1
|
Activation of intracellular matrix metalloproteinase-2 by reactive oxygen–nitrogen species: Consequences and therapeutic strategies in the heart. Arch Biochem Biophys 2013; 540:82-93. [DOI: 10.1016/j.abb.2013.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
|
2
|
|
3
|
Gopalakrishnan S, Hallett MA, Atkinson SJ, Marrs JA. aPKC-PAR complex dysfunction and tight junction disassembly in renal epithelial cells during ATP depletion. Am J Physiol Cell Physiol 2006; 292:C1094-102. [PMID: 16928777 DOI: 10.1152/ajpcell.00099.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Renal ischemia and in vitro ATP depletion result in disruption of the epithelial tight junction barrier, which is accompanied by breakdown of plasma membrane polarity. Tight junction formation is regulated by evolutionarily conserved complexes, including that of atypical protein kinase C (aPKC), Par3, and Par6. The aPKC signaling complex is activated by Rac and regulated by protein phosphorylation and associations with other tight junction regulatory proteins, for example, mLgl. In this study, we examined the role of aPKC signaling complex during ATP depletion and recovery in Madin-Darby canine kidney cells. ATP depletion reduced Rac GTPase activity and induced Par3, aPKCzeta, and mLgl-1 redistribution from sites of cell-cell contact, which was restored following recovery from ATP depletion. Zonula occludens (ZO)-1 and Par3 phosphorylation was reduced and association of aPKCzeta with its substrates Par3 and mLgl-1 was stabilized in ATP-depleted Madin-Darby canine kidney cells. ATP depletion also induced a stable association of Par3 with Tiam-1, a Rac GTPase exchange factor, which explains how aPKCzeta and Rac activities were suppressed. Experimental inhibition of aPKCzeta during recovery from ATP depletion interfered with reassembly of ZO-1 and Par3 at cell junctions. These data indicate that aPKC signaling is impaired during ATP depletion, participates in tight junction disassembly during cell injury and is important for tight junction reassembly during recovery.
Collapse
Affiliation(s)
- Shobha Gopalakrishnan
- Dept. of Medicine, Div. of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202-5116, USA
| | | | | | | |
Collapse
|
4
|
Park SY, Lee S, Park KS, Lee HK, Lee W. Proteomic analysis of cellular change involved in mitochondria-to-nucleus communication in L6 GLUT4myc myocytes. Proteomics 2006; 6:1210-22. [PMID: 16402357 DOI: 10.1002/pmic.200500284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic or biochemical abnormalities in mitochondria are closely associated with apoptosis, aging, cancer, and other chronic degenerative diseases. Mitochondrial dysfunction resulting from mitochondrial DNA (mtDNA) depletion dispatches retrograde signals to the nucleus to compensate by altering the expression of various genes. In this study, a proteomic approach was used to gain insight into the nuclear gene targets of mitochondrial stress signaling and the pathophysiological mechanisms associated with mitochondrial dysfunction. We have used 2-DE to characterize the nuclear gene responses resulting from mtDNA depletion in L6 GLUT4myc myocytes. Our results showed that 77 polypeptides were differentially expressed in mtDNA-depleted cells; 33 polypeptides were down-regulated and 44 polypeptides were up-regulated. Of these differentially expressed polypeptides, 40 were identified as 36 different proteins by MALDI-TOF MS. These proteins are related to various cellular responses, such as apoptosis, cellular metabolism, signaling and cytoskeleton functions. It is suggested that the insulin resistance developed in mtDNA-depleted myocytes may be associated with disorganization of cytoskeleton assembly, and that cellular mtDNA depletion might promote the ability to evade apoptosis or other death effectors.
