1
|
Marois L, Vaillancourt M, Paré G, Gagné V, Fernandes MJG, Rollet-Labelle E, Naccache PH. CIN85 modulates the down-regulation of Fc gammaRIIa expression and function by c-Cbl in a PKC-dependent manner in human neutrophils. J Biol Chem 2011; 286:15073-84. [PMID: 21372129 PMCID: PMC3083175 DOI: 10.1074/jbc.m110.213660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Indexed: 01/04/2023] Open
Abstract
We previously described a non-classical mechanism that arrests FcγRIIa signaling in human neutrophils once engaged by immune complexes or opsonized pathogens. The engagement of FcγRIIa leads to its ubiquitination by the ubiquitin ligase c-Cbl and degradation by the proteasome. Herein, we further examined some of the events regulating this novel pathway. The adaptor protein CIN85 was described in other systems to be involved in the regulation of the c-Cbl-dependent pathway. We found that CIN85 is expressed in human neutrophils and that it translocates like c-Cbl from the cytosol to the plasma membrane following receptor cross-linking. CIN85 was also recruited to the same subset of high density detergent-resistant membrane fractions in which stimulated FcγRIIa partitioned with c-Cbl. The integrity of these microdomains is essential to the FcγRIIa degradation process because the cholesterol-depleting agent methyl-β-cyclodextrin inhibits this event. Silencing the expression of CIN85 by siRNA in dibutyryl cyclic AMP-differentiated PLB 985 cells prevented FcγRIIa degradation and increased IgG-mediated phagocytosis. Confocal microscopy revealed that the presence of CIN85 is essential to the proper sorting of FcγRIIa during endocytosis. We also provide direct evidence that CIN85 is a substrate of serine/threonine kinase PKCs. Classical PKCs positively regulate FcγRIIa ubiquitination and degradation because these events were inhibited by Gö6976, a classical PKC inhibitor. We conclude that the ubiquitination and degradation of stimulated FcγRIIa mediated by c-Cbl are positively regulated by the adaptor protein CIN85 in a PKC-dependent manner and that these events contribute to the termination of FcγRIIa signaling.
Collapse
Affiliation(s)
- Louis Marois
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Myriam Vaillancourt
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Guillaume Paré
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Valérie Gagné
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Maria J. G. Fernandes
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Emmanuelle Rollet-Labelle
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| | - Paul H. Naccache
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
2
|
Kelher MR, Ambruso DR, Elzi DJ, Anderson SM, Paterson AJ, Thurman GW, Silliman CC. Formyl-Met-Leu-Phe induces calcium-dependent tyrosine phosphorylation of Rel-1 in neutrophils. Cell Calcium 2004; 34:445-55. [PMID: 14572803 DOI: 10.1016/s0143-4160(03)00067-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemoattractant priming and activation of PMNs results in changes in cytosolic Ca2+ concentration, tyrosine kinase activity, and gene expression. We hypothesize that the initial signaling for the activation of a 105kDa protein (Rel-1) requires Ca2+-dependent tyrosine phosphorylation. A rapid and time-dependent tyrosine phosphorylation of Rel-1 occurred following formyl-Met-Leu-Phe (fMLP) stimulation of human PMNs at concentrations that primed or activated the NADPH oxidase (10(-9) to 10(-6)M), becoming maximal after 30s. Pretreatment with pertussis toxin (Ptx) or tyrosine kinase inhibitors abrogated this phosphorylation and inhibited fMLP activation of the oxidase. The fMLP concentrations employed also caused a rapid increase in cytosolic Ca2+ but chelation negated the effects, including the cytosolic Ca2+ flux, oxidase activation, and the tyrosine phosphorylation of Rel-1. Conversely, chelation of extracellular Ca2+ decreased the fMLP-mediated Ca2+ flux, had no affect on the oxidase, and augmented tyrosine phosphorylation of Rel-1. Phosphorylation of Rel-1 was inhibited when PMNs were preincubated with a p38 MAP kinase (MAPK) inhibitor (SB203580). In addition, fMLP elicited rapid activation of p38 MAPK which was abrogated by chelation of cytosolic Ca2+. Thus, fMLP concentrations that prime or activate the oxidase cause a rapid Ca2+-dependent tyrosine phosphorylation of Rel-1 involving p38 MAPK activation.
Collapse
Affiliation(s)
- Marguerite R Kelher
- Department of Surgery, University of Colorado Health Science Center School of Medicine, Denver, CO 80230, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Andersen LF, Tomten H, Haggarty P, Løvø A, Hustvedt BE. Validation of energy intake estimated from a food frequency questionnaire: a doubly labelled water study. Eur J Clin Nutr 2003; 57:279-84. [PMID: 12571660 DOI: 10.1038/sj.ejcn.1601519] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2001] [Revised: 04/18/2002] [Accepted: 04/23/2002] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The validation of dietary assessment methods is critical in the evaluation of the relation between dietary intake and health. The aim of this study was to assess the validity of a food frequency questionnaire by comparing energy intake with energy expenditure measured with the doubly labelled water method. DESIGN Total energy expenditure was measured with the doubly labelled water (DLW) method during a 10 day period. Furthermore, the subjects filled in the food frequency questionnaire about 18-35 days after the DLW phase of the study was completed. SUBJECTS Twenty-one healthy, non-pregnant females volunteered to participate in the study; only 17 subjects completed the study. RESULTS The group energy intake was on average 10% lower than the energy expenditure, but the difference was not statistically significant. However, there was a wide range in reporting accuracy: seven subjects were identified as acceptable reporters, eight as under-reporters and two were identified as over-reporters. The width of the 95% confidence limits of agreement in a Bland and Altman plot for energy intake and energy expenditure varied from -5 to 3 MJ. CONCLUSION The data showed that there was substantial variability in the accuracy of the food frequency questionnaire at the individual level. Furthermore, the results showed that the questionnaire was more accurate for groups than individuals.
