1
|
|
2
|
Uncovering protein polyamination by the spermine-specific antiserum and mass spectrometric analysis. Amino Acids 2014; 47:469-81. [PMID: 25471600 DOI: 10.1007/s00726-014-1879-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023]
Abstract
The polyamines spermidine and spermine, and their precursor putrescine, have been shown to play an important role in cell migration, proliferation, and differentiation. Because of their polycationic property, polyamines are traditionally thought to be involved in DNA replication, gene expression, and protein translation. However, polyamines can also be covalently conjugated to proteins by transglutaminase 2 (TG2). This modification leads to an increase in positive charge in the polyamine-incorporated region which significantly alters the structure of proteins. It is anticipated that protein polyamine conjugation may affect the protein-protein interaction, protein localization, and protein function of the TG2 substrates. In order to investigate the roles of polyamine modification, we synthesized a spermine-conjugated antigen and generated an antiserum against spermine. In vitro TG2-catalyzed spermine incorporation assays were carried out to show that actin, tubulins, heat shock protein 70 and five types of histone proteins were modified with spermine, and modification sites were also identified by liquid chromatography and linear ion trap-orbitrap hybrid mass spectrometry. Subsequent mass spectrometry-based shotgun proteomic analysis also identified 254 polyaminated sites in 233 proteins from the HeLa cell lysate catalyzed by human TG2 with spermine, thus allowing, for the first time, a global appraisal of site-specific protein polyamination. Global analysis of mouse tissues showed that this modification really exists in vivo. Importantly, we have demonstrated that there is a new histone modification, polyamination, in cells. However, the functional significance of histone polyamination demands further investigations.
Collapse
|
3
|
Kucharzewska P, Welch JE, Svensson KJ, Belting M. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells. Exp Cell Res 2010; 316:2683-91. [PMID: 20594968 DOI: 10.1016/j.yexcr.2010.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/25/2010] [Accepted: 05/30/2010] [Indexed: 10/19/2022]
Abstract
The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by alpha-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.
Collapse
Affiliation(s)
- Paulina Kucharzewska
- Department of Clinical Sciences, Division of Oncology, Lund University and Lund University Hospital, Sweden
| | | | | | | |
Collapse
|
4
|
Ornithine decarboxylase regulates the activity and localization of rhoA via polyamination. Exp Cell Res 2009; 315:1008-14. [PMID: 19331812 DOI: 10.1016/j.yexcr.2009.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 12/29/2008] [Accepted: 01/28/2009] [Indexed: 10/25/2022]
Abstract
Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine synthesis. Polyamines and ODC are connected to cell proliferation and transformation. Resting cells display a low ODC activity while normal, proliferating cells display fluctuations in ODC activity that coincide with changes in the actin cytoskeleton during the cell cycle. Cancerous cells display constitutively elevated ODC activity. Overexpression of ODC in NIH 3T3 fibroblasts induces a transformed phenotype. The cytoskeletal rearrangements during cytokinesis and cell transformation are intimately coupled to the ODC activity but the molecular mechanisms have remained elusive. In this study we investigated how ODC and polyamines influence the organization of the cytoskeleton. Given that the small G-proteins of the rho family are key modulators of the actin cytoskeleton, we investigated the molecular interactions of rhoA with ODC and polyamines. Our results show that transglutaminase-catalyzed polyamination of rhoA regulates its activity. The polyamination status of rhoA crucially influences the progress of the cell cycle as well as the rate of transformation of rat fibroblasts infected with temperature-sensitive v-src. We also show that ODC influences the intracellular distribution of rhoA. These findings provide novel insights into the mechanisms by which ODC and polyamines regulate the dynamics of the cytoskeleton during cell proliferation and transformation.
Collapse
|
5
|
Rao JN, Liu SV, Zou T, Liu L, Xiao L, Zhang X, Bellavance E, Yuan JXJ, Wang JY. Rac1 promotes intestinal epithelial restitution by increasing Ca2+ influx through interaction with phospholipase C-(gamma)1 after wounding. Am J Physiol Cell Physiol 2008; 295:C1499-509. [PMID: 18923057 DOI: 10.1152/ajpcell.00232.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal mucosal restitution occurs as a consequence of epithelial cell migration and reseals superficial wounds after injury. This rapid reepithelialization is mediated in part by a phospholipase C-gamma1 (PLC-gamma1)-induced Ca(2+) signaling, but the exact mechanism underlying such signaling and its regulation remains elusive. The small GTP-binding protein Rac1 functions as a pivotal regulator of several signaling networks and plays an important role in regulating cell motility. The current study tests the hypothesis that Rac1 modulates intestinal epithelial cell migration after wounding by altering PLC-gamma1-induced Ca(2+) signaling. Inhibition of Rac1 activity by treatment with its inhibitor NSC-23766 or Rac1 silencing with small interfering RNA decreased store depletion-induced Ca(2+) influx and suppressed cell migration during restitution, whereas ectopic overexpression of Rac1 increased Ca(2+) influx and promoted cell migration. Rac1 physically interacted with PLC-gamma1 and formed Rac1/PLC-gamma1 complex in intestinal epithelial cells. PLC-gamma1 silencing in cells overexpressing Rac1 prevented stimulation of store depletion-induced Ca(2+) influx and cell migration after wounding. Polyamine depletion inhibited expression of both Rac1 and PLC-gamma1, decreased Rac1/PLC-gamma1 complex levels, reduced Ca(2+) influx, and repressed cell migration. Overexpression of Rac1 alone failed to rescue Ca(2+) influx after store depletion and cell migration in polyamine-deficient cells, because it did not alter PLC-gamma1 levels. These results indicate that Rac1 promotes intestinal epithelial cell migration after wounding by increasing Ca(2+) influx as a result of its interaction with PLC-gamma1.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev 2007; 87:545-64. [PMID: 17429041 DOI: 10.1152/physrev.00012.2006] [Citation(s) in RCA: 422] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mucosal repair is a complex event that immediately follows acute injury induced by ischemia and noxious luminal contents such as bile. In the small intestine, villous contraction is the initial phase of repair and is initiated by myofibroblasts that reside immediately beneath the epithelial basement membrane. Subsequent events include crawling of healthy epithelium adjacent to the wound, referred to as restitution. This is a highly regulated event involving signaling via basement membrane integrins by molecules such as focal adhesion kinase and growth factors. Interestingly, however, ex vivo studies of mammalian small intestine have revealed the importance of closure of the interepithelial tight junctions and the paracellular space. The critical role of tight junction closure is underscored by the prominent contribution of the paracellular space to measures of barrier function such as transepithelial electrical resistance. Additional roles are played by subepithelial cell populations, including neutrophils, related to their role in innate immunity. The net result of reparative mechanisms is remarkably rapid closure of mucosal wounds in mammalian tissues to prevent the onset of sepsis.
