising the possibility that K+, Na+, and Cl- ions may traverse along their own routes for translocation. NKCC1 structure provides a blueprint for further probing structure-function relationships of NKCC1 and other CCCs.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
| | - Qinzhe Wang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA.
| |
Collapse
|
12
|
Lu DCY, Hannemann A, Wadud R, Rees DC, Brewin JN, Low PS, Gibson JS. The role of WNK in modulation of KCl cotransport activity in red cells from normal individuals and patients with sickle cell anaemia. Pflugers Arch 2019; 471:1539-1549. [PMID: 31729557 PMCID: PMC6892352 DOI: 10.1007/s00424-019-02327-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022]
Abstract
Abnormal activity of red cell KCl cotransport (KCC) is involved in pathogenesis of sickle cell anaemia (SCA). KCC-mediated solute loss causes shrinkage, concentrates HbS, and promotes HbS polymerisation. Red cell KCC also responds to various stimuli including pH, volume, urea, and oxygen tension, and regulation involves protein phosphorylation. The main aim of this study was to investigate the role of the WNK/SPAK/OSR1 pathway in sickle cells. The pan WNK inhibitor WNK463 stimulated KCC with an EC50 of 10.9 ± 1.1 nM and 7.9 ± 1.2 nM in sickle and normal red cells, respectively. SPAK/OSR1 inhibitors had little effect. The action of WNK463 was not additive with other kinase inhibitors (staurosporine and N-ethylmaleimide). Its effects were largely abrogated by pre-treatment with the phosphatase inhibitor calyculin A. WNK463 also reduced the effects of physiological KCC stimuli (pH, volume, urea) and abolished any response of KCC to changes in oxygen tension. Finally, although protein kinases have been implicated in regulation of phosphatidylserine exposure, WNK463 had no effect. Findings indicate a predominant role for WNKs in control of KCC in sickle cells but an apparent absence of downstream involvement of SPAK/OSR1. A more complete understanding of the mechanisms will inform pathogenesis whilst manipulation of WNK activity represents a potential therapeutic approach.
Collapse
Affiliation(s)
- David C-Y Lu
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Anke Hannemann
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Rasiqh Wadud
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| | - John N Brewin
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - John S Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
13
|
Lauf PK, Sharma N, Adragna NC. Kinetic studies of K-Cl cotransport in cultured rat vascular smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C274-C284. [PMID: 30649919 DOI: 10.1152/ajpcell.00002.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During aging, and development of atherosclerosis and cardiovascular disease (CVD), aortic vascular smooth muscle cells (VSMCs) transition from healthy contractile to diseased synthetic phenotypes. K-Cl cotransport (KCC) maintains cell volume and ion homeostasis in growth and differentiation, and hence is important for VSMC proliferation and migration. Therefore, KCC activity may play a role in the contractile-to-synthetic VSMC phenotypic transition. Early, medium, and late synthetic passage VSMCs were tested for specific cytoskeletal protein expression. KCC-mediated ouabain- and bumetanide-insensitive Rb+ (a K+ congener) influx was determined as Cl--dependent Rb+ influx at different external Rb+ and Cl- ion concentrations, [Rb+]o and [Cl-]o. Expressions of the cytoskeletal proteins α-actin, vimentin, and desmin fell from early through late synthetic VSMCs. KCC kinetic parameters, such as maximum velocity ( Vm), and apparent Cl- and Rb+ affinities ( Km), were calculated with Lineweaver-Burk, Hanes-Woolf, and Hill approximations. Vm values of both Rb+- and Cl--dependent influxes were of equal magnitude, commensurate with a KCC stoichiometry of unity, and rose threefold from early to late synthetic VSMCs. Hill coefficients for Rb+ and Cl- correlated with cell passage number, suggesting increased KCC ligand cooperativity. However, Km values for [Cl-]o were strikingly bimodal with 60-80 mM in early, ~20-30 mM in medium, and 60 mM in late passage cells. In contrast, Km values for [Rb+]o remained steady at ~17 mM. Since total KCC isoform expression was similar with cell passage, structure/function changes of the KCC signalosome may accompany the transition of aortic VSMCs from a healthy to a diseased phenotype.
Collapse
Affiliation(s)
- Peter K Lauf
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Department of Pathology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Neelima Sharma
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| | - Norma C Adragna
- The Cell Biophysics Group, Wright State University , Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University , Dayton, Ohio
- Boonshoft School of Medicine, Wright State University , Dayton, Ohio
| |
Collapse
|
14
|
Frenette-Cotton R, Marcoux AA, Garneau AP, Noel M, Isenring P. Phosphoregulation of K + -Cl - cotransporters during cell swelling: Novel insights. J Cell Physiol 2018; 233:396-408. [PMID: 28276587 DOI: 10.1002/jcp.25899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/06/2017] [Indexed: 01/21/2023]
Abstract
The K+ -Cl- cotransporters (KCCs) belong to the cation-Cl- cotransporter family and consist of four isoforms and many splice variants. Their main role is to promote electroneutral efflux of K+ and Cl- ions across the surface of many cell types and, thereby, to regulate intracellular ion concentration, cell volume, and epithelial salt movement. These transport systems are induced by an increase in cell volume and are less active at lower intracellular [Cl- ] (Cli ), but the mechanisms at play are still ill-defined. In this work, we have exploited the Xenopus laevis expression system to study the role of lysine-deficient protein kinases (WNKs), protein phosphatases 1 (PP1s), and SPS1-related proline/alanine-rich kinase (SPAK) in KCC4 regulation during cell swelling. We have found that WNK4 and PP1 regulate KCC4 activity as part of a common signaling module, but that they do not exert their effects through SPAK or carrier dephosphorylation. We have also found that the phosphatases at play include PP1α and PP1γ1, but that WNK4 acts directly on the PP1s instead of the opposite. Unexpectedly, however, both cell swelling and a T926A substitution in the C-terminus of full-length KCC4 led to higher levels of heterologous K+ -Cl- cotransport and overall carrier phosphorylation. These results imply that the response to cell swelling must also involve allosteric-sensitive kinase-dependent phosphoacceptor sites in KCC4. They are thus partially inconsistent with previous models of KCC regulation.
Collapse
Affiliation(s)
| | - Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, Québec, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, Québec, Canada
| | - Micheline Noel
- Nephrology Research Group, Department of Medicine, Laval University, Québec, Québec, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, Québec, Canada
| |
Collapse
|
15
|
Dimitrov AG. An approach to expand description of the pump and co-transporter steady-state current. J Theor Biol 2017; 412:94-99. [PMID: 27765532 DOI: 10.1016/j.jtbi.2016.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/06/2016] [Accepted: 10/15/2016] [Indexed: 11/16/2022]
Abstract
The membrane transporters (pumps and co-transporters) are the main players in maintaining the cell homeostasis. Models of various types, each with their own drawbacks, describe transporter behavior. The aim of this study is to find the link between the biophysically based and empirical models to face and solve their specific problems. Instead of decreasing the number of states and using few complex rate constants as is usually done, we use the number of states as great as possible. Then, each transition in the cycle can represent an elementary process and we can apply the mass action law, according to which if rate constants depend on concentrations the dependence is linear. Thus, the expression for the steady state transporter current can be transformed from a function of rate constants into a function of concentrations. When transporter states form a single cycle, it can be characterized by two modes of action - forward and backward ones. Specific mode is realized depending on the available free energy. Each mode of action is characterized by a set of transporter affinities together with a parameter that describes the maximal turning rate. Except standard affinities corresponding to the substances that are binding to the transporter, affinities for the substances that are released are also defined. Such scheme provides great possibilities to construct approximations as each individual affinity could be estimated from experiments as precisely as possible. The approximations may be used for not only description and study of the transporter current but also in cellular models that attempt to describe wide variety of processes in excitable cells.