Collapse
|
4
|
Wang D, Liu W, Liu J, Chen P, Quan W, Halpern M. Molecular cloning and characterization of protein phosphatase 2C of vomeronasal sensory epithelium of garter snakes. Arch Biochem Biophys 2002; 408:184-91. [PMID: 12464270 DOI: 10.1016/s0003-9861(02)00586-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The earthworm-derived chemoattractant ES20 interacts with its G-protein-coupled receptors on the plasma membrane of vomeronasal (VN) sensory neurons of garter snakes, resulting in an increase in inositol trisphosphate [J. Biol. Chem. 269 (1994) 16867] and a rapid phosphorylation of the membrane-bound proteins, p42/44 [Biochim. Biophys. Acta 1450 (1999) 320]. The phosphorylation of p42/44 proteins are countervailingly regulated by a protein kinase and an okadaic acid-insensitive but fluoride-sensitive protein phosphatase (PPase) [J. Liu et al. (loc. cit.)]. The phosphorylation of p42/44 induced by ES20 appears to play a role in the regulation of signal transduction pathways by modulating the GTPase activity [J. Liu et al. (loc. cit.)]. A 564-bp fragment of cDNA was obtained from VN RNA of garter snakes by reverse transcription polymerase chain reaction with degenerate primers. The 564-bp fragment was amplified, cloned, and sequenced. Northern blot analysis revealed that both the VN organ (VNO) and brain contained the gene of PPase 2C. A full-length complementary 4119-bp DNA containing an open reading frame of 1146bp that encodes a protein of 382 amino acids with a molecular mass of 49,123Da was obtained from the VN cDNA library of garter snakes. The deduced amino acid sequence showed 88% amino acid identity to bovine protein phosphatase 2C alpha and 87% identity to human and rat PP2C alpha and to Mg(2+)-dependent protein phosphatase 1A of rat and rabbit. In situ hybridization revealed that the mRNA of VN protein phosphatase 2C is expressed in the vomeronasal sensory epithelium. This is the first report of the identification of a type 2C serine/threonine protein phosphatase in the VN system.
Collapse
Affiliation(s)
- Dalton Wang
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Elzi DJ, Bjornsen AJ, MacKenzie T, Wyman TH, Silliman CC. Ionomycin causes activation of p38 and p42/44 mitogen-activated protein kinases in human neutrophils. Am J Physiol Cell Physiol 2001; 281:C350-60. [PMID: 11401859 DOI: 10.1152/ajpcell.2001.281.1.c350] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many receptor-linked agents that prime or activate the NADPH oxidase in polymorphonuclear neutrophils (PMNs) elicit changes in cytosolic Ca2+ concentration and activate mitogen-activated protein (MAP) kinases. To investigate the role of Ca2+ in the activation of p38 and p42/44 MAP kinases, we examined the effects of the Ca2+-selective ionophore ionomycin on priming and activation of the PMN oxidase. Ionomycin caused a rapid rise in cytosolic Ca2+ that was due to both a release of cytosolic Ca2+ stores and Ca2+ influx. Ionomycin also activated (2 microM) and primed (20-200 nM) the PMN oxidase. Dual phosphorylation of p38 MAP kinase and phosphorylation of its substrate activating transcription factor-2 were detected at ionomycin concentrations that prime or activate the PMN oxidase, while dual phosphorylation of p42/44 MAP kinase and phosphorylation of its substrate Elk-1 were elicited at 0.2-2 microM. SB-203580, a p38 MAP kinase antagonist, inhibited ionomycin-induced activation of the oxidase (68 +/- 8%, P < 0.05) and tyrosine phosphorylation of 105- and 72-kDa proteins; conversely, PD-98059, an inhibitor of MAP/extracellular signal-related kinase 1, had no effect. Treatment of PMNs with thapsigargin resulted in priming of the oxidase and activation of p38 MAP kinase. Chelation of cytosolic but not extracellular Ca2+ completely inhibited ionomycin activation of p38 MAP kinase, whereas chelation of extracellular Ca2+ abrogated activation of p42/44 MAP kinase. These results demonstrate the importance of changes in cytosolic Ca2+ for MAP kinase activation in PMNs.