Collapse
Affiliation(s)
- Anthony T Blikslager
- Department of Clinical Science, North Carolina State University, Raleigh 27606, USA.
| | | | | | | | | |
Collapse
|
7
|
Ray RM, Guo H, Patel M, Jin S, Bhattacharya S, Johnson LR. Role of myosin regulatory light chain and Rac1 in the migration of polyamine-depleted intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:G983-95. [PMID: 17170026 DOI: 10.1152/ajpgi.00356.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that polyamine depletion decreased migration, Rac activation, and protein serine threonine phosphatase 2A activity. We have also shown that polyamine depletion increased cortical F-actin and decreased lamellipodia and stress fibers. In this study, we used staurosporine (STS), a potent, cell-permeable, and broad-spectrum serine/threonine kinase inhibitor, and studied migration. STS concentrations above 100 nM induced apoptosis. However, in polyamine-depleted cells, a lower concentration of STS (5 nM) increased attachment, spreading, Rac1 activation, and, subsequently, migration without causing apoptosis. STS-induced migration was completely prevented by a Rac1 inhibitor (NSC-23766) and dominant negative Rac1. These results imply that STS restores migration in polyamine-depleted cells through Rac1. The most important finding in this study was that polyamine depletion increased the association of phosphorylated myosin regulatory light chain (pThr(18)/Ser(19)-MRLC) at the cell periphery, which colocalized with thick cortical F-actin. Localization of pThr(18)- and pSer(19)-MRLC was found with stress fibers and nuclei, respectively. STS decreased the phosphorylation of cellular and peripheral pThr(18)-MRLC without any effect on nuclear pSer(19)-MRLC, dissolved thick cortical F-actin, and increased lamellipodia and stress fiber formation in polyamine-depleted cells. In control and polyamine-depleted cells, focal adhesion kinase (FAK) colocalized with stress fibers and the actin cortex, respectively. STS reorganized FAK, paxillin, and the cytoskeleton. These results suggest that polyamine depletion prevents the dephosphorylation of MRLC and thereby prevents the dynamic reorganization of the actin cytoskeleton and decreases lamellipodia formation resulting in the inhibition of migration.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, The University of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Rao JN, Liu L, Zou T, Marasa BS, Boneva D, Wang SR, Malone DL, Turner DJ, Wang JY. Polyamines are required for phospholipase C-gamma1 expression promoting intestinal epithelial restitution after wounding. Am J Physiol Gastrointest Liver Physiol 2007; 292:G335-43. [PMID: 16973916 DOI: 10.1152/ajpgi.00282.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal mucosal restitution occurs by epithelial cell migration, rather than by proliferation, to reseal superficial wounds after injury. Polyamines are essential for the stimulation of intestinal epithelial cell (IEC) migration during restitution in association with their ability to regulate Ca2+ homeostasis, but the exact mechanism by which polyamines induce cytosolic free Ca2+ concentration ([Ca2+]cyt) remains unclear. Phospholipase C (PLC)-gamma1 catalyzes the formation of inositol (1,4,5)-trisphosphate (IP3), which is implicated in the regulation of [Ca2+]cyt by modulating Ca2+ store mobilization and Ca2+ influx. The present study tested the hypothesis that polyamines are involved in PLC-gamma1 activity, regulating [Ca2+]cyt and cell migration after wounding. Depletion of cellular polyamines by alpha-difluoromethylornithine inhibited PLC-gamma1 expression in differentiated IECs (stable Cdx2-transfected IEC-6 cells), as indicated by substantial decreases in levels of PLC-gamma1 mRNA and protein and its enzyme product IP3. Polyamine-deficient cells also displayed decreased [Ca2+]cyt and inhibited cell migration. Decreased levels of PLC-gamma1 by treatment with U-73122 or transfection with short interfering RNA specifically targeting PLC-gamma1 also decreased IP3, reduced resting [Ca2+]cyt and Ca2+ influx after store depletion, and suppressed cell migration in control cells. In contrast, stimulation of PLC-gamma1 by 2,4,6-trimethyl-N-(meta-3-trifluoromethylphenyl)-benzenesulfonamide induced IP3, increased [Ca2+]cyt, and promoted cell migration in polyamine-deficient cells. These results indicate that polyamines are absolutely required for PLC-gamma1 expression in IECs and that polyamine-mediated PLC-gamma1 signaling stimulates cell migration during restitution as a result of increased [Ca2+]cyt.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Cell Biology Group, Department of Surgery, and 2Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Guo X, Rao JN, Liu L, Zou T, Keledjian KM, Boneva D, Marasa BS, Wang JY. Polyamines are necessary for synthesis and stability of occludin protein in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1159-69. [PMID: 15691870 DOI: 10.1152/ajpgi.00407.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Occludin is an integral membrane protein that forms the sealing element of tight junctions and is critical for epithelial barrier function. Polyamines are implicated in multiple signaling pathways driving different biological functions of intestinal epithelial cells (IEC). The present study determined whether polyamines are involved in expression of occludin and play a role in intestinal epithelial barrier function. Studies were conducted in stable Cdx2-transfected IEC-6 cells (IEC-Cdx2L1) associated with a highly differentiated phenotype. Polyamine depletion by alpha-difluoromethylornithine (DFMO) decreased levels of occludin protein but failed to affect expression of its mRNA. Other tight junction proteins, zonula occludens (ZO)-1, ZO-2, claudin-2, and claudin-3, were also decreased in polyamine-deficient cells. Decreased levels of tight junction proteins in DFMO-treated cells were associated with dysfunction of the epithelial barrier, which was overcome by exogenous polyamine spermidine. Decreased levels of occludin in polyamine-deficient cells was not due to the reduction of intracellular-free Ca(2+) concentration ([Ca(2+)](cyt)), because either increased or decreased [Ca(2+)](cyt) did not alter levels of occludin in the presence or absence of polyamines. The level of newly synthesized occludin protein was decreased by approximately 70% following polyamine depletion, whereas its protein half-life was reduced from approximately 120 min in control cells to approximately 75 min in polyamine-deficient cells. These findings indicate that polyamines are necessary for the synthesis and stability of occludin protein and that polyamine depletion disrupts the epithelial barrier function, at least partially, by decreasing occludin.