Collapse
Affiliation(s)
- A G Dimitrov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia 1113, Bulgaria.
| |
Collapse
|
16
|
Delpire E, Wolfe L, Flores B, Koumangoye R, Schornak CC, Omer S, Pusey B, Lau C, Markello T, Adams DR. A patient with multisystem dysfunction carries a truncation mutation in human SLC12A2, the gene encoding the Na-K-2Cl cotransporter, NKCC1. Cold Spring Harb Mol Case Stud 2016; 2:a001289. [PMID: 27900370 PMCID: PMC5111002 DOI: 10.1101/mcs.a001289] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022] Open
Abstract
This study describes a 13-yr-old girl with orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency, and multiorgan failure involving the gut and bladder. Exome sequencing revealed a de novo, loss-of-function allele in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1. The 11-bp deletion in exon 22 results in frameshift (p.Val1026Phefs*2) and truncation of the carboxy-terminal tail of the cotransporter. Preliminary studies in heterologous expression systems demonstrate that the mutation leads to a nonfunctional transporter, which is expressed and trafficked to the plasma membrane alongside wild-type NKCC1. The truncated protein, visible at higher molecular sizes, indicates either enhanced dimerization or misfolded aggregate. No significant dominant-negative effect was observed. K+ transport experiments performed in fibroblasts from the patient showed reduced total and NKCC1-mediated K+ influx. The absence of a bumetanide effect on K+ influx in patient fibroblasts only under hypertonic conditions suggests a deficit in NKCC1 regulation. We propose that disruption in NKCC1 function might affect sensory afferents and/or smooth muscle cells, as their functions depend on NKCC1 creating a Cl- gradient across the plasma membrane. This Cl- gradient allows the γ-aminobutyric acid (GABA) receptor or other Cl- channels to depolarize the membrane affecting processes such as neurotransmission or cell contraction. Under this hypothesis, disrupted sensory and smooth muscle function in a diverse set of tissues could explain the patient's phenotype.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Lynne Wolfe
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bianca Flores
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Cara C Schornak
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Salma Omer
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Barbara Pusey
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christopher Lau
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas Markello
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David R Adams
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
17
|
Kahle KT, Flores B, Bharucha-Goebel D, Zhang J, Donkervoort S, Hegde M, Hussain G, Duran D, Liang B, Sun D, Bönnemann CG, Delpire E. Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter. Sci Signal 2016; 9:ra77. [PMID: 27485015 PMCID: PMC5506493 DOI: 10.1126/scisignal.aae0546] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using exome sequencing, we identified a de novo mutation (c.2971A>G; T991A) in SLC12A6, the gene encoding the K(+)-Cl(-) cotransporter KCC3, in a patient with an early-onset, progressive, and severe peripheral neuropathy primarily affecting motor neurons. Normally, the WNK kinase-dependent phosphorylation of T(991) tonically inhibits KCC3; however, cell swelling triggers Thr(991) dephosphorylation to activate the transporter and restore cell volume. KCC3 T991A mutation in patient cells abolished Thr(991) phosphorylation, resulted in constitutive KCC3 activity, and compromised cell volume homeostasis. KCC3(T991A/T991A) mutant mice exhibited constitutive KCC3 activity and recapitulated aspects of the clinical, electrophysiological, and histopathological findings of the patient. These results suggest that the function of the peripheral nervous system depends on finely tuned, kinase-regulated KCC3 activity and implicate abnormal cell volume homeostasis as a previously unreported mechanism of axonal degeneration.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Departments of Neurosurgery and Pediatrics and Cellular and Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bianca Flores
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Diana Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814, USA. Department of Neurology, Children's National Health System, Washington, DC 20010, USA
| | - Jinwei Zhang
- Departments of Neurosurgery and Pediatrics and Cellular and Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA. MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814, USA
| | - Madhuri Hegde
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Gulnaz Hussain
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA. Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center Pittsburgh, PA 15240, USA
| | - Daniel Duran
- Departments of Neurosurgery and Pediatrics and Cellular and Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bo Liang
- Departments of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02114, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA. Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center Pittsburgh, PA 15240, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814, USA.
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Mercado A, de Los Heros P, Melo Z, Chávez-Canales M, Murillo-de-Ozores AR, Moreno E, Bazúa-Valenti S, Vázquez N, Hadchouel J, Gamba G. With no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters. Am J Physiol Cell Physiol 2016; 311:C54-66. [PMID: 27170636 PMCID: PMC4967140 DOI: 10.1152/ajpcell.00193.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2). The effect of L-WNK1 on KCC activity is unknown. Using Xenopus laevis oocytes and HEK-293 cells, we show that the activation of KCCs by cell swelling was prevented by L-WNK1 coexpression. In contrast, the activity of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 was remarkably increased with L-WNK1 coexpression. The negative effect of L-WNK1 on the KCCs is kinase dependent. Elimination of the STE20 proline-alanine rich kinase (SPAK)/oxidative stress-responsive kinase (OSR1) binding site or the HQ motif required for the WNK-WNK interaction prevented the effect of L-WNK1 on KCCs, suggesting a required interaction between L-WNK1 molecules and SPAK. Together, our data support that NKCC1 and KCCs are coordinately regulated by L-WNK1 isoforms.