Collapse
Affiliation(s)
- D J Elzi
- Bonfils Blood Center, Denver, CO 80230, USA
| | | | | | | | | |
Collapse
|
6
|
Lian JP, Crossley L, Zhan Q, Huang R, Coffer P, Toker A, Robinson D, Badwey JA. Antagonists of calcium fluxes and calmodulin block activation of the p21-activated protein kinases in neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2643-50. [PMID: 11160327 DOI: 10.4049/jimmunol.166.4.2643] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils stimulated with fMLP or a variety of other chemoattractants that bind to serpentine receptors coupled to heterotrimeric G proteins exhibit rapid activation of two p21-activated protein kinases (Paks) with molecular masses of approximately 63 and 69 kDa (gamma- and alpha-Pak). Previous studies have shown that products of phosphatidylinositol 3-kinase and tyrosine kinases are required for the activation of Paks. We now report that a variety of structurally distinct compounds which interrupt different stages in calcium/calmodulin (CaM) signaling block activation of the 63- and 69-kDa Paks in fMLP-stimulated neutrophils. These antagonists included selective inhibitors of phospholipase C (1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione), the intracellular Ca(2+) channel (8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate), CaM (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), and CaM-activated protein kinases (N-[2-(N-(chlorocinnamyl)-N:-methylaminomethyl)phenyl]-N-[2-hydroxyethyl]-4-methoxybenzenesulfonamide). This inhibition was dose-dependent with IC(50) values very similar to those that interrupt CaM-dependent reactions in vitro. In contrast, less active analogues of these compounds (1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2,5-pyrrolidinedione; N-(6-aminohexyl)-1-naphthalenesulfonamide; N-(4-aminobutyl)-1-naphthalenesulfonamide; promethazine; 2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine]) did not affect activation of Paks in these cells. CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), but not their less-active analogues (N-(6-aminohexyl)-1-naphthalenesulfonamide; promethazine), were also found to block activation of the small GTPases Ras and Rac in stimulated neutrophils along with the extracellular signal-regulated kinases. These data strongly suggest that the Ca(2+)/CaM complex plays a major role in the activation of a number of enzyme systems in neutrophils that are regulated by small GTPases.
Collapse
Affiliation(s)
- J P Lian
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Shahan TA, Sorenson WG, Simpson J, Kefalides NA, Lewis DM. Tyrosine kinase activation in response to fungal spores is primarily dependent on endogenous reactive oxygen production in macrophages. J Biol Chem 2000; 275:10175-81. [PMID: 10744701 DOI: 10.1074/jbc.275.14.10175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies from our laboratory (Shahan, T. A., Sorenson, W. G., and Lewis, D. M. (1994) Environ. Res. 67, 98-104) demonstrated that spores from different fungal species differentially activate rat alveolar macrophages as detected by the measurement of superoxide anion and cytokine production (Shahan, T. A., Siegel, P. D., Sorenson, W. G., Kuschner, W. G., and Lewis, D. M. (1998) Am. J. Respir. Cell Mol. Biol. 18, 435-441). Spores from Aspergillus candidus stimulated production of the highest levels of superoxide anion (5.2 nmol/1.0 x 10(6) alveolar macrophages (AMs)/30 min), followed by those from Aspergillus niger (2.4 nmol/1.0 x 10(6) AMs/30 min) and Eurotium amstelodami (0.4 nmol/1.0 x 10(6) AMs/30 min). The mechanism of this differential activation was studied. Our data demonstrate that the tyrosine kinases p56(Hck), p72(Syk), p77(Btk), p62(Yes), p56(Lck), and p59(Fyn) were specifically activated in response to spores from A. candidus, whereas spores from either A. niger or E. amstelodami activated p56(Hck), p72(Syk), and p77(Btk). Kinetic analysis of specific tyrosine kinases demonstrated that p56(Hck), p72(Syk), and p77(Btk) were activated faster and to a greater extent by spores from A. candidus as compared with spores from E. amstelodami. These data suggest a relationship between reactive oxygen species and tyrosine kinase activation. Treatment of AMs with H(2)O(2) (1 mM) caused the activation of p72(Syk) only, whereas treatment with superoxide dismutase and catalase before treatment with the spores had no effect on tyrosine kinase activation. Incubation with NADPH oxidase inhibitors inhibited both superoxide anion production and the activation of p56(Hck), p72(Syk), and p77(Btk) in response to fungal spores. These data indicate that endogenous reactive oxygen species are necessary for the activation of p56(Hck), p72(Syk), and p77(Btk) by spores; they also indicate that some species of spores are capable of activating tyrosine kinases independent of superoxide anion.
Collapse
Affiliation(s)
- T A Shahan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-2614, USA.
| | | | | | | | | |
Collapse
|
8
|
Robinson D, Huang R, Lian JP, Toker A, Badwey JA. Functions of the p21-activated protein kinases (Paks) in neutrophils and their regulation by complex lipids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:385-90. [PMID: 10667357 DOI: 10.1007/978-1-4615-4793-8_56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- D Robinson
- Arthritis Unit, Massachusetts General Hospital, Boston, USA
| | | | | | | | | |
Collapse
|
9
|
Rollet-Labelle E, Gilbert C, Naccache PH. Modulation of human neutrophil responses to CD32 cross-linking by serine/threonine phosphatase inhibitors: cross-talk between serine/threonine and tyrosine phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1020-8. [PMID: 10623852 DOI: 10.4049/jimmunol.164.2.1020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interplay between serine/threonine and tyrosine phosphorylation was studied in human neutrophils. The direct effects of calyculin and okadaic acid, potent inhibitors of PP1 and PP2A serine/threonine phosphatases, on the patterns of neutrophil phosphorylation, and their effects on the responses of neutrophils to CD32 cross-linking were monitored. After a 2-min incubation with 10-6 M calyculin, a transient tyrosine phosphorylation of a subset of proteins, among which Cbl and Syk, was observed. After a longer incubation (>5 min) with calyculin, concomitant with an accumulation of serine and threonine phosphorylation, neutrophil responses to CD32 cross-linking were selectively altered. Tyrosine phosphorylation of Cbl in response to CD32 cross-linking was inhibited by calyculin, and this inhibition was linked with a slower electrophoretic mobility of Cbl as a consequence of its phosphorylation on serine/threonine residues. However, tyrosine phosphorylation of Syk and of the receptor itself were not affected. Furthermore, the mobilization of intracellular calcium stimulated by CD32 cross-linking was totally abrogated by calyculin. Finally, the stimulation of superoxide production observed in response to CD32 cross-linking was enhanced in calyculin-treated cells. These results suggest that serine/threonine phosphorylation events regulate the signaling pathways activated by CD32 cross-linking in neutrophils and identify a novel mechanism of modulation of the functional responsiveness of human neutrophils to CD32 cross-linking.