Collapse
Affiliation(s)
- Seung Yoon Park
- Department of Biochemistry, Dongguk University, College of Medicine, Kyungju, Kyungpook, Korea
| | | | | | | | | |
Collapse
|
5
|
Legewie S, Blüthgen N, Schäfer R, Herzel H. Ultrasensitization: switch-like regulation of cellular signaling by transcriptional induction. PLoS Comput Biol 2005; 1:e54. [PMID: 16261195 PMCID: PMC1274294 DOI: 10.1371/journal.pcbi.0010054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 09/26/2005] [Indexed: 11/29/2022] Open
Abstract
Cellular signaling networks are subject to transcriptional and proteolytic regulation under both physiological and pathological conditions. For example, the expression of proteins subject to covalent modification by phosphorylation is known to be altered upon cellular differentiation or during carcinogenesis. However, it is unclear how moderate alterations in protein expression can bring about large changes in signal transmission as, for example, observed in the case of haploinsufficiency, where halving the expression of signaling proteins abrogates cellular function. By modeling a fundamental motif of signal transduction, the phosphorylation–dephosphorylation cycle, we show that minor alterations in the concentration of the protein subject to phosphorylation (or the phosphatase) can affect signal transmission in a highly ultrasensitive fashion. This “ultrasensitization” is strongly favored by substrate sequestration on the catalyzing enzymes, and can be observed with experimentally measured enzymatic rate constants. Furthermore, we show that coordinated transcription of multiple proteins (i.e., synexpression) within a protein kinase cascade results in even more pronounced all-or-none behavior with respect to signal transmission. Finally, we demonstrate that ultrasensitization can account for specificity and modularity in the regulation of cellular signal transduction. Ultrasensitization can result in all-or-none cell-fate decisions and in highly specific cellular regulation. Additionally, switch-like phenomena such as ultrasensitization are known to contribute to bistability, oscillations, noise reduction, and cellular heterogeneity. Hormones and other external stimuli induce cellular transitions such as cell division or differentiation by regulating gene expression. Hormone-induced cellular transitions are known to occur in a switch-like fashion: while weak background stimuli are rejected, cellular transitions proceed fully as soon as a threshold hormone concentration is exceeded. Earlier studies have described several mechanisms whereby such a switch-like behavior can be realized in intracellular communication via signal transduction networks, which convert hormonal signals into alterations in gene expression. The authors demonstrate how switch-like behavior can be further enhanced downstream of hormone-induced gene expression. They show that even minor (hormone-induced) alterations in gene expression can dramatically affect the activity of intracellular signal transduction networks, and thereby modify cellular behavior. This phenomenon has been termed “ultrasensitization.” Ultrasensitization can explain the pronounced dosage sensitivity observed for many disease-associated signal transduction proteins: for example, the mutation of one of two alleles (gene copies), resulting in a 2-fold reduction of gene expression, can already initiate disease progression. Although such sensitivity towards mutations is potentially harmful, the fact that cells nevertheless exhibit ultrasensitization suggests that somehow cells benefit from ultrasensitization. The authors illustrate how ultrasensitization improves the specificity and efficiency of cell-to-cell communication and contributes to cellular memory.
Collapse
Affiliation(s)
- Stefan Legewie
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
6
|
Abstract
Numerous lines of evidence demonstrate that calpains, a family of 14 Ca(2+)-activated neutral cysteine proteases, are involved in oncotic cell death in a variety of models. At this time, the biochemistry of most calpains and the specific roles of different calpains in physiology and pathology remain to be determined. A number of calpain substrates have been identified in cellular systems, including cytoskeletal proteins, and recent studies suggest that calpains mediate the increase in plasma membrane permeability to ions and the progressive breakdown of the plasma membrane observed in oncosis through the proteolysis of cystokeletal and plasma membrane proteins. Further, a number of reports provide evidence that the mitochondrial dysfunction observed in oncosis may be mediated by a mitochondrial calpain of unknown identity. Finally, a number of diverse calpain inhibitors have been developed that show cytoprotective properties in cellular systems and in vivo following diverse insults. It is suggested that future research be directed toward elucidation of the role(s) of specific calpain isozymes in physiological and pathological conditions; identifying and linking specific calpain substrates with altered cellular functions; and developing cell-permeable, potent, isozyme-selective calpain inhibitors.