Collapse
Affiliation(s)
- Xin Guo
- Dept. of Surgery, Baltimore Veterans Affairs Medical Center, 10 North Greene St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Johnson DA, Sharma RK, Allan K, Ray R, Johnson LR. Immunocytochemical localization of polyamines during attachment and spreading of retinal pigment epithelial and intestinal epithelial cells. ACTA ACUST UNITED AC 2005; 58:269-80. [PMID: 15236357 DOI: 10.1002/cm.20014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In order to form and maintain a protective barrier for photoreceptors, the retinal pigment epithelium relies on integrin signaling and related pathways to form adhesion complexes, undergo cell spreading, and establish a confluent cellular monolayer. Polyamines are multifunctional polycations that are essential for cell attachment and spreading, although their exact mechanisms of action are as yet unclear. We report new immunocytochemical evidence suggesting that in the cells of retinal pigment epithelium and also the intestinal epithelium, polyamines are present in a population of intracellular vesicles that appear transiently during initial stages of cell spreading. In newly attached cells with minimal spreading, the vesicles are seen near the nucleus, whereas in more highly spread cells, the vesicles are localized to the plasma membrane, near, but not precisely co-localized with an enzyme marker for adhesion complexes, focal adhesion kinase. We also observe pronounced nuclear staining in newly attached cells that have not spread, whereas this staining is decreased in cells that have spread. Nuclear staining has been previously reported in other cell types and has been attributed to DNA binding of polyamines, which is known to stabilize chromatin structure. We hypothesize that the appearance of polyamine vesicles near focal adhesions of cells undergoing attachment and spreading may reflect the mechanism by which polyamine pools are targeted to appropriate interaction sites necessary for the assembly of adhesion complexes. Alternatively, the vesicles could represent the mechanism by which polyamines are removed from the nucleus and possibly released from the cell.
Collapse
Affiliation(s)
- Dianna A Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | | | | | |
Collapse
|
11
|
Vaidya RJ, Ray RM, Johnson LR. MEK1 restores migration of polyamine-depleted cells by retention and activation of Rac1 in the cytoplasm. Am J Physiol Cell Physiol 2005; 288:C350-9. [PMID: 15496479 DOI: 10.1152/ajpcell.00290.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that polyamines are required for proliferation and migration both in vivo and in a cultured intestinal epithelial cell (IEC-6) model. Wounding of the IEC-6 monolayer induced transient ERK activation, which was further enhanced by EGF. EGF stimulated migration in control and polyamine-depleted cells, but the degree of stimulation was significantly less in polyamine-depleted cells. Inhibition of MEK1 inhibited basal as well as EGF-induced ERK activation and migration. Expression of constitutively active (CA)-MEK and dominant-negative (DN)-MEK had significant effects on F-actin structure. CA-MEK increased stress fiber and lamellipodia formation, while DN-MEK showed loss of stress fibers and abnormal actin cytoskeletal structure. Unlike EGF, CA-MEK significantly increased migration of both control and polyamine-depleted cells. The most important and significant finding in this study was that polyamine depletion caused localization of Rac1 and RhoA to the nuclear as well as perinuclear regions. Interestingly, CA-MEK completely reversed the subcellular distribution of Rac1 and RhoA proteins in polyamine-depleted cells. Polyamine depletion increased Rac1 in the nuclear fraction and decreased it in the cytoplasmic and membrane fractions of vector-transfected cells. CA-MEK prevented accumulation of Rac1 in the nucleus. Polyamine depletion significantly decreased Rac1 activity during 6-h migration in vector-transfected cells. Cells transfected with CA-MEK had almost identical levels of activated Rac1 in all three groups. These results suggest that polyamine depletion prevents activation of Rac1 and RhoA by sequestering them to the nucleus and that expression of constitutively active MEK reverses this effect, creating the cellular localization required for activation.
Collapse
Affiliation(s)
- Rajiv J Vaidya
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|
12
|
Strauch ED, Yamaguchi J, Bass BL, Wang JY. Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced expression of transforming growth factor-beta. J Am Coll Surg 2004; 197:974-84. [PMID: 14644286 DOI: 10.1016/s1072-7515(03)00720-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mucosal restitution is an important repair modality in the gastrointestinal tract. We have shown that taurodeoxycholate increases intestinal epithelial cell migration by increasing TGF-beta expression, and that the transcription factor NF-kappa B regulates TDCA induced cell migration after injury. The objectives of this study were to determine if this is a property shared by other bile salts or an effect specific to TDCA, and to determine if NF-kappa B regulates TGF-beta expression. STUDY DESIGN Studies were conducted in IEC-6 cells. Cell migration was examined using an in vitro model. TGF-beta protein and mRNA expression was determined by ELISA and Northern blot analysis. Sequence-specific NF-kappa B binding activity was measured by gel shift assays. RESULTS Taurocholate and deoxycholate at physiologic concentrations significantly increased intestinal epithelial cell migration 6 hours after wounding (p < 0.01), and was associated with a significant increase in specific NF-kappa B binding activity. Inhibition of NF-kappa B activity significantly inhibited cell migration during restitution and resulted in a significant decrease in TGF-beta mRNA expression and protein expression. CONCLUSIONS We conclude that bile salts at physiologic conditions increase cell migration after injury, an effect regulated by NF-kappa B. Further, NF-kappa B elicits TGF-beta gene transcription during cell migration. These data support a physiologic role of bile salts in the maintenance of intestinal mucosal integrity.
Collapse
Affiliation(s)
- Eric D Strauch
- Department of Surgery, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
13
|
|
14
|
Guo X, Rao JN, Liu L, Zou TT, Turner DJ, Bass BL, Wang JY. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol 2003; 285:C1174-87. [PMID: 12853285 DOI: 10.1152/ajpcell.00015.2003] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Maintenance of intestinal mucosal epithelial integrity requires polyamines that are involved in the multiple signaling pathways controlling gene expression and different epithelial cell functions. Integrity of the intestinal epithelial barrier depends on a complex of proteins composing different intercellular junctions, including tight junctions, adherens junctions, and desmosomes. E-cadherin is primarily found at the adherens junctions and plays a critical role in cell-cell adhesions that are fundamental to formation of the intestinal epithelial barrier. The current study determined whether polyamines regulate intestinal epithelial barrier function by altering E-cadherin expression. Depletion of cellular polyamines by alpha-difluoromethylornithine (DFMO) reduced intracellular free Ca2+ concentration ([Ca2+]cyt), decreased E-cadherin expression, and increased paracellular permeability in normal intestinal epithelial cells (IEC-6 line). Polyamine depletion did not alter expression of tight junction proteins such as zona occludens (ZO)-1, ZO-2, and junctional adhesion molecule (JAM)-1. Addition of exogenous polyamine spermidine reversed the effects of DFMO on [Ca2+]cyt and E-cadherin expression and restored paracellular permeability to near normal. Elevation of [Ca2+]cyt by the Ca2+ ionophore ionomycin increased E-cadherin expression in polyamine-deficient cells. In contrast, reduction of [Ca2+]cyt by polyamine depletion or removal of extracellular Ca2+ not only inhibited expression of E-cadherin mRNA but also decreased the half-life of E-cadherin protein. These results indicate that polyamines regulate intestinal epithelial paracellular barrier function by altering E-cadherin expression and that polyamines are essential for E-cadherin expression at least partially through [Ca2+]cyt.