Collapse
Affiliation(s)
- Adriana Mercado
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City, Mexico
| | - Paola de Los Heros
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Zesergio Melo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico; INSERM UMR970-Paris Cardiovascular Research Center, Paris, France; and University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | - Adrián R Murillo-de-Ozores
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| | - Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico
| | - Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico
| | - Juliette Hadchouel
- INSERM UMR970-Paris Cardiovascular Research Center, Paris, France; and University Paris-Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico; Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tlalpan, Mexico City, Mexico;
| |
Collapse
|
19
|
Kahle KT, Delpire E. Kinase-KCC2 coupling: Cl- rheostasis, disease susceptibility, therapeutic target. J Neurophysiol 2016; 115:8-18. [PMID: 26510764 PMCID: PMC4760510 DOI: 10.1152/jn.00865.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/25/2015] [Indexed: 01/06/2023] Open
Abstract
The intracellular concentration of Cl(-) ([Cl(-)]i) in neurons is a highly regulated variable that is established and modulated by the finely tuned activity of the KCC2 cotransporter. Despite the importance of KCC2 for neurophysiology and its role in multiple neuropsychiatric diseases, our knowledge of the transporter's regulatory mechanisms is incomplete. Recent studies suggest that the phosphorylation state of KCC2 at specific residues in its cytoplasmic COOH terminus, such as Ser940 and Thr906/Thr1007, encodes discrete levels of transporter activity that elicit graded changes in neuronal Cl(-) extrusion to modulate the strength of synaptic inhibition via Cl(-)-permeable GABAA receptors. In this review, we propose that the functional and physical coupling of KCC2 to Cl(-)-sensitive kinase(s), such as the WNK1-SPAK kinase complex, constitutes a molecular "rheostat" that regulates [Cl(-)]i and thereby influences the functional plasticity of GABA. The rapid reversibility of (de)phosphorylation facilitates regulatory precision, and multisite phosphorylation allows for the control of KCC2 activity by different inputs via distinct or partially overlapping upstream signaling cascades that may become more or less important depending on the physiological context. While this adaptation mechanism is highly suited to maintaining homeostasis, its adjustable set points may render it vulnerable to perturbation and dysregulation. Finally, we suggest that pharmacological modulation of this kinase-KCC2 rheostat might be a particularly efficacious strategy to enhance Cl(-) extrusion and therapeutically restore GABA inhibition.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, Connecticut; Yale Neurogenetics Program, Yale School of Medicine, New Haven, Connecticut; and
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
20
|
Mongin AA. Volume-regulated anion channel--a frenemy within the brain. Pflugers Arch 2015; 468:421-41. [PMID: 26620797 DOI: 10.1007/s00424-015-1765-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
21
|
Hannemann A, Rees D, Tewari S, Gibson J. Cation Homeostasis in Red Cells From Patients With Sickle Cell Disease Heterologous for HbS and HbC (HbSC Genotype). EBioMedicine 2015; 2:1669-76. [PMID: 26870793 PMCID: PMC4740305 DOI: 10.1016/j.ebiom.2015.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/24/2022] Open
Abstract
Sickle cell disease (SCD) in patients of HbSC genotype is considered similar, albeit milder, to that in homozygous HbSS individuals--but with little justification. In SCD, elevated red cell cation permeability is critical as increased solute loss causes dehydration and encourages sickling. Recently, we showed that the KCl cotransporter (KCC) activity in red cells from HbSC patients correlated significantly with disease severity, but that in HbSS patients did not. Two transporters involved in red cell dehydration, the conductive channels Psickle and the Gardos channel, behaved similarly in red cells from the two genotypes, but were significantly less active in HbSC patients. By contrast, KCC activity was quantitatively greater in HbSC red cells. Results suggest that KCC is likely to have greater involvement in red cell dehydration in HbSC patients, which could explain its association with disease severity in this genotype. This work supports the hypothesis that SCD in HbSC patients is a distinct disease entity to that in HbSS patients. Results suggest the possibility of designing specific treatments of particular benefit to HbSC patients and a rationale for the development of prognostic markers, to inform early treatment of children likely to develop more severe complications of the disease.
Collapse
Affiliation(s)
- A. Hannemann
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - D.C. Rees
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - S. Tewari
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - J.S. Gibson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
22
|
Wang G, Nauseef WM. Salt, chloride, bleach, and innate host defense. J Leukoc Biol 2015; 98:163-72. [PMID: 26048979 DOI: 10.1189/jlb.4ru0315-109r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.
Collapse
Affiliation(s)
- Guoshun Wang
- *Departments of Microbiology and Immunology, Genetics, and Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| | - William M Nauseef
- *Departments of Microbiology and Immunology, Genetics, and Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
23
|
Sullivan CR, Funk AJ, Shan D, Haroutunian V, McCullumsmith RE. Decreased chloride channel expression in the dorsolateral prefrontal cortex in schizophrenia. PLoS One 2015; 10:e0123158. [PMID: 25826365 PMCID: PMC4380350 DOI: 10.1371/journal.pone.0123158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/17/2015] [Indexed: 12/17/2022] Open
Abstract
Alterations in GABAergic neurotransmission are implicated in several psychiatric illnesses, including schizophrenia. The Na-K-Cl and K-Cl cotransporters regulate intracellular chloride levels. Abnormalities in cotransporter expression levels could shift the chloride electrochemical gradient and impair GABAergic transmission. In this study, we performed Western blot analysis to investigate whether the Na-K-Cl and K-Cl cotransporter protein is abnormally expressed in the dorsal lateral prefrontal cortex and the anterior cingulate cortex in patients with schizophrenia versus a control group. We found decreased K-Cl cotransporter protein expression in the dorsal lateral prefrontal cortex, but not the anterior cingulate cortex, in subjects with schizophrenia, supporting the hypothesis of region level abnormal GABAergic function in the pathophysiology of schizophrenia. Subjects with schizophrenia off antipsychotic medication at the time of death had decreased K-Cl cotransporter protein expression compared to both normal controls and subjects with schizophrenia on antipsychotics. Our results provide evidence for KCC2 protein abnormalities in schizophrenia and suggest that antipsychotic medications might reverse deficits of this protein in the illness.
Collapse
Affiliation(s)
- Courtney R. Sullivan
- University of Cincinnati College of Medicine, Neuroscience Graduate Program, Cincinnati, Ohio, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Adam J. Funk
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Dan Shan
- Department of Nephrology, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- James J Peters Veterans Affairs Medical Center, New York, New York, United States of America
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ding J, Ponce-Coria J, Delpire E. A trafficking-deficient mutant of KCC3 reveals dominant-negative effects on K-Cl cotransport function. PLoS One 2013; 8:e61112. [PMID: 23593405 PMCID: PMC3617232 DOI: 10.1371/journal.pone.0061112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
The K-Cl cotransporter (KCC) functions in maintaining chloride and volume homeostasis in a variety of cells. In the process of cloning the mouse KCC3 cDNA, we came across a cloning mutation (E289G) that rendered the cotransporter inactive in functional assays in Xenopus laevis oocytes. Through biochemical studies, we demonstrate that the mutant E289G cotransporter is glycosylation-deficient, does not move beyond the endoplasmic reticulum or the early Golgi, and thus fails to reach the plasma membrane. We establish through co-immunoprecipitation experiments that both wild-type and mutant KCC3 with KCC2 results in the formation of hetero-dimers. We further demonstrate that formation of these hetero-dimers prevents the proper trafficking of the cotransporter to the plasma membrane, resulting in a significant decrease in cotransporter function. This effect is due to interaction between the K-Cl cotransporter isoforms, as this was not observed when KCC3-E289G was co-expressed with NKCC1. Our studies also reveal that the glutamic acid residue is essential to K-Cl cotransporter function, as the corresponding mutation in KCC2 also leads to an absence of function. Interestingly, mutation of this conserved glutamic acid residue in the Na(+)-dependent cation-chloride cotransporters had no effect on NKCC1 function in isosmotic conditions, but diminished cotransporter activity under hypertonicity. Together, our data show that the glutamic acid residue (E289) is essential for proper trafficking and function of KCCs and that expression of a non-functional but full-length K-Cl cotransporter might results in dominant-negative effects on other K-Cl cotransporters.