Collapse
Affiliation(s)
- Xiuli Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
7
|
Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 2003; 14:2199-210. [PMID: 12874476 DOI: 10.1097/01.asn.0000079785.13922.f6] [Citation(s) in RCA: 564] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, and the Harvard--MIT, Division of Health Sciences and Technology, Charlestown, Massachusetts, USA.
| | | |
Collapse
|
8
|
Nowak G. Protein kinase C mediates repair of mitochondrial and transport functions after toxicant-induced injury in renal cells. J Pharmacol Exp Ther 2003; 306:157-65. [PMID: 12665543 DOI: 10.1124/jpet.103.050336] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we have shown that renal proximal tubular cells (RPTCs) recover physiological functions after injury induced by the oxidant tert-butylhydroperoxide (TBHP), but not by the nephrotoxic cysteine conjugate dichlorovinyl-l-cysteine (DCVC). This study examined the role of protein kinase C (PKC) in the repair of RPTC functions after sublethal injury produced by these toxicants. Total PKC activity decreased 65 and 86% after TBHP and DCVC exposures, respectively, and recovered in TBHP-injured but not in DCVC-injured RPTCs. Mitochondrial function, active Na+ transport, and Na+-dependent glucose uptake decreased after toxicant exposure and recovered in TBHP- but not in DCVC-injured RPTCs. PKC inhibition decreased the repair of RPTC functions after TBHP injury. PKC activation promoted recovery of mitochondrial function and active Na+ transport in TBHP- and DCVC-injured RPTCs but had no effect on recovery of Na+-dependent glucose uptake. We conclude that in RPTCs, 1) total PKC activity decreases after TBHP and DCVC injury and recovers after TBHP but not after DCVC exposure, 2) recovery of PKC activity precedes the return of physiological functions after oxidant injury, 3) PKC inhibition decreases recovery of physiological functions, and 4) PKC activation promotes recovery of mitochondrial function and active Na+ transport but not Na+-dependent glucose uptake. These results suggest that the repair of renal functions is mediated through PKC-dependent mechanisms and that cysteine conjugates may inhibit renal repair, in part, through inhibition of PKC signaling.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham St., MS 522-3, Little Rock, AR 72205, USA.
| |
Collapse
|
9
|
Gu L, Zhang H, Chen Q, Chen J. Calyculin A-induced actin phosphorylation and depolymerization in renal epithelial cells. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:286-95. [PMID: 12601691 DOI: 10.1002/cm.10099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study reports actin phosphorylation and coincident actin cytoskeleton alterations in renal epithelial cell line, LLC-PK1. Serine phosphorylation of actin was first observed in vitro after the cell lysate was incubated with phosphatase inhibitors and ATP. Both the phosphorylated actin and actin kinase activities were found in the cytoskeletal fraction. Actin phosphorylation was later detected in living LLC-PK1 cells after incubation with the phosphatase inhibitor calyculin A. Calyculin A-induced actin phosphorylation was associated with reorganization of the actin cytoskeleton, including net actin depolymerization, loss of cell-cell junction and stress fiber F-actin filaments, and redistribution of F-actin filaments in the periphery of the rounded cells. Actin phosphorylation was abolished by 3-h ATP depletion but not by the non-specific kinase inhibitor staurosporine. These results demonstrate that renal epithelial cells contain kinase/phosphatase activities and actin can be phosphorylated in LLC-PK1 cells. Actin phosphorylation may play an important role in regulating the organization of the actin cytoskeleton in renal epithelium.