Collapse
Affiliation(s)
- Xin Guo
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Mouse blastocyst outgrowth in vitro and probably implantation in vivo require amino acid signaling via the target of rapamycin (TOR) pathway. This signaling does not simply support protein synthesis and trophoblast differentiation. Rather, it regulates development of trophoblast protrusive activity and may act as a developmental checkpoint for implantation. Moreover, intracellular amino acids per se are insufficient to elicit TOR signaling. Instead, de novo transport of amino acids, and particularly of leucine, stimulate mTOR activity at the blastocyst stage. The activity of the broad-scope and yet leucine-selective amino acid transport system B0,+ could produce such increases in intracellular amino acid concentrations. For example, system B0,+ uses a Na+ gradient to drive amino acid uptake, and the Na+ concentration in uterine secretions increases by nearly two-fold about 18 h before implantation. The resultant mTOR signaling could trigger polyamine, insulin-like growth factor II, and nitric oxide production in blastocysts and the increased cell motility sometimes associated with synthesis of these bioactive molecules.
Collapse
Affiliation(s)
- Patrick M Martin
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
16
|
Wang Z, Chen WW, Li RL, Wen B, Sun JB. Effect of gastrin on differentiation of rat intestinal epithelial cells in vitro. World J Gastroenterol 2003; 9:1786-90. [PMID: 12918121 PMCID: PMC4611544 DOI: 10.3748/wjg.v9.i8.1786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of gastrin on differentiation of IEC-6 cell line in vitro.
METHODS: IEC-6 cells were incubated with gastrin. On day 7 after treatment, cell morphology was examined by light microscope, and on day 20, the cellular ultrastructures were examined by electron microscope. After exposure to gastrin for 6 hours, villin mRNA was analyzed by reverse transcription-polymerase chain reaction, and on day 7, the expression of villin was examined by immunocytochemical analysis with laser confocal microscope.
RESULTS: After exposure to gastrin, IEC-6 cells showed differentiated phenotypes as villas enterocytes and contained an abundance of plasma, small nuclei with nucleoli, and were arranged regularly. There were numerous microvilli around edge of the cells, and several cells showed columnar structures. Villin mRNA expression in cytoplasm was increased in comparison with control.
CONCLUSION: Differentiated characteristics of villus enterocytes and phenotypic changes of rat intestinal epithelial cells (IEC-6) are induced by gastrin, and the effects of gastrin are correlated to increased villin expression.
Collapse
Affiliation(s)
- Zhou Wang
- Piwei Institute, Guangzhou University of TCM, Guangzhou, 510405, Guangdong Province, China
| | | | | | | | | |
Collapse
|
17
|
Ray RM, McCormack SA, Covington C, Viar MJ, Zheng Y, Johnson LR. The requirement for polyamines for intestinal epithelial cell migration is mediated through Rac1. J Biol Chem 2003; 278:13039-46. [PMID: 12574162 DOI: 10.1074/jbc.m208741200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rapid migration of intestinal epithelial cells is important to the healing of mucosal ulcers and wounds. This cell migration requires the presence of polyamines and the activation of RhoA. RhoA activity, however, is not sufficient for migration because polyamine depletion inhibited the migration of IEC-6 cells expressing constitutively active RhoA. The current study examines the role of Rac1 and Cdc42 in cell migration and whether their activities are polyamine-dependent. Polyamine depletion with alpha-difluoromethylornithine inhibited the activities of RhoA, Rac1, and Cdc42. This inhibition was prevented by supplying exogenous putrescine in the presence of alpha-difluoromethylornithine. IEC-6 cells transfected with constitutively active Rac1 and Cdc42 migrated more rapidly than vector-transfected cells, whereas cells expressing dominant negative Rac1 and Cdc42 migrated more slowly. Polyamine depletion had no effect on the migration of cells expressing Rac1 and only partially inhibited the migration of those expressing Cdc42. Although polyamine depletion caused the disappearance of actin stress fibers in cells transfected with empty vector, it had no effect on cells expressing Rac1. Constitutively active Rac1 increased RhoA and Cdc42 activity in both normal and polyamine-depleted cells. These results demonstrate that Rac1, RhoA, and Cdc42 are required for optimal epithelial cell migration and that Rac1 activity is sufficient for cell migration in the absence of polyamines due to its ability to activate RhoA and Cdc42 as well as its own effects on the process of cell migration. These data imply that the involvement of polyamines in cell migration occurs either at Rac1 itself or upstream from Rac1.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology and Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
18
|
