1
|
Hyuga S, Parry RC, Danielsson J, Vink J, Fu XW, Wu A, Dan W, Yim PD, Gallos G. Anoctamin 1 antagonism potentiates conventional tocolytic-mediated relaxation of pregnant human uterine smooth muscle. J Physiol Sci 2021; 71:7. [PMID: 33618673 PMCID: PMC9352361 DOI: 10.1186/s12576-021-00792-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Currently available tocolytic agents are not effective treatment for preterm labor beyond 48 h. A major reason is the development of maternal side effects which preclude the maintenance of an effective steady-state drug concentration. One strategy that can mitigate these side effects is utilizing synergistic drug combinations to reduce the drug concentrations necessary to elicit a clinical effect. We have previously shown that three anoctamin 1 (ANO1) antagonists mediate potent relaxation of precontracted human uterine smooth muscle (USM). In this study, we aimed to determine whether a combination of sub-relaxatory doses of tocolytic drugs in current clinical use [the L-type voltage-gated calcium channel (VGCC) blocker, nifedipine (NIF); and the β2-adrenergic (β2AR) agonist, terbutaline (TRB)] will potentiate USM relaxation with two ANO1 antagonists [benzbromarone (BB) and MONNA (MN)]. OBJECTIVE This study sought to examine the synergistic potency and mechanistic basis of two ANO1 antagonists with currently available tocolytic drugs. Functional endpoints assessed included relaxation of pre-contracting pregnant human USM tissue, inhibition of intracellular calcium release, and reduction of spontaneous transient inward current (STIC) recordings in human uterine smooth muscle cells. METHODS Human myometrial strips and primary human USM cells were used in organ bath and calcium flux experiments with different combinations of sub-threshold doses of ANO1 antagonists and terbutaline or nifedipine to determine if ANO1 antagonists potentiate tocolytic drugs. RESULTS The combination of sub-threshold doses of two ANO1 antagonists and current tocolytic drugs demonstrate a significant degree of synergy to relax human pregnant USM compared to the effects achieved when these drugs are administered individually. CONCLUSION A combination of sub-threshold doses of VGCC blocker and β2AR agonist with ANO1 antagonists potentiates relaxation of oxytocin-induced contractility and calcium flux in human USM ex vivo. Our findings may serve as a foundation for novel tocolytic drug combinations.
Collapse
Affiliation(s)
- Shunsuke Hyuga
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, 622 W. 168th St. P&S Box 46, New York, NY, 10032, USA
| | - Robert C Parry
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, 622 W. 168th St. P&S Box 46, New York, NY, 10032, USA
| | - Jennifer Danielsson
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, 622 W. 168th St. P&S Box 46, New York, NY, 10032, USA
| | - Joy Vink
- Department of Obstetrics & Gynecology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Xiao Wen Fu
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, 622 W. 168th St. P&S Box 46, New York, NY, 10032, USA
| | - Amy Wu
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, 622 W. 168th St. P&S Box 46, New York, NY, 10032, USA
| | - William Dan
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, 622 W. 168th St. P&S Box 46, New York, NY, 10032, USA
| | - Peter D Yim
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, 622 W. 168th St. P&S Box 46, New York, NY, 10032, USA
| | - George Gallos
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, 622 W. 168th St. P&S Box 46, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
3
|
Malysz J, Rovner ES, Wake R, Petkov GV. Preparation and Utilization of Freshly Isolated Human Detrusor Smooth Muscle Cells for Characterization of 9-Phenanthrol-Sensitive Cation Currents. J Vis Exp 2020:10.3791/59884. [PMID: 32065126 PMCID: PMC7489995 DOI: 10.3791/59884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Detrusor smooth muscle (DSM) cells present within the urinary bladder wall ultimately facilitate urine storage and voiding. Preparation of the viable, fresh, and isolated DSM cells presents an important technical challenge whose achievement provides optimal cells for subsequent functional and molecular studies. The method developed and elaborated herein, successfully used by our group for over a decade, describes dissection of human urinary bladder specimens obtained from open bladder surgeries followed by an enzymatic two-step treatment of DSM pieces and mechanical trituration to obtain freshly isolated DSM cells. The initial step involves dissection to separate the DSM layer (also known as muscularis propria) from mucosa (urothelium, lamina