Collapse
Affiliation(s)
- Luo Gu
- Department of Life Sciences, Indiana State University, Terre Haute, IN 47809, USA
| | | | | | | |
Collapse
|
10
|
Gopalakrishnan S, Dunn KW, Marrs JA. Rac1, but not RhoA, signaling protects epithelial adherens junction assembly during ATP depletion. Am J Physiol Cell Physiol 2002; 283:C261-72. [PMID: 12055095 DOI: 10.1152/ajpcell.00604.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rho family GTPase signaling regulates actin cytoskeleton and junctional complex assembly. Our previous work showed that RhoA signaling protects tight junctions from damage during ATP depletion. Here, we examined whether RhoA GTPase signaling protects adherens junction assembly during ATP depletion. Despite specific RhoA signaling- and ATP depletion-induced effects on adherens junction assembly, RhoA signaling did not alter adherens junction disassembly rates during ATP depletion. This shows that RhoA signaling specifically protects tight junctions from damage during ATP depletion. Rac1 GTPase signaling also regulates adherens junction assembly and therefore may regulate adherens junction assembly during ATP depletion. Indeed, we found that Rac1 signaling protects adherens junctions from damage during ATP depletion. Adherens junctions are regulated by various GTPases, including RhoA and Rac1, but adherens junctions are specifically protected by Rac1 signaling.
Collapse
Affiliation(s)
- Shobha Gopalakrishnan
- Department of Medicine, Indiana University Medical Center, Indianapolis, Indiana 46202-5116, USA
| | | | | |
Collapse
|
11
|
Isotani S, Fujisawa M, Ishimura T, Arakawa S, Kamidono S. Okadaic acid, an inhibitor of protein phosphatase, exerts a protective effect on ischemia-reperfusion injury in rat kidneys. Transplant Proc 2002; 34:1345-8. [PMID: 12072356 DOI: 10.1016/s0041-1345(02)02797-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S Isotani
- Department of Urology, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
Aldosterone is involved in salt and water homeostasis. The main effect is thought to involve genomic mechanisms. However, the existence of plasma membrane steroid receptors has been postulated. We used whole cell patch clamp to test the hypothesis that epithelial sodium channels (ENaC) expressed by renal collecting duct principal cells can be regulated nongenomically by aldosterone. In freshly isolated principal cells from rabbit, aldosterone (100 nM) rapidly (<2 min) increased ENaC sodium current specifically. The aldosterone-activated current was completely inhibited by amiloride. Aldosterone also activated ENaC in cells treated with the mineralocorticoid receptor blocker spiranolactone. Nongenomic activation was inhibited by inclusion of S-adenosyl-L-homocysteine in the pipette solution, which inhibits methylation reactions. Also, the nongenomic activation required 2 mM ATP supplementation in the pipette solution. Aldosterone did not activate any ENaC current in whole cell clamped rat collecting duct principal cells. These functional studies are consistent with aldosterone membrane binding studies, suggesting the presence of a plasma membrane steroid receptor that affects cellular processes by mechanisms unrelated to altered gene expression.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Physiology & Biophysics, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
13
|
Sheridan AM, Sapirstein A, Lemieux N, Martin BD, Kim DK, Bonventre JV. Nuclear translocation of cytosolic phospholipase A2 is induced by ATP depletion. J Biol Chem 2001; 276:29899-905. [PMID: 11395512 DOI: 10.1074/jbc.m103758200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) enzymes may play a role in cellular injury due to ATP depletion. Renal Madin-Darby canine kidney cells were subjected to ATP depletion to assess the effects of cellular energy metabolism on cytosolic PLA(2) (cPLA(2)) regulation. ATP depletion results in a decrease in soluble cPLA(2) activity and an increase in membrane-associated activity, which is reversed upon restoration of ATP levels by addition of dextrose. In ATP-depleted cells cPLA(2) mass shifts from cytosol to nuclear fractions. GFP-cPLA(2) is localized at the nuclear membrane of stably transfected ATP-depleted LLC-PK(1) cells under conditions where [Ca(2+)](i) is known to increase. cPLA(2) translocation does not occur if the increase in [Ca(2+)](i) increase is inhibited. If [Ca(2+)](i) is allowed to increase when ATP is depleted and the cells are then lysed, cPLA(2) remains associated with nuclear fractions even if the homogenate [Ca(2+)] is markedly reduced. In contrast, cPLA(2), which becomes associated with the nucleus when [Ca(2+)](i) is increased using ionophore, readily dissociates from the nuclear fractions of ATP-replete cells upon reduction of homogenate [Ca(2+)]. Okadaic acid inhibits the ATP depletion-induced association of cPLA(2) with nuclear fractions. Thus energy deprivation results in [Ca(2+)]-induced nuclear translocation, which is partially prevented by a phosphatase inhibitor.