Collapse
Affiliation(s)
- E Rollet-Labelle
- Centre de Recherche en Rhumatologie et Immunologie, Centre de recherche du Centre Hospitalier Universitaire de Quebec (CHUQ), Quebec, Canada
| | | | | |
Collapse
|
10
|
Lian JP, Huang R, Robinson D, Badwey JA. Activation of p90RSK and cAMP Response Element Binding Protein in Stimulated Neutrophils: Novel Effects of the Pyridinyl Imidazole SB 203580 on Activation of the Extracellular Signal-Regulated Kinase Cascade. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Neutrophils stimulated with the chemoattractant FMLP or the phorbol ester PMA are known to exhibit activation of a 90-kDa renaturable protein kinase. Activation of this kinase was maximal at ∼1–3 min after cell stimulation and the time course for activation was similar to that of the extracellular-regulated kinases (ERKs) and p38-mitogen activated protein kinase (p38MAPK). Compounds that block activation of ERK-1/2 (PD 98059) or that inhibit the activity of p38MAPK (SB 203580) blocked activation of this 90-kDa kinase. SB 203580 is a highly selective inhibitor of p38MAPK in vitro and is under intense study as a lead compound for developing novel anti-inflammatory agents. However, we demonstrate that SB 203580 at concentrations ≥10 μM can also inhibit activation of ERK-1/2 in neutrophils. An Ab to the protein kinase p90RSK2 (also referred to as MAPKAP-K1b, or p90rsk) immunoprecipitated the active 90-kDa kinase from lysates of stimulated neutrophils. No activity was observed for this enzyme in immunoprecipitates obtained from unstimulated cells, and the amounts of activity were markedly reduced if the cells were treated with PD 98059 or SB 203580 before stimulation. Neutrophils stimulated with FMLP exhibited phosphorylation of the cAMP response element binding protein (CREB), and this reaction was inhibited by SB 203580 and PD 98059. These data establish that the renaturable 90-kDa protein kinase is p90RSK2 and that CREB may be a substrate for this enzyme in these cells. Novel effects of compound SB 203580 on stimulated neutrophils are also described.
Collapse
Affiliation(s)
| | - RiYun Huang
- †Arthritis Unit, Massachusetts General Hospital, and
| | | | - John A. Badwey
- *Boston Biomedical Research Institute,
- ‡Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
11
|
Brumell JH, Howard JC, Craig K, Grinstein S, Schreiber AD, Tyers M. Expression of the Protein Kinase C Substrate Pleckstrin in Macrophages: Association with Phagosomal Membranes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Despite evidence suggesting that protein kinase C (PKC) isoforms are important in phagocytosis by Fcγ receptors, the mechanisms by which the substrates of these kinases act are largely unknown. We have investigated the role of one PKC substrate, pleckstrin, in cells of the monocyte/macrophage lineage. Pleckstrin expression in mouse macrophages was induced severalfold in response to bacterial LPS and IFN-γ. In unstimulated cells, the protein was largely confined to the cytosol. Upon ingestion of IgG-opsonized zymosan particles (OPZ), however, pleckstrin accumulated on the phagosomal membrane. This association was transient, being maximal after 15 min and declining thereafter. Similar kinetics of association was also seen for both filamentous actin and the δ isoform of PKC. Ingestion of OPZ was found to induce phosphorylation of pleckstrin. To examine whether phosphorylation was required for phagosomal association, pleckstrin was expressed in CHO-IIA cells that stably express the FcγRIIA receptor and are competent for phagocytosis of OPZ. In these cells, both wild-type pleckstrin and mutants in which the phosphoacceptor sites had been mutated to either alanine (nonphosphorylatable) or glutamine (pseudophosphorylated) were found to accumulate on OPZ phagosomes. Thus, association of pleckstrin with phagosomes is independent of its phosphorylation. Our findings suggest that pleckstrin may serve as an intracellular adaptor/targeting protein in response to particulate stimuli. By targeting interacting ligands to the phagosomal compartment, pleckstrin may serve to regulate phagocytosis and/or early steps during maturation of the phagosome.