propria, and muscularis mucosa) and the adjacent connective, vascular, and adipose tissues present. The DSM is then cut into pieces (2-3 mm x 4-6 mm) in nominal Ca2+-containing dissection/digestion solution (DS). DSM pieces are next transferred to and sequentially treated separately with DS containing papain and collagenase at ~37 °C for 30-45 min per step. Following washes with DS containing enzyme-free bovine serum and trituration with a fire-polished pipette, the pieces release single DSM cells. Freshly isolated DSM cells are ideally suited for patch-clamp electrophysiological and pharmacological characterizations of ion channels. Specifically, we show that the TRPM4 channel blocker 9-phenanthrol reduces voltage-step evoked cation currents recorded with the amphotericin-B perforated patch-clamp approach. DSM cells can also be studied by other techniques such as single cell RT-PCR, microarray analysis, immunocytochemistry, in situ proximity ligation assay, and Ca2+ imaging. The main advantage of utilizing single DSM cells is that the observations made relate directly to single cell characteristics revealed. Studies of freshly isolated human DSM cells have provided important insights characterizing the properties of various ion channels including cation-permeable in the urinary bladder and will continue as a gold standard in elucidating DSM cellular properties and regulatory mechanisms.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center
| | - Eric S Rovner
- Department of Urology, Medical University of South Carolina
| | - Robert Wake
- Department of Urology, College of Medicine, University of Tennessee Health Science Center
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center; Department of Urology, College of Medicine, University of Tennessee Health Science Center; Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center;
| |
Collapse
|
4
|
Sui G, Fry C, Malone-Lee J, Wu C. Aberrant Ca2+ oscillations in smooth muscle cells from overactive human bladders. Cell Calcium 2009; 45:456-64. [DOI: 10.1016/j.ceca.2009.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 11/24/2022]
|
5
|
Nakayama S, Ito Y, Sato S, Kamijo A, Liu HN, Kajioka S. Tyrosine kinase inhibitors and ATP modulate the conversion of smooth muscle L-type Ca2+ channels toward a second open state. FASEB J 2006; 20:1492-4. [PMID: 16738256 DOI: 10.1096/fj.05-5049fje] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Properties of smooth and cardiac L-type Ca2+ channels differ prominently in several physiological aspects, including sympathetic modulation. To assess the possible underlying mechanisms, we applied the whole cell patch-clamp technique to guinea pig detrusor smooth muscle cells, in which only L-type Ca2+ channel currents are observed in practice. During depolarization to large positive potentials, the conformation of the majority of L-type Ca2+ channels is converted from the normal (O1) to a second open state (O2), which undergoes little inactivation during depolarization. Extracellular application of genistein, a known tyrosine kinase inhibitor, significantly attenuated the voltage-dependent conversion of Ca2+ channels to O2, accompanied by reduction of availability, whereas genistin, an inactive analog, had little effect. In the absence of ATP in the patch pipette, intracellular application of either genistein or tyrphostin-47 suppressed the conversion to O2. Computer calculation revealed that the acceleration of the O1 to an inactivated state qualitatively reconstructs the unique effects of PTK inhibitors antagonized by ATP. We concluded that under normal conditions smooth muscle L-type Ca2+ channels are already modulated by tyrosine-kinase and ATP-related mechanism(s) and thereby easily achieve the second conversion, which yields voltage-dependent modulation of L-type Ca2+ current analogous to that in cardiac myocytes during beta-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Neurocardiogenic syncope is a neurally mediated disorder and is a common cause of syncope. The goal of treatment is to prevent recurrences with the aim of improving quality of life and reducing morbidity. Reassurance, in some cases, may suffice. In others, augmenting central blood volume by increasing fluid and/or salt intake is effective. The role of non-pharmacological physical manoeuvres is increasingly recognised, given the increasing clinical trial data supporting their efficacy. This review summarises the clinical evidence for a variety of pharmacological agents. Of these, midodrine appears to have yielded the most consistent favourable outcome. Its use, however, should be reserved for patients with recurrent and refractory syncope.