Collapse
Affiliation(s)
- A M Sheridan
- Medical Service, Massachusetts General Hospital and the Departments of Medicine Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Energetic determinants of tyrosine phosphorylation of focal adhesion proteins during hypoxia/reoxygenation of kidney proximal tubules. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:2153-64. [PMID: 11395393 PMCID: PMC1892000 DOI: 10.1016/s0002-9440(10)64687-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Anaerobic mitochondrial metabolism of alpha-ketoglutarate and aspartate or alpha-ketoglutarate and malate can prevent and reverse severe mitochondrial dysfunction during reoxygenation after 60 minutes of hypoxia in kidney proximal tubules.(34) The present studies demonstrate that, during hypoxia, paxillin, focal adhesion kinase, and p130(cas) migrated faster by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their phosphotyrosine (pY) content decreased to approximately 5% of that in oxygenated tubules without changes in total protein, and the normally basal immunostaining of beta1 and alpha6 integrin subunits, pY, and paxillin was lost or markedly decreased. During reoxygenation without supplemental substrates, recovery of pY and basal localization of the focal adhesion proteins was poor. alpha-Ketoglutarate and aspartate, which maintained slightly higher levels of ATP during hypoxia, also maintained 2.5-fold higher levels of pY during this period, and promoted full recovery of pY content and basal localization of focal adhesion proteins during subsequent reoxygenation. Similarly complete recovery was made possible by provision of alpha-ketoglutarate and aspartate or alpha-ketoglutarate and malate only during reoxygenation. These data emphasize the importance of very low energy thresholds for maintaining the integrity of key structural and biochemical components required for cellular survival and reaffirm the value of approaches aimed at conserving or generating energy in cells injured by hypoxia or ischemia.
Collapse
|
15
|
Doctor RB, Dahl RH, Salter KD, Fouassier L, Chen J, Fitz JG. ATP depletion in rat cholangiocytes leads to marked internalization of membrane proteins. Hepatology 2000; 31:1045-54. [PMID: 10796878 DOI: 10.1053/he.2000.5983] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic bile ducts (BD) are a critical target of injury in the postischemic liver. Decreased vascular perfusion causes characteristic changes in the morphology of the ductular epithelia including a loss of secondary membrane structures and a decrease in plasma membrane surface area. Using adenosine triphosphate (ATP) depletion of cultured normal rat cholangiocytes (NRC) to model ischemic ducts, the present studies examined the fate of apical membrane proteins to determine whether membrane recycling might contribute to rapid functional recovery. Apical proteins, including gamma-glutamyl transpeptidase (GGT), Na(+)-glucose cotransporter (SGLT1), and apically biotinylated proteins, were not shed into the luminal space during ATP depletion. Instead, labeling of surface proteins after ATP depletion showed a significant decrease in GGT and SGLT1, consistent with membrane internalization. Similarly, z-axis confocal microscopy of biotinylated apical proteins also showed protein internalization. During ATP recovery, SGLT1 transport activity remained profoundly depressed even after 24 hours of recovery, indicating that the function of the internalized apical proteins is not rapidly recovered. These studies suggest that the membrane internalization in ATP-depleted cholangiocytes is a unidirectional process that contributes to prolonged functional deficits after restoration of normal cellular ATP levels. This sustained decrease in transport capacity may contribute to the development of ductular injury in postischemic livers.