Collapse
Affiliation(s)
- Jinlong Ding
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Molecular Physiology and Biophysics Graduate Program Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - José Ponce-Coria
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
25
|
Torre A, Trischitta F, Corsaro C, Mallamace D, Faggio C. Digestive cells from
Mytilus galloprovincialis
show a partial regulatory volume decrease following acute hypotonic stress through mechanisms involving inorganic ions. Cell Biochem Funct 2012; 31:489-95. [DOI: 10.1002/cbf.2925] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Agata Torre
- Dipartimento di Scienze Biologiche ed Ambientali Università di Messina Messina Italy
| | - Francesca Trischitta
- Dipartimento di Scienze Biologiche ed Ambientali Università di Messina Messina Italy
| | - Carmelo Corsaro
- Dipartimento di Fisica e CNISM Università di Messina Messina Italy
| | - Domenico Mallamace
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute Università di Messina Messina Italy
| | - Caterina Faggio
- Dipartimento di Scienze Biologiche ed Ambientali Università di Messina Messina Italy
| |
Collapse
|
26
|
Wang Y, Grainger DW. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv Drug Deliv Rev 2012; 64:1341-57. [PMID: 21945356 DOI: 10.1016/j.addr.2011.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 01/13/2023]
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders.
Collapse
|
27
|
Gauvain G, Chamma I, Chevy Q, Cabezas C, Irinopoulou T, Bodrug N, Carnaud M, Lévi S, Poncer JC. The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines. Proc Natl Acad Sci U S A 2011; 108:15474-9. [PMID: 21878564 PMCID: PMC3174661 DOI: 10.1073/pnas.1107893108] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The K-Cl cotransporter KCC2 plays an essential role in neuronal chloride homeostasis, and thereby influences the efficacy and polarity of GABA signaling. Although KCC2 is expressed throughout the somatodendritic membrane, it is remarkably enriched in dendritic spines, which host most glutamatergic synapses in cortical neurons. KCC2 has been shown to influence spine morphogenesis and functional maturation in developing neurons, but its function in mature dendritic spines remains unknown. Here, we report that suppressing KCC2 expression decreases the efficacy of excitatory synapses in mature hippocampal neurons. This effect correlates with a reduced postsynaptic aggregation of GluR1-containing AMPA receptors and is mimicked by a dominant negative mutant of KCC2 interaction with cytoskeleton but not by pharmacological suppression of KCC2 function. Single-particle tracking experiments reveal that suppressing KCC2 increases lateral diffusion of the mobile fraction of AMPA receptor subunit GluR1 in spines but not in adjacent dendritic shafts. Increased diffusion was also observed for transmembrane but not membrane-anchored recombinant neuronal cell adhesion molecules. We suggest that KCC2, likely through interactions with the actin cytoskeleton, hinders transmembrane protein diffusion, and thereby contributes to their confinement within dendritic spines.
Collapse
Affiliation(s)
- Grégory Gauvain
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| | - Ingrid Chamma
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| | - Quentin Chevy
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| | - Carolina Cabezas
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| | - Theano Irinopoulou
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| | - Natalia Bodrug
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| | - Michèle Carnaud
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| | - Sabine Lévi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| | - Jean Christophe Poncer
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, F75005 Paris, France
- Université Pierre et Marie Curie, F75005 Paris, France; and
- Institut du Fer à Moulin, F75005 Paris, France
| |
Collapse
|
28
|
Friauf E, Rust MB, Schulenborg T, Hirtz JJ. Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system. Hear Res 2011; 279:96-110. [PMID: 21683130 DOI: 10.1016/j.heares.2011.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 01/24/2023]
Abstract
The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5).
Collapse
Affiliation(s)
- Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
29
|
Delpire E, Gagnon KB. Kinetics of hyperosmotically stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes. Am J Physiol Cell Physiol 2011; 301:C1074-85. [PMID: 21775703 DOI: 10.1152/ajpcell.00131.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A detailed study of hypertonically stimulated Na-K-2Cl cotransport (NKCC1) in Xenopus laevis oocytes was carried out to better understand the 1 K(+):1 Cl(-) stoichiometry of transport that was previously observed. In this study, we derived the velocity equations for K(+) influx under both rapid equilibrium assumptions and combined equilibrium and steady-state assumptions and demonstrate that the behavior of the equations and curves in Lineweaver-Burke plots are consistent with a model where Cl(-) binds first, followed by Na(+), a second Cl(-), and then K(+). We further demonstrate that stimulation of K(+) movement by K(+) on the trans side is an intrinsic property of a carrier that transports multiple substrates. We also demonstrate that K(+) movement through NKCC1 is strictly dependent upon the presence of external Na(+), even though only a fraction of Na(+) is in fact transported. Finally, we propose that the larger transport of K(+), as compared with Na(+), is a result of the return of partially unloaded carriers, which masks the net 1Na(+):1K(+):2Cl(-) stoichiometry of NKCC1. These data have profound implications for the physiology of Na-K-2Cl cotransport, since transport of K-Cl in some conditions seems to be uncoupled from the transport of Na-Cl.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville,, TN 37232-2520, USA.
| | | |
Collapse
|
30
|
A key role for KCl cotransport in cell volume regulation in human erythroleukemia cells. Life Sci 2011; 88:1001-8. [DOI: 10.1016/j.lfs.2011.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 02/11/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
|
31
|
Chara O, Espelt MV, Krumschnabel G, Schwarzbaum PJ. Regulatory volume decrease and P receptor signaling in fish cells: mechanisms, physiology, and modeling approaches. ACTA ACUST UNITED AC 2011; 315:175-202. [PMID: 21290610 DOI: 10.1002/jez.662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/30/2010] [Indexed: 11/11/2022]
Abstract
For animal cell plasma membranes, the permeability of water is much higher than that of ions and other solutes, and exposure to hyposmotic conditions almost invariably causes rapid water influx and cell swelling. In this situation, cells deploy regulatory mechanisms to preserve membrane integrity and avoid lysis. The phenomenon of regulatory volume decrease, the partial or full restoration of cell volume following cell swelling, is well-studied in mammals, with uncountable investigations yielding details on the signaling network and the effector mechanisms involved in the process. In comparison, cells from other vertebrates and from invertebrates received little attention, despite of the fact that e.g. fish cells could present rewarding model systems given the diversity in ecology and lifestyle of this animal group that may be reflected by an equal diversity of physiological adaptive mechanisms, including those related to cell volume regulation. In this review, we therefore present an overview on the most relevant aspects known on hypotonic volume regulation presently known in fish, summarizing transporters and signaling pathways described so far, and then focus on an aspect we have particularly studied over the past years using fish cell models, i.e. the role of extracellular nucleotides in mediating cell volume recovery of swollen cells. We, furthermore, present diverse modeling approaches developed on the basis of data derived from studies with fish and other models and discuss their potential use for gaining insight into the theoretical framework of volume regulation.