Collapse
Affiliation(s)
- Lin Y Chen
- Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota, MN 55905, USA.
| | | |
Collapse
|
7
|
Brading AF. Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol 2006; 570:13-22. [PMID: 16210349 PMCID: PMC1464291 DOI: 10.1113/jphysiol.2005.097311] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/29/2005] [Indexed: 12/22/2022] Open
Abstract
Smooth muscles from the urethra and bladder display characteristic patterns of spontaneous contractile activity in the filling phase of the micturition cycle. Tonic contractions are seen in the urethral smooth muscles, and phasic contractions occur in the detrusor. Overactivity in the detrusor is a common clinical problem. The ion channels in the smooth muscle membranes play an important role in determining the functional properties, and are obvious targets for treatment of the overactive bladder. Recent evidence suggests that interstitial cells may also play a role in determining the pattern of spontaneous activity, although their precise role is less well established in the urinary tract than in the gut. The ion channels involved in these cells are also of interest. This review discusses what is known of ion channels in these tissues, and their implications for function.
Collapse
Affiliation(s)
- A F Brading
- Oxford Continence Group, University Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
8
|
Aoyama M, Murakami M, Iwashita T, Ito Y, Yamaki K, Nakayama S. Slow deactivation and U-shaped inactivation properties in cloned Cav1.2b channels in Chinese hamster ovary cells. Biophys J 2003; 84:709-24. [PMID: 12524323 PMCID: PMC1302651 DOI: 10.1016/s0006-3495(03)74890-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Accepted: 09/26/2002] [Indexed: 11/29/2022] Open
Abstract
Whole-cell patch-clamp techniques were applied to Chinese hamster ovary cells stably expressing cloned smooth muscle Ca(2+) channel alpha(1)-subunits. In the presence of Ba(2+) as a charge carrier, U-shaped inactivation was observed in the presence and absence of Ca(2+) agonists. Also, tail currents deactivated slowly when conditioning steps of positive potential were applied. The deactivation time constant was decreased by hyperpolarizing the repolarization step. Application of ATP-gamma-S or H-7 had little effect on the conditions necessary to induce slow tail, suggesting involvement of physical processes in the channel protein. In the presence of Bay K 8644, additional application of nifedipine decreased the amplitudes of the test and tail currents induced by a test step preceded by a conditioning step to +80 mV, but did not affect the decay time constant of the tail current. From these results and assumptions we have drawn up a kinetic scheme with one closed state, two open states (O(1), O(2)) and two inactivated states linked to the closed state and open state O(1), respectively, i.e., open state O(2) protected from inactivation. Computer calculation reconstructed slow deactivation and U-shaped inactivation properties. A similar kinetic scheme with Ca(2+)-agonist-binding states accounted for the results in the presence of Ca(2+) agonists.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Barium/pharmacology
- CHO Cells/physiology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/physiology
- Cloning, Molecular
- Computer Simulation
- Cricetinae
- Ion Channel Gating/physiology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Models, Biological
- Muscle, Smooth/physiology
- Nifedipine/pharmacology
- Patch-Clamp Techniques
- Protein Subunits/drug effects
- Protein Subunits/genetics
- Protein Subunits/physiology
- Recombinant Proteins/drug effects