Collapse
Affiliation(s)
- R B Doctor
- University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Schwartz JH, Shih T, Menza SA, Lieberthal W. ATP depletion increases tyrosine phosphorylation of beta-catenin and plakoglobin in renal tubular cells. J Am Soc Nephrol 1999; 10:2297-305. [PMID: 10541288 DOI: 10.1681/asn.v10112297] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study examines the hypothesis that the loss of integrity of the junctional complex induced by ATP depletion is related to alterations in tyrosine phosphorylation of the adherens junction proteins beta-catenin and plakoglobin. ATP depletion of cultured mouse proximal tubular (MPT) cells induces a marked increase in tyrosine phosphorylation of both beta-catenin and plakoglobin. The tyrosine phosphatase inhibitor vanadate has the same effect in ATP-replete (control) monolayers, whereas genistein, a tyrosine kinase inhibitor, reduces phosphorylation of both proteins in ATP-replete monolayers and prevents the hyperphosphorylation of these proteins with ATP depletion. This study also demonstrates that the fall in the transepithelial resistance of MPT monolayers induced by ATP depletion can be reproduced by treatment of ATP-replete monolayers with vanadate, whereas genistein substantially ameliorates the fall in transepithelial resistance induced by ATP depletion. Also, using immunofluorescence microscopy it was demonstrated that ATP depletion results in a marked diminution of E-cadherin staining in the basolateral membrane of MPT cells. Vanadate mimics this effect of ATP depletion, whereas genistein ameliorates the reduction in the intensity of E-cadherin staining induced by ATP depletion. Because it is has been well established that hyperphosphorylation of the catenins leads to dissociation of the adherens junction and to dysfunction of the junctional complex, it is proposed that the increase in tyrosine phosphorylation of catenins observed in MPT cells during ATP depletion contributes to the loss of function of the junctional complex associated with sublethal injury.
Collapse
Affiliation(s)
- J H Schwartz
- Evans Department of Clinical Research, Boston Medical Center, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
17
|
Raman N, Atkinson SJ. Rho controls actin cytoskeletal assembly in renal epithelial cells during ATP depletion and recovery. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1312-24. [PMID: 10362594 DOI: 10.1152/ajpcell.1999.276.6.c1312] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actin cytoskeletal disruption is a hallmark of ischemic injury and ATP depletion in a number of cell types, including renal epithelial cells. We manipulated Rho GTPase signaling by transfection and microinjection in LLC-PK proximal tubule epithelial cells and observed actin cytoskeletal organization following ATP depletion or recovery by confocal microscopy and quantitative image analysis. ATP depletion resulted in disruption of stress fibers, cortical F-actin, and apical actin bundles. Constitutively active RhoV14 prevented disruption of stress fibers and cortical F-actin during ATP depletion and enhanced the rate of stress fiber reassembly during recovery. Conversely, the Rho inhibitor C3 or dominant negative RhoN19 prevented recovery of F-actin assemblies upon repletion. Actin bundles in the apical microvilli and cytosolic F-actin were not affected by Rho signaling. Assembly of vinculin and paxillin into focal adhesions was disrupted by ATP depletion, and constitutively active RhoV14, although protecting stress fibers from disassembly, did not prevent dispersion of vinculin and paxillin, resulting in uncoupling of stress fiber and focal adhesion assembly. We propose that ATP depletion causes Rho inactivation during ischemia and that recovery of normal cellular architecture and function requires Rho.