Collapse
Affiliation(s)
- John H. Brumell
- *Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey C. Howard
- †Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen Craig
- *Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sergio Grinstein
- †Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alan D. Schreiber
- ‡Hematology and Oncology Division, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Mike Tyers
- *Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- §Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Huang R, Lian JP, Robinson D, Badwey JA. Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks): separate signals are required for activation and inactivation of paks. Mol Cell Biol 1998; 18:7130-8. [PMID: 9819399 PMCID: PMC109294 DOI: 10.1128/mcb.18.12.7130] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1998] [Accepted: 09/14/1998] [Indexed: 02/04/2023] Open
Abstract
Activation of the p21-activated protein kinases (Paks) was compared in neutrophils stimulated with a wide variety of agonists that bind to receptors coupled to heterotrimeric G proteins. Neutrophils stimulated with sulfatide, a ligand for the L-selectin receptor, or the chemoattractant fMet-Leu-Phe (fMLP), platelet-activating factor, leukotriene B4, interleukin-8, or the chemokine RANTES exhibited a rapid and transient activation of the 63- and 69-kDa Paks. These kinases exhibited maximal activation with each of these agonists within 15 s followed by significant inactivation at 3 min. In contrast, neutrophils treated with the chemoattractant and anaphylatoxin C5a exhibited a prolonged activation (>15 min) of these Paks even though the receptor for this ligand may activate the same overall population of complex G proteins as the fMLP receptor. Addition of fMLP to neutrophils already stimulated with C5a resulted in the inactivation of the 63- and 69-kDa Paks. Optimal activation of Paks could be observed at concentrations of these agonists that elicited only shape changes and chemotaxis in neutrophils. While all of the agonists listed above triggered quantitatively similar activation of the 63- and 69-kDa Paks, fMLP was far superior to the other stimuli in triggering activation of the c-Jun N-terminal kinase (JNK) and the p38 mitogen-activated protein kinase (MAPK). These data indicate that separate signals are required for activation and inactivation of Paks and that, in contrast to other cell types, activated Pak does not trigger activation of JNK or p38-MAPK in neutrophils. These results are consistent with the recent hypothesis that G-protein-coupled receptors may initiate signals independent of those transmitted by the alpha and betagamma subunits of complex G proteins.
Collapse
Affiliation(s)
- R Huang
- Arthritis Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
13
|
Lian JP, Huang R, Robinson D, Badwey JA. Products of Sphingolipid Catabolism Block Activation of the p21-Activated Protein Kinases in Neutrophils. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.8.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Neutrophils stimulated with the chemoatttractant FMLP are known to exhibit a rapid and transient activation of two p21-activated protein kinases (Paks) with molecular masses of approximately 63 and 69 kDa. Paks can be detected by their ability to undergo renaturation and catalyze the phosphorylation of a peptide substrate that corresponds to amino acid residues 297 to 331 of the 47-kDa subunit of the nicotinamide-adenine dinucleotide phosphate-oxidase complex (p47-phox) fixed within a gel. In this study, we demonstrate that N-acetylsphingosine (C2-ceramide) and a variety of sphingoid bases (e.g., d-erythrosphingosine) block activation of the 63- and 69-kDa Paks in neutrophils. The concentrations of these lipids that were effective in blocking Pak activation were similar to those that inhibit a variety of neutrophil responses. Activation of the 63- and 69-kDa Paks was also markedly reduced in neutrophils treated with sphingomyelinase before stimulation. Moreover, we report that addition of C2-ceramide or d-erythrosphingosine to neutrophils after stimulation with FMLP markedly enhances the rate of Pak inactivation. These effects were not mimicked by arachidonate, which is a potent disorganizing agent of neutrophil membranes. These data support and extend the proposal that sphingoid bases may establish a set point in neutrophils for positive stimuli.
Collapse
Affiliation(s)
- Jian P. Lian
- ‡Boston Biomedical Research Institute, Boston, MA 02114
| | - RiYun Huang
- *Arthritis Unit, Massachusetts General Hospital, Boston, MA 02114
| | - Dwight Robinson
- *Arthritis Unit, Massachusetts General Hospital, Boston, MA 02114
| | - John A. Badwey
- ‡Boston Biomedical Research Institute, Boston, MA 02114
- †Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
14
|
Bunnell SC, Berg LJ. The signal transduction of motion and antigen recognition: factors affecting T cell function and differentiation. GENETIC ENGINEERING 1998; 20:63-110. [PMID: 9666556 DOI: 10.1007/978-1-4899-1739-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- S C Bunnell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
15
|
Mócsai A, Bánfi B, Kapus A, Farkas G, Geiszt M, Buday L, Faragó A, Ligeti E. Differential effects of tyrosine kinase inhibitors and an inhibitor of the mitogen-activated protein kinase cascade on degranulation and superoxide production of human neutrophil granulocytes. Biochem Pharmacol 1997; 54:781-9. [PMID: 9353132 DOI: 10.1016/s0006-2952(97)00245-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of two different tyrosine kinase inhibitors (genistein and erbstatin analog) and an inhibitor (2'-amino-3'-methoxyflavone; PD98059) of the mitogen-activated protein (MAP) kinase kinase on the primary granule exocytosis and superoxide (O2.-) production of human neutrophil granulocytes were compared. The effector responses induced by stimulation of the chemotactic receptors by formyl-methionyl-leucyl-phenylalanine and platelet-activating factor were blocked both by genistein and erbstatin analog. In contrast, degranulation and O2.- production triggered by the activation of protein kinase C with phorbol-12-myristate-13-acetate were reduced by erbstatin analog but not by genistein. This inhibitory pattern was observed in both effector responses, but the sensitivity of O2.- production toward tyrosine kinase inhibition was markedly higher than that of degranulation. PD98059 caused no considerable effect on any of the above responses. The data presented indicate that tyrosine kinases are involved not only in the respiratory burst but also in the organization of the degranulation response of neutrophil granulocytes. It is suggested that several tyrosine kinases of different inhibitor sensitivity may participate in the transduction of extracellular signals. However, activation of the MAP kinase cascade does not appear to be involved in either of the investigated biological responses of the neutrophils.