Collapse
Affiliation(s)
- Osvaldo Chara
- IFLYSIB (CONICET, UNLP), La Plata, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
32
|
Arion D, Lewis DA. Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia. ARCHIVES OF GENERAL PSYCHIATRY 2011; 68:21-31. [PMID: 20819979 PMCID: PMC3015012 DOI: 10.1001/archgenpsychiatry.2010.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT Disturbances in markers of cortical γ-aminobutyric acid neurotransmission are a common finding in schizophrenia. The nature of γ-aminobutyric acid neurotransmission (hyperpolarizing or depolarizing) depends on the local intracellular chloride concentration. In the central nervous system, the intracellular chloride level is determined by the activity of 2 cation-chloride transporters, NKCC1 and KCC2. The activities of these transporters are in turn regulated by a network of serine-threonine kinases that includes OXSR1, STK39, and the WNK kinases WNK1, WNK3, and WNK4. OBJECTIVE To compare the levels of NKCC1, KCC2, OXSR1, STK39, WNK1, WNK3, and WNK4 transcripts in prefrontal cortex area 9 between subjects with schizophrenia and healthy comparison subjects. DESIGN Real-time quantitative polymerase chain reaction technique was used to measure transcript levels in the prefrontal cortex. SETTING Human brain specimens were obtained from autopsies conducted at the Allegheny County Medical Examiner's Office, Pittsburgh, Pennsylvania. PARTICIPANTS Postmortem brain specimens from 42 subjects with schizophrenia and 42 matched healthy comparison subjects. Brain specimens from 18 macaque monkeys exposed to haloperidol, olanzapine, or sham long-term. MAIN OUTCOME MEASURES Relative expression levels for NKCC1, KCC2, OXSR1, STK39, WNK1, WNK3, and WNK4 transcripts compared with the mean expression level of 3 housekeeping transcripts. RESULTS OXSR1 and WNK3 transcripts were substantially overexpressed in subjects with schizophrenia relative to comparison subjects. In contrast, NKCC1, KCC2, STK39, WNK1, and WNK4 transcript levels did not differ between subject groups. OXSR1 and WNK3 transcript expression levels were not changed in antipsychotic-exposed monkeys and were not affected by potential confounding factors in the subjects with schizophrenia. CONCLUSION In schizophrenia, increased expression levels, and possibly increased kinase activities, of OXSR1 and WNK3 may shift the balance of chloride transport by NKCC1 and KCC2 and alter the nature of γ-aminobutyric acid neurotransmission in the prefrontal cortex.
Collapse
Affiliation(s)
- Dominique Arion
- Department of Psychiatry, University of Pittsburgh, PA 15213, USA
| | | |
Collapse
|
33
|
|
34
|
Faggio C, Torre A, Pelle E, Raffa F, Villari V, Trischitta F. Cell volume regulation following hypotonic shock in hepatocytes isolated from Sparus aurata. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:143-9. [PMID: 20937405 DOI: 10.1016/j.cbpa.2010.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/29/2022]
Abstract
The response of isolated hepatocytes of Sparus aurata to hypotonic shock was studied by the aid of videometric and light scattering methods. The isolated cells exposed to a rapid change (from 370 to 260 mOsm/kg) of the osmolarity of the bathing solution swelled but thereafter underwent a decrease of cell volume tending to recovery the original size. This homeostatic response RVD (regulatory volume decrease) was inhibited in the absence of extracellular Ca²+ and in the presence of TMB8, an inhibitor of Ca²+ release from intracellular stores. It is likely that Ca²+ entry through verapamil sensitive Ca²+-channels, probably leading to a release of Ca²+ from intracellular stores, is responsible for RVD since the blocker impaired the ability of the cell to recover its volume after the hypotonic shock. RVD tests performed in the presence of various inhibitors of different transport mechanisms, such as BaCl₂, quinine, glybenclamide and bumetanide as well as in the presence of a KCl activator, NEM, led us to suggest that the recovery of cell volume in hypotonic solution is accomplished by an efflux of K+ and Cl⁻ through conductive pathways paralleled by the operation of the KCl cotransport, followed by an obliged water efflux from the cells.
Collapse
Affiliation(s)
- Caterina Faggio
- Dipartimento di Scienze della Vita "M. Malpighi", Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Bush PG, Pritchard M, Loqman MY, Damron TA, Hall AC. A key role for membrane transporter NKCC1 in mediating chondrocyte volume increase in the mammalian growth plate. J Bone Miner Res 2010; 25:1594-603. [PMID: 20200963 PMCID: PMC3154001 DOI: 10.1002/jbmr.47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mechanisms that underlie growth plate chondrocyte volume increase and hence bone lengthening are poorly understood. Many cell types activate the Na-K-Cl cotransporter (NKCC) to bring about volume increase. We hypothesised that NKCC may be responsible for the volume expansion of hypertrophic chondrocytes. Metatarsals/metacarpals from 16 rat pups (P(7)) were incubated in the presence/absence of the specific NKCC inhibitor bumetanide and measurement of whole-bone lengths and histologic analysis of the growth plate were done after 24 hours. Fluorescent NKCC immunohistochemistry was visualised using a confocal laser scanning microscopy on seven rat tibial growth plates (P(7)). Microarray analysis was performed on mRNA isolated from proliferative and hypertrophic zone cells of tibial growth plates from five rats of each of three ages (P(49/53/58)). Exposure to bumetanide resulted in approximately 35% reduction (paired Student's t test, p < .05) of bone growth in a dose-dependent manner; histologic analysis showed that a reduction in hypertrophic zone height was responsible. Quantification of fluorescence immunohistochemistry revealed a significant (paired Student's t test, p < .05) change in NKCC from the intracellular space of proliferative cells to the cytosolic membrane of hypertrophic zone cells. Further, microarray analysis illustrated an increase in NKCC1 mRNA between proliferative and hypertrophic cells. The increase in NKCC1 mRNA in hypertrophic zone cells, its cellular localization, and reduced bone growth in the presence of the NKCC inhibitor bumetanide implicate NKCC in growth plate hypertrophic chondrocyte volume increase. Further investigation is warranted to determine the regulatory control of NKCC in the mammalian growth plate and the possible detrimental effect on bone growth with chronic exposure to loop diuretics.