Collapse
Affiliation(s)
- N Raman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
18
|
Doctor RB, Dahl RH, Salter KD, Fitz JG. Reorganization of cholangiocyte membrane domains represents an early event in rat liver ischemia. Hepatology 1999; 29:1364-74. [PMID: 10216117 DOI: 10.1002/hep.510290514] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cholangiocytes contribute significantly to bile formation through the vectorial secretion of water and electrolytes and are a focal site of injury in a number of diseases including liver ischemia and post-transplantation liver failure. Using ischemia in intact liver and adenosine triphosphate (ATP) depletion in cultured cells to model cholangiocyte injury, these studies examined the effects of metabolic inhibition on cholangiocyte viability and structure. During 120 minutes of ischemia or ATP depletion, cell viability and tight junctional integrity in cholangiocytes were maintained. However, both the in vivo and in vitro models displayed striking alterations in the secondary structure of the plasma membrane. After 120 minutes, the basolateral (BL) interdigitations were diminished and the apical (Ap) microvilli were significantly decreased in number. The BL and Ap membrane surface areas decreased by 42 +/- 8% and 63 +/- 2%, respectively. Despite these changes, F-actin remained predominantly localized to the membrane domains. In contrast, in a time course that paralleled the loss of microvilli, the actin-membrane linking protein ezrin progressively dissociated from the cytoskeleton. These studies indicate that cholangiocyte ATP depletion induces characteristic, domain-specific changes in the plasma membrane and implicate alterations in the membrane-cytoskeletal interactions in the initiation of the changes. Pending the re-establishment of the differentiated domains, the loss of specific secondary structures may contribute to impaired vectorial bile duct secretion and postischemic cholestasis.
Collapse
Affiliation(s)
- R B Doctor
- University of Colorado Health Sciences Center, Division of Gastroenterology and Hepatology, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
19
|
Gopalakrishnan S, Raman N, Atkinson SJ, Marrs JA. Rho GTPase signaling regulates tight junction assembly and protects tight junctions during ATP depletion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C798-809. [PMID: 9730964 DOI: 10.1152/ajpcell.1998.275.3.c798] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tight junctions control paracellular permeability and cell polarity. Rho GTPase regulates tight junction assembly, and ATP depletion of Madin-Darby canine kidney (MDCK) cells (an in vitro model of renal ischemia) disrupts tight junctions. The relationship between Rho GTPase signaling and ATP depletion was examined. Rho inhibition resulted in decreased localization of zonula occludens-1 (ZO-1) and occludin at cell junctions; conversely, constitutive Rho signaling caused an accumulation of ZO-1 and occludin at cell junctions. Inhibiting Rho before ATP depletion resulted in more extensive loss of junctional components between transfected cells than control junctions, whereas cells expressing activated Rho better maintained junctions during ATP depletion than control cells. ATP depletion and Rho signaling altered phosphorylation signaling mechanisms. ZO-1 and occludin exhibited rapid decreases in phosphoamino acid content following ATP depletion, which was restored on recovery. Expression of Rho mutant proteins in MDCK cells also altered levels of occludin serine/threonine phosphorylation, indicating that occludin is a target for Rho signaling. We conclude that Rho GTPase signaling induces posttranslational effects on tight junction components. Our data also demonstrate that activating Rho signaling protects tight junctions from damage during ATP depletion.