Collapse
Affiliation(s)
- A Mócsai
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Suszták K, Mócsai A, Ligeti E, Kapus A. Electrogenic H+ pathway contributes to stimulus-induced changes of internal pH and membrane potential in intact neutrophils: role of cytoplasmic phospholipase A2. Biochem J 1997; 325 ( Pt 2):501-10. [PMID: 9230134 PMCID: PMC1218588 DOI: 10.1042/bj3250501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The potential role of cytosolic phospholipase A2 (cPLA2) in the regulation of the electrogenic arachidonic acid (AA)-activatable H+ translocator of neutrophils was investigated. (1) The trifluoromethyl ketone analogue of arachidonate (AACOCF3), a newly developed selective blocker of cPLA2, inhibited both the N-formylmethionyl-leucylphenylalanine (fMLP)- and the phorbol-ester-induced rheogenic H+ efflux (K0.5 approximately 5 microM) and abrogated the stimulus-triggered release of AA from these cells. The drug failed to reduce the fMLP-evoked Ca2+ signal or protein tyrosine phosphorylation and did not affect the activity of protein kinase C. By using the patch-clamp technique we verified that the agent did not interfere with the voltage- and the pH-dependent activation of the H+ conductance of the peritoneal macrophages and therefore is not a direct blocker of the H+ channel itself. AACOCF3, however, slightly decreased the AA-induced stimulation of the H+ currents. We conclude that AA, liberated by the agonist-induced stimulation of cPLA2, is a direct activator of H+ conductance. (2) AACOCF3 did not inhibit superoxide generation, indicating that activation of cPLA2 may not be a prerequisite for turning on NADPH oxidase. (3) Since neither acid generation by the oxidase, nor the basal or stimulated Na+/H+ exchange (the predominant acid-eliminating mechanism) were influenced by the drug, we could use AACOCF3 to address whether the H+ channel in fact opens and plays any physiological role during activation of neutrophils. Stimulus-induced cytosolic alkalinization was smaller, whereas depolarization became larger, in the presence of AACOCF3. Stimulated H+ conductance therefore does contribute to intracellular pH (pHi) homoeostasis and membrane potential changes of intact neutrophils.
Collapse
Affiliation(s)
- K Suszták
- Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University of Medicine, Budapest 8, PO Box 259, H-1444, Budapest, Hungary
| | | | | | | |
Collapse
|
17
|
Brumell JH, Chan CK, Butler J, Borregaard N, Siminovitch KA, Grinstein S, Downey GP. Regulation of Src homology 2-containing tyrosine phosphatase 1 during activation of human neutrophils. Role of protein kinase C. J Biol Chem 1997; 272:875-82. [PMID: 8995376 DOI: 10.1074/jbc.272.2.875] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tyrosine phosphorylation of several proteins induced in neutrophils by soluble and particulate stimuli is thought to be crucial for initiating antimicrobial responses. Although activation of tyrosine kinases is thought to mediate this event, the role of tyrosine phosphatases in the initiation and modulation of neutrophil responses remains largely undefined. We investigated the role of Src homology 2-containing tyrosine phosphatase 1 (SHP-1; also known as protein tyrosine phosphatase 1C (PTP1C), hematopoetic cell phosphatase, PTP-N6, and SHPTP-1), a phosphatase expressed primarily in hemopoietic cells, in the activation of human neutrophils. SHP-1 mRNA and protein were detected in these cells, and the enzyme was found to be predominantly localized to the cytosol in unstimulated cells. Following stimulation with neutrophil agonists such as phorbol ester, chemotactic peptide, or opsonized zymosan, a fraction of the phosphatase redistributed to the cytoskeleton. Agonist treatment also induced significant decreases (30-60%) in SHP-1 activity, which correlated temporally with increases in the cellular phosphotyrosine content. Phosphorylation of SHP-1 on serine residues was associated with the inhibition of its enzymatic activity, suggesting a causal relationship. Accordingly, both the agonist-evoked phosphorylation of SHP-1 and the inhibition of its catalytic activity were blocked by treatment with bisindolylmaleimide I, a potent and specific inhibitor of protein kinase C (PKC) activity. Immunoprecipitated SHP-1 was found to be phosphorylated efficiently by purified PKC in vitro. Such phosphorylation also caused a decrease in the phosphatase activity of SHP-1. Together, these data suggest that inhibition of SHP-1 by PKC-mediated serine phosphorylation plays a role in facilitating the accumulation of tyrosine-phosphorylated proteins following neutrophil stimulation. These findings provide a new link between the PKC and tyrosine phosphorylation branches of the signaling cascade that triggers antimicrobial responses in human neutrophils.