Rao JN, Guo X, Liu L, Zou T, Murthy KS, Yuan JXJ, Wang JY. Polyamines regulate Rho-kinase and myosin phosphorylation during intestinal epithelial restitution. Am J Physiol Cell Physiol 2003; 284:C848-59. [PMID: 12466151 DOI: 10.1152/ajpcell.00371.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyamines are required for the early phase of mucosal restitution that occurs as a consequence of epithelial cell migration. Our previous studies have shown that polyamines increase RhoA activity by elevating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) through controlling voltage-gated K(+) channel expression and membrane potential (E(m)) during intestinal epithelial restitution. The current study went further to determine whether increased RhoA following elevated [Ca(2+)](cyt) activates Rho-kinase (ROK/ROCK) resulting in myosin light chain (MLC) phosphorylation. Studies were conducted in stable Cdx2-transfected intestinal epithelial cells (IEC-Cdx2L1), which were associated with a highly differentiated phenotype. Reduced [Ca(2+)](cyt), by either polyamine depletion or exposure to the Ca(2+)-free medium, decreased RhoA protein expression, which was paralleled by significant decreases in GTP-bound RhoA, ROCK-1, and ROKalpha proteins, Rho-kinase activity, and MLC phosphorylation. The reduction of [Ca(2+)](cyt) also inhibited cell migration after wounding. Elevation of [Ca(2+)](cyt) induced by the Ca(2+) ionophore ionomycin increased GTP-bound RhoA, ROCK-1, and ROKalpha proteins, Rho-kinase activity, and MLC phosphorylation. Inhibition of RhoA function by a dominant negative mutant RhoA decreased the Rho-kinase activity and resulted in cytoskeletal reorganization. Inhibition of ROK/ROCK activity by the specific inhibitor Y-27632 not only decreased MLC phosphorylation but also suppressed cell migration. These results indicate that increase in GTP-bound RhoA by polyamines via [Ca(2+)](cyt) can interact with and activate Rho-kinase during intestinal epithelial restitution. Activation of Rho-kinase results in increased MLC phosphorylation, leading to the stimulation of myosin stress fiber formation and cell migration.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Strauch ED, Bass BL, Rao JN, Vann JA, Wang JY. NF-kappaB regulates intestinal epithelial cell and bile salt-induced migration after injury. Ann Surg 2003; 237:494-501. [PMID: 12677145 PMCID: PMC1514469 DOI: 10.1097/01.sla.0000060459.03270.e7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To determine if NF-kappa B regulates intestinal epithelial cell migration and if it has a role during bile salt-induced migration. SUMMARY BACKGROUND DATA Mucosal restitution is an important repair modality in the gastrointestinal tract. The authors have shown that taurodeoxycholate (TDCA) increases intestinal epithelial cell migration. NF-kappa B regulates activation of a number of genes involved in inflammatory responses. METHODS Studies were conducted in IEC-6 cells. I kappa B protein expression was determined by Western blot analysis. Sequence-specific NF-kappa B binding activity was measured by EMSA shift assays and nuclear localization by immunohistochemistry. Cell migration was examined by using an in vitro model that mimics the early cell division-independent stages of epithelial restitution. RESULTS The process of cell migration over the wounded area was associated with a significant increase in NF-kappa B binding activity in IEC-6 cells. Immunohistochemistry revealed translocation of NF-kappa B into the nucleus. Western blot analysis showed that injury decreased I kappa B protein expression. Inhibition of the binding activity by treatment with a specific NF-kappa B inhibitor, MG-132, inhibited cell migration during restitution. Further, exposure to TDCA at the physiologic concentration that induces intestinal epithelial cell migration increased NF-kappa B binding activity, induced NF-kappa B translocation into the nucleus, and decreased I kappa B protein expression. MG-132 also inhibits bile salt-induced cell migration. CONCLUSIONS NF-kappa B regulates intestinal epithelial cell migration. Bile salts at physiologic concentrations increase cell migration by activation of NF-kappa B. These data show that bile salts may have a role in the maintenance of intestinal mucosal integrity.
Collapse
Affiliation(s)
- Eric D Strauch
- Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
20
|
Guo X, Rao JN, Liu L, Rizvi M, Turner DJ, Wang JY. Polyamines regulate beta-catenin tyrosine phosphorylation via Ca(2+) during intestinal epithelial cell migration. Am J Physiol Cell Physiol 2002; 283:C722-34. [PMID: 12176729 DOI: 10.1152/ajpcell.00054.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyamines are essential for early mucosal restitution that occurs by epithelial cell migration to reseal superficial wounds after injury. Normal intestinal epithelial cells are tightly bound in sheets, but they need to be rapidly disassembled during restitution. beta-Catenin is involved in cell-cell adhesion, and its tyrosine phosphorylation causes disassembly of adhesion junctions, enhancing the spreading of cells. The current study determined whether polyamines are required for the stimulation of epithelial cell migration by altering beta-catenin tyrosine phosphorylation. Migration of intestinal epithelial cells (IEC-6 line) after wounding was associated with an increase in beta-catenin tyrosine phosphorylation, which decreased the binding activity of beta-catenin to alpha-catenin. Polyamine depletion by alpha-difluoromethylornithine reduced cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)), prevented induction of beta-catenin phosphorylation, and decreased cell migration. Elevation of [Ca(2+)](cyt) induced by the Ca(2+) ionophore ionomycin restored beta-catenin phosphorylation and promoted migration in polyamine-deficient cells. Decreased beta-catenin phosphorylation through the tyrosine kinase inhibitor herbimycin-A or genistein blocked cell migration, which was accompanied by reorganization of cytoskeletal proteins. These results indicate that beta-catenin tyrosine phosphorylation plays a critical role in polyamine-dependent cell migration and that polyamines induce beta-catenin tyrosine phosphorylation at least partially through [Ca(2+)](cyt).