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Masahiro Aoyama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Huang J, Pickel VM. Differential distribution of 5HT2A and NMDA receptors in single cells within the rat medial nucleus of the solitary tract. Synapse 2002; 44:64-75. [PMID: 11891878 DOI: 10.1002/syn.10056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of serotonin (5-hydroxytryptamine; 5HT) receptors of the 2A subtype (5HT2A) in the intermediate portion of the medial nucleus tractus solitarius (mNTS) produces marked hypotension and bradycardia. This portion of the mNTS receives major input from glutamatergic baroreceptor afferents. Thus, the cardiorespiratory effects of 5HT2A agonists may be attributed, in part, to interactions involving the glutamatergic target neurons, some of which express N-methyl-D-aspartate (NMDA) glutamate receptors. To determine the functional sites for activation of 5HT2A receptors and their relationship to NMDA receptors in this region, we used electron microscopic immunocytochemistry for the localization of antipeptide antisera selectively recognizing each receptor protein in the intermediate mNTS in rat brain. Of 1,052 5HT2A-labeled profiles, 38% were dendrites and dendritic spines, 27% were unmyelinated axons, 14% were axon terminals, and 11% were glial processes. These 5HT2A-labeled profiles frequently contained NR1 gold particles with dendrites comprising 68% of the total dual-labeled profiles. In dendrites, the 5HT2A immunoreactivity was localized to cytoplasmic organelles or discretely distributed on synaptic or extrasynaptic segments of the plasma membrane. In contrast, NR1 immunoreactivity was prominently localized to postsynaptic junctions and these were distinct from the 5HT2A receptor labeling when coexpressed in the same dendrites. Dendrites containing both receptors composed 56% (224/399) of the total 5HT2A-labeled dendrites and 34% (224/659) of the total NR1-labeled dendrites. Our results provide the first ultrastructural evidence that in the intermediate mNTS, 5HT2A receptor agonists may affect the postsynaptic excitability of many of the same neurons that show NMDA-evoked responses to glutamate.
Collapse
Affiliation(s)
- Jie Huang
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, 10021, USA.
| | | |
Collapse
|
10
|
Nakayama S, Torihashi S. Spontaneous rhythmicity in cultured cell clusters isolated from mouse small intestine. THE JAPANESE JOURNAL OF PHYSIOLOGY 2002; 52:217-27. [PMID: 12139780 DOI: 10.2170/jjphysiol.52.217] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To investigate spontaneous rhythmicity in smooth muscle tissue, we have developed a cell cluster preparation. Cell clusters were enzymatically isolated from the muscle layer of mouse small intestine and cultured for several days. They included smooth muscle, neurones, and c-Kit-immunopositive interstitial cells. c-Kit-immunopositive cells in myenteric plexus, showing a networklike structure, are putative pacemaker cells. The cultured cell clusters routinely show spontaneous contraction and preserve characteristic features in this tissue: (1) high temperature dependency of contractile frequency; (2) spontaneous electrical activities measured with patch clamp techniques are insensitive to tetradotoxin (TTX) and dihydropyridine Ca(2+) antagonists. This preparation could therefore be used as a good model system to investigate the underlying mechanisms of intestinal motility and pacemaker function. The relationship between the frequency of electrical activity and cluster size suggests that the minimum unit of small intestine tissue to yield normal pacemaker activity is approximately 100 microm in diameter, or less. The applications of 100-120 microM Cd(2+) and Ni(2+) significantly suppressed the spontaneous activity. Ca(2+) influx pathways other than L-type and "classical" T-type voltage-sensitive Ca(2+) channels seem very likely to play an important role, such as nonselective cation channels and capacitative Ca(2+) entry. Furthermore, applications of heptanol reduced the amplitude and the frequency of the oscillating inward currents and eventually terminated them, suggesting that electrical cell-to-cell coupling may also make some contribution to the generation of spontaneous activity.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Japan.