Collapse
Affiliation(s)
- J H Brumell
- Division of Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Ding J, Knaus UG, Lian JP, Bokoch GM, Badwey JA. The renaturable 69- and 63-kDa protein kinases that undergo rapid activation in chemoattractant-stimulated guinea pig neutrophils are p21-activated kinases. J Biol Chem 1996; 271:24869-73. [PMID: 8798763 DOI: 10.1074/jbc.271.40.24869] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neutrophils stimulated with the chemoattractant fMet-Leu-Phe (fMLP) are known to exhibit rapid activation of four protein kinases with molecular masses of approximately 69, approximately 63, approximately 49, and approximately 40-kDa. Activation of these kinases is blocked by antagonists of phosphatidylinositol 3-kinase and type 1 and/or type 2A protein phosphatases. These enzymes can be detected by their ability to undergo renaturation and catalyze the phosphorylation of a peptide substrate that corresponds to amino acid residues 297-331 of the 47-kDa subunit of the NADPH-oxidase complex fixed within a gel. In this report, we demonstrate that an antibody generated to a fusion protein containing amino acid residues 175-306 of p21-activated protein kinase 1 (Pak1) reacts with three proteins in guinea pig neutrophils with molecular masses in the 60-70-kDa range during Western blotting. This antibody immunoprecipitates both the 69- and 63-kDa renaturable kinases from lysates of stimulated cells along with a minor 60-kDa kinase. No activities were observed for any of these enzymes in immunoprecipitates from unstimulated neutrophils. However, addition of ATP and activated Rac 1 or Cdc42 to immunoprecipitates from unstimulated cells resulted in the stimulation of two renaturable kinases with molecular masses in the 69- and 63-kDa range. These immunoprecipitates also contained two novel protein kinases with masses of approximately49 and 40 kDa that were selectively activated by Cdc42. In contrast, the 69- and 63-kDa kinases were not immunoprecipitated from lysates of stimulated neutrophils with an antibody to Pak2 or with nonimmune serum. These data indicate that the renaturable 69- and 63-kDa kinases are Paks and reveal some of the upstream events that are necessary for the rapid activation of this family of protein kinases in neutrophils.
Collapse
Affiliation(s)
- J Ding
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
19
|
Tsakiridis T, Taha C, Grinstein S, Klip A. Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J Biol Chem 1996; 271:19664-7. [PMID: 8702668 DOI: 10.1074/jbc.271.33.19664] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Insulin activates rapidly a complex cascade of lipid and protein kinases leading to stimulation of mitogenic and metabolic events. Here we describe a renaturable kinase of 65 kDa (PK65) that becomes rapidly activated by insulin in differentiated L6 muscle cells (myotubes) and can phosphorylate histones immobilized in polyacrylamide gels. Insulin activation of PK65 was abolished by the tyrosine kinase inhibitor erbstatin and by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, but was unaffected by inhibitors of protein kinase C or of the activation of p70(S6K). Recently, a number of protein kinases have been described which become activated through interaction with the small GTP-binding proteins Rac and Cdc42 (21-ctivated inases, or PAKs) and lead to activation of the stress-induced mitogen-activated protein kinase (MAPK) p38 MAPK. Two different polyclonal antibodies recognizing the carboxyl-terminal or the Rac-binding domain of a 65-kDa PAK (PAK65) immunoprecipitated the myotube PK65. The insulin-induced activation of PK65 in myotubes was detectable following immunoprecipitation of the kinase. Furthermore, PK65 associated with and became activated by glutathione S-transferase-Cdc42Hs in the presence of GTPgammaS (guanosine 5'-3-O-(thio)triphosphate). In myotubes insulin also induced tyrosine phosphorylation of p38 MAPK. However, this phosphorylation was insensitive to wortmannin, indicating that p38 MAPK is not activated by PK65 in insulin-stimulated cells. The results suggest that insulin activates in muscle cells a renaturable kinase (PK65) closely related to PAK65. Tyrosine kinases and PI 3-kinase act upstream of PK65 in the insulin signaling cascade. Insulin activates p38 MAPK in myotubes, but this occurs by a pathway independent of PI 3-kinase and PK65.
Collapse
Affiliation(s)
- T Tsakiridis
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
20
|
Weaver YR, Cossins AR. Protein tyrosine phosphorylation and the regulation of KCl cotransport in trout erythrocytes. Pflugers Arch 1996; 432:727-34. [PMID: 8764975 DOI: 10.1007/s004240050191] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electroneutral salt transporters are activated and deactivated by changes to the phosphorylation status either of the transporter itself or of other, as yet unidentified, regulatory proteins. We have studied the effects of an inhibitor of protein tyrosine kinase (PTK), genistein, upon KCl cotransport in trout erythrocytes. We show that Cl-dependent K fluxes activated by physiological stimuli, i.e. oxygenation and beta-adrenergic agonists, are rapidly and completely blocked by genistein, whilst the inactive analogue of genistein, daidzein, had no effect. By contrast, the protein tyrosine phosphatase (PTP) inhibitor, vanadate (V), caused a slow but strong activation of an inactive cotransporter. This vanadate (V) activated flux was inhibited by genistein as well as by the serine/threonine phosphatase (PSP) inhibitor, calyculin A. However, genistein had no effect upon the activation of the cotransporter by the protein (serine/threonine) kinase (PSK) inhibitor, staurosporine, or by N-ethylmaleimide, which also appears to act by inhibiting a PSK. These results are consistent with a sequential scheme of at least two tyrosine phosphorylation events which lie upstream to the serine/threonine phosphorylation sites in the signal transduction pathway leading from stimulus to transporter activation. The regulation of the activity of KCl cotransporter appears to involve a complex series of phosphorylation reactions.