Collapse
Affiliation(s)
- Xin Guo
- Department of Surgery, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ray RM, Patel A, Viar MJ, McCormack SA, Zheng Y, Tigyi G, Johnson LR. RhoA inactivation inhibits cell migration but does not mediate the effects of polyamine depletion. Gastroenterology 2002; 123:196-205. [PMID: 12105848 DOI: 10.1053/gast.2002.34216] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Inhibition of RhoA activity and depletion of polyamines inhibits cell migration and causes changes in the actin cytoskeleton. In this article we have examined the effect of polyamine depletion on RhoA and evaluated these effects on cell migration. METHODS Polyamines were depleted in intestinal epithelial cell (IEC)-6 cells by incubating them for 4 days with 5 mmol/L alpha-difluoromethylornithine (DFMO), which inhibits ornithine decarboxylase, the first rate-limiting enzyme in the synthesis of polyamines. IEC-6 cells were then transfected with vectors containing HA tags and constitutively active (HA-V14) or dominant-negative (HA-N19) RhoA with pcDNA3 (vector). RESULTS DFMO caused a significant decrease in Rho levels in the cytoplasm and membranes of IEC-6 cells. This decrease was caused by an approximate 50% inhibition of RhoA protein synthesis. Neither the half-life of RhoA nor the level of RhoA messenger RNA (mRNA) was affected. HA-V14-RhoA cells migrated much more rapidly than vector-transfected cells, and HA-N19-RhoA cells exhibited almost no motility. The migration of HA-V14-RhoA cells, however, was inhibited markedly by polyamine depletion. Polyamine depletion did not affect the activity of RhoA in HA-V14-RhoA cells, but inhibited it dramatically in the vector-transfected cells. In the presence of DFMO, the HA-V14-RhoA cells lost stress fibers and gained the appearance of HA-N19-RhoA cells or wild-type cells treated with DFMO. CONCLUSIONS First, polyamines are essential for the activity and synthesis and, therefore, normal levels of RhoA protein. Second, RhoA does not mediate the inhibitory effects of polyamine depletion on cell migration.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, University of Tennessee Medical School, Memphis, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Rao JN, Platoshyn O, Li L, Guo X, Golovina VA, Yuan JXJ, Wang JY. Activation of K(+) channels and increased migration of differentiated intestinal epithelial cells after wounding. Am J Physiol Cell Physiol 2002; 282:C885-98. [PMID: 11880277 DOI: 10.1152/ajpcell.00361.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early mucosal restitution occurs by epithelial cell migration to reseal superficial wounds after injury. Differentiated intestinal epithelial cells induced by forced expression of the Cdx2 gene migrate over the wounded edge much faster than undifferentiated parental cells in an in vitro model. This study determined whether these differentiated intestinal epithelial cells exhibit increased migration by altering voltage-gated K(+) (Kv) channel expression and cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)). Stable Cdx2-transfected IEC-6 cells (IEC-Cdx2L1) with highly differentiated phenotype expressed higher basal levels of Kv1.1 and Kv1.5 mRNAs and proteins than parental IEC-6 cells. Neither IEC-Cdx2L1 cells nor parental IEC-6 cells expressed voltage-dependent Ca(2+) channels. The increased expression of Kv channels in differentiated IEC-Cdx2L1 cells was associated with an increase in whole cell K(+) currents, membrane hyperpolarization, and a rise in [Ca(2+)](cyt). The migration rates in differentiated IEC-Cdx2L1 cells were about four times those of parental IEC-6 cells. Inhibition of Kv channel expression by polyamine depletion decreased [Ca(2+)](cyt), reduced myosin stress fibers, and inhibited cell migration. Elevation of [Ca(2+)](cyt) by ionomycin promoted myosin II stress fiber formation and increased cell migration. These results suggest that increased migration of differentiated intestinal epithelial cells is mediated, at least partially, by increasing Kv channel activity and Ca(2+) influx during restitution.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Department of Surgery, University of Maryland School of Medicine, 10 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ray RM, Viar MJ, McCormack SA, Johnson LR. Focal adhesion kinase signaling is decreased in polyamine-depleted IEC-6 cells. Am J Physiol Cell Physiol 2001; 281:C475-85. [PMID: 11443046 DOI: 10.1152/ajpcell.2001.281.2.c475] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyamines are essential to the migration of epithelial cells in the intestinal mucosa. Cells depleted of polyamines do not attach as rapidly to the extracellular matrix and do not form the actin stress fibers essential for migration. Because both attachment and stress fiber formation depend on integrin signaling and the formation of focal adhesions, we examined these and related processes in polyamine-depleted IEC-6 cells. There was general decreased tyrosine phosphorylation of focal adhesion kinase (FAK), and, specifically, decreased phosphorylation of Tyr-925, the paxillin binding site. In control cells, FAK phosphorylation was rapid after attachment to the extracellular matrix, while attached cells depleted of polyamines had significantly delayed phosphorylation. FAK activity was also significantly inhibited in polyamine-depleted cells as was the phosphorylation of paxillin. Polyamine-depleted cells failed to spread normally after attachment, and immunocytochemistry showed little colocalization of FAK and actin compared with controls. Focal adhesion complex formation was greatly reduced in the absence of polyamines. These data suggest that defective integrin signaling may, at least in part, account for the decreased rates of attachment, actin stress fiber formation, spreading, and migration observed in polyamine-depleted cells.
Collapse
Affiliation(s)
- R M Ray
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
24
|
Strauch ED, Wang JY, Bass BL. Bile salt stimulates intestinal epithelial cell migration through TGFbeta after wounding. J Surg Res 2001; 97:49-53. [PMID: 11319879 DOI: 10.1006/jsre.2001.6110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND In addition to aiding in the digestion of fats, luminal bile salts have been shown to modulate gastrointestinal epithelial growth, differentiation, and other functions. We hypothesized that bile acids could modulate the intestinal mucosal repair process of restitution. We investigated the effect of the bile salt taurodeoxycholic acid on epithelial migration and identified a role for TGFbeta, a widely expressed cytokine in the intestinal villus, in this repair process. METHODS Using a well-established model of epithelial restitution, IEC-6 cells were plated on 60-mm Matrigel-coated plastic dishes and grown to confluence. The epithelium was wounded by scraping with a 6-mm-wide blade to create a smooth denuded edge and cell migration was measured 8 h later. Cells were grown in control DMEM with 5% FBS with or without 0.01-2 mM taurodeoxycholic acid (TDCA). In parallel experiments, cells were harvested for Northern analysis of TGFbeta and GAPDH expression; [3H]thymidine uptake was used to measure proliferation. Anti-TGFbeta antibody was added to cells grown in the presence of 0.05 mM TDCA and migration was measured at 8 h. RESULTS TDCA at physiologic luminal concentrations augments IEC-6 cell migration, with a maximal effect at 0.05 mM. TDCA inhibited proliferation at these concentrations. TGFbeta expression increased in response to bile acid, while wounding had less of an effect on TGFbeta expression. Blockade of TGFbeta function with TGFbeta antibody eliminated the effect of bile on cell migration. CONCLUSIONS Bile acid at physiologic concentrations augments small intestinal epithelial cell migration. The process is dependent on TGFbeta and is independent of cell division. The data further support a role for bile acids and TGFbeta in differentiated intestinal cell function and in preservation of an intact mucosa.