| | | |
Collapse
|
11
|
Nakayama S, Klugbauer N, Kabeya Y, Smith LM, Hofmann F, Kuzuya M. The alpha 1-subunit of smooth muscle Ca(2+) channel preserves multiple open states induced by depolarization. J Physiol 2000; 526 Pt 1:47-56. [PMID: 10878098 PMCID: PMC2270004 DOI: 10.1111/j.1469-7793.2000.00047.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The cloned alpha 1-subunits of the smooth muscle Ca(2+) channel (alpha (1C-b)) from rabbit lung were expressed in Chinese hamster ovary cells. The effect of large depolarizations was examined using cell-attached patch clamp techniques. After large, long-duration depolarizations (to +80 mV, 4 s), the cloned smooth muscle Ca(2+) channels were still open, and also showed slow channel closure upon repolarization. The sum of unitary channel currents revealed that the tail current seen after large conditioning depolarizations had a slower deactivation time constant compared to that seen when the cell membrane was depolarized briefly with a test step (to +40 mV), suggesting that large depolarizations transform the conformation of the Ca(2+) channels to a second open state. The decay time course of the tail current induced by large conditioning depolarizations was prolonged by reducing the negativity of the repolarization step, and vice versa. Using the slow deactivating characteristic, the current-voltage relationship was directly measured by applying a ramp pulse after a large depolarization. Its slope conductance was approximately 26 pS. Since the patch pipettes contained Ca(2+) agonists, the transition of the Ca(2+) channel conformation to the second, long open state during a large depolarization was distinct from that caused by Ca(2+) agonists, suggesting that the cloned alpha 1-subunits of smooth muscle Ca(2+) channels preserve the characteristic features seen in native smooth muscle Ca(2+) channels. In addition, when skeletal muscle beta-subunits were coexpressed with the alpha 1-subunits, the long channel openings after large, long-duration depolarizations were frequently suppressed. This phenomenon could be explained if the skeletal muscle beta-subunits increased the inactivation rate during the preconditioning depolarization.
Collapse
Affiliation(s)
- S Nakayama
- Department of Physiology, School of Medicine, Nagoya University, Nagoya 466, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Smith LM, Kajioka S, Brading AF, Nakayama S. Effects of phosphorylation-related drugs on slow Ca2+ tail current in guinea-pig detrusor cells. Eur J Pharmacol 1999; 370:187-93. [PMID: 10323268 DOI: 10.1016/s0014-2999(99)00119-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In isolated guinea-pig detrusor cells, large conditioning depolarizations evoke slowly deactivating Ca2+ tail currents, considered to represent the second open state. The possible involvement of channel phosphorylation in this open state was examined. Application of isoprenaline caused a marginal increase in Ca2+ channel current evoked by simple depolarization, while forskolin did not. During application of either drug, slow-tail currents were never observed after simple depolarizations. The conditions necessary to induce slow-tail currents were not changed, even when cyclic AMP, ATP-gamma-S (adenosine 5'-O-(3-thiotriphosphate)), GDP-beta-S (guanosine 5'-O-(2-thiodiphosphate)) (in the pipette) or H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride) (to the bathing solution) was applied. The frequent depolarization protocol, known to facilitate Ca2+ current via Ca2+ and cyclic AMP-dependent phosphorylation mechanism(s) in cardiac myocytes, did not induce slow-tail currents. These results suggest that the transition of Ca2+ channels to the second open state during large depolarization is not a result of (voltage-operated) channel phosphorylation itself. Possible underlying mechanisms are discussed.
Collapse
Affiliation(s)
- L M Smith
- Department of Physiology, School of Medicine, Nagoya University, Japan
| | | | | | | |
Collapse
|
13
|
Turner WH, Brading AF. Smooth muscle of the bladder in the normal and the diseased state: pathophysiology, diagnosis and treatment. Pharmacol Ther 1997; 75:77-110. [PMID: 9428000 DOI: 10.1016/s0163-7258(97)00038-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The smooth muscle of the normal bladder wall must have some specific properties. It must be very compliant and able to reorganise itself during filling and emptying to accommodate the change in volume without generating any intravesical pressure, but whilst maintaining the normal shape of the bladder. It must be capable of synchronous activation to generate intravesical pressure at any length to allow voiding. The cells achieve this through spontaneous electrical activity combined with poor electrical coupling between cells, and a dense excitatory innervation. In the diseased state, alterations of the smooth muscle may lead to failure to store or failure to empty properly. The diseased states discussed are bladder instability and diabetic neuropathy. Bladder instability is characterised urodynamically by uninhibitable rises in pressure during filling, and is seen idiopathically and in association with bladder outflow obstruction and neuropathy. In diabetic neuropathy, many of the smooth muscle changes are a consequence of diuresis, but there is evidence for alterations in the sensory arm of the micturition reflex. In the unstable bladder, additional alterations of the smooth muscle are seen, which are probably caused by the patchy denervation that occurs. The causes of this denervation are not fully established. Nonsurgical treatment of instability is not yet satisfactory; neuromodulation has some promise, but is expensive, and the mechanisms poorly understood. Pharmacological treatment is largely through muscarinic receptor blockade. Drugs to reduce the excitability of the smooth muscle are being sought, since they may represent a better pharmacological option.