Collapse
Affiliation(s)
- Peter G Bush
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | | | | | | | | |
Collapse
|
36
|
Gusev GP, Agalakova NI. Regulation of K-Cl cotransport in erythrocytes of frog Rana temporaria by commonly used protein kinase and protein phosphatase inhibitors. J Comp Physiol B 2010; 180:385-91. [PMID: 19936761 DOI: 10.1007/s00360-009-0418-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/07/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Recently (Agalakova and Gusev in J Comp Physiol 179:443-450, 2009), we demonstrated that the activity of K-Cl cotransport (KCC) in frog red blood cells is inhibited under stimulation of protein kinase C (PKC) with phorbol ester PMA (12-myristate-13-acetate). Present work was performed to uncover possible implication of protein kinases and protein phosphatases (PPs) in the regulation of baseline and volume-dependent KCC activity in these cells. K+ influx was estimated as 86Rb uptake by the cells in isotonic or hypotonic media in the presence of ouabain, K+ efflux was determined as the difference between K+ loss by the cells incubated in parallel in isotonic or hypotonic K(+)-free Cl(-)- and NO(3)(-)-media. Swelling of the cells in hypotonic medium was accompanied by approximately 50% activation of Cl-dependent K+ influx and efflux. Protein tyrosine kinase (PTK) inhibitor genistein (0.1 mM) stably and considerably (up to 89%) suppressed both baseline and volume-dependent KCC activity in each direction. Other PTK blockers (tyrphostin 23 and quercetin) had no influence on KCC activity in frog erythrocytes. PKC inhibitor chelerythrine (20 microM) and both PP inhibitors, fluoride (5 mM) and okadaic acid (1 microM), reduced KCC activity by 25-70%. Neither basal nor swelling-activated KCC in frog erythrocytes was affected by PKC inhibitor staurosporine (1 microM). Based on the previous and present results, we can suggest that the main role in the maintenance of basal and volume-dependent KCC activity in frog erythrocytes belongs to PTKs and PPs, whereas PKC is a negative regulator of this ion system.
Collapse
Affiliation(s)
- Gennadii Petrovich Gusev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| | | |
Collapse
|
37
|
Bogdanova A, Goede JS, Weiss E, Bogdanov N, Bennekou P, Bernhardt I, Lutz HU. Cryohydrocytosis: increased activity of cation carriers in red cells from a patient with a band 3 mutation. Haematologica 2009; 95:189-98. [PMID: 20015879 DOI: 10.3324/haematol.2009.010215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cryohydrocytosis is an inherited dominant hemolytic anemia characterized by mutations in a transmembrane segment of the anion exchanger (band 3 protein). Transfection experiments performed in Xenopus oocytes suggested that these mutations may convert the anion exchanger into a non-selective cation channel. The present study was performed to characterize so far unexplored ion transport pathways that may render erythrocytes of a single cryohydrocytosis patient cation-leaky. DESIGN AND METHODS Cold-induced changes in cell volume were monitored using ektacytometry and density gradient centrifugation. Kinetics, temperature and inhibitor-dependence of the cation and water movements in the cryohydrocytosis patient's erythrocytes were studied using radioactive tracers and flame photometry. Response of the membrane potential of the patient's erythrocyte membrane to the presence of ionophores and blockers of anion and cation channels was assessed. RESULTS In the cold, the cryohydrocytosis patient's erythrocytes swelled in KCl-containing, but not in NaCl-containing or KNO(3)-containing media indicating that volume changes were mediated by an anion-coupled cation transporter. In NaCl-containing medium the net HOE-642-sensitive Na(+)/K(+) exchange prevailed, whereas in KCl-containing medium swelling was mediated by a chloride-dependent K(+) uptake. Unidirectional K(+) influx measurements showed that the patient's cells have abnormally high activities of the cation-proton exchanger and the K(+),Cl(-) co-transporter, which can account for the observed net movements of cations. Finally, neither chloride nor cation conductance in the patient's erythrocytes differed from that of healthy donors. Conclusions These results suggest that cross-talk between the mutated band 3 and other transporters might increase the cation permeability in cryohydrocytosis.
Collapse
Affiliation(s)
- Anna Bogdanova
- Zurich Center for Integrative, Human Physiology, University of Zurich, Winterthurerstr 260, CH 8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ortiz-Acevedo A, Rigor RR, Maldonado HM, Cala PM. Coordinated control of volume regulatory Na+/H+ and K+/H+ exchange pathways in Amphiuma red blood cells. Am J Physiol Cell Physiol 2009; 298:C510-20. [PMID: 19940069 DOI: 10.1152/ajpcell.00141.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)/H(+) and K(+)/H(+) exchange pathways of Amphiuma tridactylum red blood cells (RBCs) are quiescent at normal resting cell volume yet are selectively activated in response to cell shrinkage and swelling, respectively. These alkali metal/H(+) exchangers are activated by net kinase activity and deactivated by net phosphatase activity. We employed relaxation kinetic analyses to gain insight into the basis for coordinated control of these volume regulatory ion flux pathways. This approach enabled us to develop a model explaining how phosphorylation/dephosphorylation-dependent events control and coordinate the activity of the Na(+)/H(+) and K(+)/H(+) exchangers around the cell volume set point. We found that the transition between initial and final steady state for both activation and deactivation of the volume-induced Na(+)/H(+) and K(+)/H(+) exchange pathways in Amphiuma RBCs proceed as a single exponential function of time. The rate of Na(+)/H(+) exchange activation increases with cell shrinkage, whereas the rate of Na(+)/H(+) exchange deactivation increases as preshrunken cells are progressively swollen. Similarly, the rate of K(+)/H(+) exchange activation increases with cell swelling, whereas the rate of K(+)/H(+) exchange deactivation increases as preswollen cells are progressively shrunken. We propose a model in which the activities of the controlling kinases and phosphatases are volume sensitive and reciprocally regulated. Briefly, the activity of each kinase-phosphatase pair is reciprocally related, as a function of volume, and the volume sensitivities of kinases and phosphatases controlling K(+)/H(+) exchange are reciprocally related to those controlling Na(+)/H(+) exchange.
Collapse
|
39
|
Weinstein AM. A mathematical model of rat ascending Henle limb. I. Cotransporter function. Am J Physiol Renal Physiol 2009; 298:F512-24. [PMID: 19923415 DOI: 10.1152/ajprenal.00230.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kinetic models of Na+-K+-2Cl- costransporter (NKCC2) and K+-Cl- cotransporter (KCC4), two of the key cotransporters of the Henle limb, are fashioned with inclusion of terms representing binding and transport of NH4+. The models are simplified using assumptions of equilibrium ion binding, binding symmetry, and identity of Cl- binding sites. Model parameters are selected to be consistent with flux data from expression of these transporters in oocytes, specifically inwardly directed coupled transport of rubidium. In the analysis of these models, it is found that despite the simplifying assumptions to reduce the number of model parameters, neither model is uniquely determined by the data. For NKCC or KCC there are two- or three-parameter families of "optimal" solutions. As a consequence, one may specify several carrier translocation rates and/or ion affinities before fitting the remaining coefficients to the data, with no loss of fidelity in simulating the experiments. Model calculations suggest that with respect to NKCC2 near its operating point, the curve of ion flux as a function of cell Cl- is steep, and with respect to KCC4, its curve of ion flux as a function of peritubular K+ is also steep. The implication is that the kinetics are suitable for these two transporters in series to act as a sensor for peritubular K+, to modulate AHL Na+ reabsorption, with cytosolic Cl- as the intermediate variable. The models also reveal the potential for luminal NH4+ to be a potent catalyst for NKCC2 Na+ reabsorption, provided suitable exit mechanisms for NH4+ (from cell-to-lumen) are operative. It is found that KCC4 is likely to augment the secretory NH4+ flux, with peritubular NH4+ uptake driven by the cell-to-blood K+ gradient.