Collapse
Affiliation(s)
- Y R Weaver
- Department of Environmental and Evolutionary Biology, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK
| | | |
Collapse
|
21
|
Liu R, Leavis P, Badwey JA. In vitro activation of a 60-70 kDa histone H4 protein kinase from neutrophils by limited proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1295:89-95. [PMID: 8679678 DOI: 10.1016/0167-4838(96)00027-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neutrophils stimulated with the chemotactic peptide fMet-Leu-Phe (fMLP) are known to exhibit a rapid and transient activation of a histone H4 kinase that may function in a stimulatory pathway downstream of phosphatidylinositol 3-kinase. The activity of this histone kinase in unstimulated neutrophils and cells treated with 1.0 microM fMLP for 10 sec was 8.8 +/- 5 and 43 +/- 2 pmol P/min per 10(7) cells, respectively. In this paper, we report that unstimulated neutrophils contain a latent H4 kinase in the 100,000 x g soluble fraction that can be markedly activated by treatment with trypsin. The values for the untreated and trypsin treated enzyme were 5.5 +/- 1.0 and 63.6 +/- 18 pmol P/min per 10(7) cell-equivalents, respectively. This kinase was insensitive to a selective antagonist of protein kinase C (i.e., 50 microM 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7)) but completely blocked by 100 nM staurosporine. Only a single peak of activity was observed for this enzyme when the 100,000 x g supernatant fraction was fractionated on either an exclusion (KW-803) or an anion exchange column (DEAE), or during isoelectric focusing. The molecular weight of the latent kinase was 64 +/- 6 kDa and the isoelectric point was 7.6 +/- 0.1. During all fractionation procedures, the H4 kinase co-chromatographed with a trypsin-activated kinase that catalyzed the phosphorylation of a peptide which corresponds to residues 297-331 of the 47 kDa subunit of the NADPH-oxidase complex (p47-phox). The properties of the trypsin-activated H4 kinase from unstimulated neutrophils are very similar to those reported for this enzyme from fMLP-stimulated cells.
Collapse
Affiliation(s)
- R Liu
- Boston Biomedical Research Institute, MA 02114, USA
| | | | | |
Collapse
|
22
|
Brumell JH, Burkhardt AL, Bolen JB, Grinstein S. Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J Biol Chem 1996; 271:1455-61. [PMID: 8576138 DOI: 10.1074/jbc.271.3.1455] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In response to invading microorganisms, neutrophils produce large amounts of superoxide and other reactive oxygen intermediates (ROI) by assembly and activation of a multicomponent enzyme complex, the NADPH oxidase. While fulfilling a microbicidal role, ROI have also been postulated to serve as signaling molecules, because activation of the NADPH oxidase was found to be associated with increased tyrosine phosphorylation (Fialkow, L., Chan, C. K., Grinstein, S., and Downey, G.P. (1993) J. Biol. Chem. 268, 17131-17137). The mechanism whereby ROI induces phosphotyrosine accumulation was investigated using electroporated neutrophils stimulated with guanosine 5'-O-3-thiotriphosphate in order to bypass membrane receptors. In vitro immune complex assays and immunoblotting were used to identify five tyrosine kinases present in human neutrophils. Of these, p56/59hck, p72syk, and p77btk were activated during production of ROI. Interestingly, the in vitro autophosphorylation activities of p53/56lyn and p59fgr were found to decline with ROI production. The mode of regulation of p56/59hck was explored in detail. Oxidizing agents were unable to activate p56/59hck in vitro and, once activated in situ, reducing agents failed to inactivate it, suggesting that the effects of ROI are indirect. Tyrosine phosphorylation of p56/59hck paralleled its activation, and dephosphorylation in vitro reversed the stimulation. We therefore conclude that tyrosine phosphorylation is central to the regulation of p56/59hck and likely also of p72syk, which is similarly phosphorylated upon activation of the oxidase. Because ROI have been shown to reduce the activity of tyrosine phosphatases, we suggest that this inhibition allows constitutively active kinases to auto/transphosphorylate on stimulatory tyrosine residues, leading to an increase in their catalytic activity. Enhanced phosphotyrosine accumulation would then result from the combined effects of increased phosphorylation with decreased dephosphorylation.
Collapse
Affiliation(s)
- J H Brumell
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Ding J, Vlahos CJ, Liu R, Brown RF, Badwey JA. Antagonists of phosphatidylinositol 3-kinase block activation of several novel protein kinases in neutrophils. J Biol Chem 1995; 270:11684-91. [PMID: 7744808 DOI: 10.1074/jbc.270.19.11684] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several novel protein kinases are known to be rapidly activated in neutrophils stimulated with the chemoattractant fMet-Leu-Phe (fMLP). These kinases include a histone H4 protein kinase and several renaturable kinases with molecular masses of about 69, 63, 49, and 40 kDa. The renaturable kinases can catalyze the phosphorylation of a peptide that corresponds to residues 297-331 of the 47-kDa subunit of the NADPH-oxidase system (p47-phox). Previous studies have indicated that the activation of all of these protein kinases involves an uncharacterized stimulatory pathway and/or novel second messenger. The studies reported herein were undertaken to determine if phosphatidylinositol 3-kinase (PI3-K) is a component of this pathway. We report that certain chromosome derivatives (e.g. 2-(4-morpholinyl)-8-phenylchromone (LY294002)) and wortmannin, which inhibit PI3-K by distinct mechanisms, blocked activation of all of these novel kinases. These antagonists also inhibited the phosphorylation of p47-phox (about 50%) and O2.- release (about 80%) in cells stimulated with fMLP, but not with 4 beta-phorbol 12-myristate 13-acetate. A strong correlation exists between the amounts of these antagonists required to produce 50% inhibition of PI3-K in vitro and O2.- release in vivo. In contrast, a single atom substitution of LY294002 produced a compound (LY303511) that did not inhibit PI3-K. Compound LY303511 did not appreciably inhibit the activation of the novel protein kinases or O2.- generation. These data strongly suggest that PI3-K is involved in the activation of several novel protein kinases in neutrophils, one or more of which may be involved in O2.- release.
Collapse
Affiliation(s)
- J Ding
- Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|