Collapse
Affiliation(s)
- W H Turner
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
14
|
Nakayama S, Brading AF. Long Ca2+ channel opening induced by large depolarization and Bay K 8644 in smooth muscle cells isolated from guinea-pig detrusor. Br J Pharmacol 1996; 119:716-20. [PMID: 8904646 PMCID: PMC1915774 DOI: 10.1111/j.1476-5381.1996.tb15731.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. In smooth muscle cells enzymatically isolated from guinea-pig urinary bladder, Ca2+ channel currents were recorded by conventional cell-attached patch clamp techniques. In most recordings Bay K 8644 (2 microM) was contained in the patch pipette. 2. Closure of Ca2+ channels observed during the repolarizing steps was significantly slowed by preconditioning with large depolarizations (+80 and 100 mV), with or without Bay K 8644 in the pipette. 3. The sum of the unitary Ca2+ channel current traces obtained after large conditioning depolarizations (in the presence of Bay K 8644) showed a slowly deactivating tail current. 4. By use of this slow deactivating feature, the current-voltage relationship of the unitary Ca2+ channel current was continuously measured with a ramp pulse after large depolarization. The slope conductance ranged from 22 to 30 pS, compatible with that of L-type Ca2+ channels. 5. It is concluded that L-type Ca2+ channels in guinea-pig detrusor cells are open for much longer after large depolarizations consistent with their being two channel open states, and that Bay K 8644 prolongs the lifetime of both open states. The underlying mechanisms are discussed.
Collapse
Affiliation(s)
- S Nakayama
- Department of Physiology, School of Medicine, Nagoya University, Japan
| | | |
Collapse
|
15
|
Johnson TD, Childres WF, Bryan RM. The in vitro action of polyamines on rat basilar and femoral artery contractile activity. Life Sci 1996; 59:529-36. [PMID: 8761341 DOI: 10.1016/0024-3205(96)00333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was performed to assess the role of exogenously administered polyamines on rat basilar and femoral artery contractile activity in vitro. With the endothelium removed, rings of tissue were set up in organ chambers to measure isometric tension. The polyamines (0.1-3 mM), putrescine, spermidine, and spermine, were added to the tissue baths; after 30 min of incubation a cumulative concentration response curve (CRC) was obtained with either KCl or serotonin (5-HT). Additional CRCs were run with Ca(2+) in high K+ Krebs (60 mM). In both tissues, the CRCs to KCl were shifted to the right in a dose-dependent manner for spermidine and spermine (1 & 3 mM) but not putrescine. Spermine (3 mM) depressed the KCl maxima by 18.6% and 10.1% in the basilar and femoral artery respectively. For 5-HT CRCs, only spermine (3 mM) slightly inhibited the maximal response in both tissues. The most potent action of spermine was on inhibition of Ca(2+) responses in high K+ where the EC50S were shifted 3.5 and 10 fold over control values in the basilar and femoral respectively. We conclude spermidine and spermine, but not putrescine, attenuate vascular smooth muscle contractions on the basilar and femoral arteries in vitro. The exact nature of the inhibition remains to be fully explored, but blockade of calcium entry through voltage operated Ca channels may play a role. Thus, certain polyamines may affect cerebral perfusion by inhibition of vascular contractility.
Collapse
Affiliation(s)
- T D Johnson
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|