Collapse
|
40
|
Lee YS. Arachidonic Acid Activates K-Cl-cotransport in HepG2 Human Hepatoblastoma Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:401-8. [PMID: 19915704 DOI: 10.4196/kjpp.2009.13.5.401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 09/30/2009] [Accepted: 10/07/2009] [Indexed: 12/20/2022]
Abstract
K(+)-Cl(-)-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase A(2) (PLA(2))-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced K(+) efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activator-induced K(+) efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calcium-independent PLA(2) (iPLA(2)), whereas it was not significantly altered by arachidonyl trifluoromethylketone (AACOCF(3)) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic PLA(2) (cPLA(2)) and the secretory PLA(2) (sPLA(2)), respectively. NEM increased AA liberation in a dose- and time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas AACOCF(3) and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that iPLA(2)-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.
Collapse
Affiliation(s)
- Yong Soo Lee
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea
| |
Collapse
|
41
|
Ataullakhanov FI, Korunova NO, Spiridonov IS, Pivovarov IO, Kalyagina NV, Martinov MV. How erythrocyte volume is regulated, or what mathematical models can and cannot do for biology. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2009. [DOI: 10.1134/s1990747809020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Bergeron MJ, Frenette-Cotton R, Carpentier GA, Simard MG, Caron L, Isenring P. Phosphoregulation of K+-Cl−cotransporter 4 during changes in intracellular Cl−and cell volume. J Cell Physiol 2009; 219:787-96. [DOI: 10.1002/jcp.21725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Effects of phorbol 12-myristate 13-acetate on potassium transport in the red blood cells of frog Rana temporaria. J Comp Physiol B 2008; 179:443-50. [DOI: 10.1007/s00360-008-0324-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/20/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
44
|
Ortiz-Acevedo A, Rigor RR, Maldonado HM, Cala PM. Activation of Na+/H+ and K+/H+ exchange by calyculin A in Amphiuma tridactylum red blood cells: implications for the control of volume-induced ion flux activity. Am J Physiol Cell Physiol 2008; 295:C1316-25. [PMID: 18799654 DOI: 10.1152/ajpcell.00160.2008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood cells (RBCs) to phorbol esters in isotonic medium results in a simultaneous, dose-dependent activation of both Na(+)/H(+) and K(+)/H(+) exchangers. We tested the hypothesis that in Amphiuma RBCs, both shrinkage-induced Na(+)/H(+) exchange and swelling-induced K(+)/H(+) exchange are activated by phosphorylation-dependent reactions. To this end, we assessed the effect of calyculin A, a phosphatase inhibitor, on the activity of the aforementioned exchangers. We found that exposure of Amphiuma RBCs to calyculin-A in isotonic media results in simultaneous, 1-2 orders of magnitude increase in the activity of both K(+)/H(+) and Na(+)/H(+) exchangers. We also demonstrate that, in isotonic media, calyculin A-dependent increases in net Na(+) uptake and K(+) loss are a direct result of phosphatase inhibition and are not dependent on changes in cell volume. Whereas calyculin A exposure in the absence of volume changes results in stimulation of both the Na(+)/H(+) and K(+)/H(+) exchangers, superimposing cell swelling or shrinkage and calyculin A treatment results in selective activation of K(+)/H(+) or Na(+)/H(+) exchange, respectively. We conclude that kinase-dependent reactions are responsible for Na(+)/H(+) and K(+)/H(+) exchange activity, whereas undefined volume-dependent reactions confer specificity and coordinated control.
Collapse
|
45
|
Salin-Cantegrel A, Shekarabi M, Holbert S, Dion P, Rochefort D, Laganière J, Dacal S, Hince P, Karemera L, Gaspar C, Lapointe JY, Rouleau GA. HMSN/ACC truncation mutations disrupt brain-type creatine kinase-dependant activation of K+/Cl− co-transporter 3. Hum Mol Genet 2008; 17:2703-11. [DOI: 10.1093/hmg/ddn172] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
46
|
Thermodynamic regulation of NKCC1-mediated Cl- cotransport underlies plasticity of GABA(A) signaling in neonatal neurons. J Neurosci 2008; 28:1301-12. [PMID: 18256250 DOI: 10.1523/jneurosci.3378-07.2008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the adult brain, chloride (Cl-) influx through GABA(A) receptors is an important mechanism of synaptic inhibition. However, under a variety of circumstances, including acquired epilepsy, neuropathic pain, after trains of action potentials or trauma, and during normal early brain development, GABA(A) receptor activation excites neurons by gating Cl- efflux because the intracellular Cl- concentration (Cl(i)) is elevated. These findings require an inducible, active mechanism of chloride accumulation. We used gramicidin-perforated patch recordings to characterize Cl- transport via NKCC1, the principal neuronal Cl- accumulator, in neonatal CA1 pyramidal neurons. NKCC1 activity was required to maintain elevated Cl(i) such that GABA(A) receptor activation was depolarizing. Kinetic analysis of NKCC1 revealed reversible transmembrane Cl- transport characterized by a large maximum velocity (vmax) and high affinity (Km), so that NKCC1 transport was limited only by the net electrochemical driving force for Na+, K+, and Cl-. At the steady-state Cl(i), NKCC1 was at thermodynamic equilibrium, and there was no evidence of net Cl- transport. Trains of action potentials that have been previously shown to induce persistent changes in neuronal E(Cl) (reversal potential for Cl-) did not alter vmax or Km of NKCC1. Rather, action potentials shifted the thermodynamic set point, the steady-state Cl(i) at which there was no net NKCC1-mediated Cl- transport. The persistent increase in Cl(i) required intact alpha2/alpha3 Na+-K+-ATPase activity, indicating that trains of action potentials reset the thermodynamic equilibrium for NKCC1 transport by lowering Na(i). Activity-induced changes in Na+-K+-ATPase activity comprise a novel mechanism for persistent alterations in synaptic signaling mediated by GABA.
Collapse
|
47
|
SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem J 2007; 409:321-31. [DOI: 10.1042/bj20071324] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the discovery of an interaction between membrane transport proteins and the mammalian STE20 (sterile 20)-like kinases SPAK (STE20/SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase-1), a significant body of work has been performed probing the molecular physiology of these two kinases. To date, the function of SPAK and OSR1 is probably the best known of all mammalian kinases of the STE20 family. As they regulate by direct phosphorylation key ion transport mechanisms involved in fluid and ion homoeostasis, SPAK and OSR1 constitute key end-of-pathway effectors. Their significance in such fundamental functions as ion homoeostasis and cell volume control is evidenced by the evolutionary pressure that resulted in the duplication of the OSR1 gene in higher vertebrates. This review examines the distribution of these two kinases in the animal kingdom and tissue expression within a single organism. It also describes the main molecular features of these two kinases with emphasis on the interacting domain located at their extreme C-terminus. A large portion of the present review is devoted to the extensive biochemical and physiological studies that have resulted in our current understanding of SPAK/OSR1 function. Finally, as our understanding is a work in progress, we also identify unresolved questions and controversies that warrant further investigation.