Collapse
Affiliation(s)
- S Gopalakrishnan
- Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, Indiana 46202-5116, USA
| | | | | | | |
Collapse
|
20
|
Loktionova SA, Kabakov AE. Protein phosphatase inhibitors and heat preconditioning prevent Hsp27 dephosphorylation, F-actin disruption and deterioration of morphology in ATP-depleted endothelial cells. FEBS Lett 1998; 433:294-300. [PMID: 9744814 DOI: 10.1016/s0014-5793(98)00920-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vascular endothelium response to ischemic depletion of ATP was studied in vitro. Endothelial cells (EC) cultured from human aorta or umbilical vein were incubated in a glucose-free medium containing CCCP or rotenone. Such blockade of energy metabolism caused a drop in ATP, destruction of actin filaments, morphological changes, and eventually disintegration of EC monolayer within 2-2.5 h. While ATP fell and F-actin collapsed, the 27-kDa heat shock protein (Hsp27) lost basal phosphorylation and became Triton X-100-insoluble forming granules inside the cell nuclei. Protein phosphatase (PP) inhibitors (okadaic acid, cantharidin, sodium orthovanadate) did not delay the ATP decrease in energy-deprived EC but arrested both the alterations in the Hsp27 status and the changes for the worse in F-actin and cell morphology. Similarly, the Hsp27 dephosphorylation/insolubilization/granulation and the cytoskeletal and morphological disturbances resulting from lack of ATP were suppressed in heat-preconditioned (thermotolerant) cultures, this effect being sensitive to quercetin, a blocker of Hsp induction. The longer preservation of the cytosolic pool of phosphorylated Hsp27 during ATP depletion in the PP inhibitor-treated or thermotolerant EC correlated with the acquired resistance of F-actin and morphology. These data suggest that PP inhibitors as well as heat-inducible Hsp(s) can protect ischemia-stressed cells by preventing the ATP loss-provoked protein dephosphorylation and breakdown of the actin cytoskeleton.
Collapse
|
21
|
YAQOOB MUHAMMAD, EDELSTEIN CHARLESL, SCHRIER ROBERTW. Identification of the novel calcium mediated cellular events in the pathogenesis of hypoxia-induced proximal tubular injury. Nephrology (Carlton) 1996. [DOI: 10.1111/j.1440-1797.1996.tb00133.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Doctor RB, Bacallao R, Mandel LJ. Chapter 18 Role of the Cytoskeleton in Membrane Alterations in Ischemic or Anoxic Renal Epithelia. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Golenhofen N, Doctor RB, Bacallao R, Mandel LJ. Actin and villin compartmentation during ATP depletion and recovery in renal cultured cells. Kidney Int 1995; 48:1837-45. [PMID: 8587243 DOI: 10.1038/ki.1995.482] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP-depletion in renal cultured cells has been used as a model for studying various cytoskeletal and functional alterations induced by renal ischemia. This communication explores the reversibility of these effects utilizing a novel method [1] that depleted ATP (ATP-D) to 2% of control within 30 minutes and caused complete recovery (REC) of ATP in one hour. Under confocal microscopy, ATP-D (30 min) caused thinning of F-actin from the microvilli, cortical region, and basal stress fibers, with the concurrent appearance of intracellular F-actin patches. These changes were more pronounced after 60 minutes of ATP-D. One hour of REC following 30 minutes of ATP-D produced complete recovery of F-actin in each region of the cell. However, after 60 minutes of ATP-D, a heterogeneous F-actin recovery pattern was observed: almost complete recovery of the apical ring and microvilli, thinned cortical actin with occasional breaks along the basolateral membrane, and a dramatic reduction in basal stress fiber density. The time course of cortical actin and actin ring disruption and recovery coincided with a drop recovery in the transepithelial resistance and the cytoskeletal dissociation and reassociation of the Na,K-ATPase. Additionally, the microvilli retracted into the cells during ATP-D, a process that was reversed during REC. Triton extraction and confocal microscopy demonstrated that villin remained closely associated with microvillar actin during both ATP-D and REC. These distinctive regional differences in the responses of F-actin to ATP depletion and repletion in cultured renal epithelial cells may help to clarify some of the differential tubular responses to ischemia and reperfusion in the kidney.
Collapse
Affiliation(s)
- N Golenhofen
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
24
|
Chen J, Cohn JA, Mandel LJ. Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury. Proc Natl Acad Sci U S A 1995; 92:7495-9. [PMID: 7638219 PMCID: PMC41366 DOI: 10.1073/pnas.92.16.7495] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 +/- 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 +/- 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine resides, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 +/- 2% to 21 +/- 9%, and ezrin associated with the cytoskeleton decreased from 91 +/- 2% to 58 +/- 2%. Calyculin A (1 microM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.
Collapse
Affiliation(s)
- J Chen
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | | |
Collapse
|