Collapse
Affiliation(s)
- E D Strauch
- Department of Surgery, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
25
|
Rao JN, Li L, Golovina VA, Platoshyn O, Strauch ED, Yuan JX, Wang JY. Ca2+-RhoA signaling pathway required for polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol 2001; 280:C993-1007. [PMID: 11245616 DOI: 10.1152/ajpcell.2001.280.4.c993] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of voltage-gated K(+) (Kv) channel genes is regulated by polyamines in intestinal epithelial cells (IEC-6 line), and Kv channel activity is involved in the regulation of cell migration during early restitution by controlling membrane potential (E(m)) and cytosolic free Ca2+ concentration ([Ca2+](cyt)). This study tests the hypothesis that RhoA of small GTPases is a downstream target of elevated ([Ca2+](cyt)) following activation of K(+) channels by increased polyamines in IEC-6 cells. Depletion of cellular polyamines by alpha-difluoromethylornithine (DFMO) reduced whole cell K+ currents [I(K(v))] through Kv channels and caused membrane depolarization, which was associated with decreases in ([Ca2+](cyt)), RhoA protein, and cell migration. Exogenous polyamine spermidine reversed the effects of DFMO on I(K(v)), E(m), ([Ca2+](cyt)), and RhoA protein and restored cell migration to normal. Elevation of ([Ca2+](cyt)) induced by the Ca2+ ionophore ionomycin increased RhoA protein synthesis and stimulated cell migration, while removal of extracellular Ca2+ decreased RhoA protein synthesis, reduced protein stability, and inhibited cell motility. Decreased RhoA activity due to Clostridium botulinum exoenzyme C(3) transferase inhibited formation of myosin II stress fibers and prevented restoration of cell migration by exogenous spermidine in polyamine-deficient cells. These findings suggest that polyamine-dependent cell migration is partially initiated by the formation of myosin II stress fibers as a result of Ca2+-activated RhoA activity.
Collapse
Affiliation(s)
- J N Rao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Milovica V, Turchanowa L, Khomutov AR, Khomutov RM, Caspary WF, Stein J. Hydroxylamine-containing inhibitors of polyamine biosynthesis and impairment of colon cancer cell growth. Biochem Pharmacol 2001; 61:199-206. [PMID: 11163334 DOI: 10.1016/s0006-2952(00)00549-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polyamine synthesis (by the action of ornithine decarboxylase [ODC] and S-adenosylmethionine decarboxylase [SAMDC]) and polyamine content are high in colon cancer. In addition, colonic lumen is rich in polyamines synthesised by colonic microflora; for this reason, polyamine depletion in colon cancer may be a logical approach to impair growth of colon cancer cells. We evaluated highly specific and reportedly non-toxic hydroxylamine-containing inhibitors of ODC (1-aminooxy-3-aminopropane, APA) and SAMDC (S-(5'-deoxy-5'-adenosyl)-methylthioethyl-hydroxylamine, AMA) in human colon cancer cells (Caco-2 and HT-29) in culture. APA depleted ODC activity within 24 hr, more rapidly than did difluoromethylornithine. APA and AMA in combination (100 microM each) reduced ODC and SAMDC activities to undetectable levels within 24 hr and intracellular polyamines to 8-23% of control. The resulting growth arrest could be reversed only by twice as much spermidine as is physiologically present in the colonic lumen. In concentrations sufficient to deplete growth, APA and AMA were not toxic. Simultaneous treatment with APA, AMA, and 5-fluorouracil reduced colon cancer cell survival more potently than treatment with 5-fluorouracil alone. The hydroxylamine-containing ODC and SAMDC inhibitors APA and AMA are potent inhibitors of colon cancer cell proliferation and might be therapeutically promising in colon cancer.
Collapse
Affiliation(s)
- V Milovica
- 2nd Department of Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Wang JY, Wang J, Golovina VA, Li L, Platoshyn O, Yuan JX. Role of K(+) channel expression in polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol 2000; 278:C303-14. [PMID: 10666025 DOI: 10.1152/ajpcell.2000.278.2.c303] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyamines are essential for cell migration during early mucosal restitution after wounding in the gastrointestinal tract. Activity of voltage-gated K(+) channels (Kv) controls membrane potential (E(m)) that regulates cytoplasmic free Ca(2+) concentration ([Ca(2+)](cyt)) by governing the driving force for Ca(2+) influx. This study determined whether polyamines are required for the stimulation of cell migration by altering K(+) channel gene expression, E(m), and [Ca(2+)](cyt) in intestinal epithelial cells (IEC-6). The specific inhibitor of polyamine synthesis, alpha-difluoromethylornithine (DFMO, 5 mM), depleted cellular polyamines (putrescine, spermidine, and spermine), selectively inhibited Kv1.1 channel (a delayed-rectifier Kv channel) expression, and resulted in membrane depolarization. Because IEC-6 cells did not express voltage-gated Ca(2+) channels, the depolarized E(m) in DFMO-treated cells decreased [Ca(2+)](cyt) as a result of reduced driving force for Ca(2+) influx through capacitative Ca(2+) entry. Migration was reduced by 80% in the polyamine-deficient cells. Exogenous spermidine not only reversed the effects of DFMO on Kv1.1 channel expression, E(m), and [Ca(2+)](cyt) but also restored cell migration to normal. Removal of extracellular Ca(2+) or blockade of Kv channels (by 4-aminopyridine, 1-5 mM) significantly inhibited normal cell migration and prevented the restoration of cell migration by exogenous spermidine in polyamine-deficient cells. These results suggest that polyamine-dependent intestinal epithelial cell migration may be due partially to an increase of Kv1.1 channel expression. The subsequent membrane hyperpolarization raises [Ca(2+)](cyt) by increasing the driving force (the electrochemical gradient) for Ca(2+) influx and thus stimulates cell migration.
Collapse
Affiliation(s)
- J Y Wang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Yuan Q, Viar MJ, Ray RM, Johnson LR. Putrescine does not support the migration and growth of IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 2000; 278:G49-56. [PMID: 10644561 DOI: 10.1152/ajpgi.2000.278.1.g49] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The migration of IEC-6 cells is inhibited when the cells are depleted of polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine (DFMO). Exogenous putrescine, spermidine, and spermine completely restore cell migration inhibited by DFMO. Because polyamines are interconverted during their synthesis and catabolism, the specific role of individual polyamines in intestinal cell migration, as well as growth, remains unclear. In this study, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone)(DEGBG), to block the synthesis of spermidine and spermine from putrescine. We found that exogenous putrescine does not restore migration and growth of IEC-6 cells treated with DFMO plus DEGBG, whereas exogenous spermine does. In addition, the normal distribution of actin filaments required for migration, which is disrupted in polyamine-deficient cells, could be achieved by adding spermine but not putrescine along with DFMO and DEGBG. These results indicate that putrescine, by itself, is not essential for migration and growth, but that it is effective because it is converted into spermidine and/or spermine.