Collapse
|
48
|
Adragna NC, Lauf PK. K-Cl cotransport function and its potential contribution to cardiovascular disease. ACTA ACUST UNITED AC 2007; 14:135-46. [PMID: 17949953 DOI: 10.1016/j.pathophys.2007.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
K-Cl cotransport is the coupled electroneutral movement of K and Cl ions carried out by at least four protein isoforms, KCC1-4. These transporters belong to the SLC12A family of coupled cotransporters and, due to their multiple functions, play an important role in the maintenance of cellular homeostasis. Significant information exists on the overall function of these transporters, but less is known about the role of the specific isoforms. Most functional studies were done on K-Cl cotransport fluxes without knowing the molecular details, and only recently attention has been paid to the isoforms and their individual contribution to the fluxes. This review summarizes briefly and updates the information on the overall functions of this transporter, and offers some ideas on its potential contribution to the pathophysiological basis of cardiovascular disease. By virtue of its properties and the cellular ionic distribution, K-Cl cotransport participates in volume regulation of the nucleated and some enucleated cells studied thus far. One of the hallmarks in cardiovascular disease is the inability of the organism to maintain water and electrolyte balance in effectors and/or target tissues. Oxidative stress is another compounding factor in cardiovascular disease and of great significance in our modern life styles. Several functions of the transporter are modulated by oxidative stress, which in turn may cause the transporter to operate in either "overdrive" with the purpose to counteract homeostatic changes, or not to respond at all, again setting the stage for pathological changes leading to cardiovascular disease. Intracellular Mg, a second messenger, acts as an inhibitor of K-Cl cotransport and plays a crucial role in regulating the activity of protein kinases and phosphatases, which, in turn, regulate a myriad of cellular functions. Although the role of Mg in cardiovascular disease has been dealt with for several decades, this chapter is evolving nowadays at a faster pace and the relationships between Mg, K-Cl cotransport, and cardiovascular disease is an area that awaits further experimentation. We envision that further studies on the role of K-Cl cotransport, and ideally on its specific isoforms, in mammalian cells will add missing links and help to understand the cellular mechanisms involved in the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Norma C Adragna
- Cell Biophysics Group, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, United States; Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, United States
| | | |
Collapse
|
49
|
Capó-Aponte JE, Wang Z, Bildin VN, Iserovich P, Pan Z, Zhang F, Pokorny KS, Reinach PS. Functional and molecular characterization of multiple K-Cl cotransporter isoforms in corneal epithelial cells. Exp Eye Res 2007; 84:1090-103. [PMID: 17418819 PMCID: PMC2696115 DOI: 10.1016/j.exer.2007.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/19/2006] [Accepted: 02/06/2007] [Indexed: 11/20/2022]
Abstract
The dependence of regulatory volume decrease (RVD) activity on potassium-chloride cotransporter (KCC) isoform expression was characterized in corneal epithelial cells (CEC). During exposure to a 50% hypotonic challenge, the RVD response was larger in SV40-immortalized human CEC (HCEC) than in SV40-immortalized rabbit CEC (RCEC). A KCC inhibitor-[(dihydroindenyl)oxy] alkanoic acid (DIOA)-blocked RVD more in HCEC than RCEC. Under isotonic conditions, N-ethylmaleimide (NEM) produced KCC activation and transient cell shrinkage. Both of these changes were greater in HCEC than in RCEC. Immunoblot analysis of HCEC, RCEC, primary human CEC (pHCEC), and primary bovine CEC (BCEC) plasma membrane enriched fractions revealed KCC1, KCC3, and KCC4 isoform expression, whereas KCC2 was undetectable. During a hypotonic challenge, KCC1 membrane content increased more rapidly in HCEC than in RCEC. Such a challenge induced a larger increase and more transient p44/42MAPK activation in HCEC than RCEC. On the other hand, HCEC and RCEC p38MAPK phosphorylation reached peak activations at 2.5 and 15 min, respectively. Only in HCEC, pharmacological manipulation of KCC activity modified the hypotonicity-induced activation of p44/42MAPK, whereas p38MAPK phosphorylation was insensitive to such procedures in both cell lines. Larger increases in HCEC KCC1 membrane protein content correlated with their ability to undergo faster and more complete RVD. Furthermore, pharmacological activation of KCC increased p44/42MAPK phosphorylation in HCEC but not in RCEC, presumably a reflection of low KCC1 membrane expression in RCEC. These findings suggest that KCC1 plays a role in (i) maintaining isotonic steady-state cell volume homeostasis, (ii) recovery of isotonic cell volume after a hypotonic challenge through RVD, and (iii) regulating hypotonicity-induced activation of the p44/42MAPK signaling pathway required for cell proliferation.
Collapse
Affiliation(s)
- José E. Capó-Aponte
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | - Zheng Wang
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | - Victor N. Bildin
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | - Pavel Iserovich
- Department of Ophthalmology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zan Pan
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | - Fan Zhang
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | - Kathryn S. Pokorny
- The Institute of Ophthalmology & Visual Science, New Jersey Medical School, University of Medicine & Dentistry, Newark, NJ 07101, USA
| | - Peter S. Reinach
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| |
Collapse
|
50
|
Rust MB, Alper SL, Rudhard Y, Shmukler BE, Vicente R, Brugnara C, Trudel M, Jentsch TJ, Hübner CA. Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice. J Clin Invest 2007; 117:1708-17. [PMID: 17510708 PMCID: PMC1866252 DOI: 10.1172/jci30630] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/20/2007] [Indexed: 11/17/2022] Open
Abstract
K-Cl cotransport activity in rbc is a major determinant of rbc volume and density. Pathologic activation of erythroid K-Cl cotransport activity in sickle cell disease contributes to rbc dehydration and cell sickling. To address the roles of individual K-Cl cotransporter isoforms in rbc volume homeostasis, we disrupted the Kcc1 and Kcc3 genes in mice. As rbc K-Cl cotransport activity was undiminished in Kcc1(-/-) mice, decreased in Kcc3(-/-) mice, and almost completely abolished in mice lacking both isoforms, we conclude that K-Cl cotransport activity of mouse rbc is mediated largely by KCC3. Whereas rbc of either Kcc1(-/-) or Kcc3(-/-) mice were of normal density, rbc of Kcc1(-/-)Kcc3(-/-) mice exhibited defective volume regulation, including increased mean corpuscular volume, decreased density, and increased susceptibility to osmotic lysis. K-Cl cotransport activity was increased in rbc of SAD mice, which are transgenic for a hypersickling human hemoglobin S variant. Kcc1(-/-)Kcc3(-/-) SAD rbc lacked nearly all K-Cl cotransport activity and exhibited normalized values of mean corpuscular volume, corpuscular hemoglobin concentration mean, and K(+) content. Although disruption of K-Cl cotransport rescued the dehydration phenotype of most SAD rbc, the proportion of the densest red blood cell population remained unaffected.
Collapse
Affiliation(s)
- Marco B. Rust
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Seth L. Alper
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - York Rudhard
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Boris E. Shmukler
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Rubén Vicente
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Carlo Brugnara
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marie Trudel
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas J. Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christian A. Hübner
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|