Collapse
Affiliation(s)
- Q Yuan
- Department of Physiology, College of Medicine, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
29
|
Rao JN, Li J, Li L, Bass BL, Wang JY. Differentiated intestinal epithelial cells exhibit increased migration through polyamines and myosin II. Am J Physiol Gastrointest Liver Physiol 1999; 277:G1149-58. [PMID: 10600811 DOI: 10.1152/ajpgi.1999.277.6.g1149] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Early mucosal restitution is a rapid process by which differentiated intestinal epithelial cells migrate to reseal superficial wounds. However, most of the in vitro studies for restitution employ undifferentiated intestinal crypt cells as a model. The transcription factor, Cdx2, plays an important role in the regulation of intestinal epithelial differentiation. Forced expression of the Cdx2 gene in undifferentiated intestinal crypt cells induces the development of a differentiated phenotype. The current study was designed to determine changes in differentiated intestinal epithelial cell migration after wounding in the stable Cdx2-transfected IEC-6 cells and then to examine involvement of polyamines and nonmuscle myosin II in the process of cell motility. Cdx2-transfected IEC-6 cells were associated with a highly differentiated phenotype and exhibited increased cell migration after wounding. Migration of Cdx2-transfected IEC-6 cells were approximately four times that of nontransfected IEC-6 cells. Migration after wounding was associated with significant increases in polyamine synthesis. Depletion of cellular polyamines by 5 mM α-difluoromethylornithine (DFMO), a specific inhibitor of polyamine biosynthesis, inhibited cell migration without affecting the differentiated phenotype. DFMO also decreased levels of nonmuscle myosin II mRNA and protein and resulted in reorganization of myosin II, along with a marked reduction in stress fibers. Exogenous spermidine given together with DFMO not only returned nonmuscle myosin II levels and cellular distribution toward normal but also restored cell migration to control levels. These results indicate that 1) Cdx2-transfected IEC-6 cells exhibit increased cell migration after wounding and 2) cellular polyamines are absolutely required for stimulation of cell migration in association with their ability to modulate the structural organization of nonmuscle myosin II.
Collapse
Affiliation(s)
- J N Rao
- Department of Surgery, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
30
|
Johnson LR, McCormack SA. Healing of Gastrointestinal Mucosa: Involvement of Polyamines. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 1999; 14:12-17. [PMID: 11390811 DOI: 10.1152/physiologyonline.1999.14.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyamines are involved in the processes of cell migration and proliferation that result in the repair of mucosal lesions. Depletion of polyamines dramatically alters the arrangement of the cytoskeleton, EGF receptor function, the activities of signal transduction proteins, the levels of several protooncogenes, and the expression and cellular content of at least one growth factor involved in these processes.
Collapse
Affiliation(s)
- Leonard R. Johnson
- Department of Physiology, The University of Tennessee College of Medicine, Memphis, TN 38163, USA
| | | |
Collapse
|
31
|
Wang JY. Polyamines and cytoskeletal proteins in intestinal epithelial cell migration. J Gastroenterol Hepatol 1998; 13:S257-S261. [PMID: 28976672 DOI: 10.1111/j.1440-1746.1998.tb01888.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Our previous studies have shown that polyamines are essential for early mucosal restitution in vivo and cell migration in vitro. The current study determines whether cytoskeleton is involved in the process requiring polyamines for the stimulation of cell migration. Treatment with α-difluoromethylornithine (DFMO), a specific inhibitor of ornithine decarboxylase (ODC), the rate-limiting enzyme for polyamine synthesis, for 4 days totally inhibited ODC activity and depleted intracellular polyamines in the intestinal epithelial cells (IEC-6) derived from rat small intestinal crypt cells. Polyamine deficiency resulted in reorganization of F-actin in migrating cells but had no effect on the concentrations of filamentous actin and β-actin mRNA. The actin cortex was greatly increased in density and lamellipodia were less extensive. In contrast, non-muscle myosin I and II levels in DFMO-treated cells were decreased by 70 and 75%, respectively, and stress fibres were sparse or absent. The most striking feature of DFMO-treated cells was the appearance of many small punctate foci of myosin II in the cell interior. Migration of DFMO-treated cells was reduced by 80%. In the presence of DFMO, exogenous polyamine not only returned cytoskeleton levels and distribution towards normal but also restored cell migration to control levels. These results indicate that actin and myosins have a role in polyamine-dependent epithelial cell migration and may be part of the mechanism that requires polyamines for early mucosal restitution.
Collapse
Affiliation(s)
- Jian-Ying Wang
- Department of Surgery, University of Maryland Medical School and Baltimore Veterans Affairs Medical Center, Baltimore, USA
| |
Collapse
|
32
|
Ashida Y, Ueno A, Miwa Y, Miyoshi K, Inoue H. Putrescine-stimulated intracellular Ca2+ release for invasiveness of rat ascites hepatoma cells. Jpn J Cancer Res 1998; 89:67-75. [PMID: 9510478 PMCID: PMC5921585 DOI: 10.1111/j.1349-7006.1998.tb00481.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our previous study showed that treatment of highly invasive rat ascites hepatoma (LC-AH) cells with alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, decreased both their intracellular level of putrescine and their in vitro invasion of a monolayer of calf pulmonary arterial endothelial (CPAE) cells, and that both these decreases were completely reversed by exogenous putrescine, but not spermidine or spermine. Here we show that all adhering control (DFMO-untreated) cells migrated beneath CPAE monolayer with morphological change from round to cauliflower-shaped cells (migratory cells). DFMO treatment increased the number of cells that remained round without migration (nonmigratory cells). Exogenous putrescine, but not spermidine or spermine, induced transformation of all nonmigratory cells to migratory cells with a concomitant increase in their intracellular Ca2+ level, [Ca2+]i. The putrescine-induced increase in their [Ca2+]i preceded their transformation and these effects of putrescine were not affected by antagonists of the voltage-gated Ca2+ channel, but were completely suppressed by ryanodine, which also suppressed the invasiveness of the control cells. The DFMO-induced decreases in both [Ca2+]i and the invasiveness of the cells were restored by thapsigargin, which elevated [Ca2+]i by inhibiting endoplasmic Ca2+-ATPase, indicating that thapsigargin mimics the effects of putrescine. These results support the idea that putrescine is a cofactor for Ca2+ release through the Ca2+ channel in the endoplasmic reticulum that is inhibited by ryanodine, this release being initiated by cell adhesion and being a prerequisite for tumor cell invasion.
Collapse
Affiliation(s)
- Y Ashida
- Department of Biochemistry, School of Dentistry, Tokushima University
| | | | | | | | | |
Collapse
|
33
|
Parkkinen JJ, Lammi MJ, Ågren U, Tammi M, Keinänen TA, Hyvönen T, Eloranta TO. Polyamine-dependent alterations in the structure of microfilaments, golgi apparatus, endoplasmic reticulum, and proteoglycan synthesis in BHK cells. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19970801)66:2<165::aid-jcb4>3.0.co;2-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|